| DATABOARD 4680°|

0S.8 MIT
PROGRANMING
- MIANUAL

REEEEBEEREERREERE

FOREWORD

This manual describes 08.8, the Multi-tasking Real-time Operating
System, and deals specifically with revision 2.50 and higher
revisions. It is designed as a reference manual for programmers in the
process of designing and programming tasks to run under the Operating
System, or involved in System maintenance.

This publication is divided into two separate manuals and four
appendices:

0S.8 PROGRAM REFERENCE MANUAL (PRM)
provides information for the user programmer to make full use of

the wide range of capabilities provided by the Operating System when
constructing and maintaining user programs.

0S.8 SYSTEM LOGIC MANUAL (SLM)

describes the internal structure of the Operating System, and
contains information necessary to write device handlers.

Appendix A contains glossary and shortenings.
Appendix B holds the crash codes.
Appendix C specifies the error codes.

Appendix D describes the differances from previous revisions.

0 s .8

PROGRAM REFERENCE MANUAL (ERM)

CONTENT 1
81-04-01 PRM.0S8

CONTENT

—

Chapter INTRODUCTION

SYSTEM OVERVIEW

.1 Introduction.

Minimum hardware requirements.
.3 Important features.

Chapter

[ASTEAS BN AV TN AV
AV

SYSTEM OPERATION

System generation.

System start-up.

System shut-down and restart.
System crashes.

Chapter

(VSR VR VIRV UL
B WV AN I

TASKS

Introduction.

Preparation.

Protection.

Status.

Priority and scheduling.
Terminal manager.
Supervisor calls (SVC).
Event queue.

Symbiont and task devices.

Chapter

FrFEFEEEFFFEEFEEFE
W OO0 Fwhhn =

SUPERVISOR CALLS (SVC’s)
SVC1 input/output.

Chapter

Ul
et

SVC2 - subfunctions.
svca. - memory handler.
sSvc2. - logg message.
svca. - pack file descriptor.
svcz. - pack numeric data.
Svcz2. unpack numeric value.
Svca. - fetch or set date and time.
SVC2. - scan mnemonic table.
2 SVC2.12 - open/close device.

Vg g o
MMM MDD MDD
— 00 =]\l =N -
— =~ J EFw -

|

SVC3 - timer coordination.
SVCh - task device handling.
SVC5 - overlay loader.

SVC6 - task control.

SVC7 - file handling.

svcé - resource handling.

Ul WU
w1 o0nU EWw

INPUT/OUTPUT PROGRAMMING
Introduction.

Files.

Terminal Driver.
SP1/UART Qutput Driver.
SP1 Input Driver.
Cassette Tape Driver.
Magnetic Tape Driver.
Disc Drivers.

Chapter

DOV OO
QO=1 Ul =W =

F_._'_,_. _—

Chapter

N e e e
UEwh -

GUIDE TO USING SVC 2 FACILITIES
Introduction.

Command decoding.

Operand decoding.

Numeric conversion.

File Descriptors.

CONTENT 2
81-04-01 PRM.0OS8

INTRODUCTICN 1-1
81-04-01 PRM.0S8

CHAPTER 1

INTRODUCTION

1 INTRODUCTION

This manual is designed as a reference manual for programmers in the
process of designing and programming tasks to run under 0S.8.

Use of this manual requires that the reader is familiar with the
features, functions and conventions of the DataBoard-4680 system from
the user’s point of view as documented in:

DataBoard-4680 System Manual.
DataBoard~-4680 Software Catalog.
DataBoard-4680 Assembler Manual.
DataBoard-4680 0S.8 Operator’s Manual.

The major features in this revision, R2.50, are:

- Dynamic memory management and support of discontiguous
memory .

- Disc management, including directory pre-allocation and
0S images in files.

- On line resocurce handling.
- Overlay handling.

- Symbiont task and task devices.

This publication is divided into six more chapters as folows:

Chapter-2 gives a general system overview of 0S.8 including hardware
requirements.

Chapter-3 describes shortly the system operation.
Chapter-4 discusses task structure, priorities, task-handled events.

Chapter-5 is a guide to the services available through supervisor
calls (SVCs).

Chapter-6 describes the functional aspects of the device and the
direct-access file support.

Chapter-7 is a guide for using SVC 2 calls for command processing
functions.

2.

1

SYSTEM OVERVIEW 21
81-04-01 PRM.0S8

CHAPTER 2

SYSTEM OVERVIEW

INTRODUCTION

0S.8 is a Real-Time Multi-Tasking Operating System for the
DataBoard-4680 System that increases programming and operation
efficiency, yet requires a minimum of storage and computing time. It
can monitor both batch processing and real-time applications such as
process control, production control, plant supervising, communication
protocols, program development etc.

0S.8 is a disc-based operating system, but may be used as a memory
only system located in PROM. It supports up to 64 kilobyte of main
memory (256KB in R3.00), both contiguous and discontiguous.

Built-in functions include system control via the Terminal
Management, interrupt handling and I/0 servicing. Data file management
features are provided for any system equipped with direct-access
storage media. The file management technics includes two types of file
structures, and a disc directory structure such that each disc
contains complete information concerning all its existing files.

Facilities are provided for supporting up to 255 tasks running
concurrently. Tasks can reside permanently in memory or on a mass
storage device, such as disc and discettes, and be brought into memory
for execution, which is carried out on priority basis. A task of
higher priority will interrupt a task of lower priority either through
a hardware interrupt or via a programmed request. When the task of
higher priority is finished, the operation of the lower task is
resumed.

The operating system has a modular design and only the modules which
the user needs have to be included in a software installation, thus
saving memory space. The system can easily be generated together with
user programs, and be placed in PROM, for simple handling of final
applications. The system has a very low overhead and reentrant code is
used to a very large extend.

The programmer communicates with the system through standardized
requests and via commands from the terminal device. Input and output
functions are carried out by driver programs, one for each type of
device. Devices can easily be added and deleted on line.

SYSTEM OVERVIEW 2-2
81-04-01 PRM.0S8

2.2 MINIMUM HARDWARE REQUIREMENTS

DataBoard-4680 system equipped with a Z80-CPU.

Minimum 48KB main memory.

Interval Clock.

Optional peripherals are:
- Terminal device together with the Terminal Manager.
- Dises and drums from 80 Kb up to 400 Mb.
- Magnetic tapes and cassettes.
- High speed line printer.
- High speed paper tape reader and punch.
- Card reader.
- Modems and dial-up units.

- Digital and analog inputs and outputs.

SYSTEM OVERVIEW 2-3
81-04-01 PRM.0S8

2.3 FEATURES

Outstanding features of 0S.8:

KERNEL:

PROMmable, all data structures are created at cold start (64KB
version)

Priority allocation of the whole computer system, including
devices, execution time, memory allocation, etc.

Dynamic memory handling that supports up to 6U4KB (256KB in R3.00)
of main memory.

Calendar and time-of-day are normally maintained by the system,
and interval timing is available to user tasks.

The number of tasks in memory at any time may be as great as 255,
limited only by the amount of memory available and by system
generation considerations.

Tasks are scheduled by priority with 255 distinct levels. An
optional time slice scheduler allows tasks of equal priority to
share processor time. '

Low overhead. A minimum of searching is required to find the
highest priority task.

There are 16 system priority levels, 8 for hardware and 8 for
software services. The system will support up to 255 interrupt
driven devices. Response time for higher level interrupts is less
than 200 uS.

INPUT/OUTPUT:

Input and output operations are device independent, allowing
re-assignment without having to alter existing software.

Devices and drivers can easily be added and deleted on line wich

allows the user to dynamically add new devices without a system
generation.

TASKS:

Tasks and overlays are loaded into any free memory area by a
relocating loader.

Multiple applications programs can operate concurrently through
the use of interleaving techniques.

Task need not to be totally memory resident, but may be segmented
and overlaid from any mass storage device.

FILE

SYSTEM OVERVIEW 2-4
81-04-01 PRM.0S8

Task queue. Event-related information is maintained for each task
within its own task queue.

Task may request the activation and execution of other tasks, and
may pass parameters to one another.

Task may take traps on the reciption of these parameters and upon
completion of all type of requests.

MANAGEMENT:

Comprehensive file management facilities are provided on
direct-access devices; contiguous and indexed file structures are

provided for save and efficient use of the disc.

No hardware dependent file organization, any combination of disk
types may be used at the same time.

Theoretical unlimited file size, disk addresses are 32 bits.
Hashed directory structure for faster directory search.

User readable directories.

Twelve character file names plus file type designator.

Cache memory type of sector buffering, to keep down the number of
disk accesses.

Element File capabilities, keeps down the number of entries in
Master File Directory. Element Directories speeds up directory
searching.

Element Files used for example in source module collection.
Module name is then expressed as PROJECT.MODULE. Backup of an
Element File Directory will backup all elements in the directory
which simplifies bookeeping of source modules since only one name
is required.

Byte random access, a file may be treated as a stream of bytes.
Variable or fixed length files.

File access lockout in multi user environment.

Files can be accessed logical (byte access) or physical (256
bytes blocks).

Files can be assigned by more than one program at each time
unless the access attributes aren’t violated.

SYSTEM OVERVIEW 2-5
81-04-01 PRM.0S8

This figure shows the principal interactions between the major
groupings of the Operating System. For clarity, many minor
interactions between these module groupings are not shown. For a more
detailed explanation of system interactions, the reader is referred to
the DataBoard-4680 0S.8 System Logic Manual.

Task

svcz . SVCT SVC5 |l SVC6 || SvVCH Svc8
Subfne File Load Task Symb Res
L
Scheduler
Realtime-
File || SVC1 |4 Reloc system | SVC3
mngr L I/0 Loader Crash- Time
handler
Interrupt-
handler
Utility
Rout
Device System
drivers tables

l

Figure: 0S.8 Functional Block Diagram

302

3.3

3.4

SYSTEM OPERATION 3=1
81-04-01 PRM.OS8

CHAPTER 3
SYSTEM OPERATION

SYSTEM GENERATION

0S.8 ought to be tailored to the specific configuration it is to
support. This is normally done through the command stream, when
linking the the 1libraries of system object modules, to produce an
absolute 0S.8 load module. It is also possible to generate an 08.8
together with user application programs, that could be placed in PROM.
The 0S.8 System Logic Manual contains more detailed information about
system generation.

SYSTEM START UP

05.8 is normally loaded from a mass storage device by the Bootstrap
Loader, but can also be loaded from a paper tape reader, or be
resident in PROM. On completion of the 1load, control 1is normally
transferred to the Terminal Manager Task which prints

DOS.8MTM Rx.yz

on the terminal device, where “x° is the release number and ‘yz is
the update number, and issues the command promt “-". The system is now
ready to accept commands. If the 05.8 1is generated without the
Terminal Management, control is transferred to a task specified by the
user.

SYSTEM SHUT DOWN AND RESTART

In a disc-based system it is necessary that the system should be
shut down or restarted in an orderly fashion, to assure the integrity
of the dises in use. Before shutting down or restarting the system,
the operator should cancel and delete all tasks, and close all discs.
The system may now be restarted. If the system crashes, it should NOT
be restarted, it must be reloaded.

SYSTEM CRASH

When the system determines that futher execution may cause system or
user data to be destroyed, the system crash handler is entered. As an
option, a crash dump sequence may be included into the system. Some of
the conditions causing a system crash are:

-~ Invalid data in system structures.
- Illegal interrupts.

For a complete list of the system crash codes and their meanings
refer to Appendix D. The 0S.8 must be reloaded after a crash !

TASKS 4-1
81-04-01 PRM.0S8

CHAPTER 4

TASKS

4.7 INTRODUCTION

n

4.

.2

.3

M

The fundamental unit of work in 0S.8 is the task. A task may consist
of a single program, or it may include a main program and a number of
subroutines and overlays. Tasks may be permanently resident in memory,
or they may be loaded as required. Tasks are referred to by TASKID
which is associated with the task at load time. The number of tasks
allowed in memory at one time is limited at system generation time.
Each task is controlled through a Task Control Block (TCB).

PREPARATION

A task must be prepared by processing the object module with the
03.8 Task Establisher. Once established, the task is loaded by the
resident loader via the LOAD operator command or SVC6.

The process of establishing a User task produces a relocatable load
module of the task. The task references data and instructions as if
the task were loaded at location 0 in memory. When the task is loaded
into the 0S.8 system, the relocating 1lcader 1s wused to provide
automatic relocation from task space addresses to real physical
addresses, thus allowing a task to be loaded into any memory segment
large enough.

When creating a PROMmed installation, the user tasks may be linked
together with the 03.8, or 1linked separate, to produce the final
appliecation.

PROTECTION

Since there are neither any Memory Management nor any Memory Protect
hardware present, any task can access memory cutside their boundaries.
The only protection present is a software check of each task’s stack.

STATUS

A task in memory may be in any of five states. These are:

Current, the task executing instructions.
Ready, to become the Current task.
Waiting, for an event.

Paused

Dormant, not started.

Additionally, task are classified as either resident or
non-resident. By definition, a task which is resident is not deleted
when it completes execution. A non-resident task which goes to
end=-of-task (EQT) is deleted from the system. A task may be made
resident at task establish time or at run time by the operator or a
task. :

4.5

TASKS 4-2
81-04-01 PRM.0S8

The Current task is the task executing instructions. Only one task
may be in this state at any given instant in time. All other tasks in
memory are in one of the other four states, and may become the Current
task depending on circumstances.

A Ready task is one which has no obstacles to become the Current
task. It is eligible to be dispatched (i.e., become Current) whenever
it becomes the highest priority Ready task.

A task in the Wait state is one which may not become Ready until
some specific circumstance has occurred. Among the possible Wait
states are:

Connection wait Waiting for I/0 to start

I/0 wait Waiting for I/0 completion

Time wait Waiting for an interval or time of day
Trap wait Waiting for a task-handled event

Task wait Waiting to be released Dby another task

A Paused task 1is one which may not execute until explicitly
continued either by the console operator or Dby another task.

A Dormant task is one which may not execute until it has been
explicitly started, either by the console operator or by another task.
when a resident task goes to EOT it enters the Dormant state. When any
task is loaded, it enters tne Dormant state after load-complete, and

remains in this state until started.

PRIORITY AND SCHEDULING

0S.8 recognizes 256 priority levels from a high of 0 to a 1low of
255. Of these levels, 1-255 are available to user tasks while 0 is
reserved for system’s use. Each task has two priorities associated

with it:

- Task Priority
- Dispatch Priority

Task priority is the priority currently assigned to the task; it is
set at task establish time and may be modified by operator command or

SVC-6.

Dispatch priority is the priority set up by the system to determine
the order in which ready tasks are serviced. Normally, a task’s
dispatch priority is the same as its task priority, but may be raised
temporarily if the task is using a system resource required by 2
higher priority task.

Two types of scheduling algorithm are available. Tasks may be
scheduled in striet priority order or time-sliced, with either a
global slice 1imit or an own limit, within priority. In the former
case, if two tasks of equal priority are started, a task remains
active until it relinquish control of the processor. Care should be
taken in assigning priorities so that tasks which do not frequently
relinquish control of the processor do not inadvertently lock out
other tasks. A task may relinquish control in one of the following

ways:

e S W E E T E E B B B B B B

4.6

4.8

TASKS 4-3
81-04-01 PRM.0QS8

It is Paused or Cancelled by the operator or by another task.

A higher priority task becomes ready because of some external event.

It executes an SVC that places it in Wait, Pause or Dormant state.

Rather than scheduling on strict priority basis, task may be
time-sliced within priority. This option allows the user to ensure
that tasks of equal priority receive shares of processor time.

The time-slicing option may be enabled and disabled by an operator
command. Refer to DataBoard-4680 0S.8 Operator’s Reference Manual.

When a task becomes ready, it is queued on a round-robin basis
behind all ready tasks of equal priority.

TERMINAL MANAGER

The terminal operator interface is provided by a task called
Terminal Manager. The Terminal Manager interprets and executes all
commands; it also performs all I/0 requests to the console device. The
Terminal Manager task 1is normally included as a task of 0S5.8 and
cannot be cancelled. When the Terminal Manager is the only task in the
system, except for a dormant task, the system is said to be quiescent.

The 0S.8 Operator’s Manual describes in detail the commands and
procedures related to communication with the Terminal Manager.

SUPERVISOR CALLS (SVC’'s)

The program interface to the operating system is provided through
Supervisor Call (SVC) instructions. SVC instructions are executed by
programs to request 0S.8 services. The parameters associated with the
request are passed to the 0S.8 in a parameter block. Most of the
services provided by the Console Manager are performed with SVC
instructions, thus making these services available to user tasks.
Chapter 5 describes the individual SVC instructions and their
assoclated parameter blocks in detail.

EVENT QUEUE

0S.8 provides a facility at the task level known as the task-handled
trap facility. This allows a task to handle asynchronus events. Event
related information is maintained for each task within its own event
queue. An event queue is a linked list of nodes.

A trap service occurs whenever the task is in Trap-wait state. If a
task is 1in any Wait state other than trap wait, a trap does not
actually ocecur until the task has left that wait state. Several
trap-~causing conditions may occur before the first trap is handled by
the task. Therefore, the event queue facility is provided to allow for
queuing of event information during periods when the task is unable to
service a trap.

b,

9

TASKS 4-4
81-04-01 PRM.0S8

The following trap-causing conditions cause an item to be added to
the event queue:

Addition of a parameter to the event queue.
Completion of any queued no-wait request.
Requests to own task-device.

SVC 1 requests to own TCB.

SYMBIONT AND TASK DEVICES

The 0S.8 recognizes special "imaginary" devices, Task Devices, that
may be added to the system. These devices have all the characteristics
of a real interrupt driven device, being able to be assigned to any
task and having I/0 requests queued for them. Whenever these requests
are queued, another task called a Symbiont is "activated" instead of a
device driver. In this case the symbiont task ™"initiates" the
operation and handles the completion of the request just as a device
driver would do. Normally, the symbiont operates at a task priority
level higher than any task that may call it.

However, being an ordinary task, the symbiont has more freedom than
a device driver has, since it can execute SVC instructions. Since the
symbiont simulates a real device driver, it can be written in such a
way that it processes requests of a single task device, or it
processes requests of several simular or unrelated devices.

Symbionts may be used to simulate devices, to spool devices (impose
intermediate disc buffering), or to impose special formatting,
communication protocols, or data conversions on existing interrupt
driven devices. These techniques can be implemented in such a way that
they are "transparent" to the task which uses them.

mOoann oo DN EEEDNDn oI EOAERnNEnENNEITRNEE NN EENMRAE NN IR NN Ann

SUPERVISOR CALL 51
81-04-01 PRM.0S8

CHAPTER 5
SUPERVISOR CALLS

5 SVC - SUPERVISOR CALLS

Supervisor calls (SVC) are used in programs to request the operating
system to perform operations such as data transfer, file handling,
task manipulation, timer coordination, device control and subfunctions
like text-processing.

All SVC’s are connected to a parameter block where all parameters
are specified to perform the requested function. The parameter block
must be in a writable segment.

SVC’s are written in assembly language and they always consist of a
restart 7 instruction followed by a 1 byte argument, and a 2 bytes
parameter. The argument specifies the request type, and the parameter
is normally an address to a parameter block. Parameter values lower
than 256, means that a value in CPU-register pair should be used.

When the SVC-instruction is executed, all CPU-registers are stored
on the task’s stack. This because of the fact that the operating
system needs the registers, and to allow the task to keep the register
contents at return after a SVC. During a SVC the system operates as a
subroutine of the calling task, mostly with the callers priority.

At return from the SVC all CPU-registers are unchanged, except the
current ‘A’-register and the condition codes. The ‘A’-register
contains the return status, and the condition code is set to true zero
and false carry when no error conditon exists, and set to false =zero,
and true carry on error.

When an illegal SVC is done, a message is logged on the system
console and the task will be paused. To resume the execution, the 3VC
must be corrected, or the task must be canceled.

If the task has specified system recovery, then a message is logged
and the task will be paused for every abnormal return status. When the
task is told to continue, the SVC that produced the error is repeted.
When system recovery has been specified, all error handling is done in
a system dependent routine inside the operating system.

The SVC-sequence for most requests are:

3vVC ARG, PARBLK Parameter block ptr in the instruction.
- Return point.

SVC ARG, (rp) Parameter block ptr in a register pair.
- Return point.

PARBLK EQU

* Parameter block.
DB 0 Function code.
DB 0 Return status.
DB 0,0... Depends on the type of request.

SUPERVISOR CALL 5-2
81-04-01 PRM.OS8

PARAMETER BLQOCK

The parameter block contains the detailed information required to
perform the requested function. All parameter blocks always contains a
field that holds the function code and another field where the return
status is stored by the system. The content of the following fields
depends on the service requested. The general structure of a parameter
block is:

(0) S0.FC (1) S0.RS (8-)
Function code Return status Depends on the SVC-function

Each field within a parameter block is identified by its name and a
descriptive title. Offsets are given in the form (DD), where DD is the
offset in decimal. The name of the field is in the form Sn.FFFFF,
where <n> is the SVC-argument and <FFFFF> is the field name.

Certain fields contain flag bits to denote information. These Dbits
are defined by a name of the form SnF.BBBB, where <Sn> refers to the
name of the parameter block, <F> refers to the field and <BBBB>
identifies the function of the flag bit.

In order to make a program more readable, the programmer should use
these symbolic definitions. The definitions are available as an object
library to be used at program linking time.

FUNCTION CODE, SO.FC

In general, the request is defined by the 1logical 'OR™ of the
function code bits. The ‘0" setting of each bit is valid for all
requests. If any invalid “1° setting of a bit 1is specified, the
request is rejected as an illegal function. There are 3 common
function codes:

SOF.WAIT 0 Wait for completion.
SOF.TST 40Q Test request.
SOF .CAN 41Q Cancel all previous requests.

There is also 2 common bits in the function code:

SOF . NW 100Q Wait-proceed bit. Indicates the action to be taken
after the request has been initiated.
0-Wait. The task is to be put into wait until the
request is complete.
1-Proceed. The control is to be return to the task
after initiation of the request.

SOF.PRO 200Q Unconditional proceed bit.
0-The task is to be put into connection wait until
the requested resource is free. At that time the
request is processed.
1-The request is to be rejected if the requested
resource is not free.

n noonononoononoaonnEAoaEnNnAoNnNnAoAanAaEnNnAaAENnNAaNNnNNnNNRNNRNNnNNn

non

SUPERVISOR CALL 5-3
81-04-01 PRM.0S8

RETURN STATUS, SO.RS

The system returns the status of the requested function 1in the
return status byte. This status byte is set to indicate the general
type of error that occured. If there was no error, it is set to zero.
The return status is presented in the form NNX, where NN is the
SVC-function and X is the error code. The status has 9 common values:

S0S.0K 0 No error.

S0S.EON 1 End of nodes in the task.
S0S.IFC 2 Invalid function.

S0S.PRO 3 Can’t connect to the resource.
S0S.QFFL y Resource off line.

S0S.PRES 5 Not present in this system.
SOS.NYET 6 Not yet implemented function.
S0S.CAN 7 Request is canceled.

S0S.SVC 8 Invalid SVC function.

WAIT FOR COMPLETION, SOF.WAIT

A wait for completion request (function code 0) causes the task to
be placed into wait until the completion of a previous proceed request
to the specified resource. If there is no outstanding request by the
task to the specified resource, control is returned immediately. This
call make use of the function code and status fields of the parameter
block. Illegal resource is the only error status returned by this
call. The status of the request being tested is returned in the
parameter block associated with the original proceed call and not in
the wait for completion call’s parameter block.

CANCEL REQUEST, SOF.CAN

A cancel command request (function code 41Q) is used to terminate a
request wich has previously been issued. This is especially useful on
an interactive device. If cancel request is not used, an outstanding
request must be satisfied before any other request can be started on a
resource.

When a cancel command is issued, the operating system schedules the
previus request for termination. The actual termination 1is
asynchronous to the cancel request. When the request completes, the
task receives a trap, 1if enabled. The parameter added to the trap
queue is the address of the original parameter block, not the address
of the cancel parameter block. Alternatively, the task may sense the
completion of the request with test request or wait for completion
request.

It 1is possible that a previous proceed request has gone to
completion, at the time the cancel call is done, without being
serviced, 1i.e. has been added to the event queue. In that case, the
return status in the proceed request will not contain cancel return
code.

Two parameter blocks are involved in the cancel processing. The
first is the original parameter block specified by the user when the
request was initiated. The second is the command function parameter

block which is requestipng the cancel. These should not be the same

SUPERVISOR CALL 5-4
81-04-01 PRM.0OS8

parameter block. As the result of cancel command, status is returned
to both of these parameter blocks as indicated below:

1. Cancel parameter block:

000 The requested termination has been scheduled.
oo7 No request on-going for the task on this resource.
011 Resource not assigned.

2. Original parameter block:
007 Request is canceled.

TEST REQUEST, SOF.TST

A test request (function code 40Q) returns with a return status of O
if there is no outstanding proceed request to the specified resource
by the task. If there is an outstanding proceed request, the call
returns a status of 377Q.

WAIT/PROCEED, SOF.NW

A wait call requests the operating system to suspend the calling
task until completion of the requested operation.

Once a request has been initiated (that is, the specified resource
is free), any proceed request causes control to be returned to the
task so that the task may execute concurrently with e.g. the data
transfer. The return status is not set until completion of the
request, except for illegal function, and illegal resource which are
rejected before initiation. Every no-wait request to a queued resource
will be added to the event queue of the task, if enabled. The return
status of the request may be checked by:

- Monitoring the return status field in the parameter block.
- Issuing a wait for completion request to the same resource.

- Taking a task handled trap on completion.

UNCONDITIONAL PROCEED, SOF.PRO

Unconditional proceed is used when a task does not wish to wait for
the requested operation. Requests are coordinated by the system so
that only one request may access an exclusive resource at a time. If
unconditional proceed is not requested, and the specified resource is
in use at the time of the request, the calling task is suspended by
the operating system until the resource is free. At that time, the
request is initiated.

If Unconditional proceed 1is specified and the resource is in use,
the request is rejected. Return status is set to "3 and the condition
code is set to nonzero. The calling task may then retry the request at
later time. If the specified resource is not in use, the setting of
unconditional proceed has no effect on the request.

moannononononononnNnonnonuOEnNnnonoAannnEOAnNANAnAARNINRNNNnNARnN

SVC1-I/0 TRANSFER 5=5
81-04-01 PRM.0S8

5.1 SVC1 - INPUT/OUTPUT REQUEST

SVC1 is used by a task to perform all general purpose I1/0 requests.

PARAMETER BLOCK

(0) SO.FC (1) S0.RS (2) S1.LU (3) s1.T18
Function code Return status Logical unit Term. status
(4) S1.BAD (6) S51.BSZ

Buffer start address Buffer size in bytes i

i
(8) S1.BCNT (10) S1.RND ’
Byte count at completion Random address -
(12) -
- if applicable.

S0.FC, Function Code

..0...Xx Read-write bits.
SOF.WAIT ..0...00 Wait for completion.
S1F.READ ..0...01 Read request.
S1F.WRIT .0...10 Write request.
S1F.WRD .0...11 Write with read check (device dependent).
.0.xx.. Format bits. These bits indicates the type
of data formatting requested.
S1F.IASC ..0.00.. Image ASCII.
S1F.FASC ..0.01.. Format ASCII.
S1F.IBIN 0.10.. Image binary.
S1F.SPEC 0.11.. Special.
.0x.... Sequential-random bit.
.00.... Sequential. The next logical record is to
be accessed.
S1F.RND ..01.... Random. The logical record specified by the

random address field is to be accessed.

.. 1xxxxx Command codes. Codes not specified are
resource dependent.

SOF.TST .. 100000 Test request.
SOF.CAN .. 100001 Cancel request.
S1F.FR ..100010 Forward record.
S1F.FF ..100011 Forward file.
S1F.WF ..100100 Write filemark.
S1F.BR ..100101 Back record.
S1F.BF ..100110 Back file.
S1F.RW ..100111 Rewind.

S1F.ATTN ..101000 Attention.
S1F.FEOF ..101001 Fetch end-of-file position.

SOF . NW Xiieaas Wait-proceed bit.
SOF . PRO Xewawon- Unconditional proceed bit.

SVC1-1/0 TRANSFER 5-6
81-04-01 PRM.0S8

S0.R3, Return Status

0-9 Common codes.
S15.L0 10 Illegal or unassigned LU.
S1S.AM 11 Access mode missmatch.
S13.TOUT 12 Time-out.
S1S.DWN 13 Device off line.
S1S.EQF 14 End of file.
S1S.EOM 15 End of media.
S1S.RER 16 Recoverable or parity error.
S1S.UNR 17 Unrecoverable, read-write failed.
S1S.RND 18 Invalid random address.
S1S.NRND 19 Non-existent random address.

ASCII, Definition
Seven bit data, with the most significant bit in the byte
cleared. Data values between 40Q and 177Q. All other are
control information.

BINARY, Definition
Eight bit data.

S1F.FASC, Formatted ASCII
ASCII data with space compress, the most significant bit in the
byte is set, and seven bit space counter. The termination byte
in the buffer is zero.

S1F.IASC, Image ASCII
ASCII data without space compress, and no termination character

in the buffer.

S1F.IBIN, Image Binary
Transfer of eight bit data bytes, without any formatting.

S1F.SPEC, Special
Depends on driver.

S1.LU, Logical Unit

In order to provide device independet I1/0, all I/0 requests are
directed to a logical unit. LU is a number from O up to 255.
The particular resource desired must be assigned to the
specified LU prior to executing the SVC1 call. If an invalid or
unassigned LU 1is specified, the call 1is rejected, unless
reference to the system device numbers 1is allowed. If no
operation is desired, the specified LU should be assigned to
the NULL device.

Mmoo it oo N nn NN AT N AR TN ENNTaERnR TN NTAaEnNNNNTNnNNNn

SVC1-1/0 TRANSFER 5-7
81-04-01 PRM.0S8

S1.TS, Termination Status
This status byte may contain information unique to the specific
type of device.

S1.BAD, Buffer Address
The buffer is specified by the buffer start address, and points
to the first byte in the buffer. All buffers must be fully
contained in the same logical segment of the task address
space. Buffers used in read requests must be in a writable
segment, since the memory locations are changed by the read
operation.

S1.B3Z, Buffer Size
The buffer size specifies the number of bytes to be written,
and the maximum number of bytes to recieve.

S1.BCNT, Byte Count
This field is wused to return the actual number of bytes
transferred during a request. This field is most useful when
dealing variable length record devices, such as magnetic tape.
This field is undefined on error status.

S1.RND, Random Address
Used when the function code specifies random (S1F.RND). It is
interpreted in two different ways depending on the format
specified in function code.

On Image ASCII/Binary, it specifies the logical record number
(starting at 0) to be accessed for data transfer.

On Formatted ASCII, it is divided into two 16-bit fields which
contains positioning information at data transfer. These fields
are input in Read-function and output in Write-function. The
first field (most significant part) contains vertical
tabulation and the second horisontal. Positioning is absolute,
when the most significant bit is set, the remaining 15-bit
specifies an absolute position. Positioning is relative, when
the most significant bit is off, the remaining 15-bit forms a
signed integer for relative positioning.

Example: Data shall start on first position of next line,
S1.RND contents in hex is 00018000.

SVC2-SUBFUNCTION 5-8
81-04~01 PRM.0S8

5.2 SVC2 - SUBFUNCTIONS

This request type provides a number of general service functions.
These functions are related to the task’s communication with the
console operator, to memory allocation, to text processing and to
command processing functions.

The function code is generally used to futher modify the conditions
of the call, and is used individually by the subfunctions. For those
subfunctions for which no function code are defined, the content is
ignored by the subfunction, but check by the operating system as a
common function code. That means that no wait for completion and
unconditional proceed are supported. All requests require a parameter
block.

PARAMETER BLOCK

(0) S0.FC (1) S0.RS3

Function code Return status

(2) S2.SNR 1(3) S2.PAR .
Subfunction : ;

- i -
(4) !

Other data as required

S0.FC, Function Code
See each subfunction.

S0.RS, Return Status
Contains the return status, see each subfunction. There is one

common value:

S25.1ISB 20 Invalid subfunction number.

S2.SNR, Subfunction
Shall contain the requested subfunction, and they are:

EV2. 1TMEM 1 Memory allocating.

EV2.2MSG 2 Logg message.

EV2.3PFD 3 Pack file descriptor.
EV2.4PNU 4 Pack numeric data.

EV2.5UNP 5 Unpack binary number.
EV2.TDAT 7 Fetch or set date and time.
EV2.8CMD 8 Scan mnemonic table.
EV2.120C 12 Open/close device.

S2.PAR, Other Data
The content of this field depends on each subfunction.

oo nNnaoanNnnoanoannNnonNnnNAnNaENnNNnNNNNRNNNDN

SvC2.1-MEMORY 5-9
81-04-01 PRM.OS8

5.2.1 3VC2.1 - MEMORY HANDLING

This request is used to allocate and deallocate memory. The storage
is allocated in system memory.

PARAMETER BLOCK

(0) S0.FC (1) S0.RS
Function code Return status
(2) S2.SNR (3) S2.PAR
Subfunction 1 Reserved
(4) S2.1ADR

Memory address

(6) S2.1812
Memory size

S0.FC, Function Code

S2F,1ALO ..000001 Allocate memory.

S2F.1MAX ..000010 Reserved.

S2F.1REL ..000011 Release memory.

S2F.1TCB ..000100 Allocate a TCB, only internal use.
S2F.1CAN ..000101 Remove callers TCB, only internal use.

S0.RS, Return Status
S25.1PAR 21 Iliegal parameter.

S2S.1E0M 22 End of memory.

S52.1ADR, Memory Address
Shall contain the memory address at deallocation and will
return the memory address at allocation.

S2.1SIZ, Memory Size
Specifies the memory size in bytes to allocate.

SvVC2.2-L0GG MESS 5-10
81-04-01 PRM.0S8

5.2.2 SVC2.2 - LOGG MESSAGE
This request is used to logg a message on the terminal device, or

system log device, regardless of Logical Unit assignments in force at
the time of the request.

PARAMETER BLOCK

(0) S0.FC (1) S0.RS
Function code Return status |
(2) S2.SNR (3) s2.2T8 |
Subfunction 2 Term. status
() S2.2BAD

Buffer address

(6) 32.2BSZ
Buffer size

SO.FC, Funotibn Code
Refer to SVC1 function code about data formatting.

S0.R3, Return Status
Always good, S0S.0K !

32.2TS, Termination Status
Reserved.

S2.2BAD, Buffer Address
Is the address of the buffer to write on the system console.

S2.2BSZ, Buffer Size
Specifies the number of bytes to write.

oo nonnnnnnnnonnnnnnonnononnonnnnnonnonnuanmnhn

SVC2.3-PACK FD 5-11
81-04-01 PRM.O0S8

5.2.3 SVC2.3 - PACK FILE DESCRIPTOR

This request permits the user to process a File Descriptor in
standard 0S.8 syntax. Leading spaces are ignored, and the scan
terminates either when a syntax error (characters that couldn’t be a
part of the FD) is detected, or it proceeds until it has satisfactorly
processed each field. Note that some kind of termination character
must exist if string size is unspecified.

PARAMETER BLOCK

(0) S0.FC (1) S0.RS (2) S2.3NR (3) 32.3TS
Function code Return status Subfunction 3 Term. status
(4) S2.3ADR (6) S2.3BUF
ASCIT-string address Address of receiving area
(8) : S2.3PNT (10) S2.3CNT
Terminating string address String size

S0.FC, Function Code
S2F.3FN ..00...17 Unpack as filename, if not specified.
S2F.3KEP ..00..1. Keep non-modified fields.
S2F.3CNT ..00.1.. String size specified.
S2F.3PMO ..001... Pack modifier.
S0.RS, Return Status

S525.3IFD 21 Invalid file descriptor, syntax error.

S2.3TS, Termination Status

S2T.3NEL 0000...1 Element name not found.

S2T.3NFN 0000..1. File name not found.

S2T.3NVO 0000.1.. Volume name not found.

S2T.3NMO 00001... Modifier not found (only set if S2F.3PMO

is requested, and no modifier found).

S2.3ADR, String Address
Is a pointer to a string that contains the file descriptor to
be packed. The length of this string can be limited by setting
the S2F.3CNT-bit in &80.FC-field, and give the size in
S2.3CNT-field.

SVC2.3-PACK FD 5-12
81-04-01 PRM.0S8

S2.3BUF, Receiving Area
This 1s a pointer to a 29-byte area. Not that the modifier
field is on the negative side of the area, and must only be
present if the function S2F.3PMO is requested.

(=1) FD.MOD
File modifier

(0) FD.VOL
Volume name

(4) FD.FILE
File name

(16) FD.ELMT
Element name

S52.3PNT, Terminating String Address
This field 1is returned pointing to the first byte that is not
part of the file descriptor.

32.3CNT, String Size
This is an optional field, specifing the string length.

annnnnnnnnnnnononannnaoannonnonononnnnoaonnnNananNnnNmTn

SVC2.4-PACK NUM 5-13
81-04-01 PRM.0S8

5.2.4 SvC2.4 - PACK NUMERIC DATA

This request translates ASCII hexadecimal, decimal or octal
character strings to binary 8/16/24/32-bit numbers. Leading spaces are
ignored, and the conversion continues until a character not conforming
to the base is found.

PARAMETER BLOCK

(0) SO.FC (1) S0.RS (2) S2.3NR (3) S2.4S5IZE
Function code Return status Subfunction 4 Size
(4) S2.4ADR (6) S2.4PNT
String address Updated string address
(8) ' S2.4RES
Result

S0.FC, Function Code

..00..xx Conversion base.
S2F.UDEC ..00..00 Decimal.
S2F.U40CT ..00..01 Octal.
S2F.4HEX ..00..10 Hexadecimal.

.00.x.. Sign handling.
..00.0.. No signed input allowed.

S2F.4SGN ..00.1.. Input may be signed.
.00x... Destination.
.000... In parameter block.

S2F.4IND ..001... Address specified.

S0.RS, Return Status

S23.40FL 21 Overflow.
S2S.4NCV 22 Nothing converted.

S2.4SIZE, Size
Describes the size of the binary result, and gives the
possibility of an auto-incrementing result pointer.

S2Z.UBIN .xXX.... Specifies the size of result field.
S2Z.4INC 1....... Makes the result-pointer auto-incrementable.

S2.4ADR, String Address
This is a pointer to the first character of the ASCII string to
be converted.

S2.4RES, Result
The result is placed either in
specified by this field.

S2.4PNT, Updated String Address

SVC2.4-PACK NUM 5-14
81-04-01 PRM.0S8

this field, or at the address

This is the wupdated string pointer at return, and it is

pointing at the first byte

converted.

in the string that was not

T R R R R T T R ECE TN CECEFECEFECEFECEFECEFECTEEFECEETEETEEEOE

SVC2.5-UNPK NUM 5-15
81-04-01 PRM.0S8

5.2.5 SVC2.5 - UNPACK BINARY NUMBER

This request translates an 8/16/24/32-bit binary number into ASCII
hexadecimal, decimal or octal format.

PARAMETER BLOCK

(0) SO.FC (1) SO0.RS (2) S2.3NR (3) S2.5SIZE
Function code Return status Subfunction 5 Size
(4) S2.5ADR (6) S2.5PNT
Destination address Updated string address
(8) S2.5VAL
Source

S0.FC, Function Code

..... .xx Converting base.

S2F.5DEC 00 Decimal.
S2F.50CT 01 Qctal.
S2F.5HEX 10 Hexadecimal.
..... X.. Sign handling.
..... 0.. Unsigned conversion.
S2F.53GN 1.. Signed conversion.
..X... Source description.
....0... Number in parameter block.
S2F.5IND1... Address specified.
..X.... Space flag.
...0.... Leading zeros.
S2F.5SP ...1.... Leading spaces.
RS PN Field justifieing.
0L Right Jjustify.
S2F.5LFT ..1..... Left justify.

S0.RS, Return Status
Always good, S0S.0K !

S2.531ZE, Size

Describes the size of both binary and ASCII fields, and gives
the possibility of an auto-incrementing binary pointer. If the
number to be converted exceeds the buffer length, most
significant bytes are lost. If supression of leading zeros is
requested, the number is stored in the buffer, and the
remaining characters, if any, are filled with spaces. If the
number is to be left Jjustified, only the number of bytes
required for the number will be used, and S2.5PNT will point at
the next position after the number.

SVC2.5-UNPK NUM 5-16
81-04-01 PRM.0S8

S2Z.5A8Cxxxx Number of bytes in ASCII-string.
S22.5BIN .xxX.... Number of bytes in binary number,
S2Z.5INC 1....... Auto-increment of binary pointer.

S2.5VAL, Source

The binary number is placed either in this field, or at the
address specified by this field.

S2.5ADR, Destination Address
This is a pointer to the first location of a buffer in memory
where the converted number is to be stored. This buffer must be
in a writable logical segment.

S2.5PNT, Updated Destination Address
This is the updated buffer address pointer at return, and it is
pointing at the first byte in the buffer after the converted
number.

B oo oannRnnNnEeEnn AN AN oEnNnNnNaAannNnnNnunNnuaAanNnaAannNnnNnuAaan

SVC2.7-DATE/TIME 5-17
81-04-01 PRM.0S8

5.2.7 3VC2.7 - FETCH/SET DATE/TIME
This request is used either to interrogate the time-slice value, or

to fetch and set the current date and time of day in the system. The
system maintains a calendar and a 24-hour clock.

PARAMETER BLOCK

(0) S0.FC (1) SO0.RS
Function code Return status

(2) S2.SNR (3) S2.PAR
Subfunction 7 Reserved

(4) S2.7BUF
Buffer address

S0.FC, Function Code

S2F.7GET ..0...01 Fetch function.
S2F.TSET ..0...10 Set funection.
S2F.7SLC ..0.00.. Slice handling.
S2F.7DAT ..0..1.. Date handling.
S2F.7TIM ..0.1... Time handling.
..00. ASCII data, not at slice handling.
S2F.TBIN .01.. Binary data, not at date and time handling.

S0.RS, Return Status

S2S.7DAT 21 Invalid date.
S28.7TIM 22 Invalid time.

S2.7BUF, Buffer Address
This field holds the value at slice handling, or contains the
address to a buffer, within user’s program, that receives or
sends the values at date and/or time handling.

If ASCII format is selected, the buffer must be ten bytes long
for date and eight bytes long for time handling, and nineteen
bytes long for both date and time handling. On set date/time
the buffer must be terminated by a binary zero. The format is:

Date: YYYY-MM-DD
Time: HH.MM.SS

Date and time: YYYY-MM-DD HH.MM.S3S

SVC2.8-SCAN 5-18
81-04-01 PRM.OS8

5.2.8 SVC2.8 - SCAN MNEMONIC TABLE

This request permits the user to decode command mnemonics. A command
can consist of more than one word. Leading spaces are always ignored.

PARAMETER BLOCK

(0) SO.FC (1) SO.RS
Function code Return status
(2) S2.SNR (3) S2.8INX
Subfunction 8 Index

(4) 32.8ADR

String address

(6) S2.8LIST
Mnemonic table address

(8) S2.8PNT
Updated string address

S0.FC, Function Code
None.

S0.RS, Return Status

32s.8CMD 21 Undefined command mnemonic.

S2.8INX, Index
This field returns the number in the table of the matched

mnemonic, starting with zero. Thus, if a match is found on the
third item in the table, the index returned is 2.

S2.8ADR, String Address
This field shall contain the address to the source string,

within the user’s program space, to be scanned.

S2.8LIST, Mnemonic Table Address
This field shall contain the address of a mnemonic table within
the user’s program space. A mnemonic table 1is composed of a
string of mnemonics, separated from each other by a byte
containing binary zero. The end of the table is signified by
the occurrence of two consecutive bytes of binary zeros.

The first byte of a mnemonic specifies the abbreviation size.
The abbreviation must begin with the first character in the
mnemonic, and must also be contiguous. Thus, the mnemonic TWO
WORDS, in wich letters TW and W are required, is coded as:

SVC2.8-SCAN 5-19
81-04-01 PRM.0S8

CMDTABLE DB 2 Abbreviation size.
DB "ONEWORD ~ Command in ASCII.
DB 0 End of command.
DB 2, TWO",1, "WORDS ", 0
DB -1 Flag to indicate that table
DA NEXTABLE continues at this address.
*
NEXTABLE DB 2, TREE", 1, "WORDS ", 1, "COMMAND ", 0
DB 0 End of table !

32.8PNT, Updated String Address
This field returns the updated string address, and it is
pointing to the first character that was not matched. This is
normally a separator following the mnemonic in the string being
scanned.

Characters not allowed in table words (terminal characters) are:

delete (TFH)
space
L

#

Fl

e e 4+ o~

CNER VAR L S

SVC2.12-0PEN 5-20
81-04-01 PRM.0S8

5.2.12 SVC2.12 - OPEN/CLOSE DEVICE

This request is used to take a device off-line, or to bring on-line
a device that was previously off-line.

PARAMETER BLOCK

(0) SO.FC (1) S0.RS (2) 32.S5NR (3) S2.PAR
Function code Return status Subfunction 12 Reserved
() S2.12FD (6) S2.12ADR

Name pointer, or device number Optional SVC-handler address

S0.FC, Function Code

S2F.12CL ..000001 Close.

S2F.120P 10 Open.

S2F.12PR 1.. Write protected.

S2F.12NF1... Non=-file structured.

S2F.124D ...1.... SVC-handler address specified, only
directory oriented devices.

S2F.12AL ..1..... Fetch auto start line. Only valid at

open file structured.

S0.RS, Return Status

S25.12A8 21 Device is assigned, can’t be closed.
S25. 12DE 22 Device not found.

3525.1218 23 New volume already present.

S25. 120N 24 Directory device not in close state.

| S2.12FD, Name Pointer
This field shall contain either a pointer to a symbolic device
name, or numeric value less than 255, that 1is the numeric
identity of the device.

S2.12AD, SVC-handler Address
This optional field may contain the address to a user written

filehandler.

S2F.120P, Function Open
If a directory device is opened file-structured by a symbolic
name, the volume name will be returned in the file-name field

of the file-descriptor.

S2F.12AL, Fetch Auto 3tart Line
Data contained in the auto start line area on the disk is
returned to name pointer+8. 80 characters are moved.

T O EH E EEEEE N EEEEEEEE NN

SVC3-TIMER 5-21
81-04-01 PRM.0S8

5.3 SVC3 - TIMER REQUESTS

This request is used to coordinate with the real time, and supports
both interval and time-of-day requests.

PARAMETER BLOCK

(0) S0.FC (1) S0.R3
Function code Return status

(2) S3.TIME
Interval in milli/seconds
or
Hour Minute

S0.FC, Function Code

..0000xx Time sepcification:

S3F.MIL ..000001 Milliseconds.
S3F.SEC ..000010 Seconds.
S3F.TOD ..000011 Time of day.

.. 100xxx Commands:
SOF.TST .. 100000 Test request.

SOF.CAN .. 100001 Reserved.
S3F.CMIL ..100010 - " -
S3F.CSEC ..100011 - " -

S3F.CTOCD ..100100 - n -

SO0.RS, Return Status

S3S.PAR 30 Invalid interval/time-of-day.

S2.3TIME, Interval
This field contains either an unsigned interval wvalue, or an
absolute time of day value. This field is also used at cancel
function, and should then peoint at the previus parameter block
that sould be cancelled.

SVC4-TASK DEV 5-22
81-04-01 PRM.0S8

5.4 SvCY4 - TASK DEVICE

It is sometimes necessary for a symbiont task to re-trigg one of its
task-devices, that means add an item to the event queue of the task.
It is also possible to indicate that the symbiont handler should
cancel the request in progress. This request performs those functions,
and is only used by the task who owns the task-device. More
information about symbiont and task-devices will be found in chapter
5.6, function Wait For Event.

PARAMETER BLOCK

(0) S0.FC (1) S0.RS
Function code Return status
(2) S4.LU (3)

Logical unit Reserved

S0.FC, Function Code
SUF.TRIG ..0000.1 Trigg initiator.
S4F.CAN ..00001. Set cancel pending.
S0.RS, Return Status
S4S.ASGN 40 Not assigned.

SUS.TYPE 41 Invalid device type.

S4.LU, Logical Unit
This field holds the logical unit that should be accessed.

mannnanaaanNn R aEnRnN RN RN nNRENNnNnNnnNREEENnNENNNnNNnNaNENnNnNNNnNnNn

SVC5-LOADER 5-23
81-04-01 PRM.0S8

5.5 SVC5 - LOADER HANDLING

This request is used to load an overlay or a task. A task is
normally loaded through SVC6, where to find more detailed information
about task loading. An overlay is loaded into the requesting tasks
segment at relative address specified in the parameter block. An
overlay can also be started at the same time, that means chain the
program execution to a new program segment.

PARAMETER BLOCK

(0) SO.FC (1) SO.RS L(2) (3)
Function code Return status Reserved Reserved
(%) S5.TID (6) S5.LAD
Name pointer or task number Load address for overlay
(8) " S5.SAD (10) S5.FD
Start address i File descriptor
4
(12) S5.SIZE]
Additional size
. S U |

S0.FC, Function Code

S5F.LOAD ..00...1 Load.
SS5F.STRT ..00..1. Start overlay.

S5F.ABS ..00.1.. Absolute start address at overlay start.
S5F.0VL ..001... Overlay handling, else task handling.
SOF . NW Xeoooas Wait-proceed bit.

SOF.PRO Xeeaoans Unconditional proceed bit.

S0.RS, Return Status

S5S.TID 50 Illegal task name/number.
S55.CODE 54 Illegal code/item at load.
S5S.SIZE 55 Overlay don’t fit.

S5F.LOAD, Load Overlay

The overlay is loaded from the device specified by the file
descriptor, into the requesting tasks segment at relative
address specified by S5.LAD. The calling program is placed in
Load wait until the overlay is 1loaded. If the overlay is
successfully loaded, the root program may call it as a
subroutine. Overlays can call other overlay directly; the
calling code is overlaid with the new overlay, but the task is
aborted if the overlay load failed. Note that the overlay must
fit within the root segments size.

SVC5-LOADER 5-24
81-04-01 PRM.0S8

S5F.STRT, Start Overlay

This call starts the named overlay. If absolute start is
requested, the S5F.ABS-bit is set, the overlay is started at
the address specified by the S5.SAD-field. If relative start is
requested, the S6F.ABS-bit is cleared, the overlay is started
at 1its establish transfer address plus the value in the
S5.SAD-field.

SVC6-TASK 5-25
.81-04-01 PRM.0S8

5.6 SVC6 - TASK REQUEST

This request is used to manipulate with other tasks or own task.

PARAMETER BLOCK

(0) SO0.FC (1 S0.RS (2) S6.PRIO (3) S6.0PT
Function code Return status Priority Option
(%) S6.TID 1 (6) S6.PAR
Name pointer or task number Parameter
(8) S6.SAD (10) S6.FD
Address File desecriptor
(12) S6.SIZE
Additional size

S0.FC, Function Code

S6F.LOAD ..000..1 Load task.
S6F.STRT ..000.1. Start task.
S6F.ABS ..0001.. Absclute start address.

S6F.QTST ..001000 Test event queue.
S6F.QWAI ..0010.1 Wait for queue event.
S6F.QTRM ..00101. Terminate event.
S6F.QDIS ..001100 Disable event queue.
S6F.QENI ..001101 Enable event queue.
S6F.SUSP ..001110 Suspend myself.

SOF.TST .. 100000 Test task.

SOF .CAN .. 100001 Cancel task.

S6F.PAUS ..100010 Pause task.

S6F.CONT ..100011 Continue task.

S6F.PRIO ..1001.1 New task priority.

S6F.OPT ..10011. New task option.

S6F.TSKW ..101000 Wait for task termination.
S6F.ADDQ ..101001 Add to event queue.

S6F.STSW ..101010 Wait for task status change.
S6F.TYPE ..101011 New task type.

SOF . NW Xieoonn Wait-proceed bit.
SOF.PRO Xeoaooos Unconditional proceed bit.

SVC6-TASK 5-26
81-04-01 PRM.0QS8

S0.RS, Return Status

S6S.TID 60 Illegal task name/number.

S6S.PRES 61 Task already present.

S6S.PRI 62 Illegal priority.

S6S.0PT 63 Illegal option.

S6S.EQUE 6u Event queue disabled.

S6S.STAT 65 Invalid task status.

S6S.QPAR 66 Invalid termination parameter.
S6S.QITM 67 More items present in event queue.
S6S.TYPE 68 Invalid task type.

S6.PRIO, Priority
This field is used at functions S6F.STRT and S6F.PRIO, where
the value zZero means that the priority defined at
task-establish time should be used.

S6.0PT, Options
The S6.0PT-field is used at function S6F.OPT, and shall contain
the options of the task.

S60.DASG 0000...1 Default assign allowded.

S60.NSTK 0000..1. No stack check.

S60.EMSG 0000.1.. Error message print-out by system.
S60.RCOV 00001... System error recovery.

This field is also used at function S6F.TYPE:

S6T.RES 00000..1 Set the task memory resident.
S6T.NAB 00000.1. Set the task non-abortable from other tasks.

S6.TID, Name Pointer
This field shall contain either a pointer to a symbolic task
name, or a numeric value less than 255, that is the numeric
identity of a task. A zero value means that the request is
self-directed.

S6.PAR, Parameter
This field is used at functions S6F.STRT, S6F.QWAI, S6F.QTRM,
S6F.QTST and S6F.ADDQ.

S6F.LOAD, Function Load Task
The required fields are: S6.PRIO, S6.0PT, S6.TID, S6.FD and
S6.3IZE.

The specified task 1s loaded from the device specified by
S6.FD. If a task is already present in the system with ¢the
given S6.TID or the S6.TID is invalid, the call is rejected. A
memory area, expanded with S6.SIZE and large inough, is
allocated and the task is given the name found by the S6.TID
field. If there is not memory enough, the call is rejected.

SVC6-TASK 5-27
81-04-01 PRM.0S8

S56F.STRT, Function Start Task
The required fields are: S6.PRIO, S6.TID, S6.PAR and S6.SAD.

This call starts the named task. If absolute start is
requested, the S6F.ABS-bit is set, the task is started at the
address specified by the S6.SAD-field. If relative start is
requested, the S6F.ABS-bit is cleared, the task is started at
its establish transfer address plus the value in the
S6.SAD-field. If the S6.PRIO field is not zero, it is taken as
the priority for the task. If the S6.PAR-field is not zero, it
is taken as the address to a vector, where the first two bytes
of the vector is the number of bytes that should be transferred
to the task. All these bytes are transferred to the specified
task’s stack. On odd numbers of bytes, a last byte of zero is
added. The conditions when a task is started are:

Registers A,B,C,D,E,H,L are transferred from the starting task.
If started from the MTM-System, the registers E,D,C,B holds a
32-bit bit pattern corresponding to the switches specified.

Register Y points at the first byte after the program.

Register X points at the lowest possible value-1 for the SP.

On top of stack an 16-bit unsigned integer that holds the number
of parameter bytes present in the stack. If no parameters are
transferred, the value is zero.

i

The size of the additional memory added to a task is calculated
by subtracting register Y from X.

S6F.TST, Funtion Test Task
The required fileds are: S6.PRIO, S6.0PT, S6.TID and S6.PAR.

This function is useful to test the presence of a task, and
where the TCB-address is returned in S6.PAR.

S6F.CAN, Function Cancel Task
The required fields are: S6.PRIO and S6.TID.

This call permits a task to terminate itself, or another task,
in an orderly fashion. The Return Code, S6.PRIO, may be treated
as desired by another task waiting for its termination.
Normally the return code O represents normal termination. If
the task has I/0 in progress at the time the call is made, the
I/0 must be completed before the task goes to end of job. Then
all its files and devices are closed. If the task is a
non-resident task, it 1is removed from memory by deleting all
control information pertaining to the task. The task will never
return from the call if it is self-directed.

S6F.PAUS, Function Pause Task
The required field is: S6.TID.

This function causes the specified task to enter Pause state.
The task does-not continue to execute until it is released by

SVCH6-TASK 5-28
81-04-01 PRM.0S8

an S6F.CONT call. A task may suspend itself. In that case,
another task must be available to release it subsequently.

S6F .CONT, Function Continue Task
The required field is: S6.TID.

Tnis function takes a paused task out of its Pause state. The
task continues to execute as before it was paused, provided 1t
is not in any other Wait state.

S6F.PRIO, Function Change Priority
The required fields are: 56.PRIOC and 36.TID.

This function changes the priority of the specified task to
that specified in the S6.PRIO field of the parameter block. The
call is rejected if the priority is outside the valid range of
1-255.

S6F.OPT, Function Change Options
The required fields are: S6.0PT and S6.TID.

This call will change the options on a task according to the
bit pattern in S6.0PT. It is possible to combine S6F.PRIO with

S6F .OPT.

S6F.TSKW, Function Wait for Task Termination
The required fields are: S6.PRIO, 36.0PT and S6.TID.

This call is wused when a task wants to wait for another task
and its termination. At return from the call, S6.PRIO holds the
new status of task, S$6.PRIO contains the return code from the

task.

S6F.ADDQ, Function Add to Event Queue
The required fields are: 36.TID and S6.PAR.

The parameter in the S6.PAR field of the parameter block is
added to the specified task s Event Queue, if the queue 1is
enabled. Otherwise, the call is rejected with appropriate error
status.

S6F.TSTW, Function Wait for Task Status Change
The required fields are: S6.PRIO, S6.0PT and S6.TID.

This call is wused by a task, when the task wants information
about any status change on another task. At return from the
call, the fields content are the same as on S6F.TSKW. The

status changes are:

- Transition to/from Dormant state.
- Transition to/from Pause state.

SVC6-TASK 5-29
81-04-01 PRM.0S8

S6F.TYPE, Function Change Type

The required fields are: S6.0PT and S6.TID.

This call will change the type of a task according tc the bit
pattern in 36.0PT.

EVENT QUEUE HANDLING

The

following functions describes how to handle the event queue. In

general, every own queued no-wait request will be added to the event

queue,

if enabled. The required fields are almost always: S6.PRIO,

S6.TID and S6.PAR. The content of the fields, if valid are:

S6.PRIO The termination status on S6F.QTRM, else the SVC-type.
S6.TID Task number, zero if self-directed.
S6.PAR Address of the invoked parameter block.

S6F.QENI, Function Enable Event Queue

The event queue of a task must be opened prior to using the
event queue. Any addition to a non-enabled event queue will
faile, and those requests will have a return status off
S0S.0FFL.

S6F.QWAI, Function Wait for Event

The required fields are: S6.PRIO, S6.TID and S6.PAR.

This request 1is used when no more actions can be taken by the
task. The task will enter Trap wait state. As soon as any 1item
is added to the event queue, or if the event queue isn’t empty,
the task returns with return status zero, and all fields valid.
If the item belongs to an external task, S6.TID is non-zero,
the item is saved in a slough queue within the task. The item
will remain in the slough queue until it is terminated by the
task. If the item is self-directed, S6.TID is zero, it 1is not
saved in the slough queue. The field S6.PAR holds the address
of the SVC-parameter block that was the reason for the event.
In revision 3.00 and higher, this field contains the
node-address at an external event, and the item is not saved in
the slough queue.

If the item added to the event queue refers to a task-device,
then the symbiont initiator for that task-device will be
entered, and the call will not return to the task. The symbiont
handler works in the same way as a real device driver with the
same conditions. More detailed information about device drivers
will be found in 0S.8 System Logic Manual.

This function also implicits function S6F.QENI.

S6F.QTST, Function Test Event Queue

The required fields are: S6F.PRIO, S6F.TID and S6.PAR.

SVC6-TASK 5-30
81-04-01 PRM. 0S8

This request is used to test if there are anything in the event
queue. If empty, the request returns with return status zero,
else it returns with return status S63.QITM and the content of
the fields are valid. This call will not remove the event from
the event queue.

S6F.QTRM, Function Terminate Event
The required fields are: S6.PRIO and S6.PAR.

This function is used to remove an external request from the
slough queue, and to terminate it. S6.PRIO shall contain the
final return status for that request, and S6.PAR shall contain
the parameter received at SO6F.QWAI. It is also possible to
combine S6F.QTRM with S6F.QWAI.

S6F.QDIS, Function Disable Event Queue
This function is used to close the event queue, and every
present or queued request will be terminated with return status
SOF.QFFL.

S6F.SUSP, Function Suspend
The required field is: S6.PRIO

This request is used to relinquish control of the processor and
be added to the Ready-Queue. The priority to be used is
specified in the field S6.PRIO. If the value 1is =zero, the
current priority will be used.

T T T I NN EEE B

SVC6-TASK 5-31
81-04-01 PRM.0S8

SVC 6 PARAMETER BLOCK FIELD

S6.PRIO|S6.0PT|S6.TID| S6.PAR|S6.SAD| S6.FD | S6.SIZE
I E l f i
S6F.LOAD| U | U U i LU U
i ! i : i
is6F.sTRT| U ' u ' v . U i U '
S6F.QTST|S=SVCNR S=TNR S=PBLK |
'S6F . QWAL S:SVCNR% S=TNR S=PBLK :
A N S i "
{S6F .QTRM{U=S0.RS | U=PBLK
{ H |
' S6F . SUSP U i - |
SOF.TST s | s U |S=TCB S | |
| | . i]
'SOF.CAN |U=RCOD | v ! !
S6F.PAUS) |
—— e “- - l ———— e b
S6F .CONT U f
S6F.PRIO| U U | ;
'S6F . OPT U U : |
S6F.TSKW{S=STAT |S=RCOD U
; } 4
S6F .ADDQ U ,U=PBLK |
! !
S6F .STSW] S=STAT |S=RCOD U
S6F.TYPE u ! U
U = should be initiated by user before 3VC instruction.
S = returned by system after SVC instruction.
PBLK = address of invoked parameter block.
RCOD = return code at task termination.
SO0.RS = final return status for the request.
STAT = new task status.
SVCNR = Type of SVC.
TCB = addresss to Task Control Block.

TNR

task number, zero if self directed.

This request

5.7 SVC7 - FILE REQUEST

is used

to

tasks to a logical unit, and to modify them.

The meaning and ‘the
descripiton of each function requiring that field.

use of

each field

SVC7-FILE 5-32
81-04-01 PRM.0S8

create files, assign files, devices and

is explained 1in the

When dealing with non random-access devices the Record Length and
Size fields doesn’t need to be specified.

PARAMETER BLOCK

(0) SO.FC (1) SO.RS (2) s7.LU (3) S7.MOD
Function code Return status Logical unit Modifier
(4) ST.FD (6) ST.CLAS (7) ST.TAM
Name pointer, or device number Class Access mode
(8) S7.RECL (10) ST7.UBUF
Record length Reserved
.
(12) ST7.3IZE
(LSW) Size (MSW)
L e
S0.FC, Fucntion Code
STF.ALLO ..0....1 Allocate.
..0...1. Reserved.
STF.ASGN ..0..1 Assign.
STF.DELC ..0.1.. Delete at close.
STF.CLOS ..01. Close.
SOF.TST .. 100000 Test request.
SOF .CAN . 100001 Cancel all previus requests.
..100010 Reserved.
STF .CHKP . 100011 Checkpoint (from 3.00).
.. 100100 Reserved.
.. 100101 - " -
STF.RNAM ..100110 Rename.
STF.FAT ..100111 Fetch attributes.
i R Wait-proceed bit.
Xewseaos Unconditional proceed bit.

wa W oWToWIOWI ORI OWTIOTIOWTIOWIWmTITmIWmIWmIEmTMTEMMMMTEIMMMMMMMMNMMMMMM M

SVCT-FILE 5-33
81-04-01 PRM.0S8

S0.RS, Return Status

STS.ASGN 70 - Assignment error.

ST7S.AM 71 - Illegal access mode.

S7S.SIZE 72 - Size error, size field invalid or
specifies non existing space.

STS.TYPE 73 - Type error, LU is not a direct-access

device.
S7S.FD T4 - File descriptor error, file descriptor of
invalid format.
S7S.NAME 75 - Name error, matching name not found.
S73S.KEY 76 - Invalid key.
S7S.FEX 77 - File already exist.
1x - I/0 error, SVC1 code given.

S7.FD, Name Pointer
This address byte points at the file name. (See file descriptor
formats.) Values lower than 256 means that the reference is
made to a system device with the same number.

S7T.MOD, Modifier
The modifier specifies the type of a file at allocation and
assignment time. The data formats are described in the section
titled FILEFORMAT. The file type 1is divided into two 4-bit
groups {(nibbles):

The most significant nibble specifies the type of data in the
file:

FCM. ASC 1x ASCII data readable without any special handling.

FCM.LIST 2x List file, ASCII data together with positioning
information.

FCM.OBJ 3x Object code, readable by the ESTAB.

FCM.BIN 4x Binary data, which is unspecified.

FCM.TSK 5x Task file, either relocatable or absolute.

FCM. ISM 6x ISAM index file.

FCM.DIR Fx Directories.

The least significant nibble, if specified, defines a set of
languages and directory types:

FCM.ASM x1 ASSEMBLER source code.

FCM.BAS %2 BASIC source code, or data produced by BASIC.
FCM.COB x3 COBOL source code, or data produced by COBOL.
FCM.FTN x4 FORTRAN source code, or data produced by FORTRAN.
FCM.PAS x5 PASCAL source code, or data produced by PASCAL.

SVC7-FILE 5-3U4
81-04~01 PRM.0S8

Some special modifiers:

FCM.UNDF 00 Undefined data, verifies to any other type.
FCM.EFD FD Element File Directory.
FCM.MFD FF Master File Directory.

S7.CLAS, Class

This field specifies the resource class to be accessed, and
they are:

STC.ALL 000 Scan all resources.

S7.TAM, Access Mode
The low nibble of this byte specifies the Access Priviliges. If
the access mode for a direct access file is “SW’, it will be
changed to “EW’! Table 7-1 shows compatibilities between access

priviliges.
STA.SRO 000 Sharable Read Only.
STA.ERO 001 Exclusive Read Only.
STA.SWO 010 Sharable Write Only.
STA.EWO 011 Exclusive Write Only, will position
to end-of-file.
STA.SRW 100 Sharable Read Write.
STA.SREW 101 Sharable Read, Exclusive Write.
STA.ERSW 110 Exclusive Read, Sharable write.
STA.ERW 111 Exclusive Read-Write.

The high nibble is the command modifier:

STA.SBUF Q0...... System buffering required, device
independent I/0.

STA.UBUF 01...... Reserved.

STA.PHYA 10...... Physical access, access on disk
sector level.

STA.BYTE 11...... Byte addressing I/0, file treated

as a file of bytes.

For detailed information about file I/0, refer to chapter 6.

e T N Nl B R R Rl Rl Rl EE RNl EEEE NN .

SVCT-FILE 5=35
81-04-01 PRM.0S8

TABLE 7-1. ACCESS PRIVILIGE COMPATIBILITY

ERSW | ERO SRO SRW SWO EWO SREW | ERW
ERSW No No No No Yes No No No
ERO No No No No Yes Yes No No
SRO No No Yes Yes Yes Yes Yes No
SRW No No Yes Yes Yeé Edv. No No
SWO Yes Yes Yes Yes Yes No No No
EWO No Yes Yes No Néndmww&gﬂmm No__ No
SREW No No Tes No No No No No
ERW No No Ne No No No No No

ST

ST.

.RECL, Record Length

This address field on Allocate File, contains the logical
record length for an Index File. If the field .is zero VARIABLE
Record Length is asumed.

SIZE, Size

This field is defined for the Allocate Call depending on the
type of file beeing allocated. When the high order bit in the
field is set, the remaining bits express the size of a single
data block, continuous file. For an Indexed file the Size field
is divided into two 16-bit fields; the first field (LSW)
contains the segment size in sectors, the second field (MSW)
contains the number of segments to be preallocated. If the size
field is set to zerc in the index case, default sizes are taken
from the volume information. (See disk initialization). Size
is not used for Non-Direct-Access devices.

S7F.CHK, Function Checkpoint (from 3.00)

The checkpoint function flushes the system Buffer Management
buffers and updates the File Information Block. LU is the only
required parameter.

The user may wish to employ Checkpointing after sensitive data
is added to a buffered file. Logical blocking of data in memory
in system buffers leaves the file vulneable. The integrity of
the data can be preserved on the direct-access device by
Checkpointing. In case of system failure, all data on Indexed
files up to the latest Close or Checkpoint operation is
recoverable; data appended after the most recent Checkpoint is
lost. Checkpoint differs from a Close/ Assign sequence in that
no repositioning is performed. File name, access privileges,
and keys need not be specified.

SVC7-FILE 5-36
81-04-01 PRM.0S8

Applicable error codes:

STS.ASGN 70 LU Error.
1x I/0 Error, as returned by SVCI1.

STF.RNAM, Function Rename

This function changes the name of an assigned file. The file
must currently be assigned ERW. The required parameters are LU
and File-decriptor. The LU must be assigned to a direct-access
file (unless the caller is an Executive Task which may rename
non direct-access devices). The Volume field of the file
descriptor 1is ignored. The specified File descriptor replaces
the previous File descriptor in the directory if rename
function is successful. If the modifier field is 0, then the
modifier will not be changed, else it will be assigned the
value in the parameter block.

Applicable error codes are:

STS.ASGN 70 LU Error.
STS.AM 71 Access Mode Error.
S7TS.TYPE 73 Type Error, LU is non direct-access.
STS.FD 74 File Descriptor Error, file descriptor of
invalid format.
STS.NAME 75 Name Error, new name allready exists.
1x I/0 Error, as returned by SVCI1.

STF.DELC, Function Delete At Close
This function allows user to delete a file on a direct-access
device. When the call is done the file is not deleted, only a
flag in the FCB is set. The actual delete i3 performed when the
file 1is closed. This feature allows a very simple Temporary
File handling. The only parameter required is LU.

Applicable error codes are:

S7S.ASGN 70 LU Error.

ST7S.AM 71 Protect Error, file not ERW assigned.

STS.TYPE 73 Type Error, LU is non direct access device.
1x I/0 Error, as returned by SVCIT.

STF.CLOS, Function Close

This function discontinues an assigned 1logical connection
between a task and a file or device. LU is the only required
parameter. The specified LU 1is de-assigned. Logical Units
assigned for Write access to files or buffered terminals have
any partially filled buffers written to the file by CLOSE call.
Direct access devices with the Delete At Close flag set will be
deleted. (see delete.)

Applicable error codes are:

S7TS.ASGN 70 LU Error.
1x 1/0 Error, as returned by 3VC1.

m o mn s n oo nnann NN NNNAOENDNRENNNNRNNANRNNNN

SVCT-FILE 5=37
81-04-01 PRM.0S8

STF.FAT, Function Fetch Attributes
Certain programs may require, for proper operation, knowledge
of the physical attributes of the device or file associated
with a given LU. The only required parameter is the Logical
Unit. The system returns information in fields Modifier, Name
pointer, Record length, User supplied buffer address and Size.

The Modifier byte is set to indicate the file or device type.

The Name pointer must be an address to a buffer where the
system returns the name or the mnemonic of the assigned
resource. If the pointer value is less than 256, the device
number is returned in this field, rather than the name.

The Record 1length field is set to the physical record length
associated with the resource.

The reserved field S7.UBUF is redifined for this call, and
receives the attributes.

The current size of a direct-access file is returned in the
Size field.

Applicable error codes are:

S7S.ASGN 70 LU error, illegal LU or LU not assigned.

FILEFORMAT

Some of the data formatting within a file are standardized, and are
described here.

ASCII files, compressed records:
- Spaces are compressed to 80H + the number of spaces.
- Records are separated by a NULL-byte.
- Records are stored after each other without any padding, to
minimize the storage required.

ASCII files, print records (from 3.00):
- Each record starts with positioning information, as specified by
SVC1 for formatted ASCII at random access.
- The rest is the same as specified by ’“compressed records”.

Binary files, fixed record length:
- Records are stored continuously after each other.
- The data bytes are not specified.
- Both random and sequential access can be done.

Load modules:
- The data formatting is defined by the code-type.

SVC8-RESOURCE 5-38
81-04-01 PRM.0S8

5.8 SVC8 - RESOURCE HANDLING

This request type is used to establish and remove resources in the
Operating System on line. This c¢all 1is normally used by system
programmers, because it requires a very good knowledge of the
structure and functions of the operating system. If this request is
used in an improper way, the Operating System may be damaged.

PARAMETER BLOCK

(0) SO.FC (1) SO.RS (2) SB8.RNR (3) S8.PRIO

Function code Return status Resource number Resource prio

(4) S8.ID (6) S8.CLAS (7) SB.TYPE

Name pointer or resource number Clas Type

(8) S8.ADR (10) s8.cs (11) S8.1IL
Entry or ‘RDT -list address S8.SIZE

30.FC, Function Code

S8F.EST ..000.01 Establish resource.

S8F.RMOV ..000010 Remove resource, only available to the owner.

S8F.TEST ..000011 Test the presens of a resource.
S8F.NRCB ..0001.. RCB already present.

S0.RS, Return Status

S83.1ID 80 - Illegal name/number.
S83.CLAS 81 - Illegal class.
S8S.PRES 82 - Already present.
S8S.PRNT 83 - Parent not present.
S8S.DUAL 84 - Dual not present.
S8S.RCB 85 - Invalid "RCB -type.
S8S.EOM 86 - End of memory.

S8.RNR, Resource Number
This field is wused to specify the numeric identity of a
resource. If the number zero is chosen, the system will select
the first free number. The numeric identity will be returned in
this field.

S8.PRIO, Priority or Number
This field shall contain either the task/device priority, or
the parent/dual resource number.

S8.1ID, Name Pointer
This field shall contain either a pointer to a symbolic name,
or a numeric value less than 255, that is the identity of the
resource.

EnnnnnonoaoonEaEnAaNnAaENnNnNaENnNNNEANNNNnNENNTNNEENNNRNRMITNININNNNNMYMMNn

SVC8-RESOURCE 5-39
81-0#—01 PRM. 0S8

S8.CLAS, Class
This field shall contain the resource class, where the classes

are:

S8C.DEV 001 Devices.

S8C.TSK 010 Tasks.

38C.COM 011 Common.

S8C.vVoL 100 Volumes.

s8c.svC 101 SVC-functions.
38c.svcz 110 SVC2-subfunctions.

S8.TYPE, Type
This field shall contain the resource type:

RTT.PURE00 Shared resource.

RTT.RCB ve.. ..01 Exclusive resource.

RTT.RRT10 Dummy, S8.ADR points at a new resource.
RTT.AREA11 Area, no entry.

RTT.DIR1.. Directory oriented.

RTT.SVC 1... Entry at all SVC-calls.

RTT.OFFL ...1 Off line, not accessable.

RTT.PROT ..1. Protected, write not allowed.

RTT.NFST .1.. Non-file structured, only for system’s use.
RTT.NEMV 1... Resident, non-removable.

S8.ADR, Entry/RDT
Tnis is either the entry address of a shared resource, or the
address to a Resource Descriptor Table (RDT) for an exclusive
resource.

S8.SIZE, Size
Shall contain the additional memory size that should be
allocated at establish of a task.

S8.CS, Channel Select Code
Contains the card identity for the interface.

S8.IL, Interrupt Level
Contains the interrupt level for a physical device.

SVCB-RESOURCE 5-40
81-04-01 PRM.0S8

RESOURCE DESCRIPTOR TABLE (RDT)

A RDT describes shortly an exclusive resource, such as a Device
Control Block (DCB), or a Task Control Block (TCB). This table is used
by the SVC8-handler to create the control blocks necessary to handle
the resource. Each exclusive resource has at least a RDT.

(0) RDT.TYPE (1) RDT.EXT
Type Extension

(2) RDT.INIT
Initiator/handler address

(u4) RDT.TERM
Terminator handler address

RDT.TYPE, Specifies the type of resource:

RCT.RCB ++.. .000 No special type.

RCT.DCB001 DCB, Device Descriptor Table present.
RCT.TCB010 TCB, Task Descriptor Table present.
RCT.FCB011 Only for system’s use.

RCT.VCB «+.. .100 VCB, Volume Descriptor Table present.
RCT.AREA101 Area, no entry.

RCT.PRNT 1... Coordination parent specified.
RCT.DESC ...1 Only for system’s use.

RCT.NW ..1. Don’t support no-wait functions.
RCT.PRO .1.. Don’t support un-conditional proceed.
RCT.NAB ... «... Non-abortable, cant be cancelled.

RDT.EXT, Makes it possible to expand any control block, i.e. expand a
DCB, where the expansion is used by the device driver. Refer to
the section titled Extended Descriptor Table.

RDT.INIT points at the handler entry for the resource, i.e. the
initiator for a device driver.

RDT.TERM points at an optional terminator, i.e. to do code conversions
or CRC calculation in a device driver.

SVC8-RESQURCE 5-41
81-04-01 PRM.0S8

TASK DESCRIPTOR TABLE (TDT)

This table is a continuation of the RDT. It is used by the system to
create a Task Control Block (TCB), which is wused by the system to
control a task. The information in the TDT is a short description of
the characteristics of a task:

(6) TDT.TYPE (7) TDT.OPT
Task type Task cptions

(8) TDT.SADR
Standard start address

(10) TDT.TLIM
Individual slice limit

(12) TDT.NNOD (13) TDT.NFCB
Number of nodes Number of FCB

(14) TDT.STK
Required stack size

TDT.TYPE, Describes the type of the task:
TCT.RES ves. ...1 BSet the task memory resident.
TCT.NAB1. Set the task non-abortable for other tasks.

TDT.OPT, Holds the options on the task:

TCO.DASG1 Default assign allowed.

TCO.NSTK1. No stack check.

TCO.EMSG1.. Error message print-out by the system.
TCO.RCOV 1... System recovery.

TDT.SADR, Is the normal start address of the task.

TDT.TLIM, Gives the task an own time-limt that should be used if the
time-slice function is enabled. Zero means that the global
time-slice limit should be used.

TDT.NNOD, Specifies the number of nodes that should be allocated to
the task. In general, the number of nodes required by a task is
calculated from:

- The number of outstanding queued no-wait requests.
- The number of task devices owned by the task.
- The number of assignments to physical devices, not files.

TDT.NFCB, Specifies the number of File Control Blocks (FCB) that
should be allocated to the task. One FCB is wused for every
assign to a file, and one extra at assign time for an element
within a file.

SVC8-RESQURCE 5-42
81-04-01 PRM.0S8

TDT.STK, specifies the required stack for the task.

EhbhbnnonbnnnnonnoannonnnananNnRIERIENIAOANDANNnNAANINNMENn

SVCB8-RESOURCE 5-43
81-04-01 PRM.0OS8

DEVICE DESCRIPTOR TABLE (DDT)

Both real and task devices are specified by this table. The DDT is a
continuation of RDT.

(6) DDT.ATTR
Attributes on the device

(8) DDT.RECL
Record length on the device

(10) DDT.CODE (11) DDT.TYPE
Device code Device type

(12) DDT.QPAR
Size of SVC-blk

DDT.ATTR, Is a bit pattern that describes the support on the device:

ATR.READ¢+.. «.-+ ...1 Read.

ATR.WRITv.e. cc.. .1, Write.

ATR.FASCve. «... .1.. Formatted ASCII.

ATR.SPEC +vee+ «-.. 1... Special formatting.

ATR.RND wias 4ses +..1 Random access.

ATR.IACT +.2. +..1. Interactive device, echo of input.
. .1.. Reserved for future use.
. 1... Reserved for future use.

veee 2221 Reserved for future use.

ATR.FR vees «o1. Forward record.

ATR.FF veee 21 viue vv.. Forward file.

ATR.WF veee Teve viee veee Write file-mark.

ATR.BR veel vvee vvev «... Back space record.

ATR.BF vele w4ve vee+ +... Back space file.

ATR.RW 1es veee vevs v... Rewind.

ATR.ATTN 1... .v.¢ +¢2v2e Attention.

DDT.RECL, Specifies the record length. Zerc means variable length.

DDT.CODE, Identifies the device among several of almost the same type.

DDT.TYPE, Describes the type of DCB:

DCT.ICB1 Interrupt Control Block (ICB) present.
DCT.DEDI1. Dedicated interrupt service.
DCT.ENI wee. «1.. Reserved.
.... 1... Reserved.
DCT.TASK ...1 Indicates a task device.
DCT.DUAL .,.1. Dual DCB information.

DDT.QPAR, Specifies the number of bytes that sould be copied from the
parameter block to the DCB.

SVCB-RESOURCE 5-44
81-04-01 PRM.0S8

INTERRUPT DESCRIPTOR TABLE (IDT)

This table, which is a continuation of the DDT, holds a short
description of the interrupt side of a device. This table is only
necessary if specified by DCT.ICB, and is used to create an Interrupt
Control Block (ICB).

(13) 1IDT.TYPE
Interrupt type

(14) IDT.CONT
Optional continuator address

IDT.TYPE, Indicates the type of interrupt:
ICT.CCB «e+. ...1 Channel Control Block (CCB) present.
ICT.NOIQ1. Makes the ICB resident on the interrupt
: and time-out chain.

IDT.CONT, Is used by the interrupt system as an address to the device
driver continuator. This address is normally initiated or
changed by the driver.

T L AL L MR OMRE OMEOMEOMREOMREOMLEOME MMM OBR MM M

SVCB-RESOURCE 5-45
81-04-01 PRM.0S8

CHANNEL DESCRIPTOR TABLE (CDT)

This table, which is a continuation of the IDT, is wused to. create
the Channel Control Block (CCB) for a device. This table is required

if specified by ICT.CCB:

(16) CDT.TLIM
Time-out limit in chosen interval

(18) CDT.THND
Optional time-out handler address

CDT.TLIM, Is the time-out limit of the device. The value is defined by
the device time-ocut scan frequency, which is a system
generation constant, normally resolution is 100 ms.

CDT.THND, Holds the time-out handler address for the device. If not
specified, a value of zero, the time-out situation is handled

by the system.

SVCB8-RESOURCE 5-U46
81-04-01 PRM.0S8

EXTENDED DESCRIPTOR TABLE (EDT)

If an extension is specified in the RDT, the EDT must be added after
the 1last desriptor table. This allows the programmer to both expand
the control block, and initiate it with some data. If no
initialization is required, the shortest EDT possible (one binary
zero) must be added.

RDE.NBYT RDE.ADR
Number of bytes Signed offset

RDE.DATA
Initialization data

J—\
'—_—’/‘——___\

RDE.NBYT
0=End-of-table

RDE.NBYT, Specifies the number of bytes that should be copied into the
control block. A binary zero is used to terminate the EDT.

RDE.ADR, Is a relative signed offset in the control block where to
start to copy the data.

RDE.DATA, Contains the data to be copied to the control block. Must
contain EXACTLY RDE.NBYT bytes !

I/0 PROGRAMMING 6-1
81-04-01 PRM.0S8

CHAPTER 6
INPUT/CUTPUT PROGRAMMING

6.1 INTRODUCTION

All input/output requests are made via supervisor call SVC 1.
Chapter 5 describes SVC 1. This chapter discusses the functional
aspects of the devices and direct-access files supported by 0S.8.
Specific device-dependent information: supported functions, status
returned, and formatting performed are included.

All devices and files support binary transfer, proceed I/0, wait for
completion, sequential access and conditional proceed, unless
otherwise noted in the individual driver or file handler description.
The supported attributes 1listed with each description are in
additional to those previously listed.

A device code, a number between 0 and 255, defines all supported
devices.

The following paragraphs describes both contiguous and indexed
files. Files are available on all direct-access devices supported by
any driver.

I/0 PROGRAMMING 6-2
81-04-01 PRM.0S8

6.2 FILES

.1

Indexed and Contiguous Files are treaded exactly in the same way
when performing input/output. The differances are that the contiguous
file cannot be expanded while the indexed can; the EOF pointer always
points at end of physical file in contiguous files while it points at
end of logical file in indexed files. A file can be accessed in three
different ways: Physical (256 byte sectors), Logical (fixed or
variable record length), and Byte (as a stream of bytes).

Physical Access

Input/output requests are done without any buffering or data
formatting. Fixed length 256 byte sectors are supported.

S1F.READ/S1F.WRIT, Read/Write :
Current file pointer is aligned to a sector boundary before
data is transferred. If the device driver can handle partial
sectors the buffer size can be between 1 to 65535, else it must
be a multiple of 256.

S1F.IBIN, Image Binary
The only supported data format is image binary.

S1F.RND, Random Access
Random address is a sector (256 bytes) address.

S1F.FR, Forward Space Record
Forward 256 bytes (one sector) if not EOF.

S1F.WF, Write File Mark
EOF = Current random position. Space allocated after EOF will
be returned to free space at close (indexed only).

S1F.BR, Backspace Record
Backspace 256 bytes (one sector) if not BOF.

S1F.RW, Rewind
Position to beginning of file,

S1F.FEQF, Fetch End-0Of-File Position
End of file pointer is returned in the random address field. On
variable record length, it is the number of bytes in the file,
and on fixed record length, it is the number of logical records
in the file.

NOTE:
At close, EOF 1is aligned to the nearest rounded down logical
record number.

I/0 PROGRAMMING 6-3
81-04-01 PRM.0S8

£.2.2 Logical Access

This mode is used to accomplish device independent input/output. The
system data buffering mode is used.

S1F

S1F.

S1F.

SI1F.

S1F.

S1F

S1F.

S1F.

S1F

S1F

S1F.

S1F.

.WRIT, Write - Variable Record Length

Data is written on the disk from the current file pointer.

READ, Read - Variable Record Length
Data is read from the current file pointer. If the data size is
larger than the buffer size, the rest of the record 1is
truncated.

IBIN, Image Binary
Data is transferred byte by byte without any translation.

xASC, ASCII Transfer
Spaces are (de)compressed and at write, data on the disk is
terminated by a binary zero. If data contains (CR) a new record
will be started when found.

RND, Random Access - Variable Record Length
The random address is a byte address within the file and the
user 1is responsible for correct data formatting when records
are written, so the record following the one written is not
destroyed.

.WRIT, Write - Fixed Record Length

Data 1is written from the current file pointer (unless random
access is requested). If the requested size written 1is less
than the record size, the rest of the record is padded with
binary zeros or spaces depending on whether Binary or ASCII was
requested. If the requested size is greater than the record
size data is truncated.

READ, Read - Fixed Record Length
Data is read from the current file pointer. If the record size
is greater than the buffer size, the record is truncated.

RND, Random Access - Fixed Record Length
On fixed record length, record number within the file.

.FR, Forward Space Record

If fixed record length, one record forward. If variable record
length, forward 256 bytes.

.WF, Write File Mark

EOF = Current random position. Space allocated after EOF will
be returned to free space at close (indexed only).

BR, Backspace Record
If fixed record 1length, one record backwords. If variable
record length, 256 bytes backwords.

RW, Rewind
Position to beginning of file.

6.2.3

I1/0 PROGRAMMING 6-4
81-04-01 PRM.0S8

S1F.FEOF, Fetch End-0f-File Position
End of file pointer is returned in the random address field. On
variable record length, it is the number of bytes in the file,
and on fixed record length, it is the number of logical records
in the file.

Byte Access

This mode is used to accomplish byte input/output on all files
regardless of the record length. Binary data transfer is assumed, but
with much care ASCII can be used and will then act as variable record
length transfer. Any byte in the file can be accessed. Input/output is
performed in the same way as logical access towards records with

variable record length.

T T T T T I T i f N T s T R EEE N R EEEEEE TR,

I1/0 PROGRAMMING 6-5
81-04-01 PRM.0S8

6.3 TERMINAL DRIVER
6.4 SP1/UART OUTPUT DRIVER

6.5 SP1 INPUT DRIVER

6.6

6.6.1

6.6.2

6.6.3

6.6.4

I/0 PROGRAMMING 6-6
81-04-01 PRM.0S8

CASSETTE TAPE DRIVER

This driver uses one SPl-input interface and one SP1-output
interface.

Supported Devices

FACIT CASSETTE TAPE DRIVE 4203, NON-BUFFERED

Supported Attributes

Read, Write, Image Binary, Unconditional Proceed, Rewind, Backspace
Record, Forward Space Record, Write File Mark, Forward Space File
Mark, Backspace File Mark, and Variable Record Length.

Functional Description, SO0.FC

S1F.READ, Read

Data is read into the user buffer from the magnetic tape. The
transfer ends on buffer full or end of record, whichever comes
first. If the record is longer that the user buffer, no error
status is returned but a termination status. On a parity error,
ten retries are attempted before error status is returned.
After a parity error the tape is positioned in the inter-record
gap following the record with the error.

S1F.WRIT, Write
Data is written from the user buffer to the magnetic tape until

the buffer is empty. On parity error, an extended record gap is
written up to two times, and the write is retried.

S1F.IASC, Image ASCII
On Read Image ASCII, the most significant bit in each byte is

cleared.

Eject, 51Q
This function will eject the tape cassette.

Return Status, SO.RS

S1S.DWN, Device Down
Device not ready. Tape unavailable at the start of the request.

S1S.EOF, End Of File
Filemark detected during request.

S1S.EOM, End Of Media
Request caused the reflective marker at the end of tape to be

sensed.

$15.TOUT, Time=-Qut
The tape drive failed to generate an interrupt within the

stipulated time.

s mn oo BERBRRRERRERRBENREDR

I/0 PROGRAMMING 6-7
81-04-01 PRM.0S8

31S.RER, Recoverable Error
Beginning of tape, or write protected.

S51S.UNR, Unrecoverable Error
Hard error.

o
-3

6.7.4

I/0 PROGRAMMING 6-8
81-04-01 PRM.0S8

MAGNETIC TAPE DRIVER
Supported Devices

PERTEC
AMPEX

Supported Attributes

Read, Write, Image Binary, Unconditional Proceed, Rewind, Backspace
Record, Forward Space Record, Write File Mark, Forward Space File
Mark, Backspace File Mark, and Variable Record Length.

Functional Description, S0.FC

S1F.READ, Read

Data is read into the user buffer from the magnetic tape. The
transfer ends on buffer full or end of record, whichever comes
first. If the record is longer that the user puffer, no error
status is returned but a termination status. On a parity error,
ten retries are attempted before error status is returned.
After a parity error the tape is positioned in the inter-record
gap following the record with the error.

S1F.WRIT, Write
Data is written from the user buffer to the magnetic tape until

the buffer is empty. On parity error, an extended record gap 1is
written up to two times, and the write is retried.

S1F.IASC, Image ASCII
On Read Image ASCII, the most significant bit in each byte is

cleared.

Return Status, SO0.RS

S1S.DWN, Device Down
Device not ready. Tape unavailable at the start of the request.

S1S.EOF, End Of File
Filemark detected during request.

S1S.EOM, End Of Media
Request caused the reflective marker at the end of tape to be

sensed.

$13.TOUT, Time-Out
The tape drive failed to generate an interrupt within the

stipulated time.

S1S.RER, Recoverable Error
Beginning of tape, or write protected.

S13S.UNR, Unrecoverable Error
Hard error. The termination gtatus contains the sense status

from the interface.

L L L L L e kR R A AAIIIRIIREEEIINN

1/0 PROGRAMMING 6-~9
81-04-01 PRM.0S8

6.7.5 Termination Status, S1.TS
....... 1 The record length exceeded the user buffer length, or file
mark detected.
...... 1. Hard error.
..... 1.. Corrected error.
..1... End-of-tape.
...1.... Beginning-of-tape.
P Write protected.
el Rewinding.
Teeenenn Drive off line.

6.8 DISC DRIVERS

I1/0 PROGRAMMING 6-10
81-04-01 PRM.0S8

T T I il I T T T e O T Er EE R EEEE T T EEREIEEEREEE

7.1

7.2

USING SVC-2 7-1
81-04-01 PRM.0S8

CHAPTER 7
GUIDE TO USING SVC 2 FACILITIES

INTRODUCTION

Command processors are a part of almost all utility programs and of
many application programs. Every time a program is written to accept
commands, either by conversation with an operator or by job-control
statements, a command processor must interpret those commands. Most
command processors are so similar that one could be put together from
a "canned" routine package.

This chapter gives the user a guide to the use of the SVC 2 calls
provided in 0S.8 for command processing functions.

COMMAND DECODING

The Command Statement is read via SVC 1 from any logical unit or it
is passed from one task to another. The issue at hand is how the
Command Statement is handled when in the buffer.

A command Statement wusally starts with a mnemonic. The first
mnemonic is generally called the verb; it tells what to do.

0S.8 provides a call, Scan Mnemonic Table (SVC2.8), which looks for
a match on any mnemonic table. These mnemonics must be all
alphanumeric characters and cannot contain a delimiter. Thus, $FRED is
a valid mnemonic; but, GLA%H is not. The mnemonic table is organized
as a byte string. One Null character (binary =zero) separates each
mnemonic in the table from the following mnemonic. Two successive Null
characters terminate the table.

The mnemonic syntax permits abbreviations represented in the
mnemonic table by a preceding byte specifying the abbreviation. To
represent the mnemonic APPEND, where AP is the minimum acceptable
abbreviation, the code within the mnemonic table is:

DB 2 required abbreviation
DB "APPEND’ the complete command
DB 0 end of mnemonic

In order to match a mnemonic table entry, the command string must
matech all required characters. If more alphanumerics are present in
the command string, they must match the nonrequired characters. If all
required and nonrequired characters are exhausted and more
alphanumerics 1in the command string exist, a match is not recognized.
The scan terminates on the first nonalphanumeric.

For the previously given example, a legitimate match is found on:
AP
APP
APPE
APPEN
APPEND

USING SVC-2 7-2
81-04-01 PRM.0OS8

A match is not found on:
A (too short)
APPENG (no match on nonrequired characters)
APPENDIX (too long)

The mnemonic table sScan routine terminates when it finds a
non-alphanumeric character in the command string. If a valid match was
found at this point, an index number indicating the position within
the mnemonic table of the matched mnemonic is returned. If a match was
not found, a bad status is returned. The system does not check the
separator (the nonalphanumeric character that terminated the scan
routine). The user must check this character. A buffer pointer is
returned by the system pointing to the separator where the scan
terminated. Entries in the mnemonic table are counted from ZERO; that
is, if a match was found on the third mnemonic in the table, the index
is returned with a value of 2.

An example of 'how to use the Mnemonic Table Scan routine follows.
Assume that the mnemonic table consists of four entries: SORT, MERGE,
PRINT, and STOP.

MNMTAB DB 2, SORT",0
DB 2, "MERGE *, 0
DB 2, "PRINT ", 0
DB 2,’sToP",0,0

Notice the two bytes of ZERO ending the mnemonic table. If the
command buffer is named CMDBUF, a SVC2.8 parameter block te handle
this table is coded:

SCAN DB 0,0,8,0
DA CMDBUF', MNMTAB, 0

Assume that the command line has just been read into a buffer named
CMDBUF. The verb is found:

FNDVB SVC 2,3CAN - scan the table
JNZ CMDERR branch if no match
LD HL,SCAN+S2.8INX pick up the index returned
LI H,0
ADR HL, HL compute the jump table offset
LA DE,JTAB
ADR HL,DE step to proper entry
L E, (HL)
INCD HL get handler address
L D, (HL)
EXDR
JDR HL go to command executor
*

JTAB DA SORT,MERGE, PRINT, STOP

This routine did not check the separator; if the characters SORT¥*
were in the command buffer, the result would be the same as if SORT
(Null) was the command buffer “@ontent. Assume that only a Null is

b nnnnonnNnoanonnnnnonianonnonIniRnNOROODNRNnN

7.3

T.4

USING SVC=-2 T=3
81-04-01 PRM.0S8

allowed to follow the verb. The following code checks if the returned
pointer points to the separator after a valid match:

LD HL,SCAN+S2.8PNT get the terminater pointer

L A, (HL) pick up the terminator
OR A check for Null
JNZ CMDERR branch if not found

If different verbs require separators, the separator check can bDe
done after the jump table branch.

OPERAND DECODING

Most command languages require operands for thier verbs. The verb
tells the processor what to do; the operand tell what to do it to, or
how to do it. Operands in 0S.8 command processor syntax are:

Decimal numbers up to 4,294,967,295
Hexadecimal numbers up to FFFFFFFF
Octal numbers up to 3TTTTTT7777
File Descriptors

Mnemonics

Arbitrary ASCII strings

These operands are sufficient for most needs. If other forms of
operands are required, the user must decode them by own programming.
NUMERIC CONVERSIONS

The Pack Numeric Data (SVC2.4) call allows decimal, hexadecimal and
octal numbers to be decoded. Leading spaces are always ignored. The
first nontranslatable character found terminates the operation. The
termination pointer is returned by the SVC~function and set to point
to that character so the separator can be easily checked.

Assume a rewind command s syntax was:

REWIND lu

where: lu is a decimal number less that 256.

Assume that the verb finder found a match on REWIND and wants to
process lu:

REWIND LD HL,SCAN+S2.8PNT get termination pointer
L A, (HL) pick up separator
CI e check if wvalid
JNZ CMDERR branch if invalid separator
STD HLzPACKDEC+S2.#ADR set up ASCII buffer
SVC 2,PACKDEC get decimal number
JNZ CMDERR error if none or too many digits
LD HL,PACKDEC+3S2.4PNT get termination pointer
L A,(HL) pick up separator
OR A check for Null
JNZ CMDERR branch if not

SvC 1,RWDPBLK rewind the lu

USING SVC-2 7-4
81-04-01 PRM.0S8

PACKDEC DB S2F . 4DEC+S2F . 4IND, 0, 4, 10H
DA 0,0,RWDPBLK+S1.LU

RWDPBLK DB S1F.RW,0,0,0
DA 0,0,0

7.5 FILE DESCRIPTORS

This section applies to programs which perform file or device
handling.

When the Pack File Descriptor (svCc2.3) 1is called, it expedites
decoding the entire syntax, including volume name, file name, element
name, type modifier, and separators; it handles the optional cases and
flags them.

To illustrate the use of this call, the syntax of the rewind command
may be changed to:

REWIND fd
A valid processing routine is:

REWIND LD HL,SCAN+S2.8PNT get termination pointer
STD HL,PACKFD+S2.3ADR set up ASCII buffer

SvVC 2,PACKFD pack fd

JNZ CMDERR branch on syntax error

SVC 7,ASGNO open the device or file on LU 0
SVC 1, RWDPBLK rewind the device

SvVC 7,CLOSEQ close LU O

PACKFD DB S2F.3FN,0,3,0
DA 0,NAME,O

ASGNO DB S7F.ASGN,0,0,0
DA NAME
DB S7C.ALL,STA.ERW
pA 0,0,0,0

NAME pMB 28, ° File Descriptor field

In this example, SVC 1 or SVC 7 calls were not checked for errors,
because the illustrations do not concern the use of SVC 1 or 7.

The Termination Status field S2.3TS contains a bit pattern that
describes which fields in the File Descriptor that has been processed.
If the program requires certain fields, this staus can be checked:

L A,PACKFD+S2.3TS get the termination status
NI S2T.NFN verify volume name packed
JNZ CMDERR branch if missing

e R bR R R R ERIRARIARARRERRRERERNDNRNENR

g8 .8

SYSTEM LOGIC MANUAL (S LM)

Chapter

Chapter

Chapter

Chapter

1

—t
.

P i i O - B — — i — VL I\

W ELWMN = o

o =T e A ING J IS) BN) I — it — —g = U I A I

R g Y e)
U EFwMh =0

Ew -

OO Fw i -

—

—y

CONTENT

INTRODUCTION
Introduction.

SYSTEM STRUCTURE
Processor States.
Program Status Word (PSW).
Interrupt System.
System Levels.
Hardware drivers.
Software drivers.
Queue handling.
Real-time service,
System queue service,
Ready queue service.
Tasks.

Idle loop.

SYSTEM CONVENTIONS
Program Modes.

User mode (UM).

System mode user (SMU).
System mode system (SMS).
Interrupt mode (IM).
Register use.

Subroutine conventions.
SVC-function conventions.
Interrupt conventions.

EXECUTIVE DESCRIPTION
Introduction.

System Initialization.
SVC Handler.

Resources.

Connection Handler.
Disconnection Handler.
Terminators.

Executors.

SVC Functions.

Device Drivers.

File Manager.
Non-Maskable Interrupt Handler.
Clock Interrupt Handler.
System Interrupt Handler.

Crash Handler, Crash Dump sSequence.

Real-Time Handler.

System Queue Handler.

Ready Queue Handler.
Executive Messages.

System Pointer Table (SPT).

CONTENT 1
81-04-01 SLM.0S8"

CONTENT 2
81-04-01 SLM.OS8

DRIVER DESCRIPTION

Driver initiator.

Driver continuator.

Driver time-out and cancel handler.
Driver terminator.

Driver example.

Chapter

Ut
o =Wy —

DATA FORMATTER
Introduction.
Formatter initiator.
Formatter continuator.
Formatter terminator.

Chapter

Oy O OV O
EW N -

-3

SYMBIONT DESCRIPTION
Introduction.

Chapter

-3
bt

SYSTEM GENERATION
Introduction.
.2 System generation parameters.

Chapter

o o Co
—

DATA STRUCTURES

Introduction.

General Naming Conventions.
.1 Data Structures.
.2 Bit Declarations.
Resource Mnemonic Table (RMT).
Resource Reference Table (RRT).
Request Nodes (NOD).
Resource Control Block (RCB).
Device Control Block (DCB).
Interrupt Control Block (ICB).
Channel Control Block (CCB).
Interrupt Service Tables.
Stack Structures.

Chapter

—_ 2O O--1TO0U ZWwWNMN N -

Ve Ve NVe Mo Vs Ve JiVs ITs Ve Ve JVa JVe Ve N e}
)

INTRODUCTION 1-1
81-04-01 SLM.0S3

CHAPTER 1
INTRODUCTION

1.1 INTRODUCTION

This System Logic Manual (SLM) is a guide to the internal structure
of the Operating System 0S8.8. It 1is intended for wuse by people
involved in System maintenance and completion.

This manual deals exclusively, and specifically, with 0S.8 revision
R2.50. Hence, specific methods of implementation of various functions
should not be constructed as the method of implementation to be used
in all future releases os 0S.8.

Use of this manual requires that the reader be familiar with the
features, functions and conventions of 0S.8 from the user’s point of
view as documented in:

DataBoard-4680 System Manual.

DataBoard-4680 Software Catalog.
DataBoard-4680 Assembler Manual.
DataBoard-4680 0S.8 Operator’s Manual.
DataBoard~4680 05.8 Program Reference Manual.

0S.8 is an operating system that provides program management in a
multi-tasking environment. System control via terminal operator,
interrupt handling, I/0 servicing and inter-task communication/control
are build-in functions of 0S.8. Disec file management features are also
provided when the system is equipped with a disc, and as such, 08.8 is
oriented towards a disc operating environment. A file directory and
allocation bit map are maintained on each disc volume to allow for
disc portability.

Chapter-2 of this manual describes the general structure of 0S.8.

Chapter-3 discusses the conventions followed by the system in terms
of interfacing between modules.

Chapter-U4 is designed to provide a short technical overview of the
system and the major module groupings.

Chapter-5 contains a detailed technical description of Device
Drivers,

Chapter-6 explains the use of the Data Formatter,
Chapter-7 describes Symbiont handlers and Task Devices.
Chapter-8 discusses briefly the aspects on system generation.

Chapter-9 contains the format of system control blocks.

2

2.

.

.2

.3

n

SYSTEM STRUCTURE 2-1
81-04-01 SLM.0S8

CHAPTER 2
SYSTEM STRUCTURE

SYSTEM STRUCTURE

This chapter describes the system level structure of 05.8 from a
technical viewpoint.

PROCESSOR STATES

At any given time, the Processor may be in either Stop mode or Run
mode. The transition from Stop mode to Run mode requires the
occurrence of an interrupt, if enabled by the current PSW.

Once the Processor has been put into the Run mode, the current PSW
controls the operation of the system. By changing the contents of the
current PSW, a running program can:

- Enable and disable various interrupts.
- Switch between different system routines.

PROGRAM STATUS WORD

The Program Status Word (PSW) is an 8-bit register stored 1in the
CTRL-card at port 7, and in SPT if I/0-RAM is not present. The low
nibble of the PSW contains the current system level, where 0 1is the
highest 1level and 15 1is the lowest level. The high nibble contains
some control flags such as User-/System-stack flag.

INTERRUPT SYSTEM

The interrupt system of the Processor provides rapid responses to
external and internal events that require service by special software
routines. In the interrupt response procedure, the Processor preserves
its current state and transfers control to the required interrupt
handler.

Interrupts occur at various times during processing, either by an
external event at a higher 1level than the current one, or when
lowering the current PSW to a level below a previous requested
interrupt level.

SYSTEM LEVELS

The system executes in one of 16 system levels, where 0 1is the
highest one. Level 14 is not in use. The transition from a low level
to a high one is normally done through an external event, while the
System Interrupt Handler controls the reversed transition. The
function of the system depends on which level it is executing in:

SYSTEM STRUCTURE 2-2
81-04-01 SLM.0S3

TABLE 2-1
0
Hardware Drivers.
7
8 Software Drivers.
9 Queue Handling.
10 Real-Time service.
11 System Queue Service.
12 : Ready Queue Service.
13 Tasks, with 256 task priorities.
i 14 Reserved.
! 15 Idle Loop, Stop Mode.
L

2.4.1 Hardware Drivers, levels 0-7
These levels are used for the service of interrupt driven
devices, where the drivers are trigged either by an external
interrupt, or by a driver time-out.

2.4.2 Software Drivers, level 8
This is a reserved level that is used for non-interrupt driven

devices, where the driver is trigged only by the time-out
function.

2.4.3 Queue Handling, level 9
This level is entered when queues are scanned and modified by the

system.

2.4.4 Real-Time Service, level 10
The update of all real-time depenent functions is done on this

level.

2.4.5 System Queue Service, level 11
This level is used to coordinate events controlled by the

Resource Control Blocks.

SYSTEM STRUCTURE 2-3
81-04-01 SLM.0S8

2.4.6 Ready Queue Service, level 12
The Ready Queue Service handles all task dispatching and
scheduling. It is also known as the Task Master.

A%
.

=
-1

Tasks, level 13
This is the system level where all tasks execute code. This level
is divided into 256 priorities, controlled by the Ready Queue
Handler.

2.4.8 Idle Loop, level 15
When no more code is to be executed, the system enters this level
and the Processor enters Stop mode with all interrupts enabled.

CONVENTIONS 3-1
81-04-01 SLM.0S8

CHAPTER 3
SYSTEM CONVENTIONS

3.1 PROGRAM MODES

0S.8 programs, tasks and routines run in one of four welldefined
modes. These modes are differentiated by a combination of PSW bits and
status bits of an active task. Any mode not defined 1is not
permissible. At any given instant time, the Processor 1s executing
code in one of these modes.

They are, in increasing order of priority and privilige:
1. User Mode (UM).
2. System Mode User (SMU).
3. System Mode System (SMS).
4, Interrupt Mode (IM).

3.1.1 User Mode - UM

The UM mode is the mode in which all user tasks run. Internal and
external interrupts are enabled. This mode may only be exited via
interrupt or execution of SVC.

This mode is defined by:
- System Level is Task Level.
- User stackpointer and user register.
- Executing user code.
- Current Task-ID and Priority is valid.

3.1.2 System Mode User - SMU

The SMU mode is the mode in which system code is executed on behalf
of a task, and is scheduled and dispatched as though it where a
routine of the task. This mode is entered at a SVC. For this reason,
all higher system levels are enabled.

This mode is defined by:

System Level is Task Level.

User stackpointer and system registers.
Executing system code.

Current Task-ID and Priority is valid.

[

3.1.3 System Mode System - SMS

The 3MS mode is the mode in -which the system changes critiecal
information such as queues. This code is nonreentrant and Ready Queue
Service interrupts are disabled. As no new task may be dispatched
while the system is in this mode, routines that run in this mode must
necessarily be short and quick to execute. This mode is exited via an
external interrupt.

3.1.4

3.3

3.4

3.5

CONVENTIONS 3-2
81-04-01 SLM.0S8

This mode is defined Dby:
- System Level higher than Task Level.
- User stackpointer and system registers.
- Executing system code.
- Current Task-ID and Priority is valid.

Interrupt Mode - IM

The IM mode 1is used only for interrupt service routines wihtin
Device Drivers, Real-Time Update, System Queue Service, Ready Queue
Service and Idle Loop. All higher system levels are enabled.

This mode is defined by:
- System Level other than Task Level.
- System stackpointer and system registers.
- Executing system code.

REGISTER USE

For definition, the Primary Register Set includes both resgisters
AF, BC, DE, HL, Y, X and €S, IL (current Card Select and System
Level). The Secondary Register Set includes AF”, BC’, DE’ and HL’.

The operating system never makes use of the secondary register set
without storing it temporary on the stack. Both register sets are
stored at the task on its stack, at task contex.

SUBROUTINE CONVENTIONS

Parameters are passed in registers or in memory such as SPT,TCB etc.
Register modification within a subroutine is normally done according
to the function of the subroutine. All other registers are normally
preserved. The normal exit from a subroutine should be the address
following the call. Exits to unlabled addresses are not permitted.

SVC FUNCTION CONVENTIONS

All SVC instructions causes the system to enter SMU state. On entry
to the executor, the address of the parameter block is passed in
register Y. It is the responsibility of the executor to perform
validity checking of any parameters passed in the parameter block.

INTERRUPT CONVENTIONS

Interrupts cause control to be passed to the individual interrupt
handler in IM state. On entry, the address of the control block is
passed in register X.

EXECUTIVE 4-17
81-04-01 SLM.0S8

CHAPTER 4
EXECUTIVE DESCRIPTION

4,1 INTRODUCTION

This chapter desceibes the general structure of 0S.8 from a
technical viewpoint. As illustrated in Figure U4-1, 03.8 is composed of
several major module groupings. This chapter discusses each of these
module groupings and how they interact.

The Executive contains logic for processing Supervisor Calls (SVCs)
and other internal interrupts. I/0 support is provided by the Data
Formatter together with Device drivers and major porticns of the
Executive. Device Drivers are discussed separatly in chapter 5.

G @&

e | sve- __,H-FILE
|

S ——

| | , |)
|| HAND | T H FUNC || MNGR v | i
L | l § (| CLK- |
; || INTH ||
| CONQ ; e
| HAND i |
SVC- ! I E i
ERR | - T :
i DRIV DRIV REAL ; CRSH
INIT CONT TIME i HAND
Y l L
INT-
HAND
y
r}:— SQS- RQS-
] HAND HAND
DISC TERM SPT-
HAND HAND ~TAB

Figure 4-1. 0S.8 Module groupings

4.2 SYSTEM INITIALIZATION

System initialization is performed whenever the system is started.
On entry, the status of the PSW is unknown, so the first operation
performed is to put the Processor into an uninterruptable, privilige
state. The System Pointer Table (SPT) is cleared and then initiated by
the data from Initial Value Table (IVT).

4.3

I

A

EXECUTIVE 4-2
81-04-01 SLM.0S8

The dynamic data structures are then created from an address table
located at Program Location Counter 3 (PLC3). Each item within this
table points at a SVC8 parameter block without S0.FC and S0.RS. A call
to the SVCB-handler is then done for each item in the table. The rest
of the memory is then scanned to build the dynamic memory pool.

F;nally, task number 1 is started through the SVC6-handler, and the
system tries to enter the Idle Loop.

SVC HANDLER

All SVC 1instructions cause entry to the SVC Handler. This module
performs common processing such as saving the primary register set,
verifing the rest size of the stack, looks for the specified SVC
number and, if found, calls the Connection Handler. Some SVC’s, such
as SVC 2, have second 1level handlers that performs similar
preprocessing.

The SVC error handler is entered when an error occurs in the SVC
Handler. The error handler is also entered when the task option
TCO.EMSG is present, and an error return status is found. The handler
loggs a message, according to the error, on the System Conscle.

RESOURCES

A resource is a process or an area that can be used by a task. There
are two types of resources:
- Shared, that can be used by several tasks at any time, such as
reentrant processes, common areas etc.
- Exclusive, that can be used only by one task at any time, and
where other tasks normally has to wait in a queue. For instans
device drivers, memory allocater etec.

The system contains three major groups of resources, and each group
has two reference roots, one for symbolic handling and one for numeric
handling. The major groups are:

- Volumes, directory oriented mass storage devices.
- Devices, real and imaginary.
- Tasks, always treaded as a resource.

Most of the requests to a resource has to wait in a queue before
they are processed. The queuing 1s done on priority basis and on
first-come, first-served within the same priority.

Coordination of system resources is controlled through the Resource
Control lock (RCB). The Connection and Disconnection Handlers
contains routines to manage the RCB. The RCB is a tree structure. Each
path in the tree corresponds to a group of system resources that must
be coordinated as one resource. For example, the direct memory access
processor, the magnetic tape controller and the magnetic tape device
correspond to all the resources that must be coordinated to control
the access to the magnetic tape.

Coordination is implemented by providing routines to connect to,
queue to, disconnect from and release entries in the RCB-tree. The
generation of RCB-trees are provided by the SVC8-handler. A task is

A B R R R R E T E R E EE R R TR R RO

EXECUTIVE 4-3
81-04-01 SLM.0S8

not connected to any required RCB until it can be connected to all
required RCB’s, thus preventing deadlock conditions.

4L.4.1 Connection Handler

The Connection Handler either enters a shared resource, or queues
the request to an exclusive resource. When connected, the connection
handler initiates the Control Block and calls the resource handler
specified in the Control Block. Upon completion return from the
exclusive handler, the connection handler calls the Disconnection
Handler. If not completed, the connection handler either puts the task
in completion wait, or returns to the SVC Handler, depending on the
function code in the parameter block.

4,4,2 Disconnection Handler

The disconnection handler is called to release a task from a RCB and
its tree. When released, the next request for any path in the tree is
propagated, and that task is removed from connection wait state.

4,4,3 Termination Handlers

When a task 1is disconnected from a RCB, an optional terminator
handler is called. This terminator is called in SMS/SMU, and performs
some post-processing for that resource. This function is normally used
by device drivers to do some hard work, that sould not be done within
the interrupt handler.

4.5 EXECUTORS

All Executors acts as a subroutine of the calling task and works in
SMU state. When entered, register Y points at the SVC-block and, if an
exclusive resource, register X points at the Control Block. When the
requested function is performed, the Executor returns with true carry
to indicate completion, and register A shall then contzin the return
status of the request.

4,5,1 SVC Functions

Several functions within the operating system are performed by SVC
calls, thus making these functions available to tasks. Each type of
SVC has a handler, which normally are fully reentrant. Any new SVC
handler may be added to the system, both at cold start and in run
time.

The following SVC handlers are exclusive functions:
- 3SVC 8 Resource Manipulation.,

SVC 2.1 Memory Allocater/Deallocater.

SVC 2.10 Bit Map Manager, within a volume.

SVC 2.11 Directory Manager, within a volume.

EXECUTIVE 4-4
81-04-01 SLM.0S8

4,5,2 Device Drivers

-

Each type of peripheral or task device has a control program,
driver. These are normally fully reentrant, with the exception of the
interrupt handling phase on dedicated drivers. New devices with
drivers may be added to the system in the same way as SVC functions.

The initiation phase of a driver runs as a subroutine of the task in
in SMU state. The interrupt handling phase normally runs with all
higher levels enabled in IM state. The termination phase of a driver
runs in a reentrant state although no task may be executing more than
one termination phase subroutine at a time. Each device is controlled
by a Device Control Block (DCB).

FILE MANAGER

This 1is a package that includes all the logic needed to support the
0S.8 file management system. The File Manager is called from either
the SVC1 Executor or the SVCT7 Executor. This package then decodes each
function specified by the parameter block, and invokes the necessary
Executors. Each Executor that completes successfully returns to
determine if any other requests are still outstanding. When all
functions have been processed, or if any Executor encounter an error,
the control 1is returned with the appropriate status. These Executors
make use of the following routines contained within the File Manager:

A directory management package for maintaining information on all
currently allocated files.

A bit map management package which provides a method for allocating
and deleting on direct-access volumes.

The File Manager also contains SVC 1 intercept routines which
intercept all I/0 calls to a file.

NON-MASKABLE INTERRUPT HANDLER

This 1is a wuser defined handler, normally used to handle power
down/up sequences. If not defined, a dummy should be included at
system generation time.

CLOCK INTERRUPT HANDLER

This 1is a dedicated interrupt service handler, and is enetered at a
frequency defined by the hardware, normally 100 HZ (10 ms). This
routine decrements the head of the interval queue, which is sorted by
by the time value. If the item elapses, the Real-Time Handler 1is
trigged and an overflow counter will be started. All the following
interrupts will now be counted in the overflow counter until the
real-time service 1is done. Upon carry from the overflow counter,
system overload, the Crash Handler will be called.

B A AAARARRENARARARAR AN AN NN NI R I AN AN AR AN

EXECUTIVE 4-5
81-04-01 SLM.0S8

4.9 SYSTEM INTERRUPT HANDLER

.10

.11

Interrupts are normally handled in a standardized way. The program
counter 1is stored on the current stack by the hardware. The primary
register set is stored on the current stack. The system stack is then
selected, 1if not already present, and the previus stack pointer is
stored on this stack. The new system level is then selected.

The Interrupt Service Tables, corresponding to this new level are
scanned to find the device from which the interrupt was generated.
When it is found, a call is done to the specified interrupt service
handler.

When the interrupt is served, return to this handler is done. If the
request 1is completed, the RCB will be added to the System Queue and
the System Queue Handler is trigged.

The rest of the interrupt linkage is scanned to 1look for another
interrupt from a device. If so, that continuator will be called.

At the end, the propagated Software Interrupt Level is compared with
the previous level and if higher, a recursive jump is done in the
Interrupt Handler. Then the interrupted process is restored.

If no device was found, the Illegal Interrupt Counter is
decremented, and if it becomes zero the Crash Handler is called.

CRASH HANDLER

Throughout 0S.8 are checks for normally impossible states of the
system. When such a condition is found the system brings itslef ¢to a
halt Dbefore futher destroying the condtions that led up to the
impossible situation. This is done by calling the Crash Handler.

The Crash Handler saves all the CPU-registers in an crash diagnostic
area. Then a programmed reset of the I/0 system is done and a PSW 1is
loaded that puts the system in an uninterruptable state. If the Crash
Dump option is included at system generation time, a dump of the
diagnostic area is done.

REAL-TIME HANDLER

When the Real-Time Handler is entered, the head of the interval
queue 1s removed. This item is then examined to find out the reason
for being trigged.

Depending on the reason, one of the following updating actions will
be done:
-~ interval and time of day requests.
- time of day clock.
- day and year calendar including leap year handling.
- driver time-out counting.

The Real-Time Handler is trigged by:
- the Clock Interrupt Handler when the head of the interval queue
is elapsed,

4,12

EXECUTIVE 4-6
81-04-01 SLM.0SS8

SYSTEM QUEUE HANDLER

The system contains a System Queue, which is a linked list of RCB.
Whenever an item is added +to this queue, an internal interrupt is
generated to trigg the System Queue Handler. The system uses this
queue to schedule events coordinated by the RCB. The handler removes
each item in the queue, and calls the Disconnection Handler.

The System Queue Handler is trigged by:
- the System Interrupt Handler when a request to an interrupt
driven driver 1is complete.

READY QUEUE HANDLER

A11 tasks which are currently in ready state are in a queue called
the Ready Queue, which is a linked list of TCB. A task is dispatched
for execution when it is the head of the ready queue. If time slicing
is disabled, the task currently executing remains in this state until
it voluntarily relinquishes control or until a higher priority task
becomes ready. If time slicing is enabled, the task relinquishes
control when its time expires, if an equal priority task 1is ready.
Therefore, if no equal priority task is ready, the task continues to
execute for another time slice.

The Ready Queue Handler is trigged by:
-~ the Real-Time Handler when a task becomes ready to execute after
a real-time request, or when a task has exceeded its time limit.
- the System Queue Handler when a task is scheduled to execute the
initiation or termination phase of an exclusive resource.
- a task which lowers its priority below ancother ready task.

4,14 EXECUTIVE MESSAGE

Since the Executive routines cannot issue SVC calls, 2all messages
output by the Executive are processed by the Terminal Manager. This is
accomplished by adding an event to the tasks event queue.

4,15 SYSTEM POINTER TABLE (SPT)

The SPT contains necessary information for proper operation, and is
used by the system with direct address instructions. Most of the data
in the SPT are pointers and roots. The System Stack, Interrupt Vectors
and Interrupt Service Tables are also allocated in the SPT.

DRIVERS 5-1
81-04-01 SLM.0S8

CHAPTER 5

DRIVER DESCRIPTION

5 DRIVER DESCRIPTION

Each type of peripheral or task device has a control program,
driver. This driver handles all input and output for the device. It
checks if transfer error occur and reports those to the requestor.

& driver has at 1least one entry, an Initiator and perhaps a
Terminator. Physical devices may also have a Continuator and/or a
Time-out/Cancel Handler. The driver 1is NOT allowed to wuse the
secondary register set, without storing it first!

Drivers that transfers data on byte by byte basis, normally uses the
Data Formatter to load and store the bytes.

5.1 DRIVER INITIATOR

The Initiator is called from the Connection Handler, and runs as a
reentrant subroutine (interrupts are enabled) of the task issuing the
I/0 request. In general, the Initiator uses the information, which was
stored in the DCB by the Connection Handler, to prepare the device
dependent information required to perform the requested function. This
is often done through the Data Formatter.

After all processing has been done, the Initiator starts the
physical I/0 process by causing an interrupt on the device requested.
The Initiator then returns to the Connection Handler which returns
control to the calling task on an I/0 proceed call, or puts the
calling task into I/0 wait on an I1/0 and wait call.

Call conditions:
- Executs in SMU mode.
- The SVC-block is copied into the DCB if specified.
- The initiator address of the Data Formatter is stored in DCB.FMTE.
-~ The ICB is linked into time-out and interrupt chain.
- The time-out counter CCB.TCNT is initialized from CCB.TLIM if
the flag DCS.INT is cleared.
- Channel seleceted on physical device.
- Register X -> DCB.
- Register Y -> 3VC-block.
- Register A := the function code without S1F.NW and S1F.PRO.

Return conditions:
- Register X -> DCB.
- Register Y -> 3VC-block.
- Carry flag reset means not complete.
- The flag DCS.INT in DCB.STAT must be set to enable interrupt
polling and time-out checking if not complete.
- Carry flag set means complete
- Register A := return status on completion.

DRIVERS 5-2
81-04-01 SLM.0S8

5.2 DRIVER CONTINUATOR

When an interrupt is detected from the device, the operating system
causes control to pass to the Interrupt Service Phase, Continuator.
The Continuator executes with all higher interrupt levels enabled, if
not called disabled. This phase controls the actual I/0 to the device
by I/0 instructions. On completion of the I/0, the Continuator
disables the interrupts from the device and returns to the System
Interrupt Handler, which adds the DCB to the system queue. The System
Interrupt Handler always re-initializes the time-out counter.

Call conditions:
- Executes in IM.
- The time-out counter CCB,TCNT is initialized from CCB.TLIM.
- Channel selected on physical device.
- Register X => DCB.
- On dedicated disabled interrupt, the driver is NOT allowded to
enable the CPU, or use Register Y and Register pair BC!

Return conditions:
- Register X -> DCB.
- Carry flag reset, not complete.
- Carry flag set, complete.
- Register A := return status on completion.
= The flag DCS.INT cleared if no more interrupts are expected.

5.3 DRIVER TIME-OUT AND CANCEL

A hang-up error occurs when a device fails to generate an interrupt
on an operation that was initiated. The time limit for this interrupt
is computed by the Driver and stored in the DCB.TLIM, or is initiated
at system generation time.

The error is detected by the Device Time-Out Manager, which
decrements the time counter in the DCB. When the counter becomes zero
and when no time-out is allowded (controlled by the flag DCS.TIME),
the Time-Out Handler address, if specified, 1is scheduled. If a
time-out is allowded, the continuator is called in the normal way.

The Time-Out Handler is also called when a request is canceled, and
is responsible for the cancel checking!

If futher more I/0 must be initiated, the Time-0ut Handler causes an
interrupt on the device, often by re-entering the Initiator.

Call Conditions:
- Executes in IM.
- Channel selected on physical device.
-~ Register X -> DCB.
- The flag DCS.INT in DCB.STAT is cleared.
- The flag DCS.TOUT in DCB.STAT is set.
- The flag RCS.CAN in RCB.STAT is set at cancel.

TR R AR EEREREREEABREAEEREREERE R E A RN R IR NI RN RN NNRNN

DRIVERS 5-3
81-04-01 SLM.0S8

Return conditions:
- Register X -> DCB.
- Carry flag reset, not complete.
- The flag DC3.INT in DCB.STAT must be set to enable the checking.
- Carry flag set, complete.
- Register A := return status on completion.

5.4 DRIVER TERMINATOR

The Terminator is called from the Disconnection Handler, as a result
of a System Queue interrupt. The Terminator perform post-processing on
the I1I/0 request being terminated, such as code converting or CRC
calculation. If futher more I/0 must be initiated, the Terminator
causes an interrupt on the device, often by re-entering the Initiator.

Call conditions:
- Executes in SMU if the calling task is in I/0 wait state, or
in IM if no task is waiting.
- Channel selected on physical device.
- Register X -> DCB.
- Register Y -> 3VC-block.

Return conditions:
- Register X -> DCB.
- Register Y -> SVC-block.
- Carry flag reset, not complete.
- Carry flag set, complete,.
- Register A := return status on completion.
- The flag ICT.NOIQ must be set if the ICB shall remain on the
time-out and interrupt chain.

5.5 DRIVER EXAMPLE

DRIVERS 5-4
81-04-01 SLM.0S8

This is a simple example of an output driver that wuses the Data

Formatter.
interface.

*
#

* W

ON CALL:

s % ¥ ok M Ok % K ¥ Xk %

DRV.INIT

* % ok %

ON CALL:

* K Ok kK Kk ¥ Ok %

DRV.CONT

Note

ON RETURN:

EQU

CALL
JTCS
DECR
JTZ3
DECR
JFZS
CALL

ON RETURN:

EQU
OR
CALL
JTCS
ouT
RET

the

DRIVER INITTATOR

eritical instruction sequence when enabling the

X -> DCB

Y -> SVC-BLOCK

A := FUNCTION CODE MASKED

X -> DCB

Y -> SVC-BLOCK

CY := 0, NOT COMPLETE

CY := 1, COMPLETE

A := RETURN STATUS

#*
DATA.FMT THE DATA FORMATTER DOES THE CHECKING
WRONGFC CAN’T HANDLE UN-KNOWN FUNCTIONS !
E EXAMINE FUNCTION REQUESTED.
WRONGFC I DON’T SUPPORT READ.

E

DONE STANDARD FUNCTIONS, ACCEPT THEM.
CHEK. PNT WRITE, CHECKPOINT HERE...

DRIVER CONTINUATOR

X -> DCB
X -> DCB

CY := 0, NOT COMPLETE

CY := 1, COMPLETE

A := RETURN STATUS

*

A CLEAR CARRY BEFORE...

DATA . FMT ...LOADING THE NEXT BYTE...

COMPLETE

DATA ...THEN GIVE IT TO THE DEVICE.

IHI!HHIHIIIHIHIIIHHHhhllhhhh'ﬂl\'ﬂhlh‘

DRIVERS 5-5
81-04-01 SLM.0S8

*
*

* REQUEST COMPLETE
*

COMPLETE EQU *

CALL DATA.FMT POSTPROCESS THROUGH DATA FORMATTER
*
DONE EQU *
XR A RETURN STATUS O...
OouT cu ...DISABLE INTERFACE INTERRUPT...
RBT DCS.INT,DCB.STAT(X) ...DISABLE INTERRUPT POLLING. ..
STC ...MARK COMPLETE...
RET ...BACK TO SYSTEM.

*
*

* CALL THE DATA FORMATTER
*

DATA.FMT EQU *

L L,DCB.FMTE(X) PICK UP THE ADDRESS TO THE CHECK-
L H,DCB.FMTE+1(X) -POINTED DATA FORMATTER...
JDR HL ...AND ENTER.

*
*

¥ CHECKPOINT AND WAIT FOR INTERRUPT
#*

CHEK.PNT EQU *

POP HL

ST L,ICB.CON(X) SET UP INTERRUPT CONTINUATOR...
ST H,ICB.CON+1(X)

MVI 80H,CCB.TM(X) ...AND STATUS TEST MASK.

LI A,80H LOAD INTERFACE CONTROL...

DIS ...DISABLE CPU BEFORE MARKING...
SBT DCS.INT,DCB.STAT(X) ...INTERRUPT POLLING ALLOWED...
OUT CH4 ...AND ENABLE THE INTERFACE...
ENI ...THEN ENABLE THE CPU.

XR A MARK NOT COMPLETE.

RET BACK TO SYSTEM.

*

*

* WRONG FUNCTION CODE

*

WRONGFC EQU *
LI A,S0S.IFC SET UP RETURN STATUS.
STC MARK REQUEST COMPLETE.
RET BACK TO SYSTEM.

FORMATTER 6-1
81-04-01 SLM.0S8

CHAPTER 6

DATA FORMATTER

6.1 INTRODUCTION

The Data Formatter is a support package, that may be used by device
drivers, to load or store bytes in memory. The formatter administrates
the buffer pointer and counter stored in the DCB, and handles all data
formats except S1F.SPEC. The register pair BC is never used, to allow
dedicated drivers to use the formatter.

The formatter is always called from the driver through the address
found in DCB.FMTE, in which the formatter checkpoints itself.

6.2 FORMATTER INITIATOR

The formatter initiator address 1is always placed into DCB.FMTE
before the driver initiator is called. The formatter initiator, if
called from the device driver, checks the function code of the
request. If I/0 transfer is requested, the formatter prepares to load
or store characters for the driver.

The preparation iz to compute the address to the end of the
buffer+1. The buffer size is negated and stored as a counter in
DCB.BCNT. This 1is done to speed up the buffer addressing. Then the
formatter checkpoints itself to the proper handler, depending on the
data format, and returns to the driver.

Call conditions:
- Register X -> DCB.
- DCB.QFC contains the function code of the request.
- DCB.QBAD is the address to the first byte in the buffer.
- DCB.QBSZ is the buffer size.

Return conditions:

Register X -> DCB.

Register E contains the converted function code.
Carry flag set, unknown function code.

Sign flag set, 1/0 transfer,

Zero flag set, wait for completion.

Code in E: 0 - wait for completion.
1 = read.
2 - write.
3 - write with read check.
4 - forward record.
5 - forward file.
6 - write file mark.
7 - back record.
8 - back file.
9 - rewind.
10 - attention.

11-30 - depends on driver.

6.3

6.4

FORMATTER 6-2
81-04-01 SLM.0S8

FORMATTER CONTINUATOR

The formatter continuator is called from the driver continuator, and
Wwill either 1load or store a new character. The formatter updates the
buffer pointer and counter, and checks for buffer full/empty. It is
impossible to load/store characters outside the buffer. If the
formatter is called with carry flag set, the formatter terminator 1is
entered.

Call conditions:
- Register X -> DCB.
- Carry flag reset, load/store next character.

- Register A := next character to store.
- Carry flag set, terminate transfer.
- Register A := termination status, NOT return status.

Return conditions:
- Register X -> DCB.
- Carry flag reset, not complete.
- Register A := next character loaded/stored.
-~ Carry flag set, complete.

FORMATTER TERMINATOR

The terminator is entered when told from the driver. The number of
bytes transferred is calculated and stored in DCB.QBCN, the buffer
pointer is restored to its initial value, and the termination status
is stored in DCB.QTS. Then the formatter checkpoints itself to the
initiator, to allow for re-initialization, and returns to the driver.

Return conditions:
- Register X -> DCB.
- Carry flag set, complete.
- Register A := termination status.

E N EEE N EEREBEBEBRBBEBBBREBEBREBAE BRI BITI I AI RIIITITITIMIORIMTE W

SYMBIONT 7-1
81-04-01 SLM.0S8

CHAPTER 7
SYMBIONT DESCRIPTION

7.1 INTRODUCTION

A task device driver is called from the SVC 6 Handler when the
symbiont task issues a SVC 6 Wait For Event call, and when an event
has occured related to the task device. Events occurs when a request
to the task-device is done, either from a task issuing a request, or
from the symbiont executing a SVC 4 directed to its own task-device.

The handler is always entered at its initiator address, and is
called - and must return, with the same conditions as a real device
driver.

However being an ordinary task, the handler has more freedom than a
real device driver has, since it can execute 3VC instructions.

If the handler is unable to perform the requested funection, an item
may be added to the event queue of the symbiont. This item triggs the
symbiont, which acts upon this trigg and re-triggs the task device
handler, when it 1is able to perform the requested function. The
handler may then terminate the request.

8.1

8.2

8.2.1

GENERATION 8-1
81-04-01 SLM.0S8

CHAPTER 8

SYSTEM GENERATION

INTRODUCTION

This chapter provides the information for the system planner and
personnel to plan and configurate and generate an 0S.8 system. It
describes the statements used to configurate a system, and includes
guidelines for selecting system generation (SYSGEN) parameters which
produce the desired system.

The system may be configured to support a variety of hardware and
application environments, from a large system to a single user, batch
oriented, program development system. This capability for tailoring
the 0S.8 system to the desired user environment ensures the efficient
use of resources (i.e., memory, peripherals, and time) for
accomplishing the desired functions.

The system generation is accomplished by running the 0S.8 Task
Establisher to produce a single absolute load module. The
configuration is done through the command stream to the ESTAB.

Some modules in the 0S.8 are located at different PLC’s. The order

between the PLC s defines the memory use in the system:

- All modules, except these below, PLC O.

- SPT, PLC 1,

- Cold start, PLC 2.

- Initiation table, PLC 3.

- SVC 8, PLC 4.

- Initiation data, PLC 5.

GENERATION PARAMETERS

The command stream contains a number of commands to control the PLC
order, to select the desired 3VC functions, volumes, devices and
tasks, and to specify some system generation constants. Refer to the
command stream that is delivered together with the Object Libraries
containing the Operating System.

PLC Control

The following commands controls the Program Location Counters (PLC)
orders and thier locations:

PLCNR-selects a PLC for a subsequent PLCBASE command.
PLCBASE-will origin the PLC specified by a PLCNR command.

PLCORDER-specifies in which order the PLC-segments are to be put into
memory.

PLCSTART/PLCEND-includes the global symbolic name of each PLC.

GENERATION 8-2
81-04-01 SLM.0S8

8.2.2 Module selection

8.2.3

To include the SVC functions, volumes, device and tasks, the user
Jjust selects them with the SELECT command.

Generation constants

The contants are used to define fixed functions in the system. They

are

SGN.

SGN

SGN

SGN.

SGN.

SGN.

SGN.

3GN.

SGN.

SGN.

SGN.

SGN

specified by the EQU command.

YEAR, SGN.MNTH, SGN.DAY
These constants specifies the date that shall be the current
date after the system is started. Normally set to the day of
the generation. If SGN.DAY is set to zero, the update of date
and time-of-day is inhibited.

.APPL-is a user defined value in the range 0-255, to indentify his

own application. This wvalue is stored in SPT.

.TSKX-the maximum number of tasks which may be in the system at any

one time.

MBOT-the lowest available RAM memory address that may be wused by
the system.

MTOP-the highest available RAM memory address that may be used by
the system.

FREQ-the real-time clock frequency in HZ, normally 100 HZ.

RESL-the real-time clock interval in milli-seconds (ms). It 1is
normally expressed in the form 1000/SGN.FREQ.

HOUR~-hour where to switch day, expressed in the form HH:MM.
TLIM-the global task time-slice limit in ms.
DLIM-the device time-out scan interval in ms, normally 100 ms.

IIC-the maximum number of illegal interrupts allowed before crash.

.FMGB-the number of file manager buffers to be allocated. This

parameter should be set to 0, if the File Manager is excluded.

T A .l R R R R I R R R EEE BRI BRI BBl .

9.1

9.2.1

9.2.2

DATA STRUCTURES 9-1
81-04-01 SLM.0S8

CHAPTER 9
DATA STRUCTURES

INTRODUCTION

This chapter presents the formats of System Control Blocks and table
entry. Most fields are self explanatory; those which are not are
explained following the figure for that Control Block.

Every public resource has to be defined at a numeric level, and
optional at a symbolic level. This is done by a Resource Reference
Table (RRT) for the numeric level, and by a Resource Mnemonic Table
(RMT) for the symbolic level. These tables are linked into the group
linkage in which they should be found.

An exclusive resource must also have a Resource Control Block (RCB),
which controls the access to the resource, and establish the queue
into the resource.

GENERAL NAMING CONVENTIONS

Each field within a data structure is identified by its name and a
descriptive title. Offsets are given in the form (DD), where DD is the
offset in decimal.

Data Structures.

All data structures (defined by TAB$STR) in 05.8 are named with
three character symbolic names, e.g. DCB, SPT. All fields within these
structures are defined by a name of the form 3SS.FFFF, where <S3S> 1is
the structure name, and <FFFF> is the field name.

Bit Declarations

Certain fields in a data structure contain flag bits to denote
information. These flag bits are manipulated with either bit
instructions (e.g., SBT, RBT, TBT) or logical immediate instructions
(e.g., NI, OI, XI). All bits within a field are defined by a name of
the form SSF.BBBB where <3S3> are two characters which refers to the
structure name, <F> is a character which refer to the field, and
<BBBB> identifies the function of the flag bit.

For example, in the DCB (Device Control Block) there is a field
DCB.STAT which contains the status bits. Bit 0=0 means that the driver
is not waiting for an interrupt, neither a time-out. Bit 0=1 means
that the driver 1is waiting for an interrupt or a time-out. The bit
mask definition of this flag is:

DC3.INT EQU 1 Interrupt enabled flag.

DATA STRUCTURES 9-2
81-04-01 SLM.0S8

9.3 RESOURCE MNEMONIC TABLE (RMT)

This table defines the resource in a symbolic way, and contains the
name of the of the resource, and the address to the corresponding RRT.

(0) RMT.MQLK
Linkage
(2) RMT.NAME (3)
N A
() (5)
M E
(6) RMT.RRT

Address of RRT

RMT.MQLK 1links all BRMT together into the group where they should be
found. The linkage is sorted by the first character in RMT.NAME
in ascending order.

RMT.NAME holds the symbolic name of the resource. The characters must
be printable ASCII characters.

RMT.RRT points at the corresponding RRT.

e B R R R R R R R R E TR R R R R EERECEEEECECEREEREEREEE

DATA STRUCTURES 9-3
81-04-01 SLM.0S8

9.4 RESOURCE REFERENCE TABLE (RRT)

This table defines the resource in a numeric way, and contains the
number and type of resource. It also holds the assign linkage and the
entry to handler on - shared resources, or the address to the RCB on
exclusive resources.

(0) RRT.RQLK
Reference linkage
i
(2) RRT.RNR (3) RRT.TYPE
Number Type
((4) RRT.ADR

Entry or RCB address

(6) RRT.RCNT (7) RRT.WCNT
Read count Write count

(8) RRT.RMT
Address of RMT

(10) RRT.AQUE
: Reserved

(12) RRT.RQUE
Reserved

RRT.RQLK links all RRT together into the group where they should be
found. The linkage is sorted be the RRT.RNR in ascending order.

RRT.RNR is the internal number of the resource within the group.

RRT.TYPE specifies the resource type.

RRT.PURE00 Re-entrant.

RTT.RCB vees .01 Exclusive.

RTT.RRT vvee +.10 Dummy.

RTT.AREA11 Area.

RTT.DIR «.++ +1.. Directory structured.
RTT.SVC ... 1... Entry at all SVC-calls.
RTT.OFFL ...1 Off line.

RTT.PROT ..1. Protected.

RTT.NFST .1.. Non-file structured.
RRT.NEMW 1... DNon-removable.

RRT.ADR is either the entry on a shared resource, or address of RCB.

RRT.RCNT/RRT.WCNT are used as read and write assign counters by the
SVC=7 handler. A negative value means exclusive assigned.

RRT.RMT points at corresponding RMT.

DATA STRUCTURES 9-4
81-04-01 SLM.0S8

e b b= bz b bm b m B B B B B B B B B BB EBRB RN NN TN MMN

DATA STRUCTURES 9-5
81-04-01 SLM.0S8

.5 NODES
The most central part in the operating system is the node. The node

represents the task at connection to an exclusive resource. The node
is linked into the requested resource queue.

(0) NOD.LNK
Linkage

(2) NOD.CPRI (3) NOD.CTCB
Task priority Task number

(4) NOD.SVC
Address of parameter block

(6) NOD.RNR (7) NOD.EVNT

Resource number Event code
(8) NOD.RCB

Address of RCB
(10) NOD.AQLK

Assign linkage
(12) NOD. OWN ;
= Reserved i

i

NOD.LNK links all nodes together from a RCB. The linkage is sorted by
the NOD.CPRI in ascending order.

NOD.CPRI is the task priority at the time when the request was done.

NOD.CTCB is the task number.

NOD.SVC contains the address of the parameter block that was specified
when the SVC was done.

NOD.RNR holds the number of the requested resource.

NOD.EVNT is the SVC-number.

NOD.RCB points at the requested RCB.

DATA STRUCTURES 9-6
81-04-01 SLM.0S8

9.6 RESOURCE CONTROL BLOCK (RCB)

This table holds all information about an exclusive resource, such
as the status on the resource, the request queue into the resource and
entry to the resouce. The RCB is normally the head of all control
blocks in the operating system.

(-18) RCB.SQLK
System Queue linkage

(-16) RCB.CREQ
Connected node

(-14) RCB.CPRI (-13) RCB.CTCB
Conn. priority Connected TCB

(-12) RCB.TYPE (=11) RCB.STAT
Type Status

(-10) RCB.RQUE
Request queue
(-8) RCB.RRT
Address té corresponding RRT

_ e et
(-6) RCB.PRNT
Address of parent, optional

S

(-4) RCB.INIT
i Entry address

(=2) RCB.TERM
Terminator address, optional

RCB.SQLK is wused to queue the RCB to System Queue at termination
phase.

RCB.CREQ is the address to the node which is in progress.

RCB.CPRI will always hold the highest connected priority, or the
highest queued request’s priority.

RCB.CTCB holds the connected task-ID.

RCB.TYPE defineds the type of the RCB:

RCT.RCB000 RCB indentifier.
RCT.DCB 001 DCB ~- " -
RCT.TCB010 TCB - " -
RCT.FCB e... 0117 FCB = " -
RCT.VCB 100 VCB - " -,
RCT.AREA101. Exclusive area.

EE B R BB BEBEAERAEAENI ORI AIANIAIE N E I I NI NI NI NN DM

DATA STRUCTURES 9-7
81-04-01 SLM.0S8

RCT.PRNT 1... Coordination parent present.
RCT.DESC ...1 Descendent present.

RCT.NW No-wait isn’t supported.

RCT.PRO .1.. «... Proceed - " -.

RCT.NAB 1v.. Non-abortable, cant be cancelled.

RCB.STAT specifies the status on the resource. The common bits are
described below, and the rest is defined at each control block.

RCS.BUSY1 Busy, the resource is active.

RCS.OFFL1. Off line, no access is allowded.

RCS.CAN .e.. .1.. Cancel, the request in progress is canceled.
RCS.NW vee. 1... No=-wait request in progress.

RCS.ONSQ ...1 Present on System Queue.

RCB.RQUE will queue every request node when the resource is busy. The
nodes will be sorted in ascending priority order.

RCB.RRT contains the address to the corresponding Resource Reference
Table (RRT).

RCB.PRNT contains the address to the parent, to whom the request must
be coordinated to. For instans, a disc controller that supports
more than one disc, but only one at each time.

RCB.INIT contains the entry address of the resource, or the address to
an exclusive area.

RCB.TERM is the address to an optional termination handler.

DATA STRUCTURES 9-8
81-04-01 SLM.0S8

9.7 DEVICE CONTROL BLOCK (DCB)

The DCB is used by the Connection, Disconnection and System
Interrupt Handlers to idendtify characteristics of each device in the
system, and to serve as a work space for drivers during an I/0

request.
(0) DCB.ATTR (2) DCB.RECL !
Attributes | Record length }
(4) DCB.CODE |(5) DCB.SNR |(6) DCB.TYPE |(7) DCB.STAT
Device code Device number| Device type E Device status
i i |
1(8) DCB.FMTE '(10) DCB.QPAR [(11) DCB.QADR
Checkpoint for data formatter | SVC-blk size | Reserved
e, _ I e b
(12) DCB.QSVC '(14) DCB.QFC i 15) DCB.QRS i
Address of SVC-blk in progress | Function code | Return status %
L SR SR S ,._,._.._‘___,-.__.,.___1
(16) DCB.QLU (17) DCB.QTS [(18) DCB.QBAD !
Logical unit Term. status ; Buffer address
(20) DCB.QBSZ (22) DCB.QBCN
Buffer size ! Byte count
(24) DCB. QRND '
Random address
T - —
1(28) DCB.RAND |
i Current random address on device |
(32-) DCB.OPT
Optional, depends on driver

DCB.ATTR specifies the request types that the device support:
ATR.READv.+ «+.. ...} Read.

ATR.WRIT «.vev +e.- +.1. HWrite.
ATR.FASC ++ees «2e. .1.. ASCII formatting.
ATR.SPECveev «... 1... Special formatting.
ATR.RND iss 2eass ++o1 ... Random access.
ATR.IACT «ev. ..1. 1Interactive device.

.1.. Reserved.

1... Reserved.

vess +ae1l u.. Reserved.

ATR.FR veee 2210 vov. Forward record.
ATR.FF veee 21ee vive wu.. Forward file.
ATR.WF veee 1uvs viee ves. Write filemark.
ATR.BR veel vies vive «... Back record.
ATR.BF .ol et wees +... Back file.
ATR.RW cles +vveee wvee +o2-. Rewind.

ATR.ATTN 1... ¢vev ve.. Attention.

R ERBERARBEARN IR NRE I I I NI NI N IR NI NN AN

DCB

DCB.

DCB.

DCB.

DCB

DCB

DCB.

DCB.

DCB

DCB.

DATA STRUCTURES 9-9
81-04-01 SLM.0S3

.RECL defines the maximum length of a record for the Device.

Established at 3VC8 time. Used by the Driver to truncate
requests larger than maximum. Record length zero means variable
record length.

CODE specifies the device type. Established at SVC8 time.

SNR will contain the system device number at request initiation.

TYPE describes the type:

DCT.ICB ve++ 2.1 ICB present.
DCT.DEDI1. Dedicated interrupt service, not scan.
DCT.ENI .++. »1.. Reserved.
++ss 1... Reserved.
DCT.TASK ...1 Task device.
DCT.DUAL ..171. Dual DCB present.

.STAT holds the current status:
DCS.INT vees ++.1 Interrupt enabled, scan and time-out,
DCS.TIME1. On time-out, call continuator.
DCS.TOUT1.. Time-out generated.

.FMTE is a checkpoint field used by the Data Formatter.

QPAR specifies the number of bytes that sould be copied from the
SVC parameter block to the DCB. If 0, no copy is done.

QADR is reserved for future use.

.Qxxx corresponds to the SVC 1 parameter block.

RAND is used as work field to hold the current random address.

9.8 INTERRUPT CONTROL BLOCK (ICB)

This table is wused by the interrupt system and by the real-time

han

DATA STRUCTURES 9-10
81-04-01 SLM.0S8

dler.

(=26) ICB.IQLK
Interrupt, time-out linkage

(-24) ICB.PRIO |(-23) ICB.IL
Priority Interrupt level

(-22) ICB.TYPE (=21) ICB.STAT
Type Status

(=20) ICB.CON
Continuator handler address

ICB.

ICB.

ICB.

1CB.

ICB.

IQLK is used to link all active devices together, within the same
level.

.PRIO is used as sort item when linking the ICB.

IL is the system level for the device.

TYPE specifies the ICB:
ICT.CCB +e+.. ...1 Channel Control Block (CCB) present.
ICT.NOIQ1. Makes the ICB resident on the chain.

STAT holds the current status:
ICS.ONIQ1 Present on the chain.
ICS.SINT1. System software interrupt generated.
ICsS.TOUT1.. System time-out generated.

CON specifies the continuator handler to be called at interrupt.

mn AN ORI AN oA nI AN DD NI ODON DN ODnNOnNHnITInN"HTN

9.9 CHA

DATA STRUCTURES 9-11
81-04-01 SLM.0S8

NNEL CONTROL BLOCK (CCB)

The channel control block is used by the interrupt system to scan

the

interfaces.

(-38) ccB.CS (=37) CCB.TM
Channel address |[Status test mask

(~36) CCB.FLGS (-35) CCB.XOR

User flags Status xor-mask
[(=34) CCB.TLIM
! Device time-out limit
|
(-32) CCB.TCNT
Device time-out counter
(~30) - CCB.THND
Device time-out handler
(-28) CCB.SUBC
Users second level cotinuator |
L ..) b
CCB.CS is the card select code of the interface.

CCB.

CCB.

CCB.

CCB.

CCB.

CCB.

CCB.

TM is the interrupt test mask, that is used with a Logical And on
the 1interface status. If the result is non-zero, the interrupt
generated device is found, and the continuator is then called.

FLGS is for driver use.

XOR is a bit pattern that is used with a Logical Exclusive-0Or on
the interface status before the CCB.TM is wused. This bit
pattern specifies the bits to be inverted, and is intiated to
-1 at SVC8 establish.

TLIM holds the time-cut 1limit for the device. It is normally a
value modulo 100 ms.

TCNT is the time-out counting field. It is reset by the system
before calls to driver handlers.

THND contains the address to a time-out handler for the device. If
not specified, 0 address, the system handles the time-out in a
standardized way.

SUBC is a field free for driver usage. It 1is often used as a
checkpointing field-

DATA STRUCTURES 9-12
81-04-01 SLM.O0S8

G.10 INTERRUPT SERVICE TABLES

SPT.IQFT IL SPT.IQUE SPT.ITAB
; |
| 0 |
L 4 L i - i
1 ! !
! 2 ICBadr DEVICE |g—' DCBadr
— ICB -
! 3 DCB ! :
- - L - - _'
| 4 !
- - b - +. -
s |
- - f' - :. -
7 | i_
l I
L - L L i
9]
| 10 10
; | 11 ——wl SYSTEM | 11
— —_— QUEUE | -
12 \. ICB 12
13 : | g
- }. -
14 ‘t
15
|
SPT.IQPP
- SL

SPT.IQFT-is a byte vector used to mark a soft trigged system level.

SPT.IQPP-holds the highest propagated soft trigged system level.

SPT.ITAB~contains either the DCB-address of a dedicated device, or the
system level at device scan.

SPT.IQUE-is a root-table that links together all active devices on the
same level. The table is used at both time-out and interrupt

handling.

e RO ORI IO IO OO ODNORDODORIOnONORGTn

DATA STRUCTURES 9-13
81-04-01 SLM.0S8

9.11 STACK STRUCTURES

SPT.STK SYS-STK TSK~-STK
- SP ILCS
SP IY
L i
ILCS IX
- S - -
§ 1Y , AF
1,- . - -
IX BC
AF ! DE
BC HL
DE PC
HL !
- - t
PC
N i |

SPT.STK, Contains the address to the system stack that should be used
at an interrupt.

SYS-STK, The structure of the system stack when the system is
executing in Interrupt Mode.

TSK-STK, The structure of a task stack when a task is interrupted.

CCB
CDT
DCB
DDT
DMT
DRT
EDT
FCB
FMT

FRT

ICB
IDT
RCB
RDT
RMT
RRT
SPT
STB
SvVC
SYP
TCB
TDT
TMT
TRT
VCB
VDT

VRT

APPENDIX A

GLOSSARY AND SHORTENINGS

Channel control block.
Channel description table.
Device control block.
Device description table.
Device mnemonic table.
Device reference table.
Extened descriptor table.
File control block.

File mnemonic table.

File reference table.
Interrupt control block.
Interrupt description table.
Resource control block.
Resource descriptor table.
Resource mnemonic table.
Resource reference table.
System pointer table.
System table.

Supervisor call.

System pointer table structure.
Task control block.

Task description table.
Task mnemonic table.

Task reference table.
Volume control block.
Volume description table.
Volume mnemonic table.
Volume reference table.

GLOSSARY A-1
81-04-01 APP.0S8

CRASH LAYOUT B-1
81-04-01 APP.0S8

APPENDIX B

CRASH LAYOUT

II=1ii CC=cc IL=il CS=cs TP=tp TN=tn TC=ttcb SS=sspp (SPT)
PC=ppcc SP=sspp F=flag A=zaa BC=zbbcc DE=ddee HL=hhll (Primary)
Y=yyyy X=xxxx F=flag A=zaa BC=bbcc DE=ddee HL=hhll (Secondary)

SS

addr aabbecdd siie tiie tine eaee eee. VVXXYYZZ (System stack)
aadr aabbcedd ceee siee sene eee. VVXXYYZZ

SP _

addr aabbecedd ... cove cees tsss cees sae. VVXXYYZZ (Current stack)
addr aabbcedd ... ciih ciie tees eres sess VVXXYYZZ

System pointer table (SPT):

IT = illegal interrupt counter.
CC = crash code.

IL = interrupt level, system mode if less than 80.
CS = card selection code.

TP = task priority.

TN = task number.

TC = task control block.

SS = system stack-pointer.

Primary register set:

PC = program location counter.
SP = program stack-pointer.
F = condition code.
A = A-register.
BC = BC-register pair.
DE = DE-register pair.
HL = HL-register pair.

Secondary register set:

= Y-index register.
= X-index register
= condition code.

= A-register.

BC = BC-register pair.
DE = DE-register pair.
HL = HL-regsiter pair.

= -
i

CRASH CODES B-2
81-04-01 APP.0S8

APPENDIX B (Continued)

CRASH CODES

SVC-8 failed in cold start.

Entry trough address zero.

Too many non-maskable interrupts.

Too many un-exspected vector interrupts.

Too many illegal interrupts in 4680 I/O-structure.
Real-time service never done, loops on levels =< 10.
Attempt to set up a non-existing level.

Attempt to trigg a non-existing level.

Attempt to trigg an 'ICB” with a non-existing level,
Attempt to execute on a non-existing level.

Attempt to add a ‘DCB’ on a non-existing level,
Attempt to remove a 'DCB’ from a non=-existing level.
Failed to remove a ‘DCB’ from an interrupt chain.
Attempt to add a ‘TCB’ twice to Ready-Q.

Failed to remove a 'TCB from Ready-Q.

Failed to remove a 'TCB~ from Buffer=Q.

Attempt to add a “RCB’ twice to System-Q.

Failed to remove a 'RCB’ from System-Q.

Attempt to find a non-generated task-number.

Attempt to stop a task in System Mode.

Attempt to connect at decendent in a tree.

Attempt to propagate priority on a non-existing task.

Attempt to trigg a non-existing task-device.
Attempt to dispatch a non-existing task.
Attempt to disconnect a non-existing task.
Failed to remove a node from “SPT.MLNK®.
Attempt to release a non-existing node.

A queue has become a circular list.

Failed to remove a 'RMT’ from symbolic chain.
Failed to remove a 'RRT from numeric chain.
Failed to cancel a task.

Attempt to allocate memory twice.

NR SYMBOLIC DESCRIPTION
1 CC.COLD
2 CC.USER User crash entry.
3 CC.ZERO
4 CC.NMI
5 CC.VINT
| 6 CC.INTER
; 7 CC.TIME
i 8 CC.SETSL
i 9 CC.TRGSL
A CC.ICBIL
B CC.SINT
C CC.ADDIL
D CC.RMVIL
E CC.RMVIQ
F CC.ADDRQ
10 CC.RMVRQ
11 CC.RMVBQ
12 CC.ADDSQ
13 CC.RMVSQ
14 CC.TASK
15 CC.STOP
16 CC.DESC
17 CC.PROP
18 CC.TTDEV
19 CC.DISP
1A CC.DISC
1B CC.RMVTQ
1C CC.NODE
1D CC.QUEUE
1E CC.RMTQ
1F CC.RRTQ
20 CC.TCAN
21 CC.AMEM
22 CC.RMEM

Attempt to release memory twice.

Erhennnohhohnnnonnnonbonnbonnhhnnnonnonnnoionnnnuonn

CRASH COND B=3
81-04-01 APP.0S8

APPENDIX B (Continued)

CRASH CONDITIONS

NR CONDITION
1 A := Return status, Y -> SVC-blk, HL -> next in cold start table.
2 Specified by user.
3 SP -> last item pushed on stack.
4 SP -> previous A.
5 SP -> previous A.
6 A := current system level, X -> previous DCB in chain.
7 SP -> BC, AF, HL, PC.
8 := non-existing system level.
9 = non-existing system level.
A = non-existing system level in an ICB.
B = non-existing system level.
C non-existing system level in an ICB, X -> DCB.
D non-existing system level in an ICB, X =-> DCB.
E -> DCB, DE =-> ICB.IQLK, HL -> root of chain.
F -> TCB.

TCB, DE =-> TCB.RQLK, HL -> SPT.RQUE.

TCB, DE -> TCB.RQLK, HL -> SPT.BUFQ.

RCB, DE -> RCB.SQLK.

RCB.

task number.

P -> AF1, BC1, DE1, HL1, CSIL, ¥, X, AF, BC, DE, HL, PC.
RCB, Y -> 3VC-blk, B := SVC-type, C := resource number.
task number, (SP) := RCB, DE -> xxx.CPRI.

task number, DE => node, (SP) := DCB.

task number, (SP) := RCB.

task number, SP -> Y, X, PC.

. 1 e s
L N " AV V. | B 1]

oo H W
1

=
HOOQWUUDOWWOLRIENMMMEMM}MEDRDRDEBLDO

1B E -> node, HL ~-> SPT.MLNK.

1C E := invalid node address.

1D = 0!

1E = resource number, DE -> RMT.
1F = resource number, DE -> RRT.
20 -> TCB.

ERROR CODES C-1
81-04-01 APP.0S8

APPENDIX C

ERROR CODES

COMMON ERRORS

OCT HEX DEC SYMBOLIC ERROR TEXT

000 00 0 S0S.0K No error.

001 01 1 SO0S.ECN End of nodes.

002 02 2 30S.IFC Invalid function code.

003 03 3 S0S.PRO Can’t connect at unconditional proceed.
Qo4 ou Yy S0S.0FFL Off line.

005 05 5. S0S.PRES Not present in this system.

006 06 6 SOS.NYET Not yet implemented function.

007 07 T S0S.CAN Request is cancelled.

010 08 8 80S.38VC Invalid SVC function.

SVC-1 I/0 ERROR CODES

OCT HEX DEC SYMBOLIC ERROR TEXT

012 OA 10 S15.LU Illegal LU, LU not assigned.
013 0B 11 S1S.AM Invalid access modes.

014 0oC 12 S1S5.TOUT Time-out.

015 oD 13 S13.DWN Device down.

016 QE 14 S1S.EQF End-of-file.

017 oF 15 S1S.EOM End-of-media.

020 10 16 S1S.RER Recoverable error.

021 11 17 S13.UNR Unrecoverable error.

022 12 18 S1S.RND Invalid random address.

023 13 19 S1S5.NRND Non-exsistent random address.

SVC-2 SUBFUNCTION ERRORS

OCT HEX DEC SYMBOLIC ERROR TEXT
024 14 20 S525.1ISB Illegal sub-function number.

SVC-3 TIMER ERRORS

OCT HEX DEC SYMBOLIC ERROR TEXT
036 1E 30 S3S.PAR Invalid timer parameter.

SVC-4 TASK DEVICE ERRORS

OCT HEX DEC SYMBOLIC ERROR TEXT
050 28 40 SUS.ASGN Not assigned.
051 29 41 S4S.TYPE Invalid device type.

ERROR CODES C-2
81-04-01 APP.0OS8

SVC-5 LOADER ERRORS

OCT HEX DEC SYMBOLIC ERROR TEXT

062 32 50 S58.TID Illegal task-id.

063 33 51 S5S.PRES Task present.

064 34 52 S58.PRIO 1Illegal priority.

065 35 53 S858.0PT Illegal option.

066 36 54 S5S.CODE 1Illegal code/item at load.
067 37 55 S5S.SIZE Overlay don’t fit.

SVC-6 TASK ERRORS

0CT HEX DEC SYMBOLIC ERROR TEXT

074 3C 60 S6S.TID Illegal task-id.

075 3D 61 S6S.PRES Task present.

076 3E 62 S6S.PRIO Illegal priority.

077 3F 63 S6S.0PT Illegal option.

100 40 64 S6S.EQUE Event queue disabled.
101 41 65 S6S.STAT Invalid task status.

SVC-T7 FILE ERRORS

OCT HEX DEC SYMBOLIC ERROR TEXT

106 4g 70 S7S.ASGN Assignment error, double assign.
107 47 T1 S7S.AM Illegal access modes.

110 L8 72 S7TS.SIZE Size error.

11 49 73 S7S.TYPE Type error.

112 4a T4 STS.FD Illegal file descriptor.

113 4B 75 37S.NAME Name error.

114 Luc 76 STS.KEY Invalid key.

115 4p 77 S75.FEX File exist error.

SVC-8 RESOURCE ERRORS

OCT HEX DEC SYMBOLIC ERROR TEXT

1200 50 80 s88s.ID Illegal resource-id.

121 51 81 S8S.CLAS 1Invalid resource class.
122 52 82 S83.PRES Resource already present.
123 53 83 S8S.PRNT Parent not present.

124 54 84 S8S.DUAL Dual DCB not present.

125 55 85 S8S.RCB Invalid RCB-type.

126 56 86 S8S.EOM End-of-memory.

E hnnannmnmnnnmnnnnnnneanaoaoanonononononononnonononnnnmnmmmn

DIFFERANCES D=1
81-04-01 APP.0S8

APPENDIX D

DIFFERENCES FROM PREVIQUS REVISIONS

Between R1.00 and R2.00

svca.8 It is now possible to expand the mnemonic table.

SVC3 Interval in milli-seconds, not clock ties.
SVC5 Overlay handling added.
3VC6 Event queue handling, field contents are changed.

New functions: S6F.TSKW, S6F.ADDQ and S6F.STSW.
sSVCc8 Task Descriptor Table (TDT): Stack size is moved and
replaced with additional task size. Task slice limit is

now expressed in milli-seconds.

CHK.S1F The returned index is now in register E.

Between R2.00 and R2.50

SvCca2.3 Modifier decoding added.
svca.7 Slice handling added.

SVC2.12 Possibile to specify user file-handler.

3SVCé Suspend function added.
SVCT Modifiers changed.
svcs RTT.SVC added, entry at all SVC calls.

CCB.XOR Drivers, CCB.HST is renamed. This field is used by the
Interrupt Handler in the following way:

INP STAT Read interface status.
X CCB.XOR(X) Reverse the interesting bits.
N CCB.TM(X) Isolate the bits to be tested.

JFZ DRIVER If match, call the driver.

