
OS.8MT ORIENTATION

Anders Wollbeck 831220

OS.8MT ORIENTATION 831220 THE COMPUTER HARDWARE

KKKKKKREKKEKRERKEREREKRERERE

THE COMPUTER HARDWARE
KAKKR RARER EERERERERERER

This chapter will take a look at computer hardware in general
and then make references to the DataBoard system.

THE BASIC COMPUTER HARDWARE

Most computers consist of some basic parts:

A CENTRAL PROCESS UNIT (CPU).

A SYSTEM CLOCK.

A PRIMARY MEMORY.

- A REAL TIME CLOCK.

Various INTERFACES to external equipment.

A system of lines which connect the different parts of the
computer. This is often called the BUS of the computer.

HIN
Paralell Serial
interface interface

System clock [P|] The cpu <—— The Bus

The
real- The
time Primary
clock Memory

Pic 1.1 ‘The basic hardware of a computer.

PAGE 1:1

OS.8MT ORIENTATION 831220 THE COMPUTER HARDWARE

THE CPU

The CENTRAL PROCESS UNIT (CPU) is the heart and controller of
the computer. It consists physically of registers and logic
gates.
The CPU recognizes a number of INSTRUCTIONS. An instruction is a
combination of 8, 16 or 32 bits. (The number is dependent on
the complexity of the instruction). Every instruction means
something special to the CPU, and makes it perform certain
actions.

The execution time of an instruction increases by the
complexity of it.

00111100 "Add one to the contence of regester A"

10000110 "Add to register A....
00000011 ----ethe binary value 00000011 (3 dec)"

11000011 "Jump to the address.....
00000011 -+--00000011 01010100 in the
01010100 primary memory"

Pic 1.2 Some examples of instructions, and their meaning to
the CPU which in this case is the 280 used in the
DataBoard system.

If we have a sequence of instructions which performs a sequence
of actions we have a PROGRAM.

THE SYSTEM CLOCK

The CPU executes instructions at a certain pace. This pace is
determined by the SYSTEM CLOCK. The pulses from the clock are
also used in several other parts of the computer in order to
synchronise all actions.
The clock frequence in DataBoard systems are 2 - 4 MHz.

THE PRIMARY MEMORY

The program is stored in a PRIMARY MEMORY, which can be looked
upon as a long row of spaces where instructions are held. Each
space can be reached by means of an address.
The CPU takes one instruction at a time and executes it, the
program is running. Programs often consist of data as well as
instructions. The part of the program where data are stored is
called the WORK AREA of the program.
The CPU knows where to read instructions in the primary memory
by keeping a PROGRAM COUNTER which holds the address of the next
instruction in the program.

PAGE 1:2

OS.8MT ORIENTATION 831220 THE COMPUTER HARDWARE

The Primary memory

instructions address

Ww) om

01010011 281 |

\W\A/ Program counter

Pic 1.3 A part of the primary memory. The Program counter

shows the next instruction the computer will execute.

ry
11001111 286
00111111 285

; 11100110 284
. 00110011 2834 ee ee ee ee eee ” "983"

‘ 00110011 282 rr

When we in the following text discuss the primary memory it is
often more convenient to look upon it as an "area" of
instructions instead of a "row" of instructions.

THE INTERVAL CLOCK

The interval clock is mainly used in two ways by the computer.

- Updating a software REAL-TIME clock acting as a "stop
watch".

- The interval clock may also hold the real-time (Year,
Month, Day, Hour, Minute, Second), acting as a referance to
the software real-time clock when the computer is started.

INTERFACES

In order to communicate with the world outside, the computer
uses interfaces which can be of different types:

~- Digital inputs and outputs.

- Analogue to digital (A/D) converters which convert a
referance current to a digital value which the computer can
handle.

~ Digital to analogue (D/A) converters which does the reverse

function as an A/D.

- Serial inputs and outputs. Data is transferred "one bit
after another" according to different rules.

PAGE 1:3

OS.8MT ORIENTATION 831220 THE COMPUTER HARDWARE

- Parallel inputs and outputs. Data is transferred several
bits at the same time. The number of bits is dependent on
the number of lines.

THE BUS OF THE COMPUTER

The bus is used to transfer instructions and data between the
different components in the computer. You can make a distinction
between the DATA BUS which transfers data and the ADDRESS bus
which gives the address of the component in the computer to
which the data is transferred.
The CONTROL BUS is a number of lines, each transferring control
information between the components.

BUS STANDARDS

There exist several different standard buses on the market
today, like Multibus, S100 bus and the DataBoard bus which is
used by ABC computers, Facit computers, Monroe computers and,
naturally, DataBoard computers.

PERIPHERALS

By using interfaces different peripherals can be connected to
the computer.
Some common peripherals are:

- One or more KEYBOARDS, DISPLAYS and TERMINAL DEVICES with
which the operator can communicate with the computer.

~ EXTERNAL MEMORY by means of floppy discs, hard discs,
Iagnetic tape etc.

- PRINTERS of different kinds.

THE PHILOSOPHY OF THE DATABOARD HARDWARE

The DataBoard hardware is completely modular. The modules
consist of eurocards, each having a specific function like CPU,
memory, digital output, etc. The eurocards are connected by
means of the DataBoard bus. Only the modules necessary for the
application are needed.

PAGE 1:4

OS.8MT ORIENTATION 831220 THE COMPUTER HARDWARE

THE DATABOARD BUS

The DataBoard bus is divided into different CPU, memory and I/O

parts.

Sceu | =
1/O bus func- Memory bus »

tion iz 7

Serial and analogue Z80 CPU RAM memory, CMOS RAM mem-

interfaces, Digital and board with ory, EPROM memory, EEROM

analogue I/O, cards for control memory, DMA and MAC

special purposes etc. board, one function (see below) etc.

board comp-
uter etc.

Pic 1.5 ‘The DataBoard bus and some examples of the available

functions. All fuctions are modular and can be changed

to taylor the system according to the requirements of

the application.

ESSENTIAL HARDWARE

The minimum environment for OS.8MT is:

- 280 CPU board with control board or single board computer.

- A minimum of 48 kb memory.

- A real time interval clock.

This is the minimum system. In this form it can for example be

used as a dedicated system.

THE PRIMARY MEMORY

The primary memory can consist of a mixture of RAM (regular and

CMOS with battery backup) and PROM memory boards.

The Z80 CPU has 16 address lines and can thus address only 64

Kbytes of memory. To overcome this shortage a MEMORY ACCESS

CONTROLLER (MAC), can be added, which along with memory boards

expand the primary memory to max 256 Kbytes.

The amount of memory needed for a certain application depends

primary on how many OS modules you have to include and the number

and size of the tasks you use.
The DataBoard System manual includes information about selecting
the right memory boards.

PAGE 1:5

OS.8MT ORIENTATION 831220 THE COMPUTER HARDWARE

PERIPHERALS

Some examples of peripherals which can be used with the
DataBoard system are:

- One or up to 6 TERMINAL DEVICES using V24 (RS232)
interface boards (Up to 19 600 asynchronous protocols).
You can actually use almost any amount of terminal devices.
The limit is mainly set by the activity at each terminal.

- HARD DISC drives, WINCHESTER drives and 5" as well as 8"
floppy disc drives may be combined in steps from 80 Kb to
400 Mb.
A DIRECT MEMORY ACCESS-board (DMA) is available for use

with most types of mass memory.

- MAGNETIC TAPE and CASSETTE stations.

- High speed LINE PRINTERS (spooling is available in the
system.

- High speed PAPER TAPE READER and PUNCH.

- CARD READER,

- MODEMS and DIAL-UP UNITS.

- DIGITAL and ANALOG INPUTS and OUTPUTS.

- Synchronous and asynchronous COMMUNICTION INTERFACES.

OS.8MT IS PROMMABLE

It is possible to place OS.8MT in EPROM, thereby eliminating the
need of mass storage memory. As Assembler, Basic, Fortran and
Pascal code also can reside in EPROM you have many options when
it comes to stand-alone systems.

SUMMARY

OS.8MT is equal at home in a dedicated single board computer as
in a large mini-computer resembling development system.

PAGE 1:6

OS.8 MT ORIENTATION 831220 THE SOFTWARE OF THE COMPUTER

KRKKKKKKKEKEREREREERRKKRKEREKE

THE SOFTWARE OF THE COMPUTER
KKK KARE KARE RE RE REE EREERRERERRE

This chapter will include a brief discussion of computer

software.

THE PROGRAM

A computer program consists of instructions and data. The

instructions maxe the CPU perform certain actions like: "Fetch

the contents of memory location 67898 and put it into the A

register"."Add the contents of memory location 67898 to the

contents of the A register". "Put the result in memory location

67898", etc.
The data can be of several types like numerical variables and
pointers which indicate the location of data.

PROGRAM DEVELOPMENT

Writing programs working with binary numbers would be rather

tedius work. There exist for this reason progranming languages.

Some common languages are Assembler, BASIC, Pascal and Fortran.

We will here describe these languages very briefly.

ASSEMBLER

Assembler is a low level, machine oriented language. The

programmer writes the program in mnemonics which is kind of a

shorthand for binary instructions. From the mnemonics the

program is assembled into binary code.

The programmer can also give instructions, making the assembly

process perform in different ways.

Source code Assembly process Executable code

EQU * 00011011

JFCS WRITE > 11011000

IDI HL,0 01010011
STD HL,ANTREC .

Pic 2.1 Assembler.

PAGE 2:1

OS.8 MT ORIENTATION 831220 THE SOFTWARE OF THE COMPUTER

By programming in assembler you can totaly optimize the program
and the result is a very fast execution. The programming time
can, however, be long.

PASCAL

Pascal is a relativly new language with the aim to promote
structured programming. The source code is compiled by a Pascal
compiler to executable object code. Each instruction results in
a number of binary instructions for the CPU.

Source code Compilation Executable code

FOR I:=1 TO 400 DO 00001001
BEGIN > 01010011

J:=J+1 01001001
. 01010010

Pic 2.2 Pascal.

FORTRAN

Fortran is an older compiling language. It is mainly used for
numeric calculations. It uses the same compilation principle as
Pascal.

Source code Compilation Executable code

" WRITE(6,100) TAL 00010001
100 FORMAT(1H ,2F5.1) > 11011011

. 11110101

Pic 2.3 Fortran.

PAGE 2:2

OS.8 MT ORIENTATION 831220 THE SOFTWARE OF THE COMPUTER

BASIC

Basic is a easy to learn interactive language. Interactive means
each statement is interpreted immediatly checking for syntax
errors. This interpretation is also done while the program is
running, requiring a BASIC interpretator.

BASIC statements Interpretation The resulting code

FOR I=] TO 5 > 00010001
— tt” 00010111

I=14B > 00100111
11010101

etc

Pic 2.4 BASIC.

While BASIC programs are easy to and fast to write the execution
is generally slower than programs written in assembler or
compiling languages.

LINKING PROGRAM MODULES

A program is often linked together from a number of different
program modules. The linking process can be controlled in
different ways.

compilation
Source code > gbject module

compilation a executable
Source code > object module——e linker -> program

compilation ra
source code > object module

Pic 2.5 This program is linked together from three different
modules.

PROGRAM CODE - A DEFINITION

Both instructions and data are often referred to as program
code.

PAGE 2:3

OS.8 MT ORIENTATION 831220 THE SOFTWARE OF THE COMPUTER

STACK

The stack is a row of memory locations where code can be saved
by means of simple fast instructions, like "PUSH" (saving code)
and "POP" fetching the last "PUSHED" code.
A STACK POINTER in the CPU shows the location of the stack.

DATA STRUCTURES

It is often very convenient to group data into structures of
different kinds. This is also called DATA TABLES, DATA BLOCKS
and in some cases NODES.
These structures can contain pointers which show the location of
other data structures. Two very common data structures are LIST
STRUCTURES and TREE STRUCTURES.

LIST STRUCTURES

The list structure is a number of blocks which are tied together
by means of pointers. The list structure consists of:

- A ROOT which points at the first block.

- BLOCKS the areas where data are stored and pointed to
from. These blocks are often called NODES. The first node
in a list structure is called the HEAD NODE.

- LINK FIELD, a pointer to another node in the same list
structure. More then one link field can exist in a node.

- NIL POINTER, a pointer whose value indicates that nothing
is pointed at.

PAGE 2:4

OS.8 MT ORIENTATION 831220 THE SOFTWARE OF THE COMPUTER

Head node node node node

Root 1------- > |—------ > -»> - Be
nil pointer

Root 2------- > -- >

- GED
Pic 2.6 A list structure which includes two roots and pointers

to data.

A QUEUE is a list structure where the nodes are ordered in some

way. Sometimes a list structure with no special order is also

referred to as a queue.

From the block there can go pointers to other data structures.

It is easy to reach data in the blocks and data pointed to from

the blocks. Adding and removing blocks present no problem. If we

want to use the blocks for another list structure which does not

include all the blocks, we simply have to add another root and

another link field in the blocks as shown in the picture above.

TREE STRUCTURES

The nodes can be linked in more ways than into a list structure.

One important way is the TREE STRUCTURE. It means you have a top

node which points at other nodes on a lower level, which in turn

can point at nodes on an even lower level and so on. Some terms

are:

- PARENT, the node which is on the level above the one you are

viewing. The top node is the only node which has no parent.

— DESCENDENT, a node on the nearest level below the one you

are viewing. The bottom nodes have no descendent.

- PATH, the line made if you go from the top node to one of

the bottom nodes. There exist as many paths as nodes that

have no descendent.

PAGE 2:5

OS.8 MT ORIENTATION 831220 THE SOFIWARE OF THE COMPUTER

Path A

aN

™

Pic 2.7 An example of a tree structure. Node A is parent to
node B. Node B is decendant to node A.

THE BINARY TREE

One common tree structure is the BINARY TREE, where each node
can have only two descendents. It is often used when you want to
structure data in some sort of order.

Pic 2.8 A binary tree.

ROUTINE - A DEFINITION

A number of instructions in program which does something special
is often referred to as a routine.

SUBROUTINE - A DEFINITION

If a routine is used frequently in a program it is a good idea
to collect them into a subroutine which can be entered from
different points in the program.
Some of the advantages of using subroutines are that you do not
have to duplicate the same code in a program. The program will
also be better structured and easy to read.

PAGE 2:6

OS.8 MT ORIENTATION 831220 THE SOFTWARE OF THE COMPUTER

HANDLER - A DEFINITION

A routine which does a specific thing is sometimes referred to

as a HANDLER.

POLLING

When a peripheral needs to communicate with the computer it must

have a method of telling the computer about it. One way is to

scan the peripherals frequently and look if they possibly need

attention. The scanning is done by a piece of code. This is

called POLLING and is a simple but cumbersome method.

From main program

Back to
main
program yes

device £1

?

no process
data

]

yes

no process
data

J

Pic 2.9 A polling routine.

PAGE 2:7

OS.8 MT ORIENTATION 831220 THE SOFTWARE OF THE COMPUTER

INTERRUPTS

A more sophisticated method is when a peripheral issues an
INTERRUPT when it needs attention. The actual physical process
of an interrupt going from a peripheral to the CPU differs on
different machines, but the resorts taken after it has been
received are the same.
What actually happens when an interrupt has been detected is:

1. The program executing instructions is suspended temporarily.

2. A jump is made to an INTERRUPT SERVICE ROUTINE which does
the things necessary to service the interrupt.

3. When finished, the program continues.

Main program

Y

Interrupt

from ~ _
device i, ~ 1

Interrupt
service

A routine

Y]

Back to main
program

Some interrupts are more important than others so we associate
the interrupts to different INTERRUPT LEVELS. An interrupt on a
higher level may interrupt a lower one, but not the opposite.

Pic 2.10 An interrupt

PAGE 2:8

OS.8MT ORIENTATION 831220 THE SMALL OPERATING SYSTEM

KKKKEKKEKKERKEKREKEEERERERERERKE

THE SMALL OPERATING SYSTEM
KKKKKKKKKKKEREKER EKER EKER

In this chapter we will discuss the motivation for having an
operating system in a computer.

THE NEED OF AN OPERATING SYSTEM

There are a lot of routines, especially for the control of files
and mass storage units, which are used by almost every program
running on the computer.
If every program which runs on the computer should supply all
these subroutines, a lot of programmer's time would be wasted.
There is also a chance of errors in the code, possibly causing
damage.
A better idea is to collect all these subroutines into a package
which can be requested by the programs through standardised
calls. This is the beginning of an operating system.
We will now take a look at the facilities of a small computer:
The Monitor, the Error handler, the File management system and
The Utilities.

THE FILE MANAGEMENT SYSTEM

In many computer applications you need to store data and
programs on external memory. The normal way to do this is to use
FILES. Each file can be reached by means of a DIRECTORY which
also can hold information about:

- The name of the file.

- Creation date and time for the file.

- When the file last was updated.

- What kind of data the file containes (ASCII, Binary, etc)

- Etc.

File A

~“~File B

Pic 3.1 Every file can be reached from the directory.

PAGE 3:1

OS.8MT ORIENTATION 831220 THE SMALL OPERATING SYSTEM

The computer uses a number of routines to handle the files on
external memory. This is called the FILE MANAGEMENT SYSTEM
(FMS) e

The FMS gives commands to the hardware which controls the
external memory, so data can be written on and read from the

right place on the disc.

THE MONITOR

The terminal device is mandatory for communicating with the
machine. It needs routines to take care of the data going to and
from it. Furthermore, it is convenient if the operator can give
the computer COMMANDS to guide its actions. The program capable
of decoding the commands and delegating what should be done is
called the MONITOR.

ERRORS

The operator is like all humans bound to make errors while
working with the machine. He can for instance give a bad
command. Errors can also occur in the computer hardware or
software which must be taken care of.
This is done by an ERROR HANDLER which gives the operator
information about the error on the terminal device, often
accompanied by an audible signal.

CRASHES

If the error is so severe that
there is a risk of data being destroyed, the computer CRASHES
leaving a CRASH CODE on the terminal. Being crashed means that
the CPU stops. The crash code contains information about the
reason that caused the crash.

UTILITIES

Most of the routines mentioned above are used quite frequently
and therefore exist all the time in the primary memory.
A lot of routine work is however to be done much less
frequently like: formatting discs, edit files, copy files,
compile and interpret programs. Programs which take care of
this, called UTILITY PROGRAMS, can be provided and are sometimes
considered as a part of the OS.
These programs are normally held in an external memory and are
only called when needed.

PAGE 3:2

OS.8MT ORIENTATION 831220 THE SMALL OPERATING SYSTEM

THE SMALL OS

Small microcomputers are usually configurated with the things

described above. It has sometimes been debated if this really is

an operating system but many manufacturers refer to systems like

this as one.
Some examples of operating systems which can be looked upon as

"subroutine packages" are CP/M, MS-DOS, DOS 6, etc.

PAGE 3:3

OS.8MT ORIENTATION 831220 THE MULTITASKING OPERATING SYSTEM

KKKEKEKEKEKKEKEEREREREREREREREREREER

THE MULTITASKING OPERATING SYSTEM
KEKKEKKREKEEKEKERERREREREREKERREEREE

This chapter will explain multitasking and the demands it put on

an operating system.

MULTITASKING

From the computer's point of view man is hopelessly slow. When

the computer has finished something to, for instance, ask a

question, it takes several seconds, perhaps minutes for the

operator to answer it. During this time the computer could have

done something useful.
The logical thing would be to have another program running

during this time. The technique of having several programs

running "at the same time" is called MULTITASKING

(multiprogranming) and is fundamental in the computer world.

With multitasking we can take full advantage of the CPU's and

the peripheral's time.

PROBLEMS RELATED TO MULTITASKING

There are, however, several problems related to multitasking

like:

- Which program should be running on the CPU?

- ‘Two programs can demand access to the same peripheral

simultaneously.

- Where in the memory should each program be placed?

- Etc.

Without strict rules we would have instant anarchy in the

computer.

TASK - A DEFINITION

A program which runs in a multitasking environment needs

additional control information so that the operating system can

Manage it. A program complete with such information is called a

TASK (process).
Part of this information exists on the task file, and part of it

is created by the OS (as a reference) when the task is loaded

into the primary memory.
This reference point is called a TASK CONTROL BLOCK (TCB) and

includes the size of the task, where the task resides in the
primary memory, the status of the task etc.

PAGE 4:1

OS.8MT ORIENTATION 831220 THE MULTITASKING OPERATING SYSTEM

Program Task

{| |TCB] (Task Control Block)

Code Code

Pic 4.1 The differance between a program and a task in the
primary memory.

In order to have easy administration of the tasks, the Task
control blocks are linked into lists and queues.
Every task has its own stack which is selected when the task is
ee instructions.

RRR
Code Stack Code Stack Code Stack Code Stack

CO O O C

Pic 4.2 The TCBs point at the code and the stacks of the
tasks.

TASK STATES

Only one task can execute instructions at any given time. This
means that all tasks are not active all the time. We refer to
tasks as being in different STATES. The states defined in OS.8MT
are:

- CURRENT STATE. This is the state of the task currently
executing instructions. Only one task may be in current
state at any given time.

- READY STATE. The task is aspiring to be the current task.

- WAIT STATE. The task waits for something to happen, an
event, before it may reach ready state and current state.

- PAUSE STATE. The task has been paused by the operator or
another task (even itself).

PAGE 4:2

OS.8MT ORIENTATION 831220 THE MULTITASKING OPERATING SYSTEM

- DORMANT STATE. The task has not been started.

At any given time a task is in one of these five states.

RESIDENT/NON RESIDENT, ABOARTABLE/NON ABORTABLE TASKS

Tasks are also referred to as being:

- RESIDENT, it remains in memory when it has terminated (come

to an end).

- NON RESIDENT, it is thrown out of memory when terminated.

The memory space previously occupied by the task can be

used again.

- ABORTABLE. The task may be canceled by another task

- NON ABORTABLE. The task can not be canceled by another

task.

These states can be changed by other tasks or the operator.

TASK PRIORITY

All tasks are not equally important. The tasks can therefore be

associated with different PRIORITIES. A task with higher

priority can "take over" the CPU from a task with lower

priority, but not the opposite.

THE READY QUEUE

Only one task at a time may execute instructions on the CPU.

Therefore there exists only one current task at any given time.

All the ready tasks are kept in a READY QUEUE which is ordered

in priority fashion, the task having the highest priority first.

The current task will continue to execute instructions until:

- The task has nothing more to do and terminates.

- The task is paused by the operator or another task.

- The task is put into wait state for some reason.

- Another task with higher priority becomes ready.

- The task suspends itself, i.e. puts itself in the ready

queue after the other tasks.

PAGE 4:3

OS.8MT ORIENTATION 831220 THE MULTITASKING OPERATING SYSTEM

Task Task Task
descriptor descriptor descriptor

Ready queue——> oe _
Pri 2 Pri 3 Pri 4

Task
descriptor

Current task——>
Pri 1

Pic 4.3 The current task and the ready tasks.

While this way of running tasks "one after another" sometimes is
sufficient it would be nice if several tasks could run seemingly
"at the same time".
This is solved with a technique called TIME SHARING.

TIME SHARING

Time sharing means that every task on the same priority level
gets a slice of time, the time it may be the current task. When
this time has come to an end, the task is put in the ready queue
again, behind the other ready tasks on the same priority level.
The first task in the ready queue is then picked to be the
current task. This way of queuing is called ROUND ROBIN. The
time slice is normally 0.1-1 second. —~
If a task of a higher priority level becomes ready it becomes
the current task and interrupts the time-shared tasks on a lower
level.

Ready queue Se >_> | + —-> +-—
pril|q—Jpril <— |pril pri3 pri5

Current task ee
pril

Pic 4.4 Time sharing.

PAGE 4:4

OS.8MT ORIENTATION 831220 THE MULTITASKING OPERATING SYSTEM

Some computer systems which offer multitasking do not support

time-sharing which makes them less usable for many applications.

THE ACCESS OF PERIPHERALS

As more than one task can demand access to a peripheral

simultaneously this access has to be controlled by the

operating system in some way.
The first thing to do is to define a RESOURCE.

RESOURCE ~- A DEFINITION

A RESOURCE is anything offering something to a task. It can be:

- A DEVICE like a disk drive, printer, terminal, I/O board,

etc.

- Another TASK.

- A VOLUME, like a floppy diskette, disc-pack, etc.

- An AREA in the memory.

You can make a distinction between:

- A SHARABLE (reentrant) resource, which can be used by many

tasks at the same time.

- An EXCLUSIVE (sequential) resource, which only one task at

a time can use.

When a piece of code is a sharable resource, you talk about

reentrant code. This will be explained later.

ADMINISTRATION OF THE RESOURCES

The OS keeps information about all resources present in the

system. This information is, like the control information for

the tasks, held in tables which hold information of the type of

the resource, if a task is using it, if it is sharable or

exclusive etc.

PAGE 4:5

OS.8MT ORIENTATION 831220 THE MULTITASKING OPERATING SYSTEM

LOGICAL UNIT

Before a task may demand access to a resource it must make a
reference to it. This is called to establish a LOGICAL UNIT. The
logical unit has the form of a number which is given at each
request of a resource.
The assignment can be pictured as a bridge between the task and
the resource. If the bridge is closed no traffic is possible.
The command OPEN in BASIC performs this function.

TCB

[cu

Reference to

|. a resource

Pic 4.5 Logical unit. All referances from tasks to resources
have different numbers.

SUPERVISOR CALLS

The tasks may not themselves have access to the resources, they
have to request the operating system to access the resource for
them by making standardised requests.
Such a request is called a SUPERVISOR CALL (SVC). A SVC is the
only way a task can request a resource, and service by the OS.

THE SUPERVISOR CALLS OF OS.8MT

A Supervisor Call (SVC) consists of:

~- The characters: "SVC".

- A group number. (1-8)

- A parameter block —

There exist 8 different SVC types in OS.8MT. Each SVC type can
in turn perform a great number of different functions. The
function is given in the parameter block of the SVC. You also
have to specify how the function should be made.

This listing shows some examples of the most used SVC functions
in OS.8MT. For a complete listing of the available SVC functions
see the OS.8MT PM.

PAGE 4:6

OS.8MT ORIENTATION 831220 THE MULTITASKING OPERATING SYSTEM

FUNCTION OPTIONS PARAMETERS SVC

The assignment The assignment of The LU number SVC 7
of a task toa - A Device. the resource
resource. - A File. will be asso-
(Compare OPEN - A Task. ciated with.
in BASIC)

An I/O call - Read call ASCII or Binary svc 1
to an assig- - Write call data.
ned resource Access mode.
(Compare INPUT The LU number.
and PRINT in
BASIC)

The allocation File name. SVC 7
of a file. Access mode.
(Compare PREPARE
in BASIC)

The opening of The opening of The name of SVC 2.12
a device. the device: the device.
(Puting it on- - Write protected
line) .This is - Non-file structured
NOT the same
as OPEN in BASIC!

The closing of The name of sve 2.12
a device. (Putting the device
it off-line).

An I/O call to Read Data Format svc l
an assigned Write Access mode
resource

The starting of Name of the task SVC 6
one task from
another

The allocation File type | Name of the file SVC 7
of a file.

MODES

When the computer executes different types of code and data it
is referred to aS going through different MODES:

- USER MODE (problem mode, slave mode), which is the mode the
system is in when task code is executed.

- SUPERVISOR MODE (master mode), when the OS executes code.

PAGE 4:7

OS.8MT ORIENTATION 831220 THE MULTITASKING OPERATING SYSTEM

The reason for having different modes is that certain
instructions are reserved for use by the OS. The OS knows which
mode the system presently is in and can prevent illegal
instructions from the tasks.

PRIORITY LEVELS OF THE PERIPHERALS

There exist two ways of entering the OS:

- A task issues an SVC.

- An interrupt is detected.

sve Interrupt
Task oe ee nt a at i en) Dev ice

As mentioned earlier peripherals issue interrupts when they need
attention. The physical devices have different priority levels
depending on how important they are.
For example it is more important that the real time clock gets
serviced than the printer. Many important things may happen
because of a clock interrupt, while the printer can halt a short
time with no bad effects. Thus the clock has a higher level than
the printer.

PRIORITY LEVELS DURING THE WORK OF THE OS.

OS.8MT uses interrupts not only for the peripherals but for
several purposes. There are a for instance a number of routines
hich should not be interrupted by other routines and has

therefore a higher priority.

We will try to make a visual model OS.8MT's structure. Note that
it is not necessary to learn how the OS works in detail, but it
adds to the understanding.

As the OS executes on different levels, a close analogy is a
"house" with 16 levels. The only way to reach the different
levels is by the system interrupt handler.

THE SYSTEM INTERRUPT HANDLER

The SYSTEM INTERRUPT HANDLER which can be looked upon as a
"lift" which travels up and down according to the rules given in
pic 4.6.

PAGE 4:8

OS.8MT ORIENTATION 831220 ‘THE MULTITASKING OPERATING SYSTEM

Interrupt handling
routines

Clock interrupt handler

Terminal interrupt handling

Printer interrupt handling

Mass stor. int handling

Software drivers

Queue handling

Real-time handling

System queue handling

Ready queue handling

The task level

Stop mode

0

1 A 4 Interval clock

2 <q

3 Lift |}<————_

4 q—— Terminals

5 yw <¢—— Printer

6 <q Mass storage

7 4——

8

9 *

Buttons to mark a

10 * simulated interrupt.
A button is pushed

11 * by a routine on a

higher level.

12 *

1 *

14

15

Pic x.x A symbolic picture of the interrupt system in OS. 8MT.

The system interrupt handler is here in the shape of a

w1irt" .

- The "lift" travel upwards if a hardware interrupt

occures on a level HIGHER than the present level.

The lift always travels to the HIGHEST

interrupted level.

- The "lift travels downward if all work has been

done at the present level.

- The "lift" halts at a level if a routine ona

higher level has marked a software interrupt on

that level. I.e. "pushed the button" on that

level

PAGE 4:9

OS.8MT ORIENTATION 831220 THE MULTITASKING OPERATING SYSTEM

AN EXAMPLE OF THE WORK OF THE OS

We will by a simple example show how the OS works.

1. The computer executes task A one of three time shared
tasks. The priority level is 13 - task level.

TCB TCB

9 0
Ready queue————— B Cc 10 Lb

ll k
12

TCB 13 0

14
Current task————} A 15 u

2. The interval clock issues an interrupt on level 1. The
"lift" travels up to level 1 and the interrupt handler
updates the real-time clock in the OS. A certain time
interval has passed and the interrupt handler "pushes the
button" at level 10.

40
f

F
O
W
U
O
A
A
N
I
N
A
U
B
W
N
O
r
H
O

=~

[
=
T
T
I
T
I
T
r
r
T
r
y
T
r
y

3. When the "lift" travels downward it halts at level 10 (the
"button is pushed). The real time handler finds out the
reason for the interrupt. A new task is about to execute
instructions. The real-time handler "pushes the button" on
level 12.
‘4
tt

9
10
ll
12
13
14
15

*

L
j

7
]

jf
Jf

j
f

PAGE 4:10

OS.8MT ORIENTATION 831220 THE MULTITASKING OPERATING SYSTEM

4. The "lift" halts at level 12 where the ready queue handler

is entered. It changes task B to be the current task and
puts task A at the end of the ready queue.

TCB TCB
9

Ready queue--------— Cc A 10
11 !
12

TCB 13 *
14

Current task-------- B 15

5. The task level is reached and task B executes instructions.

SVC HANDLING

We said earlier that the only way to reach the OS is through an
interrupt or a task issuing an SVC. Actually, when an SVC
request is made, an interrupt is simulated on level 9.

0
1 4
2 ty
3 4
414

5 4
6 L4
7 p——4

8 LJ
9 1

10 -4

oe LL id tt

TCB TCB TCB 12

Task 1 Task 1 Task 3 13 ‘oe

14 LJ
15 LJ

Pic 4.7. ‘Three tasks are in the computer. Note the code which
is executed at level 13 - task level, while the
control information (TCBs) only is reached on level 12
- ready queue handling.

PAGE 4:11]

OS.8MT ORIENTATION 831220 THE MULTITASKING OPERATING SYSTEM

If a task issues a SVC an interrupt is simulated on level 9
where the SVC handler is selected. The SVC handler checks the
SVC call and choses an appropriate SVC code which is executed on
task level

0 14
1 i
2 L4
3 ae

4}
5 a

6 14
7 ty
8 14

SVC selection 9 14 C)

10 V4
oe 11 [J *

TCB TCB TCB 12

Systemcode ! ©
(SVC handlers) ! Task 1 Task 1 Task 3 13

I 14 J
15 LJ

Pic 4.8 The appropriate SVC handler is selected on level 9.
The handler is executed when the level is allowed to
drop to 13.

The system code is executed like a subroutine to the calling
task

PAGE 4:12

OS.8MT ORIENTATION 831220 THE MULTITASKING OPERATING SYSTEM

THE MONITOR IN MULTITASKING OS

In a multitasking computer the monitor is not only responsible

for interpreting and executing commands. It also has to direct

terminal I/O to the correct terminal (if more than one terminal

is used).

-”
OL.
Th

2h
3M
444 Term A
oy Term B

6\J<-------- =" term c
< 7H Term D

Taskl (Term A) Pri Tl. 814
Task2 (Term B) Pril ~~. OL4
Task3 (Term A) Pri 5 _ 104
Task4 (Term C) Pri 1 _— ll}
Task5 (Term D) Pri 1 *. 12
Task6 (Term C) Pri 4 13k
Task7 (Term C) Pri3 _---"-" 14h

— 15

TCB TCB TCB TCB TCB TCB

Task H Task2 H task4 | [Task7 |[taskeé |[Task3 | Ready queue ----

Current task----

Pic 4.9 Four terminals (Term A-D) have started the execution

of seven tasks (Task 1-7). Task 1, 2, 4, 5 are time
shared on equal priority.

THE FILE HANDLING IN A MULTITASKING COMPUTER

The main differance between the single user- and the

mulititasking system is the protection needed in the latter.

This is acomplished in OS.8MT by regarding files as exclusive

resources when it comes to the reading of them. Each volume and

file has added control information similar to tasks and other

resources.
Furthermore the File management system in OS.8MT offers a number

of other important features not found in most single user

systems.

PAGE 4:13

OS.8MT ORIENTATION 831220 THE MULTITASKING OPERATING SYSTEM

THE LOGICAL LAYOUT OF A VOLUME

Index Index

Directory sector sector

Data Data

Index Index Index

sector sector sector

f { f
Data Data Data

Pic 4.10 A (simplified) logical layout on a volume.

Data is reached by using a directory and index sectors. This
makes it possible to add and return space to a file in a dynamic
way.
It is also possible to have non-indexed files which are called
contignous files.
The content of a volume is displayed by giving the command
LIBRARY volume name. LIBRARY ABCD: gives for example the content
of the volume ABCD.

PAGE 4:14

OS.8MT ORIENTATION 831220 THE MULTITASKING OPERATING SYSTEM

ELEMENT FILE DIRECTORIES

Oy
EFD EFD EFD

AL de Ne S
FILE FILE FILE FILE FILE FILE FILE

Pic 4.11 Element file directories (EFD) are on a level below the

Master file directory (MFD).

By using element file directories, element files can be used.

This has many advantages as for example every user can have

his own directory and files of a certain kinds can be kept

reached from the same EFD.

MEMORY MANAGEMENT

The addressing range of a CPU is limited. If the CPU has 16

address lines like the 280, it can address 64 Kbytes. This is

called the LOGICAL adress range.

If we want to expand the memory, we need a hardware device

called MEMORY ACCESS CONTROLLER (MAC). By giving the MAC

instructions the OS can determine what part of the PHYSICAL

memory the logical memory can "see".

PAGE 4:15

OS.8MT ORIENTATION 831220 ‘THE MULTITASKING OPERATING SYSTEM

Physical
memory

256 Kb

Logical
memory

+ 64 Kb

0

0

Pic 4,12 The physical and logical memory.

THE PRIMARY MEMORY OF A MULTITASKING COMPUTER

In a multitasking computer the primary memory is divided into
two parts:

- A PURE segment which includes instructions, but no data.

~ An IMPURE segment, which may include both code and data.

The reason for this is that if two or more tasks are using the
same piece of code they must have separate data areas. Otherwise
the data of the tasks would get mixed up. Code that, in this
way, Can be used by many tasks is called REENTRANT code.
Reentrant code must be placed in the memory's pure segment.
An example of a task written in reenterant code is the BASIC
interpreter which only exists in one copy no matter the number
of tasks using it. Every task has a separate data area though.

THE A, B AND Z SEGMENTS

The logigal memory of OS.8MT is divided into three parts:

A Z-segment which always "see" the bottom 16 Kb of the
physical memory.

A pure code A-segment of 8 Kbyte which can be moved to
"see" different parts of the physicl memory.

An impure code B-segment of 40 Kbyte which also can be
moved to "see" different parts of the primary memory.

PAGE 4:16

OS.8MT ORIENTATION 831220 THE MULTITASKING OPERATING SYSTEM

Logical memory Physical memory

256 Kb

7
4

/ 7
4 f

Lf /
/ Z

7 7
4 a

7 4

/ - 2 =

/ f “7
/ / a a“

Sp. a“

4 ov s 27
24-64 Kb B Ze “ Y

2

16-24 KH GA Ye
0-16 Kb Zo LL LLL

Pic 4.13 An example of the operation of the MAC. The A and B
segments in the physical memory are moved to the
location of the executing task. The Task Control
Blocks hold information about where each task is

placed.

Several tasks can use reenrant code in the same A segment while

they have different B segments.

SEGMENTED TASKS

Large tasks can be segmented using several A segments in the

physical memory. The different segments are tuned-in when

needed. The BASIC interpretator is an example of a task using

this technique ,

PAGE 4:17

OS.8MT ORIENTATION 831220 THE MULTITASKING OPERATING SYSTEM

Logical memory Physical memory

256 Kb

7

7
4

ra
SL ra

7 F

/ ma
/ va die

- — Segmented
e 7 code

7 7 A

Zz 4 v7 J

/ 7 a” 7

/ an
Yo Pa aid

7 ana
4 -° 27 24-64 Kb B Vege

16-24 K LA |-
0-16 Kb A

Pic 4.14 An example of a segmented task. The physical segments
are tuned in when needed.

LOADING TASKS IN THE PRIMARY MEMORY

When a task is loaded into the primary memory from an external
memory, it must be placed in a free memory part.
This is done by a LOADER. The loader uses the information
supplied by the task to determine the space needed for it and
whether it should be put in the pure or impure part of the
memory. The OS contains information about the free parts of the
primary memory.
During the time of execution, many tasks can be loaded and
cancelled. (A cancelled non-resident task no longer exists in
the primary memory.) The cancelled tasks leave "holes" where new
tasks can be loaded.

DRIVER ROUTINES

The peripherals are controlled by means of special device
dependant instructions. When collected into a separate routine
including all the necessary instructions for the control of a
peripheral you talk about a DRIVER ROUTINE.
By having driver routines you gain device independency of the
programs as you can change the driver routine instead of all the
programs using the peripheral.
A device driver may be loaded into the primary memory with the
system on-line, just like a task.

PAGE 4:18

OS.8MT ORIENTATION 831220 THE MULTITASKING OPERATING SYSTEM

SUMMARY

Multitasking means that more than one program is using the

computer, running concurrently "at the same time". A task is a

program with additional control information so that the OS can

Manage it in a multitasking environment.

All things in the computer which can be used by the tasks are

called resources. The resources can either be sharable or

exclusive.

The tasks gain access to the resources by issuing Supervisor

Calls (SVC), which is the only way to enter the OS except for an

interrupt. The interrupts can have different levels.

The primary memory is controlled by means of a Memory Access

Controller (MAC) which permits the logical address range to be

expanded.

PAGE 4:19

ae

OS.8MT ORIENTATION 831220 THE SOFWARE MODULES OF OS.8MT

KKKRKEKKRKEREREKREREREKREERREREREREK

THE SOFTWARE MODULES OF OS. 8MT
EKAEKKEKKKEKEKREEKEKREEREEREREERERKK

The flexiblility of the DataBoard hardware demands an equally
flexible operating system. The solution has been to group OS.8MT
into modules. Only the essential modules need to be included
at system generation time. This minimizes the space the OS
occupies in the primary memory. The main parts are:
The Kernel, the File manager, the device drivers, the Monitor
and the Utilities.

THE KERNEL

The kernel includes the essential parts of the system like:

- The READY QUEUE HANDLER which keeps order in the ready
queue and determiens which task is to execute instructions.

- The INTERRUPT HANDLER which delegates the work to be done
as the result of an interrupt.
The interrupts from the interval clock are handled by a
special CLOCK INTERRUPT HANDLER in order to minimize the
overhead.

- The SVC HANDLER and SVC FUNCTIONS, managing task requests
for system resources.

- Handlers which manage the control of resources. Included
here is the CONNECTION HANDLER administrating the
connection and queueing of a task request to a resource.
The reverse function is made by the DISCONNECTION HANDLER
which releases a task request from a resource aided by the
SYSTEM QUEUE HANDLER:

- The REAL TIME HANDLER which manages the system clock and
calender. Task requests made through Supervisor Calls are
also handled as well as when a device has reached a time-
out, a condition described in chapter 7.

- The CRASH HANDLER which is called when OS.8MT determiens
that there is a risk of data being damaged.

- The MEMORY MANAGER which administrates the primary memory
of the computer, that is: the free parts of the memory,
where tasks are located etc.

Although the kernel is necessary in every configuration of
OS.8MT many system tuning constants can be changed in order to
optimize the performance of the system for different
applications.

PAGE 5:1

OS.8MT ORIENTATION 831220 THE SOFTWARE MODULES OF OS.8MT

The kernel needs about 8 Kbytes of the primary memory.

THE FILE MANAGER

The File Manager consists of routines which manage files on mass
storage devices. Included here are a directory manager which can
change the information held in the directories on the mass
storage units and a bit-map manager which provides a method for
allocating and deleting space on files.
The file manager needs about 8 Kbytes of primary memory.

DEVICE DRIVER ROUTINES

These routines are able to control the physical devices present
with the system. You can either chose from a library of pre-
prepared drivers for different devices or write your own
drivers. By a matter of choice the device driver routines can be
resident in the system or loaded from mass storage when needed.
By loading device drivers on-line you can minimize the amount of
needed memory space.
By keeping the device dependent instruction in driver routines
you gain device independency of thé tasks.

TERMINAL MANAGER (MONITOR)

This task is responsible for interpreting and executing
commands. It peforms all I/O requests to the terminals.
When OS.8MT is used with more than one terminal, the terminal
manager directs terminal I/O to the correct terminal.
The terminal manager needs about 8 Kbytes of the primary memory.

UTILITIES

The utilities perform things like:

Initializing and formatting disks.

Copying from one disk or device to another.

- Organising the OS.8MT data base system (ISAM).

Controlling the state of a disk.

The utilities are just like user tasks and must use SVCs to gain
access to the facilities of the OS. While the utilities normally
reside on mass storage they are loaded into the primary memory
when needed.

PAGE 5:2

OS.8MT ORIENTATION 831220 THE SOFTWARE MODULES OF OS.8MT

SYSTEM GENERATION

OS.8MT is generated in the following way:

- Edit the selectfile which the linker uses to know which

modules to include.

- Omitt the modules you don't need and change the tuning
constants according to your needs.

- Initiate the linking process.

An example of a selectfile and a linking process is found in
appendix D.

Kernel

File
manager

Linker

(ESTAB) | ------ > An executable OS

Term.

manager

N
Y

Device

drivers

Pic 5.1 OS.8MT is generated by linking the appropriate
modules.

SUMMARY

The main modules of OS.8MT are:

- The kernel

- The file manager

- The monitor

- Device drivers

The modules are linked together to form a complete operating
system. Several system constants can also be manipulated in
order to optimize the OS for a certain application.

PAGE 5:3

OS.8MT ORIENATION 831220 INFORMATION STRUCTURES

RKKKKKKREREKRRERKERRKKEKKKE

INFORMATION STRUCTURES
AKKEKEEKKRKEKERERERERERKE

THE NEED OF CONTROL INFORMATION

As mentioned, it is very important to have a strict order in the
OS. Every task and resource must be accompanied by control
information so that the OS can manage them.
As tasks and resources can be created, loaded, and cancelled
while the system is running, the control information must be
dynamic, reflecting the state of the tasks and resources. A
suitable method is to have the information in tables, which are
linked together into a list structure.

SYSTEM POINTER TABLE

All information has to be reached from somewhere, we need a
static reference point in the system. This reference point in
OS.8MT is called the SYSTEM POINTER TABLE (SPT).

The SPT is located in the bottom 16 kb of the memory. It
consists not only of reference roots to list structures and
queues, but also of system constants and interrupt vectors.

THE RESOURCE QUEUES

There are three classes of resources in OS.8MT, tasks, devices and
volumes. It may seem confusing that all tasks are also resources,
but it is necessary as one task can request the service of
another task.
In the SPT there are roots to three list structures, each
describing one type of resource. The three list structures are
Similar in many ways.

THE RESOURCE REFERENCE TABLES

Every resource has a unique NUMBER. It can be reached simply by
giving that number. Every resource must therefore be described
in a numeric way. This is done by the RESOURCE REFERENCE TABLE

(RRT) .
In addition to the resource number it contains information about
the TYPE of the resource i.e. if it is sharable or exclusive.
(A sharable resource may be used by more than one task at a
time.)
All RRTs for each resource class are linked together. A pointer
from the SPT points at the head of the queue.

PAGE 6:1

OS.8MT ORIENATION 831220 INFORMATION STRUCTURES

SPT

—>»|_]—>[_ |——>/__+ >
RRT RRT RRT

Pic 6.1 Resource referance tables

THE RESOURCE MNEMONIC TABLES

If we want to reach a resource by giving a symbolic name, we
need another table called RESOURCE MNEMONIC TABLE (RMT). The RMT
consists only of a name of four characters and a pointer to the
corresponding RRT.
Like the RRTs, the RMTs are linked together.

--------- > -------->| — |-------- > ----> ee

Pic 6.2 Resource Mnemonic- and resource referance tables. Note
that some resources only can be reached by the number
and therefore misses the RMT.

THE DIFFERENCE BETWEEN SHARABLE AND EXCLUSIVE RESOURCES

If the resource is SHARABLE we find a pointer in the RRT to
either the entry address to the code.
If the resource is EXCLUSIVE, we must have a way of controlling
the access to the resource. We have to introduce a "bouncer"
(see below) which only permits one request at a time to have
access to the resource. The other requests are queued while
waiting for their turn.

THE RESOURCE CONTROL BLOCKS

This "bouncer" takes the form of a block called the RESOURCE
CONTROL BLOCK (RCB). The pointer which pointed at the code in the
sharable resource is pointed at the RCB in exclusive resources.
The RCB contains information about:

~ The type of resource the RCB controls (Task, Device,
Volume, File etc.

- What kind of calls the resource supports.

PAGE 6:2

OS.8MT ORIENATION 831220 INFORMATION STRUCTURES

- The status of the resource. (Active, off-line, etc.)

- If the resource is free to use, or not.

It also contains pointers to the request which currently is
using the resource and a pointer to a request queue. A pointer
to an optional parent also exists (more about this later).

THE TASK/VOLUME/DEVICE CONTROL BLOCKS

So far the three resource queues have been very similar but now

we need more specific information about each resource, This

information is found in the TASK CONTROL BLOCK, DEVICE CONTROL

BLOCK and the VOLUME CONTROL BLOCK which all are extensions of

the Resource Control Blocks (RCB).

THE TASK CONTROL BLOCKS

In the introduction we mentioned that what makes a task
different from a program is the control information added to the
task. The TCB holds this information which include:

- Where in memory the task segments are placed.

- Address to the tasks stack.

- The task's priority.

- The task's TYPE (resident/non-resident, abortable/non-

abortable etc).

- The task's status (current, ready, waiting, paused etc).

PAGE 6:3

OS.8MT ORIENATION 831220 INFORMATION STRUCTURES

SPT Task 1 Task 2 Task 3 Task 4

RMT RMT RMT RMT

RRT RRT RRT RRT

RCB RCB RCB RCB

TCB TCB TCB TCB
> > conetahe he

Current
task

Ready
queue

Task Task Task Task
code “ code _ code<— code *—

Pic 6.3 The complete table structure for the administration of
tasks. Task 1 is the current task while task 2 and 4
is present in the ready queue.

DEVICE CONTROL BLOCK

Different devices have different characteristics like:

- I£ the resource supports read and write.

- The dataformats which the device supports.

- The positioning the device is capable of doing (forward
record, forward file, rewind etc)

- The type of the device (dedicated device, task device etc)

- Where buffers are located.

Information like this is found in the DCB. A task requests a
resource by issuing a supervisor call. The SVC includes a
parameter block which contains information about that special
request (how much and what kind of data to be transferred, read
or write etc). The parameter block is being copied to the DCB
during the initial phase, before the data transfer takes place.
The driver initiator uses this information. The driver is also

PAGE 6:4

OS.8MT ORIENATION 831220 INFORMATION STRUCTURES

responsible to check if the device supports the functions
requested in the SVC call.

SPT Devicel Device2 Device3

CCB CCB CCB

ICB ICB ICB

: SS ean >| RMT | -—------—> | RMT | -—-----——> | RMT

----------- >| RRT|-- >| RRT | —-------> | RRT

RCB RCB aa

DCB DCB DCB

r —
Driver Driver

initiator initiator

Pic 6.4 The complete table structures for the administration
of devices.

PAGE 6:5

r—

Driver
initiator

OS.8MT ORIENATION 831220 INFORMATION STRUCTURES

THE VOLUME CONTROL BLOCKS

For every volume which is opened to the system a VOLUME CONTROL
BLOCK (VCB) is built. The VCB is mainly used as a work area for
certain SVC calls when accessing directory structured devices.

SPT Volumel Volume2 Volume3

VMIQ--------- > | RMT | --------- >| RMT |--------- >| RMT

VRTQ--------- >| RRT |--------- >|RRT |--------- >| RRT

RCB RCB RCB

VCB VCB VCB

Pic 6.5 The complete table structures for the administration
of volumes.

THE FILE CONTROL BLOCKS

Every time a file is opened by a task, a FILE CONTROL BLOCK is
created. It contains information necessary to handle the access
of a file by a task. (See Logical Unit, Tasks and task
handling).

INTERRUPT DRIVEN DEVICES

Interrupt driven devices also need an INTERRUPT CONTROL BLOCK
(ICB) and, if it is a physical device, a CHANNEL CONTROL BLOCK
(CCB). The ICB is being used, after an interrupt has occurred,
by the interrupt handler to search for the device which is
responsibie for the interrupt. It also contains a pointer to
the interrupt handling routine (in this case the driver
routine).
The CCB contains the card select address of the device
and a test mask for the decoding of the status recieved from the
device. The ICB and CCBs function will be described more
thoroughly in the next chapter.

PAGE 6:6

OS.8MT ORIENATION 831220 INFORMATION STRUCTURES

SUMMARY

The information about all resources is kept in blocks which are
linked into list structures. Included among the blocks were:

- The Resource Reference Table (RRT), holding information
about the number of the resource.

- The Resource Mnemonic Table (RMT), including the name of
the resource.

- The Resource Control Blocks (RCB) controlling the access of
exclucive resources.

- The Task Control Blocks (TCB) including information about a

task in the primary memory.

~- The Device Control Blocks (DCB) holding information about
the characteristics of a device.

- The Volume Control Blocks (VCB) which holds information
about the volumes present in the system.

- The File Control Blocks (FCB) which are used when working
with files.

- The Interrupt Control Blocks (ICB) and the Channel Control
Blocks (CCB) which are used to administrate interrupts.

All Tables can be reached from The System Pointer Table (SPT)
which also holds all system constants and interrupt vectors.

PAGE 6:7

OS.8MT ORIENT 831220 SYSTEM LEVELS AND INTERRUPT HANDLING

HARRI KIA KAIRIE RAI IR EIR ER RII EE EERE

SYSTEM LEVELS AND INTERRUPT HANDLING

HARK AKI KIER AKER EERE EKER ERE ERER EER ER ER

Interrupts are very important in a multitasking computer. This

chapter takes a very thorough look at the interrupt handling.

Detail knowledge of it is only necessary if you plan to work

with advanced program development but everybody using the system

should have a basic knowledge.

PRIORITY LEVELS

Depending on the type of work the computer does, it goes through

different SYSTEM LEVELS.

There are 16 levels, where the 13 highest are reserved for the

OS. Level 13 is the task level, which is divided into 256 task

priority levels. (The OS can also work at this level.) When no

code is to be executed, the system enters level 15-the stop

mode. All levels are reached as a result of an interrupt. The

interrupts can be of two types:

— HARDWARE INTERRUPT, a device signals it needs attention.

SIMULATED INTERRUPT, the OS SIMULATES an interrupt because

there is work to be done on a certain level.

The highest 13 levels can be put into four groups:

— HARDWARE DRIVERS, level 0-7. On these levels we have the

device driver routines. These levels are normally reached

as a result of a hardware interrupt, but can under some

circumstances be triggered by a software interrupt.

- SOFTWARE DRIVERS, level 8. Used for non-interrupt driven

devices. A short routine is polling the devices.

QUEUE HANDLING, level 9. This level is entered during the

critical time when queues are being manipulated by the OS.

- SERVICE ROUTINES, level 10-12. These levels are only

reached if a routine on a higher level has simulated an

interrupt on one of them.

We need a place to keep all the information about interrupts.

This place is called the interrupt service tables.

THE INTERRUPT SERVICE TABLES

The interrupt service tables are located in the system pointer

table and consist of:

One INTERRUPT QUEUE ADDRESS TABLE (IQUE), which holds the

PAGE 7:1

OS.8MT ORIENT 831220 SYSTEM LEVELS AND INTERRUPT HANDLING

adresses to the interrupt control blocks of the devices
which may give interrupts. If there exists more than one
device on some level, the Interrupt control bocks are
ordered as a queue on those levels. (For more info on
ICBs see Information structures, Interrupt driven devices)

- One INTERRUPT TABLE, which is used by the OS to determine
if the driver is DEDICATED or not. (Dedicated drivers will
be covered later.)

- A byte vector (IQFT), which is used to mark a software
interrupt on a level.

IOFT Interrupt Interrupt
link table table

q 0 q

1 F
, 2

q 3
“s

q

bg 4 ~---> | ICB |-—-—-——-> | ICB | ----- —<=>| ICB
5 ; ;

4 6 «€ iz — «

7 .
q

q 8 .

a §

5 ICB , r
4 10 |—"|

q

ll
} , 12 iia P|

13 .
d 4

14
, ‘

15 ICB ,

v
To Real Time

handler

To System Queue - | handler
y

To Ready Queue v v
handler To int. To int. To int.

Subroutine subroutine subroutine

Pic 7.1 The interrupt service tables.

PAGE 7:2

OS.8MT ORIENT 831220 SYSTEM LEVELS AND INTERRUPT HANDING

The interrupt service tables are handled by the SYSTEM INTERRUPT

HANDLER (SIH), which is entered every time either a hardware or

a software interrupt is issued.

Before we describe SIH in a detailed way we need, however, more

information about the hardware interrupt's way from a device to

the CPU.

THE HARDWARE INTERRUPT

The Z80 CPU has its own interrupt mechanism which is modified

by the DATABOARD hardware and OS.8MT. The reason for this becomes

clear if we take a look at one of the standard interrupt

mechanisms of the Z80 and the devices in the Z80 series (PIO,

SIO, etc).

THE INTERRUPT MECHANISM OF THE 280

The 280 CPU handles a technique called VECTORISED INTERRUPT. A

device gives an interrupt by lowering the signal level on its

"INT" pin, which is wired to the "INI" pin of the CPU. The CPU

acknowledges by giving a unique combination of signals.

The device responds to this by putting out an INTERRUPT VECTOR

on the data bus. The CPU combines the interrupt vector with

another vector stored in the CPU (in a I-register). The result

gives a memory location where the address to the interrupt

handling is held. A jump to the interrupt handling routine is

then made.

CPU

co”
Vector

i table

I-reg

Interrupt

PI0b handling
routine

Pic 7.2. The standard interrupt handling of the 280 CPU.

If more than one device is used, the devices are wired into a

DAISY CHAIN. The daisy chain is ordered in priority as shown in

pic??. When a device issues an interrupt, it disables the ability

to give interrupts on all devices lower in the chain. A device

lower in the chain will not have its interrupt acknowledged

PAGE 7:3

OS.8MT ORIENT 831220 SYSTEM LEVELS AND INTERKUPT HANDLING

until the first device's interrupt handling routine is finished.

CPU

CTC PIO S10

! | y
Pic 7.3 An example of a Daisy chain

THE INTERRUPT MECHANISM OF OS.8MT

Vectorised interrupt has some shortcomings, as there can only be
one device on each interrupt level. DATABOARD and OS.8MT thus
expand the 280 interrupt system to eight hardware interrupt
levels. More than one device can be on connected to each level.
The CONTROL BOARD and the I/O boards in the DataBoard series are
designed to override the vectorised interrupt system.

THE CONTROL BOARD

The control board contains eight interrupt inputs, corresponding
to the eight hardware interrupt input levels and one interrupt
output which is wired to the "INT" pin on the CPU.
The interrupt control logic on the board is programmable so that
the CPU can determine on which levels an interrupt will "pass
through" the control unit.
The control unit will provide the interrupt vector to the 280
CPU.

THE I/O BOARDS IN THE DATABOARD SERIES

The DataBoard series contains a lot of different I/O boards,
which are designed to interface the peripherals to the CPU. Most
of the boards which contain inputs of some kind are interrupt
driven. The boards give an interrupt by lowering the current on
pin 5a on the board. Pin 5a is thus wired to one of the eight
interrupt input pins on the control unit.
There are standard levels for all devices, but they can be
substituted if the user has special demands.

PAGE 7:4

OS.8MT ORIENT 831220

Interval clock

Terminals

Printer

Mass storage units

SYSTEM LEVELS AND INTERRUPT HANDLING

Interrupt

Interrupt

Interrupt

level 1

level 4

level 5

Interrupt level 6

Pic 7.4 Examples of standard interrupt levels for

different devices.

A COMPLETE INTERRUPT

So far we have only looked at the individual parts involved in

and everything may seem a bit confusing
the interrupt handling,

through an example.
but the picture will be clearer as we go

Hard Floppys Printer Terminal Terminal

disc

Hard Floppy USART UART UART

disc controller

controller

Real
time

r

76543210

IL CPU
board

Control py tat

board

Pic 7.5 The hardware in this example which is involved in the

interrupt handling. The hard disc and the floppys are

connected to interrupt level 6. The printer is

connected to interrupt level 7. The terminals are

connected to interrupt level 4. The real time clock is

connected to interrupt level 1.

PAGE 7:5

OS.8MT ORIENT 831220 SYSTEM LEVELS AND INTERRUPT HANDLING

1. Let us say the computer is executing a task, the system
level is 13.

A hardware interrupt occurs on level 6, it can be any of
three sources (The hard disc, or one of the floppy discs).

The control unit signals the interrupt line to the CPU.

The CPU acknowledges and the control unit puts out the
interrupt vector for level 6 on the data bus, thereby
"pretending" to be a device.

The CPU combines the vector with another vector in the I-
register. The result gives a memory location.
That memory location holds the address to the system
interrupt handler (SIH). The SIH actually has eight entry
addresses corresponding to the eight interrupt levels.

In our example we end up at the entry for level 6. The
first thing we do here is to make a note on which level we
are, then we make an OUT instruction telling the control
unit only interrupts with higher level than the present
level will "pass through" to the CPU.
After this a jump is made to the part of the SIH which is
common for all system levels.

<—-—--——-- Entry interrupt level 0
<-------- Entry interrupt level 1

_— <-——----- Entry interrupt level 6
<-------—- Entry interrupt level 7

Common part of the interrupt
handler. E
C
E

The task's primary registers are then saved on the task's
stack, and the system stack is selected.

The SIH now looks at the interrupt table on level 6. If the
value is greater than 255, it means the driver is dedicated
(we will return to this) and the value is the address to
the Interrupt Control Block (ICB). But if the value is less
or equal to 256, we must look in the interrupt link table
for the address to the ICB.

PAGE 7:6

|

OS.8MT ORIENT 831220 SYSTEM LEVELS AND INTERRUPT HANDLING

Interrupt IQFT Interrupt
link table

6 6
7 LATA NETS

ICB ICB ICB

- (floppy 1) (Hard disc) | (Floppy 2)

v v v
To int. To int. To int.

subroutine subroutine subroutine

Pic 7.6 For each device with an ICB present on the innterrupt

chain the system interrupt handler tests if the device

has made an interrupt.

10. The SIH begins to search the interrupt linkage on level 6.

iL.

12.

13%

14,

For each device it:

1. Looks in the channel control block for the card select

code.

2. Addresses the board requesting a status value.

3. The status value is compared with a test mask in the

CCB

When the test masks from the device and the CCB match each

other, the device which made the interrupt is identified by

the OS.

A jump is now made to the driver routine specified by the

interrupt control block which handles the data transfer.

When the driver routine is finished, a return is made back

to the SIH (as the driver routine is a subroutine) .

If more work is to be done on a lower level as a result of

the work done by the driver routine the SIH simulates an

interrupt on this level by making a note in the IQFT.

PAGE 7:7

OS.8MT ORIENT 831220 SYSTEM LEVELS AND INTERRUPT HANDLING

15. The rest of the linkage on level 6 is scanned, aS maybe
some other device on this level also has made an interrupt.

16. When finished, the SIH tells the control unit to open all
hardware interrupt levels.

17. Then the SIH enters the highest on which an interrupt (hard
or Simulated) has been made on.

18. On the levels 9-12 there exists only one ICB so no scan is
needed on this level.

19. When we are down to level 13, the task level, the current
task (it does not have to be the task which was interrupted
in the first place) can start to execute instructions
again, until another interrupt occurs.

20. If there does not exist any ready tasks, level 15 is entered
(stop mode) and the CPU halts, waiting for the next
hardware interrupt

It is highly unlikely, however, that the work of the computer would proceed as described above, as an interrupt on a higher level would interrupt the interrupt handling on this level. The
interval clock, for example, issues an interrupt every 10
milliseconds.

SPECIAL DEMANDS BY SOME DEVICES

As some devices, like the interval clock, issue very frequent
interrupts, it would be a waste of time to go through the
scanning routine every time an interrupt from one of them
occurred.
Other devices need to have their interrupt serviced in a short
time. The solution is to make the driver routine DEDICATED,

DEDICATED DRIVERS

If the SIH looks in the interrupt table (IQFT) and finds a value greater than 255, the value is the address to the ICB of the
device with a dedicated driver. The following actions are taken: If the status test mask shows the device has made an interrupt, a jump is made to the driver routine.
It is not possible to have more than one device on an interrupt
level with a dedicated driver.

The average handling time for an standard interrupt is about 500
micro s while 250 micro s for a dedicated interrupt.

PAGE 7:8

OS.8MT ORIENT 831220 SYSTEM LEVELS AND INTERRUPT HANDLING

THE INTERRUPT HANDLING OF THE REAL TIME CLOCK

The interval clock has a special clock interrupt handler. This

lowers the overhead of the real time handling.

Instead of entering the SIH, the clock interrupt handler is

entered as the result of a level 1 interrupt. Very little work

is done by the driver, but the driver may activate other types

of work on lower levels by simulating interrupts on those

levels.

ILLEGAL INTERRUPTS

All the devices which are permitted to give interrupts have

their ICBs on the interrupt linkages. A device can, however, due

to for instance static electricity, issue an interrupt when it

is not supposed to do so. The ICB is in that case not found on

the interrupt linkage.
The system pointer table includes an illegal interrupt counter,

which is initialized tu 64H at system generation time. Every

time an illegal interrupt occurs, the counter is decremented. If

the counter reaches zero, the crash handler is called. The

illegal interrupt counter is restored by the interval clock at

each clock tick.

The crash dump shows the level of the OS when the crash occured.

This way the device which caused the illegal interrupts can be

traced.

SUMMARY

Interrupts play a very important role in OS.8 MT as several

different system routines are reached as the result of simulated

interrupt, in addition to the hardware interrupts issued by

hardware devices.
The interrupt mechanism of OS.8MT and DataBoard hardware makes

it possible to expand the interrupt system to 16 levels (0-15).

The transition from a low system level (15,14..) toa higher

system level (13,12,...) is done by an interrupt (hard or soft).

The reverse function is done by the interrupt handler.

Everything may seem a bit confusing at the time, as we have used

parts of the OS which we have not discussed yet, but everything

will be clearer as we learn more about those parts.

PAGE 7:9

Many things in the compute

OS.8MT ORIENTATION - THE REAL TIME HANDLING

KEKKKKKERRRRERERERER
ERER

TaE REAL TIME HANDLING
HK KKK REE ERKRRERER EERE

THE NEED OF THE REAL TIME IN A COMPUTER

r are dependent on the real time.

- If time sharing is used, the dispatcher needs to know when

to pick a new task to run on the CPU.

- A device is given a certain time, during which it must

issue an interrupt. (This is called device time-out and

will be covered when we discuss resources.)

- A task may want to put itself, or another task, to sleep for

some time.

- When a file is used, it is useful to have the date and year

when it was created and last updated.

The OS puts a lot of different demands on the real time handling

concerning the resolution of the time. Therefore four different

resolutions exist in OS. 8MT:

- Milliseconds

- Seconds.

Time of day.

- Date and year.

now defined. We need to handle requests for

time service by tasks on three resolution levels and be able to

read the current time and date. The solution is three list

structures with requests for different time services and six

bytes which together hold the current second, minute, hour, day,

month and year.

The problems are

THE TIME QUEUES

inter table includes pointers to the three time queues.
The system po

The request, called a node, is a table which holds information about:

- The actions to be taken when its time has elapsed.

- From where or whom the request comes.

second levels, the time before their
- On the millisecond and

f-day level the absolute
time will elapse, and on the time-o

time when their time will elapse.

PAGE 8:1

OS.8MT ORIENTATION - THE REAL, TIME HANDLING

The system pointer table also holds the six bytes mentioned above. Two routines are responsible for managing the time queues, the clock interrupt handler, operating on level one and the real time handler, operating on level 10.

SPT

Millisecond
queue -------> — —->

Millisecond

queue A > —_—> --> —

Time of day
queue ------~> —-> ---> —->

Current year

Current day

Current Hour

etc,

Pic 8.1 ‘The time queues and the time information held in the System Pointer Table (STP).

THE CLOCK INTERRUPT HANDLER

The interval clock issues an interrupt every millisecond, causing the clock interrupt handler routine to be entered. The only work done by this handler is to decrement the time value on the first node on the millisecond level and, if the time value becomes zero, simulate an interrupt on level 10. (See System levels and interrupt handling, Priority levels). The small amount of work done by the handler reduces the overhead of the time handling. When the system level has been

PAGE 8:2

allowed to drop down to 10, the real time h

OS.8MT ORIENTATION - THE REAL TIME HANDLING

andler is entered.

Interrupt

link table

W
O
N
H
D
U
P
W
N
H
E
O

10 —--->| ICB _,*

12
To Real Time

13
handler

Pic 8.2 The real time handler is the interrupt subroutine on

level 10.

THE REAL TIME HANDLER

The real time handler removes the first node in the millisecond

queue and takes the actions specified by it. This can be:

The time value on the second-queue is

th a time value of 100 is placed

The current-time bytes are also
- A second has passed.

decremented and a node wi

in the millisecond-queue.

updated.

- A device time-out counting is needed. (Device time-out will

be discussed later).

- The time slice, or 4 time-wait node for a task has come to

an end. The real time handler simulates an interrupt on

level 12 which will cause the ready queue handler to be

entered later.

When the time value of the second-queve's first node becomes

ed and examined. The real time handler
zero, that node is remov

performs the actions specified in the node which can be:

- A minute has passed and the current-time bytes are updated.

A node with the time value of 60 is placed in the second-

queue. If the time of day value stored in the head node of

the time of day-queue matches the current time, the actions

PAGE 8:3

OS.8MT ORIENTATION - THE REAL TIME HANDLING

specified by the head node are taken,

~ A time-wait node (seconds) from a task has come to an end.

TASK REQUESTS

Tasks can, by making an SVC, syncronise themselves with the real time. An SVC 3 causes the task to be put in wait state for a time interval, or until a time of day occurs. A node is put in the time queue corresponding to the request. When the time value on that node has elapsed the ready queue handler is triggered, and the task is put in the ready queue again,
A task request can also be made so that the task receives a message when the time has elapsed.
The BASIC SLEEP command uses SVC 3.

SVC 2.7 is used to set and fetch the current time and date.

The TIME command, which uses SVC 2.7, is used to set and fetch the current time.

Example: TIME 83-12-12 12.15.00 for the setting of the time.

TIME will give the current time.

SUMMARY

The real time is used in many applications by the operating system. The most important are:

~ The time sharing system.

~ Real time requests by tasks.
ir

~ Device Time-out conting,.

~ The file handling system.

For the administration of the real time system the OS uses a number of queues, a clock interrupt handler and a real time handler.
The real time and date can be set and fetched by means of Svc 2.3 or the TIME command.
SVC 3 calls are used to delay the execution.

PAGE 8:4

OS.8MT ORIENTATION 831220 TASKS AND TASK HANDLING

KKKKKKEKRREKEREERERERERER

TASKS AND TASK HANDLING
KEKKKKKEKEEKERKEEKER ERE

In this chapter we are going to further discuss the control

information needed to handle the tasks and the states a task can

be in. We are then going to look at the parts of the OS which

handle tasks.

LOGICAL UNIT

In OS.8MT device independent I/O is used. This means when you

make an I/O request you specify a LOGICAL UNIT (LU) to which the

I/O should be directed. LU is a number from 0 to 255. A task

knows the LUs which is assigned to devices by keeping an LU

QUEUE.

I/O can be directed to resources of different classes:

"Devices", "Tasks", "Task Devices" and "Files".

TCB

\gHaal
Pic 9.1 An LU queue.

The LU queue consist of RCBs with the TYPE field indicating they

are DUMMIES, all holding a LU number. Before a resource can be

requested by a task, the resource must be ASSIGNED to a LU in

the LU queue. This is done by pointing to the requested

resource's RRT from a dummy RRT in the LU queue.

If the resource is a FILE on some external memory an RCB and a

FILE CONTROL BLOCK (FCB) is added to the dummy RRT.

The FCB is similar to a VCB and holds informaton about the

opened file.

The procedure of assigning a device to a task is sometimes

referred to as to OPEN the device. Please notice that this comes

from the command "OPEN" in Basic and is NOT accomplished by the

OS.8MT command OPEN, which will put a device on-line.

We will go through some examples to make things clear.

- When the editor (a task) is called, you give the command

"EDIT file" where "file" is the name of the file you are

going to work with. The editor task must open the file

before it can use it.

- When you want an output on the printer from BASIC you make

PAGE 9:1

OS.8MT ORIENTATION 831220 TASKS AND ‘TASK HANDLING

the statement OPEN "PR:" AS FILE 1. The result of this statement is the printer will be associated with "logical unit 1",

TCB

Dummy Dummy Dummy Dummy
RRT RRT RRT RRT

{Lug —> —> —> >
LU 1 LU 2 by | LU 3 LU 4

FCB
File x

SPT

Task A Task B Task C

Task RRT
queue—__eisy

RRT RRT RRT

Device A Device B Device C Device £

Device
RRT queue___y)

RRT RRT RRT RRT

Volume A Volume B Volume C

Volume
RRT queue—__ys) >

RRT RRT RRT

Pic 9.2 Logical unit. Task E has opened...
- Task Bas Wil
- Device B as LU 2
- File x (on volume B) as IU 4
- Device E as LU 3

PAGE 9:2

OS.8MT ORIENTATION 831220 TASKS AND TASK HANDLING

EVENT QUEUE

Sometimes the OS or another task needs to communicate with a

task. It might be the OS telling the task about an SVC-call from

the task having gone to completion or another task giving a

message. These things can happen while the task is busy with

something else and wants to deal with them later. Several of

these messages can also drop in with such a rapid rate that the

task has not the time to handle them.

The solution is to have a queue belonging to the task holding

these messages. It is called the EVENT QUEUE and is pointed to

from the TCB. Before anything can be added to the event queue,

the task must enable the queue. It does so by making a SVC 6

(S6F.QENI) .

TASK OPTIONS AND TYPE

You may assign the following different options to a task:

-~ R = resident. The task will remain in the primary memory

after it has terminated.

-~ N= Non resident. The task is removed from the primary

memory after it has terminated.

- A = Abortable. The task can be canceled from another

task.

- P = Protected. The task can not be cancelled from another

task.

The task option is either set with the command OPTION or an SVC

6 call.

Example: The command OPTION,PR OLLE makes the task OLLE

protected and resident.

TASK PRIORITY

OS.8MT recognizes 256 priority levels within the task level. 0 is

the highest level and is reserved for the systems use. Level 1-

255 is available to user tasks.

Each task has two priorities associated with it:

- Task Priority, the priority currently assigned to the task.

A byte in the tasks TCB holds the value. The priority can

be changed by a SVC-6 call (S6F.PRIO) from the task itself

or another task.

— PROPAGATED (DISPATCH) PRIORITY, a temporary priority the

system sets up for a task. The dispatch priority may be

raised over the task priority in some situations, which

PAGE 9:3

OS.8MT ORIENTATION 831220 TASKS AND TASK HANDLING

will be described when we talk about resources.

The priority of a task can either be set with the command
PRIORITY or with an SVC 6 call.

Example: PRIORITY OLLE,68 sets the priority of the task OLLE
to 68.

Example: Load and start two simple BASIC programs, one which
prints on the terminal and one which prints on the
printer. Change the priorities of them and watch the
result.

TASK STATES

Before going into the routines which handle the tasks, we are
going to recapitulate the states a task can be in. When the task
is loaded from external memory to the computer it becomes
DORMANT, and must be started before it becomes READY and is
placed in the ready queue. The head of the ready queue is picked
to be the CURRENT task, the task executing instructions. Any
ready task can be PAUSED by the operator or another task. A
paused task will be paused until it is continued by another
task. For different reasons the task can be put into WAIT STATE.
Among those reasons are:

- Connection wait, the task waits for a I/O to be initiated.

- 1/0 wait, the task waits for an I/O request to go to
completion. The task may in some cases specify that it does
not want to wait for the request to go to completion. (No-
wait calls)

- Time wait, the task waits for a time interval.

~ Trap wait, the task waits for a task handled event, i.e.
for a node to be added to the event queue.

~ Task wait, the task waits for another task to change its
task status or be terminated.

A paused task may be paused by the command PAUSE and continued
by the command CONTINUE.

Example: PAUSE OLLE pauses the task OLLE.
CONTINUE OLLE continues the task OLLE.

PAGE 9:4

OS.8MT ORIENTATION 831220 TASKS AND TASK HANDLING

THE CANCELLATION OF A TASK

A non-resident task is cancelled when it has gone to completion

(end-of-task). A task is cancelled with the command CANCEL or an

svc 6 CANCEL call.

Example: CANCEL OLLE cancels the task OLLE.

Example: The following SVC call in an assembler program will

cancel the program when the call is executed.

SVC 6 6 ,S6CAN

S6CAN DA S6F.CAN,0,0,0,0,0,0

e

Example: The BASIC END instruction uses SVC the SVC 6 cancel

call.

Note that if No-wait calls (See Supervisor Calls) are used the

task MUST put itself in non-abortable state, before such a call

is made.

THE READY QUEUE

All ready tasks are held ina ready queue. The ready queue

consists of the TCBs of the ready tasks all linked together. They

are ordered so that the task with the highest priorety is at the

head of the queue.

THE READY QUEUE HANDLER

The ready queve handler is the interrupt subroutine on level 12,

and is thus entered as a result of a simulated interrupt on that

level.

PAGE 9:5

OS.8MT ORIENTATION 831220 TASKS AND TASK HANDLING

Interrupt

link table

W
O
O
N
H
D
U
P
W
Y
O
H
O

12 | J-—--- >| ICB —~
13
14 To Ready Queue
15 handler 7

Pic 9.3 The Ready queue handler is the interrupt subroutine on
level 12.

The Ready Queue Handler is either called from a handler on a
higher level (the real time handler or system queue handler) or
by a task issuing some types of supervisor calls. The ready
queue handler's job is to:

- Pick the head of the ready queue to be the current task, if
no current task exists. This is called to DISPATCH the task.

- Place tasks which become ready in the appropriate place in
the ready queue.

- Make suitable replacements in the ready queue if a task —
changes its priority. The current task can for instance
lower its priority below another ready task.

In those cases, when a task issues an SVC which changes the state
of a task (it can be one of several SVC 6 functions, like PAUS
TASK, CHANGE PRIORITY, SUSPEND, etc) the SVC code simulates an
interrupt on level 12 and the ready queue handler is entered.
The system queue handler on level 11 calls the ready queue
handler if a task is about to execute the initiation or
termination phase of an exclusive resource. (This will be
discussed later) If a task has been in wait state as a result of
a real time request, the ready queue handler is triggered by the
real time handler. (See the chapter about real time handling.)
The real time handler also triggers the ready queue handler if
time sharing is used.

PAGE 9:6

OS.8MT ORIENTATION 831220 TASKS AND TASK HANDLING

TIME SHARING

As mentioned, time sharing is a technique which permits several

tasks to run "at the same time". Every task has a time limit,

the time it may be the current task before it is put in the

ready queue again, The time limit can be individual for every

task or global affecting all tasks. The TCB holds the individual

time slice while the SPT holds the global.

The ready queue handler works like this when time sharing is

used:

1. The head of the ready queue is dispatched for execution and

puts a node in the millisecond queue. The node's time value

is the time slice of the task.

2. When this time has elapsed, the real time handler triggs an

interrupt on level 12 and the ready queue handler is

entered.

3. The ready queue handler puts the current task in the ready

queue behind the other tasks of the same priority and

everything repeats from #1.

The time slice can either be set from a user task by issuing an

SvC 2.7 or set by the terminal operator using the utility SLICE.

Example: See appendix A and OS.8 MT PM

Example: The command SLICE 100 set the time slice to 100 ms.

The command SLICE without parameters will give the

current slice.

Example: Load and start two simple basic programs which both

prints something on the console. Change the slice

with the SLICE command and watch the result.

PAGE 9:7

OS.8MT ORIENTATION 831220 TASKS AND TASK HANDLING

STACKS

The priorities of the ready tasks are also reflected by the
order in the system stack. The system stack is sometimes used
when system code is executed. It includes stack pointers to the
Stacks of all ready tasks. The higher in the stack the pointer
is, the higher is the task's priority.

SP ee |

2 ———n BD
Sp

Primary J
registers?
for stop
mode Task Task

stack stack
System
stack

Pic 9.4 The stack structures.

PAGE 9:8

OS.8MT ORIENTATION 831220 THE ADMINISTRATION OF RESOURCES

KKKKEKKERERERERKEREREREREEREERREKER

THE ADMINISTRATION OF RESOURCES
KKKKKKEKEREREKRERE REE EKER ERE RERERE

This chapter will describe the OS routines which connect a task

to a resource and the grouping of resources into resource trees.

Although this chapter is rather "heavy" it adds to the

understanding of Supervisor calls and should be studied if your

goal is a complete overview of the system and to master very

advanced programming.

ENTERING A RESOURCE

The system code which is used when a task enters a resource is

called the CONNECTION HANDLER. Let's say a task has issued a SVC

to request a resource. The actions taken to handle the SVC have

come to a point where the resource is about to be entered. This

is how the connection handler works:

1. The handler takes a look at the TYPE byte in the RRT of the

requested resource which indicates if the resource is

exclusive or sharable.
Depending on the type two actions are possible:

ENTERING A SHARABLE RESOURCE

2. If the resource is SHARABLE the job is fairly simple. The

RRT holds the entry address to the code of the resource,

which can be usea immediately, even if some other task is

using it.

ENTERING AN EXCLUSIVE RESOURCE

2. On the other hand, if the resource is EXCLUCIVE things are

more complicated, as only one task can use the resource at

a time. As mentioned earlier, it is the RESOURCE CONTROL

BLOCK (RCB) which controls the task's access to a resource.

A pointer in the RRT goes to the RCB.

3. The connection handler examines the STATUS byte in the RCB

which indicates if the resource is free or busy.

4. If the resource is free the handler changes the RCB's

status to busy and connects a NODE to the RCB. The node

contains information about the calling task.

PAGE 10:1

OS.8MT ORIENTATION 831220 THE ADMINISTRATION OF RESOURCES

NODE from the calling task

RCB

Entry

f _

address
to resource

Pic 10.1 A node is connected to the RCB of the resource.

The RCB now contains the entry address to the resource
which now can be used by the task. If the resource is busy,
the handler queues the node at the RCB's request queue. If
the request queue is not empty, the handler puts the node
in the appropriate place in the queue. The queue is ordered
according to the calling tasks priorities.
If the resource is a task, most requests are queued as the
task must be active to receive the request. A task's
request queue is called the event queue (See TASKS AND TASK
HANDLING) .

Nodes from RCB
other calling
tasks NODE from the task currently

using the resource.
PRI |<} PRI || PRI j<— Seta

| 6 | |

Pic 10.2 The Request queue is seen to the left of the RCB. It
is sorted in priority fashion.

The connection handler operates at the calling task's priority
level but as the system is vulnerable when the handler modifies
queues, the priority level is raised to 9 (Queue handling)
during this time.

RESOURCE TREES

Up to now we have assumed that the resource requested by a task
can function on its own, but this is not always the case. The
floppy disc drive, for example, needs a controller routine and
the DMA (Direct Memory Acces unit) to function, all of which are
exclusive resources.
The connection handler must have a way of knowing which
resources are dependent on which. The solution is to link the
RCBs of the resources into tree structures. (See: The software

PAGE 10:2

OS.8MT ORIENTATION 831220 THE ADMINISTRATION OF RESOURCES

of the computer, Tree structures)

When the connection handler is about to enter a resource like

the floppy disc, which needs the assistance of other resources,

it finds an address to a PARENT in the RCB. The parent of the

floppy disc is the controller routine. The controller RCB holds

the address of another parent, the RCB of the DMA.

As the floppy disc is not the sole user of the controller and

the DMA, they can be busy while the floppy disc is free. This

means a task can not have access to the floppy disc or any other

resource with parents, until the parents also are free.

The queueing of task requests now becomes more complicated, and

is best illustrated by an example.

QUEUEING BY A RESOURCE TREE

Let's say we have a system with 2 floppy discs, 2 hard discs and

2 magnetic tape devices. Three different controllers and one DMA

are needed. The resource tree looks like pic 10.3. When we start

no task is using any of the resources.

DMA
RCB

Mag tape Hard disc Floppy

controller controller controller

RCB RCB RCB

a Tape 2 Hard Hard Floppy 1 Floppy 2

RCB RCB disc 1 disc 2 RCB RCB

RCB RCB

Pic 10.3 A resource tree

PAGE 10:3

OS.8MT ORIENTATION 831220 THE ADMINISTRATION OF RESOURCES

1. A request(1) is made for the floppy disk #1 which is
granted and the node is connected to the floppy RCB.

DMA

Nie
\m

NODE1

2. Another request(2) is made for the floppy disc #1 and that
node is put in the request queue of the RCB.

DMA

\

\ mor Coens»)
Cea)

3. Now, a request(3) is made for the floppy disc #2. The node
is put in the request queue and the RCB of the floppy disc
#2 is pointed to from the RCB of the floppy disk controller.

DMA

\ v7

Fol UU NODE2

NODE]

PAGE 10:4

OS.8MT ORIENTATION 831220

4,

THE ADMINISTRATION OF RESOURCES

Then, a task requests(4) the hard disc #1. The drive and

controller is free, but the DMA is busy (still with request

#1) The controller RCB is queued at the request queue of

the DMA.

pma q

y ‘HC \

Hp1 ‘1 [NODE4|

FD1 NODE2

NODE

If a request(5) now is made for the mag tape #2 the tape

station and tape controller is free, but the DMA is still

busy. We have to queue the tape controller RCB at the DMA

RCB. Depending on whether the most recent request has

higher priority than request #4 or not, the RCB is placed

before or after the hard disc RCB. (The priority of the

request is the same as that of the calling task's.) In our

example the call for the mag tape has the highest priority.

DMA h MC

CON
HD] -{+}—- NODE4

PAGE 10:5

NODE]

OS.8MT ORIENTATION 831220 THE ADMINISTRATION OF RESOURCES |

You can go on like this adding requests, and the result will be
an increasingly complex request structure. Normally, however,
calls will go to completion and be disconnected before the
structure becomes too complicated.
We will for the time being ignore what happens when the actual
communication between the device and the OS takes place. When we
come in the request has gone to completion and it is time to
disconnect the node from the RCB.

THE DISCONNECTION OF A CALL TO A RESOURCE

The system interrupt handler has added the floppy drive RCB to
the SYSTEM QUEUE which include the RCBs off all resources with
completed requests. The system queue handler has also been
triggered.

W
O
A
N
K
D
U
P
R
W
N
H
H
O

10
1 — 1B MM o™N
12 To System Queue
13 handler

Pic 10.4 The System Queue handler is the interrupt subroutine
on level ll.

6. The system queue handler executes on level 11. Its work is
to examine the RCB added to the queue and call the
DISCONNECTION HANDLER. As more then one device can be ~
present on the system queue, the system queue handler does
this work for every device which has gone to completion.

7. The disconnection handler first notifies the calling task
the request is completed, a process which may differ
depending on the type of SVC, and which will be described
later.

PAGE 10:6

OS.8MT ORIENTATION 831220 THE ADMINISTRATION OF RESOURCES

8.

10.

The disconnection handler then looks at the floppy drive 1

RCB and finds a request for it (req #2). It also finds an

address to a parent, the floppy controller.

The RCB of the floppy controller is examined, and another

request for it is detected (req #3). The handler takes the

floppy drive 1 RCB and puts it in the request queue of the

floppy controller RCB.

The order between floppy drive 1 and 2 is dictated by the

priority of the tasks which makes the requests #2 and #3. In

our example request #2 has the highest priority. The

address to the DMA RCB, the parent of the floppy

controller, is also found.

DMA >| MC —>| HC ry

HD1 |» NODE4

MT ~~

NODE5

FC >| FD1 >| FD2
Tl ‘is

NODE2 NODE3

Three requests now exist for the DMA. Request #4 and #5 are

already in its request queue and request #2 and #3 is about

to be put in it.

As the relations between the requests priority are 5>2>4,

the order in the request queue becomes 5-2-4. The handler

now calls the connection handler.

PAGE 10:7

OS.8MT ORIENTATION 831220 THE ADMINISTRATION OF RESOURCES

V DMA FC HC

HD] | NODE4

NODE5

FD2

™,
NODE2 NODE 1

11. The connection handler connects request #5 to the tree and
it can start to use the resource.

PROPAGATED PRIORITY

If a task with higher priority requests the use of a resource
tree, while a task with lower priority is already using it, the
higher priority is "lent" to the connected task. This is called
to PROPAGATE a task's priority.
In this way the tasks are connected to the resources the
shortest possible time.

SUMMARY

The connection handler handles the entering of resources. Many
resources are grouped into resource trees. The disconnection
handler releases a resource from a resource tree.

PAGE 10:8

OS.8 ORIENTATION 831220 DRIVER ROUTINES

KREKKKEEKKKEKKKKKE

DRIVER ROUTINES
KKEKKKKKKKKERKEEK

This chapter will give a principal explanation of drivers and
how they are used.

WHAT IS A DRIVER ROUTINE?

When you collect all instructions reponsible for the control of
a device is a separate routine you call this a driver routine.
This control can be separated into three phases:

- The initialisation of a device.

- The data transfer.

- Post processing.

By using driver routines you do can omitt device dependent
instructions in the tasks.

INTERRUPTS

The data transfer phase is entered as the result of an interrupt
which can be of two types:

- A hardware interrupt by a device.

- A simulated interrupt by the system time-out handler. This
is used if the device is unable to generate hardware
interrupts, or if the application demands it.

THE DRIVER ROUTINES OF OS.8MT

More specifically the work of the driver routines in OS.8MT is
to:

1. Prepare the datatransfer. This is performed by the DRIVER
INITIATOR. When this is done (if it has been done
successfully), the driver initiator enables the device and
allows it to issue an interrupt, or marks in the Channel
Control Block that a device time-out should result in an
interrupt.
It then returns to the connection handler.

The initiator executes with the calling tasks priority.

PAGE 11.1

OS.8 ORIENTATION 831220 DRIVER ROUTINES

RCB

~
Driver

initiator

Pic 11.1 The driver initiator's address is found in the

2.

Pic 11.2 The address of the driver continuator is found in the

36

Resource Control Block (RCB) of the device.

Handle the transfer. This is peformed by the DRIVER -
CONTINUATOR which is the interrupt handling routine of the
device and executed with the priority of the device.
The continuator can either be called as the result of a
hardware interrupt or a device time-out counting.

0
1
2
3
4
5
6
7 ---->| ICB
8
9

10
11
12
La
14
15

v
The Driver
cont inuator

Interrupt Control Block (ICB) of the device

Perform optional post-processing, which is done by the
DRIVER TERMINATOR. The post processing can consist of code
converting etc. The terminator can re-enter the initiator
if more I/O is needed from the device.
If the calling task is in wait state, the task is taken out
of wait state and the terminator code is executed on task
level.
If the request was a no-wait request, the system handles
the terminator code in interrupt mode.

PAGE 11.2

OS.8 ORIENTATION 831220 DRIVER ROUTINES

4. A device TIME-OUT HANDLER which takes care of the cases
when a device has failed to generate an interrupt.

DEVICE TIME-OUT

The device time-out function can be used in several ways. The
normal application is when a device fails to generate an
interrupt. The routines and information structures involved in
the time-out system are:

- The Channel Control Block (CCB), which holds the device
time-out limit and device time-out counter.

- The Interrupt Control Block (ICB), which contains the STATUS
of the device (including if a time-out has been generated).

- The Device Control Block (DCB), which holds information
about what to do when a time-out has been generated.

- The SYSTEM TIME-OUT MANAGER (a part of the real time
manager), which is entered every 100 ms. The manager
decrements the time-out counters of all devices present on
the interrupt chain.
If a counter becomes 0 the manager examines the DCB to find
out what to do. Three resorts are possible:

- The continuator of the device is called, just as if an
interrupt has been issued.

- The system TIME-OUT HANDLER is called on behalf off
the device.

- A USER TIME-OUT HANDLER is called. The handler is
normally a part of the device driver.

The time-out handler is also called when an SVC-CANCEL REQUEST
call has been made.

PAGE 11.3

OS.8 ORIENTATION 831220 DRIVER ROUTINES

THE DATA FORMATTER

Drivers which operate on a byte basis often uses the DATA
FORMATTER,.

The data formatter consist of:

- The FORMATTER INITIATOR, which sets up a buffer and and can
check the function code of the request for the driver
initiator.

- The FORMATTER CONTINUATOR, which manages the buffer in the
primary memory.

- The FORMATTER TERMINATOR, which can calculate the number of - |
transferred bytes.

A complete example of a simple device driver is found in
appendix C.

THE "CRUDE" WAY OF I/O PROGRAMMING

You may naturally use I/O instruction directly from a task toa
device and poll its status. This takes, however, a long time,
draines the CPU-time of the system, and is NOT recomended except
when using digital inputs and other simple devices.
It takes some time to learn how to write device drivers but the
advantages of having an interrupt driven system is well worth it.

A complete description of how to write device drivers is found
in the OS.8 PM.

SUMMARY

Drivers contain all the device dependent instructions. A Driver
consist of:

- An initiator which does pre-prosessing like checking of
the SVC call and the setting up of a buffer. The initiator
can use the formatter initator to acomplish this. -

- The driver continuator handles the actual datatransfer and
is the interrupt subroutine of the device. The continuator
can use the formatter continuator to load or store bytes in
the primary memory.

- The driver may also include a terminator which performs
post-prosessing, and an user time-out handler.

PAGE 11.4

OS.8MT ORIENTATION 831220 SUPERVISOR CALLS

KRRKREKKEEKKEKKERKKEEKK

SUPERVISOR CALLS
KRKKKKERERERERERER

SUPERVISOR CALLS

We have mentioned SVCs several times before, but not specified
how the OS administrates them. The different SVCs are thoroughly
described in the OS.8MT Programming Manual.
There are, however, some important parts which perhaps need to be
explained further to improve the understanding of chapters to
come.

SVC TYPES

The SVCs are grouped into eight types depending on their
function.

- SvC 1 I/O request. It is used by a task to perform all data
transfer requests (I/O). It is often used together with
SVC 7 calls.

- SVC 2-SUBFUNCTIONS. This SVC contains several subfunctions
related to the task communication with the console operator
as well as memory handling and text processing.

- SVC 3~TIMER REQUESTS. This request is used when a task
wants to coordinate itself with a time interval or the time
of day.

- SVC 4~TASK DEVICE. Used by tasks having defined task
devices.

- SVC 5-LOADER HANDLING. Used to load an overlay.

- SVC 6-TASK REQUEST. With this SVC a task can manipulate
with itself or other tasks and handle the event queue.

- SVC 7-RESOURCE ACCESS (FILES/DEVICES/TASKS). This request
is used to create and delete files as well as to assign
files, tasks and devices to a logical unit.

- SVC 8-RESOURCE HANDLING. This request is used to establish
and remove resources while the system is running.

The SVCs are in turn divided into functions, like read or write
in an SVC 1. This function along with additional information
about the request are specified in a PARAMETER BLOCK.

PAGE 12:1

OS.8MT ORIENTATION 831220 SUPERVISOR CALLS

COMMON FUNCTION CODES

There are some common function codes used to specify the request.
These common function codes are supported by most hardware
devices, but may be ignored by some resources. The File Handler
do not, for example, support no-wait calls.

- WAIT/NO-WAIT. Wait means the calling task is to be put into
wait state until the request is complete, while No-wait
means control is returned to the task after initialization
of the request without waiting for completion.

- UNCONDITIONAL PROCEED. If specified, the request will be
rejected if the requested resource is busy. If not
specified, the task will be put into connection wait until
the resource is free.

- WAIT FOR COMPLETION. The task is put into wait state until
a specified no-wait request has gone to completion.

- CANCEL REQUEST. This request is used to terminate a
previously issued no-wait request.

THE SVC HANDLING

The OS treatment of an SVC call can be looked upon as a
subroutine to the calling task. What happens is:

1. A number of routines guide the task to the right SVC-code.

2. The SVC code takes care of the request, sometimes using
parts of code common to other SVCs or issuing other SVC
calls.

3. When finished, a return is made to the instruction after
the SVC-call (wait call) or a node is added to the tasks
event queue (no-wait call).

The actual SVC process is, however, much more complicated using
many routines on different priority levels, some of which have
already been described. Before going into a complete example of
an SVC, we will return to the modes the system goes through.

PAGE 12:2

OS.8MT ORIENTATION 831220 SUPERVISOR CALLS

MODES

In the introduction we only made a distinction between user mode
and supervisor mode. Supervisor mode is, however, divided into
three different modes in OS.8MT. These are the modes of OS.8MT:

- USER MODE (UM), the mode in which all tasks run. The system
level is task level. The only way out of this mode is via
an interrupt, or if a task issues an SVC.

- SYSTEM MODE USER (SMU), which is used when system code is
executed on behalf of a task. This mode is entered at a
Svc. The system level is task level.

- SYSTEM MODE SYSTEM (SMS), the mode used when the system
changes critical information such as queues, and is
vulnerable. The system level is higher than task level.

- INTERRUPT MODE (IM), which is only used for interrupt
service routines within device drivers, real-time update,
system queue service, ready queue service and idle loop.
All higher system levels than the present are enabled.

- STOP MODE (SM)

AN SVC 1 EXAMPLE

Now we are ready to look at a complete SVC example. The SVC 1
calls are made very frequently, so we will begin by looking at
one.
An SVC 1 call to a tile structured device, like a floppy disc,
involves the file manager, which we have not described yet, so
this example will concern a non-file structured device. An
example of such a device is a printer, which operates on byte
level.
Prior to a request for the printer the task must open the
printer. It does so by making an SVC 7 assign call, specifying
the device name and the LU number the printer will be associated
with. A reference will then be made from the dummy RRT in the
tasks LU queue to the RRT of the printer. When the request will
be made, only the LU number is needed to identify the device,
not the device name.

1. The point comes in the task where the SVC 1 is being made.
The function code of the SVC includes information about:
the requested function (write).

- If it is a wait or a no-wait request.

- If the request is unconditionally-proceed, or not.

- The LU number.

PAGE 12:3

OS.8MT ORIENTATION 831220 SUPERVISOR CALLS

- The address to a buffer where the data to be written

are held.

- The size of the buffer.

A jump is always made to the SVC handler when a SVC call is
detected.

2. The SVC handler first saves the primary registers on the
task's stack, and verifies that the rest of the stack has
enough space for the demands of the OS. The handler then
compares the SVC number with the number contained in the
nodes in the SVC reference queue pointed to from the system
pointer table (SPT). If no match is found, like if we have
tried to make an SVC 23 (non existant), the ERROR HANDLER
is called.
If a match is found, the connection handler is called.

v
ERROR SVC

HANDLER |<----| HANDLER

Pic 12.1 The SVC handler checks the SVC number. If invalid the
error handler is called.

3. The connection handler finds the entry address of the
actual SVC code in the RRT in the SVC reference queue. This
is if the SVC as a whole is a sharable resource, like SVC
1. (Some SVCs like SVC 8 are exclusive resources, but we
will return to them later).

Y
SVC

HANDLER

| (4)

(3)

PAGE 12:4

OS.8MT ORIENTATION 831220 SUPERVISOR CALLS

4. The SVC 1 code scans the tasks LU queue to find the match
for the LU number in the parameter block. When found the
connection handler is called.

CONN.
(5) HANDLER

(6)

DRIVER
INITIATOR

f

(7)

The connection handler's work is, aS described earlier, to
enter a free resource, or queue the request if the resource

is busy. If the resource is busy and unconditional proceed

is specified, the request is sent back to the task with
return status 3. When the resource becomes free, the

handler connects the request to the resource. The parameter

block is copied into the DCB of the resource, if specified
in the DCB.

The connection handler finds the address to the driver
initiator in the RCB of the device, which is entered.

The initiator prepares for the transfer. With the aid of
the formatter initiator, it initiates a buffer. The
initiator also enables the interrupts from the device and
an Interrupt Control Block (ICB) is put in the interrupt
queue on the right level.

When the initiator is finished, return is made to the
connection handler which:

- Starts the task if no-wait is specified

- Puts the task into I/O wait state, if wait is
specified.

PAGE 12:5

OS.8MT ORIENTATION 831220 SUPERVISOR CALLS

When the datatransfer is ready to be done, the device issues an

interrupt.

9. The SIH checks the devices, takes appropriate actions if no
device is found or enters the continuator if the device is
found.

Interrupt link table

ICB of the printer

era

(9)

W
O
A
N
H
D
O
U
P
W
N
H
H
 ©

C
i
f

|]
T
T
r
r
e
r
r
r
r
r
y
r
y
s
g

(10)

BUFFER | ------>| DRIVER > | PRINTER
IN TASK CONT

Pic 12.2 The continuator is the interrupt subroutine.

10.

ll.

12.

The continuator takes care of the actual communication
between the device and the buffer. The formatter is used to
handle the buffer and is called by the continuator. When
the transfer has been completed a return is made to the
SIH, which triggers an interrupt on level 11, where the
systen queue handler is reached.

The system queue handler calls the disconnection handler
which releases the task from the resource.

We must now make a difference between wait and no-wait
calls.

If the task is in wait state as a result of a wait call,
the task is taken out of wait state and a return is made to
the instruction after the SVC call.
If a no-wait call has been made, a node is added to the
task' event queue, if the queue has been opened.

PAGE 12:6

OS.8MT ORIENTATION 831220 SUPERVISOR CALLS

13. If the task is in wait state as the result of a wait call,

the task is taken out of wait state and performs the

termination phase in SMU-mode (system code executed at task

level). When finished the task continues the execution from

the instruction after the SVC call.

If a no-wait call has been made, the system handles the

termination phase in IM-mode (higher than task level). When

finished a node is added to the tasks event queue, if the

queue has been opened.

To avoid any confusion we will show the difference between wait

and no-wait calls once more.

2.

WAIT CALL. The task is put into connection wait state when

the SVC is done, and remains in wait state until the

request has gone to completion. The task is then taken out

of wait state and can continue to execute instructions (if

it is still is the task with the highest priority).

NO-WAIT CALL. The task is first put in connection wait

until its request has been initiated. After this the task

is taken out of wait state and can continue to execute

instructions.
There are three ways for a task to see if a no-wait call

has gone to completion.

Issue a wait for completion call to the requested resource.

The task is then put into wait state until the request

is completed.

Issue a wait for event call (SVC 6 S6F.QWAI). The task will

then be started when an item is added to the task's event

queue. The task will be started when ANY no-wait call has

gone to completion. This is the difference between wait for

event and wait for completion.

Issue a test for event call to detect when a completion

node has been added to the event queue. This is not a

recommended method as the task remaines active and takes

CPU time from other tasks while not doing useful work.

Check the return status in the parameter block of the

request. ;

0 means the request has been done successfully, while a

positive number indicates that something has gone wrong.

This is not a recommended method for the same reason as

method number 3.

PAGE 12:7

OS.8MT ORIENTATION 831220 THE FILE MANAGER

KRKEKEKEKKKKEKEKEKKKKKE

THE FILE MANAGER
KEKKKKEREKRRREREERE

When we made the example of the SVC 1 call, we mentioned the
file manager. We are now going to take a look at its structure
more closely. The logical layout of a disc will also be
discussed.

THE STRUCTURE OF THE FILE MANAGER

The parts of the OS which are involved when something is to be
done with a file are:

- The SVC 7 code and the SVC 1 code, from which the file
Manager is called.

~ The VCB of the disc on which the file exist on.

- The FCB which describes the file and which is created at a

SVC 7 request.

- A directory manager which can manipulate with the directory
on the disc.

- A bit map manager which can change the bit map of the space
available on the disc.

- System buffers, which are administrated by a buffer handler.

- The driver of the device which holds the disc.

- The volume itself.

As you see, quite a lot of software and hardware are involved
when we are dealing with file structured devices. The software
uses 8 Kb of the primary memory.
To sort things out, we will first describe the parts
individually and then look at some examples.

PAGE 13:1

OS.8MT ORIENTATION 831220 THE FILE MANAGER

THE MAGNETIC STRUCTURE ON A DISC

The first thing which must be done when a new disc is to be
used is to generate a magnetic structure on the disc. All
discs are divided into a number of SECTORS. Each sector
consist of:

~ A PREAMBLE which consist of a sync sequence, an ADDRESS
MARK with information about the sector number and a gap of
three bytes.

~ A DATA PART of 256 bytes.

~- A POSTAMBLE with a checksum and an inter record gap before
the next sector.

Preample Data Postample

L_ | —_

Pic 13.1 A sector

The OS.8MT utility DISKFORM is used when a new disc is to be
formatted. DISKFORM generates the structure above and fills the
data parts with binary ones.

THE LOGICAL STRUCTURE OF A DISC

Now we are ready to place the logical structure on the disc. It
is normally done with the utility DISKINIT which:

1. Checks the disc for bad sectors.

2. Notates the bad sectors (if any) in an ALLOCATION TABLE,
which is a bit map of the sectors on the disc.

3. Places an empty DIRECTORY on the disc. The directory is
placed on default sectors for every type of mass storage
units, but, if the default sector is bad it may be placed
in any sector on the disc.

4. Then a VOLUME DESCRIPTOR SECTOR (VDS) is placed on the
first sector of the disc. The VDS contain information about
the disc and pointers to the allocation table and the
directory. The first sector is the only sector on a disc
which must be immaculate

You can determine the smallest allocatable element on the disc.
This is called a CLUSTER and can be set with the command CLUSIZE
when doing the initialization. As you can not allocate a smaller
element the bit map will work with clusters.

PAGE 13:2

OS.8MT ORIENTATION 831220 THE FILE MANAGER

When you do a SVC 7 allocate call the default number of clusters
which will be allocated is called a BLOCK. The BLOCKSIZE command
affects the size of the block.
When we have formatted and initialized the disc we have the
structure described in pic 13.2.

THE DRIVERS

There exist drivers routines for every type of mass storage
devices available in the DataBoard system. The complexity of the
drivers is primarily determined by the intelligence of the
physical mass storage device driver.

THE BUFFERS

In some access modes buffers are used to bring down the number
of disc accesses. Initially the buffers are held in a buffer
pool in the OS. The number of buffers is a system generation
matter. Every buffer is controlled by a BUFFER CONTROL NODE
which can be assigned to a task. The node holds information
about:

- The currently associated device.

The associated sector.

If the buffer is free or not.

If the buffer is the last one used of all buffers.

The buffers are handled by a BUFFER MANAGER, which can search
the nodes and connect a task to a node. Only one task may write
to the buffer at a time. When a task is being connected to a
node, it increases its priority temporarily to priority level 9.

THE DIRECTORY MANAGER AND THE ALLOCATION MANAGER

In order to understand the routines which manage the allocation
of a file we will take a look at how a file is placed on a disc.
The directory is used to reach all files on the disc. It
consists of:

- A sector with information about the number of entries in
the directory and a hash table. The hash table is used to
find the right directory entry. It is also used as a bit
map for free space in the directory.

- One directory entry for each file on the disc. The entry
keeps information about the file name and tells if somebody
has opened the file for writing (only one task may write on
the file at the time) A pointer also exists to the first

PAGE 13:3

OS.8MT ORIENTATION 831220 THE FILE MANAGER

index sector of the file.

HASH VOLUME DESCRIPTION BITMAP OF
TABLE SECTOR DISCSPACE

DIRECTORY DIRECTORY DIRECTORY

——--> | |] >

INDEX INDEX INDEX
SECTOR 1 SECTOR 2 SECTOR 3

-------> ----->
{-----~- <-----

TA CLUSTER DATA CLUSTER DATA CLUSTER

DATA CLUSTER ATA CLUSTER ATA CLUSTER

DATA CLUSTER DATA CLUSTER ATA CLUSTER

Pic 13.2 The logical layout of a disc. The data clusters are
of the size specified in the CLUSIZE command in the
utility DISKINIT.

The index sectors are used to locate the sectors where the data is
held. The first index sector also has information about such things
as creation time of the file. While the first index sector can point
out 32 clusters of data, every subsequent sector can point out 62.
The routines which manage the allocation of a file are:

~- The ALLOCATION MANAGER, which has access to the allocation
table pointed to from the VDS on the disc. The manager can
search the table for free clusters on the disc or notate in
the table if a cluster has become free or occupied.

PAGE 13:4

OS.8MT ORIENTATION 831220 THE FILE MANAGER

- The DIRECTORY MANAGER, which can change the contents of the
directory and manage the index sectors.

It would be dangerous if two tasks used these managers at the
same time when using the same disc, as they could easily
allocate the same area on the disc. The allocation manager and
the directory manager are thus exclusive resources within the
same disc. Two tasks can naturally use the managers when
working with different discs.

DISKDUMP

The OS.8MT utility DISKDUMP provides a method for viewing the
logical structure on a disc. First the disc must be opend
non-file structured with the command OPEN,N then the DISKDUMP
command is given.
The command IN assigns DISKDUMP to a volume.

Example: IN XBC: assigns a whinchester disk.

The DISKDUMP command DUH gives the apperance of a sector on the
volume.

Example: DUH 1 gives shows the volume description sector.

PAGE 13:5

OS.8 MT ORIENTATION 831220 USING THE FILE MANAGER

KREKKKKKKKREKREKRKEEKEREREEEK

USING THE FILE MANAGER
KKEKEKEERERERERERERERERER

To understand the function of the various parts of the file

Ianagement system we need to go through some examples. First we
will open a volume, a procedure which always must be done when a
new disc is introduced to the system. Then we will assign
a file on that volume to a task. Finally an I/O call to that
file will be made.

THE OPENING OF A VOLUME

The operator opens a volume by giving the command OPEN (, (N) (P))
fd. If the device is a direct-access device, like a disk of some
kind, the <fd> used is the device mnemonic, not the volume name.
If <P> is specified the device is opened write protected. <N> is
used to open the device non-file structured. This means no
directory is present and no volume name will be established at
open. The code activated by the open command uses the SVC 2.12
OPEN call. Any task can also use the SVC 2.12 call to open a
device. The procedure when opening a device is fairly simple:

1. The directory manager is used to look for some information
on the volume, such as volume name, directory address,
cluster size, etc.

2. The information is used to build a Volume Control Block
(VCB), which is put in the volume queue. The VCB contains a
pointer to the device holding the volume.

Example: OPEN xbc: opens the winchester disc with the device
Mnemonic xbc:

A BASIC EXAMPLE OF AN OPEN CALL

120 !
130 ! OPEN A DEVICE

140 | == =
150 !
160 INTEGER : EXTEND

170 !
175 DIM Svcb1k% (3%) ,Fdx=33%
176 !
180 Fd=="XBC "+SPACEx (24%)
185 !
190 Svcb1k(0)=2 ! Function open device
200 Svcb1k(1)=12 ! Subfunction 12
210 Svcblk (2)=VARPTR(Fd=) ! Pointer to device string
220 !
230 SVC 2,Svcblk ! Make the SVC call!

PAGE 14.1

OS.8 MT ORIENTATION 831220 USING THE FILE MANAGER

THE ALLOCATION OF A FILE

Files are allocated by means of an SVC 7 call. When making the
call you specify:

- Fixed or variable record length,

~ Record length (if fixed)

- Name

~ A modifier which indicate the type of data the file
containes.

- If the file is to be indexed or contignous.

AN EXAMPLE OF THE ALLOCATION OF A FILE WITH FIXED RECORD LENGTH

The PREPARE statement in BASIC is normally used to create a
file, but if you want to create a file with fixed record length
you must use the SVC 7 ALLOCATE call. Note that an SVC 7 ASSIGN
call also must be made to establish a logical unit.

10 INTEGER : EXTEND
20 DIM A% (8%) ,BS (6%)
30 DIM An=29%

"** THIS PROGRAM CREATES A FILE WITH FIXED RECORD LENGTH **" Sa
)

©

=e

™e

we

70 INPUT "NAME OF THE FILE TO BE CREATED "Bo
80 INPUT "RECORD LENGTH ? "RE
90 !
100 ! SVC 2.3 is used to give the filename the right format

!
120 Bs (0%) =1%
130 B%(1%)=3% ! Subfunction 3
140 Bt (2%) =VARPTR (Bx)
150 B% (3%) =VARPTR (Ax) +1%

1 160 !
170 SVC 2%,B% ! Make the SVC call! ~
175 !
180 ! SVC 7 is used to allocate the file with the record length R%
185 !
190 A&(0%)=1% ! Function: Allocate
200 A& (1%) =256%*16$+12
210 A% (2%) =VARPTR (AX) +1%

220 A%(3%)=0% ! Reserved
230 A%(4%)=R% ! The record length

i 240 A%(5%)=0% ! Reserved
240 !
250 SVC 7,A%
270 ; : ; "THE FILE *** "; : ; Ba; ; ; " *** HAS BEEN CREATED," ?
280 ; "WITH A RECORD LENGTH OF ***"; : ; R&; 2; " *#e,"

PAGE 14.2

OS.8 MT ORIENTATION 831220 USING THE FILE MANAGER

THE ASSIGNMENT OF A FILE TO A TASK

A task must always assign a file to a logical unit before it may

read data from it or write data to it.

When a file is opend by a task, different ACCESS PRIVILIGES can

be specified. Some of the available priviliges are:

- Sharable read only. The file may be read by more than one

task at a time, but write is not possible.

Exclusive read only. Only the assigned task may read the

file. Write is not possible.

Sharable read/write.

Sharable read/exclusive write

Exclusive read/write. As long as the file is open no other

tasks can access the file.

- Etc.

Example: The OPEN and PREPARE commands in BASIC given without

arguments opens a file for sharable read/exclusive

write.

The ACCESS MODE is also specified while making the SVC 7 assign

call. We will return to access mode later.

THE HANDLING OF AN ASSIGNMENT CALL

1. A task wants to open a file on a volume and makes a SVC 7

assign call. The parameter block includes the file

discriptor and the LU number which will be associated with

the file. Access privilidge is also specified.

An assignment in assembler may look like this:

SVC 7,S7ASG The actual call

S7ASG DA S7F .-ASGN, LU.IN, INFD Specify the function, LU

* and pointer to file to assign

DB S7A.EWSR Access privilidge:

* exclusive write sharable read

DA 0,0,0,0

2. The SVC handler searches the SVC reference linkage and finds

the SVC 7 block. The SVC 7 call exists! The handler then

calls the connection handler.

3. The connection handler searches the list of VCBs and finds

PAGE 14.3

OS.8 MT ORIENTATION 831220

7.

USING ‘HE FILE MANAGER

the volume on which the file exists (the file descriptor
in the parameter block of the SVC includes the volume name)
The VCB block points at the SVC 7 function code, which is
entered.

The SVC 7 code now needs assistance from the directory
Manager and must make an SVC 2.10 call. The list of Svc 2
reference blocks is scanned and the SVC 2.10 block is
found. The block indicates that the function is exclusive,
and the request is queued by the VCB of the volume the file
exists on. (Remember that the directory manager is only an
exclusive resource within a volume!!) When the directory
manager becomes free, the request is connected and the
manager is entered.

The manager searches the directory for the specified file
and when found returns with information about the file. It
also marks in the directory that the file has been Opened.

The information is used to build an FCB, which is connected
to the LU node in the LU queue of the task which made the
request.

The call returns

DATA TYPES

Before going into an example of an SVC call to a file structured
device we need to know something about the data types which are
used and in which ways you can read or write data on a volume.
The data types used with OS.8MT are:

~ BINARY, eight bit data.

- ASCII, seven bit data with the most significant bit in the
byte cleared. ASCII data can be stored in two ways:

- Image ASCII, where the data is stored byte by byte on
the file.

- Formatted ASCII. Text files often contain a lot of
spaces, which take up a lot of space on the volume. In
formatted ASCII space strings are compressed into
Single bytes with the value 80 hex + the number of
spaces. The most significant bit in every byte is set.
Disc devices normally work with ASCII data in
compressed form, even if image ASCII is specified.

When working with file structured devices you often work with
RECORDS. A record is a number of bytes in a file. The nunber can
be fixed or variable. In OS.8MT you determine the size of the
record length, when you allocate the file. Record length=0
specifies variable record length.

PAGE 14.4

OS.8 MT ORIENTATION 831220 USING THE FILE MANAGER

A typical example of where variable record length is used is a

text file where each record is a line. You could have stored the

text with fixed records with the size of 80 bytes (=the length

of a row), but that would mean a waste of space on the file.

ACCESS MODES

There are three ways to have access to a file:

- PHYSICAL ACCESS, read and write are performed on a sector

level. This means 256 bytes are always transferred. No

formatting or buffering are used, which means the only

supported data format is image binary.

- LOGICAL ACCESS, read and write are performed on a logical

record level. Fixed or variable record length can be used.

You can either use image binary or ASCII transfer.

- BYTE ACCESS, where the file is treated as a file-.of bytes.

In this mode you can reach any byte in the file. Logical

access with variable record length is the same as byte

access.

The access mode is determined when you assign the file to a

logical unit with an SVC 7 call, BASIC OPEN command, etc.

PAGE 14.5

OS.8 MT ORIENTATION 831220 USING THE FILE MANAGER

AN SVC 1 CALL TO A FILE STRUCTURED DEVICE

I/O calls to file structured devices are made through SVC 1
calls. The parameter block of the SVC specifies:

- The requested tunction (read/write).

~ Unconditionally proceed, or not. (No-wait is not
allowed!)

- — The LU number.

~ The buffer address in the task.

- The size of the buffer.

An assembler example of a write call may look like this:

SVC 1,UTDATA The SVC call
UTDATA DA SIF .WRIT+S1F.FASC Function write + formatted ASCII

DA IW2.UT The logical unit number
DA INBUFF Pointer to a buffer
DA 0,0,0,0

*

INBUFF DMB 256,' ' The buffer to fetch data from

THE HANDLING OF SVC 1 CALLS TO FILE STRUCTURED DEVICES

1. The SVC 1 call is issued. Note that the file must be
assigned! The SVC handler is entered as the result of the
call.

2. The handler scans the linkage, finds the address to the SVC
1 code which is entered.

3. The SVC 1 code searches for the right device in the tasks
LU queue and finds an FCB containing the address to the
file manager.

4. The file manager examines the parameter block to determine
the requested function.

PAGE 14.6

OS.8 MT ORIENTATION 831220

SVC

|
SVC

HANDLER

CONN
HANDLER

Svc 1} HH» | FILE
CODE

USING THE FILE MANAGER

MANAGER

Pic 14.1 The handlers which guide the SVC call to the file
Manager.

Depending on the function a number of procedures can be taken.

PAGE 14.7

OS.8 MT ORIENTATION 831220 USING THE FILE MANAGER

DATA TRANSFER ON SECTOR LEVEL

If datatransfer is requested on sector level (physical access)
the connection handler is immediately called.

5a.

6a.

Ta.

9a.

10a.

The connection handler tries to connect the task to the
resource tree which at least consists of the disc and the
disc controller. (See "The handling of resources, Resource
trees).

When connected, the driver initiator is called which tells
the device what to do (sector number, read or write etc.).
When finished the initiator enables the interrupts from the
device and a return is made to the connection handler.

The connection handler retuns to the file handler and keeps
the task in wait state as previously described. (No-wait is
not supported by the file handler.)

When an interrupt is received from the device the driver
continuator takes care of the actual data transfer. When
finished the system queue handler is called.

The system queue handler calls the disconnection handler
for every request which has gone to completion including
"our" request.

The disconnection handler releases the task and takes the
task out of wait state.

DATA TRANSFER ON RECORD LEVEL

If we want to have access to the file on record level (logical
access) system buffering is used. The file manager must
therefore first call the buffer handler.

5b.

6b.

7b.

8b.

If we want to read a record there is a chance the record
already exists in a buffer. The buffer handler therefore
scans the buffers, and if the record is found it can
immediately be transferred to the buffer in the task. If
the buffers don't contain the record, the task must be
connected to a buffer by the buffer handler. When this has
been done the buffer handler calls the connection handler.

The connection handler does its usual job, and when the
task is connected the driver initiator is called.

When the initialisation is finished, control is handed back
to the file handler.

When the device issues an interrupt the continuator takes
care of the transfer from the volume to the system buffer.

PAGE 14.8

OS.8 MT ORIENTATION 831220 USING THE FILE MANAGER

9b. When the transfer is finished the system queue handler is
called, which in turn calls the disconnection handler. If
some formatting is needed of the transferred data (perhaps
de-compress ASCII code), the termination handler is called.
We must now make a difference between wait and no-wait
calls.

If a task wants to write a record on a file, the formatting
takes place before the data is transferred from the task to the
buffer. Otherwise the procedures are similar to reading a
record.

THE CLOSING OF A FILE

A file is released from a Logical Unit by making a SVC 7 CLOSE
call. The BASIC CLOSE call performs the same function.
Note that it is best to close a file with an SVC call that has
been assigned with an SVC call and to close a file with a BASIC
CLOSE call that has been assigned with a BASIC OPEN in order to
avoid any mis-match in LU numbers.

FUNCTION DELETE AT CLOSE

When working with temporary files you may specify DELETE AT
CLOSE when making the SVC 7 ASSIGN call. When the file is
closed it is also deleted.

DISKCHECK

If the system crashes while files are assigned, they will be
marked assigned when the system is started again. The OS.8MT
utility DISKCHECK is used to close all assigned files.

SUMMARY

The file manager handles all I/O calls to file structured
devices. The service of the file manager is mainly requested
through SVC 7 calls to allocate (create) and delete files.
When a file is allocated the name, type (indexed or contignous)
and size of the file are specified.
When a task want to communicate with a file it must assign
itself to the file while specifying the access privilidge
(sharable/exclusive read/write etc).

PAGE 14.9

OS.8MT ORIENTATION 831208 MEMORY MANAGEMENT

KRREKKERKRERREKKEKKEKE

MEMORY MANAGEMENT
KRKKKEKKKRKEKKEKKKKKKER

As the 64 Kb address range offered by the Z80 CPU is too narrow
for most applications OS-gives the possibility of expanding the
address range to max 256 Kb. OS.8MT uses a MEMORY ACCESS CONTROL
(MAC) -board to do so.

A AND B SEGMENTS

A task can consist of pure and/or impure code. The pure part
only contains code, while the impure part also can include data.
The pure part can be used as reentrant code by many tasks. One
example is the BASIC interpretator which is written in pure code
so that only one copy of it is needed while every user has a
separate data area.

THE PHYSICAL ADDRESS RANGE

The physical address range of OS.8MT has a maximum size of 256
kbyte. The OS itself resides in the lowest 40 Kb (if both the
file manager and the MIM are included). The lowest 16 Kb
includes the most important parts of the OS like the system
pointer table, the memory manager and the SYS-area where the
dynamic data structures can be found. This part is called the Z-
segment.
The part of the memory over the OS is free for tasks to use and
can consist of both A and B segments.
Seee picture 4.13.

THE LOGICAL ADDRESS RANGE

The logical address range can be looked upon as a "window" of 64
Kb which sees a certain part of the physical address range. The
Z-segment is always fixed at the lowest 16 Kb of the OS. The
remaining 48 Kb of the logical address range is devided into an
A and a B segment. The boundary between the segments can be
changed but it normally leaves 8 Kb for the A segment and 40 Kb
for the B segment. The two segments can be placed anywhere in
the physical memory.
All logical addresses does not need to be defined in the
physical memory. If the sum of the A-segment and B-segment is
less than 48 Kbytes the logical addresses between the top of the
A-segment and the bottom of the B-segment has no corresponding
physical address.

PAGE 15:1

OS.8MT ORIENTATION 831208 MEMORY MANAGEMENT

THE MAC BOARD

The Memory Access Controller (MAC) board can be seen as a
comparator with two relocation registers. It also contains a
comparator register for the boundary between the segments. The
relocation registers contain the physical address of the bottom
of the A segment and the top of the B segment, which are used
with the logical address to give the physical address. The
comparator register is used to determine if the A or B
relocation registers will be used.
There actually exist two pairs of relocation registers and two
comparator registers which are switchable with a single OUT
instruction from the OS.
More detailed information about the MAC board can be obtained in
the separate data sheet.

Comparator Relocation reg.
register for A segment

ee)

16 Bit address in————» +——»18 Bit address out

Ld

Relocation reg.
for B segment

Pic 15.1 The Memory Acess Controller.

THE PREPARING OF A TASK

In order to understand how the memory manager works, we must
look at how the code and data in a task file are stored. Every
task to be run under OS.8MT must be prepared with the task
linker ESTAB.
If the task segments only consist of max 40 Kb of data together
the task can be addressed with fixed registers in the MAC
board. The memory manager only has to read where the tasks
segments are stored in the TCB(s) of the task and give them to
the MAC. If, however, the task is larger than 40 Kb, the task
has to be segmented.
Segmentation means the A segment of a task is divided into
segments of variable or fixed size. An example is the BASIC
interpretator, which has four A segments of 8 Kb each and a user

PAGE 15:2

OS.8MT ORIENTATION 831208 MEMORY MANAGEMENT

area segment of up to 40 Kb.
When you use ESTAB to prepare a task you can define the parts of
the pure part of the code that should be included in each
segment.

The entire pute code area is always loaded into the physical
memory and the segment swiching is handled by a special routine
which is included in the beginning of each A-segment.

When ESTAB is executed the task:

1. Goes through the code and notates when a CALL, JUMP or RET
instruction is used and which segment he is in at the
moment.

2. Goes through the code once more and leaves the CALL, RET
and JUMP instructions alone if they refer to a location
inside the segment. If,however, they refer to a different
segment it writes down the instruction plus a RESTART
instruction and the segment number the location refers to.
The RESTART instruction gives the entry to the memory
manager.

THE MEMORY MANAGER

The memory manager has a rather simple job now when the tasks
have been prepared by ESTAB. When a task becomes the current
task, it sets the relocation register of the A-segment to the
bottom of the A-segment of the code. The biggest A-segment of
the task then determins the value of the comparator register.
After this the B relocation register is set to the highest
address of the task's B-segment.
When a change of A-segments is needed the memory manager just
makes an OUT instruction to the MAC, which changes the value of
the relocation register to the base of the new A-segment.

PAGE 15:3

OS.8MT ORIENTATION 831220 LOADING AND OVERLAYING

RRKEKRKEREKEKEREKKEKEEKEKEKEE

LOADING AND OVERLAYING
KEKKKKKRKERKEERERRERRER ER

This chapter will discuss how a task is loaded from external
memory to the primary memory. We will also show some examples of
how overlays can be used.

ESTABLISHING A TASK

The task is the only type of code that may be executed under
OS.8MTunder the identity of its own. Tasks may in turn use data
supplied in different forms. It may be the editor using ASCII
files, or the BASIC interpreter using binary files.
The user creates a task file from a source code with the ESTAB
task.
ESTAB can link together programs written in different languages
and have a very powerful command repertoire. For a complete
documentation see the UTILITIES manual.

Source code

Assemblation or
compilation

object module

linker

task file

Pic 16.1 The creation of a task file. The linker may link
together several object modules.

PAGE 16:1

OS.8MT ORIENTATION 831220 LOADING AND OVERLAYING

THE TASK FILE

ESTAB produces a task file which contains the generated
executable code with added control information. The information

has the form of a LOADER INFORMATION BLOCK (LIB) which includes:

- Creation information (date, time, version)

~ The tasks type, option and priority.

~ The code type of the task (pure or impure)

- Name (Pure code only).

If the task contains both pure and impure code, two LIBs are
needed. The format of the task file then becomes:

1. Impure library, one sector.

2. Impure code, N sectors.

3. Pure library, one sector.

4. Pure code N sectors.

If the task only contains pure code, the impure code section is
omitted. The impure library then specifies the task's priority,
type and options.
If, on the other hand, the task only contains impure code the
pure code section is omitted. The impure code section must in
that case contain executable code.
The pure and impure parts of a task can be regarded as two
different tasks, which have a TCB each.

THE LOADING OF A TASK

A LOADER MANAGER is responsible for the loading of tasks in the
primary memory. It is normally called from the SVC 6 when task
loading is specified.

1. The manager first examines the librarys of the task file to
determine the type and the size of the code that is to be
loaded. It then builds one SVC 8 parameter block for the
pure part and one for the impure. (If the task only
contains one type of code only one block is needed.)

2. First an SVC 8 call is made for the pure part to inquire
if the code is already present. (The pure part is only
needed in one copy in the memory.)

3. The Loader takes additional size (given att the load call)
into consideration and knows exactly the memory space

PAGE 16:2

OS.8MT ORIENTATION 831220 LOADING AND OVERLAYING

needed for the segments. A memory handler is called to
demand memory. The handler uses an allocation table to keep
order in the memory. (You can find the allocation table on
address 3F00 Hex, just give the OS.8MT command EXAMINE
3F00,100)

4. If enough memory space exists, the handler allocates the
space for the task, otherwise the call is rejected.

5. The code is now loaded into memory and after this the SVC 8
calls are made in order to build the TCBs.

6. The SVC 6 call returns.

After the task has been loaded, it must be started if it is to
be added to the ready queue. This is also done with an SVC 6
call. Loading and starting a task can be combined as in the
following example .

EXAMPLE OF THE LOADING AND STARTING OF A TASK

80 INTEGER : EXTEND

90 !

100 DIM Svcblk (7) ,Fdx=33 ,Cdu=4
110 !
130 !
140 !
150
155
170
180 Fdr=" KALLE "+SPACEx (12%) ! Start the task "KALLE"
185 !
186 Cdx="HEJ" ! The task ID will be "HEJ" when loaded
187 !

o—

o
—

om

190 = Svcblk(0)=14+2 ! Function code: load and start
191 Svcblk(1)=0 ! Reserved
192 Svcblk(2)=VARPTR(Cdr) ! Pointer to the task ID-name
193 Svcblk(3)=0 ! No parameters are given to the task
200 Svcblk(4)=0 Reserved
201 Svcblk (5) =VARPTR(Fd2) Pointer to the task to be started
203 Svcblk(6)=0 No extramemory is given to KALLE
204 !
210 SVC 6,Svcblk ! Make the SVC call!
250 !
260 !

The program listing in appendix A shows a general BASIC funktion
to be used when loading and starting tasks.

PAGE 16:3

OS.8MT ORIENTATION 831220 LOADING AND OVERLAYING

OVERLAY HANDLING

An overlay is a piece of code that is loaded to a place inside a
task. Among the reasons for using overlay technique are:

- The task is too big to be loaded into the primary memory as
a whole.

- A task wants to change some parts of the code during the
execution for some reason.

The overlay must also be in a task file i.e. the code must be
prepared by ESTAB.
The calling task and the overlay do not have to be written in
the same language. One common example is a BASIC program calling
an assembler routine. SVC 5 is used to load an overlay. The
needed parts of the parameter
block are:

- Function code

- The address inside the task where the overlay has to be
loaded. The overlay must fit within the impure segment of
the calling task.

- A file descriptor of the file holding the overlay task.

It is possible to chain directly to the new code by specifying a
start address within the overlay code. In this way the entire
program code may be overlayed, without changing the data areas.

PAGE 16:4

OS.8MT ORIENTATION 831220 LOADING AND OVERLAYING

EXAMPLE OF OVERLAY HANDLING IN BASIC

The following example loads and starts an overlay uSing an SVC 5
request. Another example is found in appendix A.

150 !
160 ! DUE TO THE FACT THAT THE MEMORY ADDRESSING IS DONE BY A PIECE
170 ! OF HARDWARE (MEMORY-ACCESS-CONTROLLER) , YOU WILL NEVER KNOW
180 ! WHERE IN THE MAIN MEMORY YOUR PROGRAMS ARE LOACATED.
190 !
200 ! THE TRICK IS TO PLACE THE ASSEMBLER-CODE IN A VECTOR INTERNALLY
210 ! IN THE BASIC-PROGRAM (MAY ALSO BE A COMMON-VECTOR) .
220 !
230 ! IN ORDER TO SOLVE THAT PROBLEM, YOUR ASSEMBLER-CODE SHOULD
240 ! BE LOADED BY THE OPERATING SYSTEM AND IT'S OVERLAY-LOADER.
250 ! THE LOADER KNOWS HOW TO RELOCATE THE CODE TO THE PROPER
260 ! MEMORY ADDRESS.
270 !
280 ! THE CODE TO BE LOADED MUST BE PREPARED BY THE 'ESTAB'-PROGRAM
290 ! BEFORE IT CAN BE LOADED.
300 !
310 ! WHEN MORE THAN ONE PARAMETER SHALL BE PASSED TO THE ASSEMBLER-
320 ! ROUTINE, THE SMARTEST WAY IS TO PUT THE PARAMETERS IN A VECTOR,
330 ! AND PASS THE ADDRESS OF THE VECTOR TO THE ROUTINE.
340 !
350 !
360 ! DECLARE THE SIZE OF THE ASSEMBLER-CODE
370 !
380 !
390 Size%=1234% ! SIZE OF THE CODE.
400 !
410 !

420 ! RESERVE SPACE FOR THE CODE
430 !
440 !
450 DIM Subroutinex=Sizes ! HERE WILL THE ASSEMBLER-CODE BE PLACED.
460 DIM Loadblock%(5%) ! PARAMETER-BLOCK TO LOAD THE CODE.
470 !
480 !
490 ! DECLARE THE NAME OF THE CODE-FILE TO BE LOADED
500 !
510 !
520 Filename®="VOL FILENAME ELEMENT " 1 TOTALLY 28 BYTES (PADDED) .
530 !
540 !
550 ! SET UP THE PARAMETER-BLOCK FOR THE SVC-CALL
560 !
5/0 !
580 Loadblock? (0%) =8%+1% ! FUNCTION-CODE LOAD OVERLAY.
590 Loadblock% (1%) =0% ! RESERVED.
600 Loadblock’ (2%) =0% ! RESERVED.
610 Loadblock$ (3%) =VARPTR(Subroutine®) ! WHERE TO LOAD AND RELOCATE THE CODE.
620 Loadblock’ (4%) =0% ! RESERVED.
630 Loadblock% (5%) =VARPTR(Filenamex) ! THE NAME OF THE CODE-FILE.

PAGE 16:5

OS.8MT ORIENTATION 831220 LOADING AND OVERLAYING

640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840

NOW LET THE OPERATING-SYSTEM LOAD AND RELOCATE THE CODE

—

o-
—

o
m

om
e

om

SVC 5%,Loadblock%

SET UP A VECTOR THAT CONTAINS PARAMETERS TO BE PASSED

!

Parameter%(0%)=Integervar ! PASS AN INTEGER VALUE.
Parameter? (1%) =VARPTR(Floatvar%) ! PASS THE ADDRESS TO FLOAT-VARIABLE(S) .

Parameter (2%) =VARPTR(Stringvar®) ! PASS THE ADDRESS TO STRING(S).
!
!

! CALL THE ASSEMBLER-ROUTINE AND PASS PARAMETER-LIST
!

Result%=CALL (VARPTR(Subroutine=) , VARPTR (Parameter?))
1

END

PAGE 16:6

OS.8MT ORIENTATION 831220 THE MULTI TERMINAL MANAGER

KEKKEKRKEKREKREEERKERKEEEKREREREEE

THE MULTI TERMINAL MANAGER
HAKKKEKKEKEKKEREEREREREREREEERE

In the introduction we mentioned that the monitor is a task
handling the communication between the terminal device and the
computer. It also decodes commands and delegates the things that
should be done. While a monitor in a small computer is fairly
simple, a monitor which supports many terminals in a multitasking
environment can seem rather complex.

THE MAIN PARTS OF THE MIM

The monitor consists of:

- A main task called MICM, which contains all command tables
and routines to delegate the work demanded by making the
commands.

MTICM can be seen as the "brain" of the monitor.

- One dummy task, called COMx for each terminal that is on
line. x is a number from 0 to 7.

- One device driver, called TRMx, for each terminal on line.

x is also here a number from 0 to 7.

- A dummy device, called CON, to which all calls from a task
to the terminal are sent.

THE MTCM TASK

MICM consists of two parts:

- An initialisation part administrating the building of the
COM tasks.

A code part which is common for all COM tasks.

An administration part to guide a call to CON to the right
terminal.

We will start by describing the initialisation part. At system
generation time you determine the number of terminals that can
be added to the system. The maximum number is 8. This will
affect the size of a sysgen list held in MTCM. The same number
of terminal device drivers must also be present in the system.
When the initialisation of the OS is finished after a booting,
control is given to MICM, which takes the following actions:

PAGE 17:1

OS.8MT ORIENTATION 831220 THE MULTI TERMINAL MANAGER

1. The dummy device CON is built using an SVC 8 call. CON only
consists of a RRT which points at MTICM.

An SVC 1 ATTENTION call is made to each terminal device in
the sysgen list. When a terminal is switched on the
ATTENTION call returns to MTICM.

When MICM receives an ATTENTION call, an SVC 8 call is made
to build a dummy task. The dummy task consists only of a
the necessary control blocks and a small data area. The
task gets the name COMx, where X is the number of the
associated terminal device. After this an SVC 6 call is
made to start COMx.

THE COMX TASKS

While all code necessary for the monitor exists in MTICM, every
terminal needs a certain data area. The area contains:

- A stack.

Two request queues for service by the monitor.

A flag register to determine which mode COMx works in.

A small buffer.

When we in the following text Say that "COMx does something" we
mean "MTCM executes code while the data area of COMx is used."
Every operator has the feeling he is alone on the machine as his
COMx task does not know anything about the other COM tasks. The
only difference is the increasing response time with the number
of active operators.

THE TERMINAL DEVICE DRIVER

When a COM task has been started its first action is to make a
SVC 1 READ request to its terminal device. The request is for 80
characters i.e. one line. The driver initiator sets with the aid
of the data formatter up a buffer in COMx data area. COMx has
now nothing more to do before a line is received. For each
character the operator enters, the following happens:

1.

2.

An interrupt is issued by the terminal device on the level
it has been wired to.

The continuator of the terminal device driver is entered.
It receves the character and calls the data formatter,
which puts it in the buffer of COMx.

PAGE 17:2

OS.8MT ORIENTATION 831220 THE MULTI TERMINAL MANAGER

If the operator gives the CTRL-A character, the request is
immediately terminated and COMx is given the control.
When the operator gives a RETURN character, the continuator sees
this as request complete and

COMMAND HANDLING

The commands which may be given to the monitor can be divided
into several classes, depending on what they do.

LOCAL COMMANDS. Their code resides in MICM, and concerns
global matters in the system. Some examples are: CLOSE,

OPEN, EXAMINE, MODIFY, BIAS, CANCEL, CONTINUE.

NON-LOCAL COMMANDS. These commands are used to load and
start a utility task, which is picked from the file CMDx
on the system volume.
Among these commands are: TASK, VOLUME, TIME, SLICE, LIB,
SPACE, DEVICES, etc. The started utility task will be given
the name UTLx, where x is the number of the terminal
requesting its services.

PRIMARY TASKS. When you want to have a task executed you
only have to write the tasks file name. This will load and
start the task. The task will be given the task identifier
(TID) USPx where x is the number of the terminal requesting
its service.

BACKGROUND TASK. The operator has the option of executing
more tasks than USPX. It is done with the RUN command or
LOAD followed by START. A TID following the LOAD or RUN
commands name the task. An example is RUN BASIC,ABC where
the TID of the task will be ABC. In this way the programmer
executes several tasks "at the same time", if time sharing
is used.
Please note that only the FIRST background task can be
loaded and started by the RUN command. For the following
tasks you have to use the LOAD and START commands.
Compare the example in the chapter LOADING AND OVERLAYING
where a task named "KALLE" is named "HEJ" while loaded.

task file -----—» loader ------ > task

name task

identifier

(TID)

Pic 17.1 When the task is loaded it is given a task identifier.
The default TID is the first four letters of the task

file's name.

PAGE 17:3

OS.8MT ORIENTATION 831220 THE MULTI TERMINAL MANAGER

- COMMAND STREAMS. A convenient way of working when several
commands are to be given following each other is to keep
the names of the commands in an ASCII file (prepared by an
editor). By giving the command ! followed by the name of
the file, all of the commands in the file will be executed
sequentially. !CMDA will for example execute the commands
in the file CMDA.

When COMx receives a command, it uses the SVC 2.? Scan Mnemonic
Table function (see the OS.8 PM) to to decide the nature of the
command. The command handling routine has different "levels".

1. First a check is made to find if the first character is a —_
"1" character. A command stream handler is in that case
called.

2. The local commands are then scanned and a command routine
held in COMx is called if a match is found. WS

3. If no match is found, the utility names are scanned. The
corresponding utility task is loaded and started if
requested.

4, This level only recognises the commands LOAD, START and
RUN. If a match is found a suitable routine is called.

5. If no match has been found on the former levels, COMx
decides the operator wants a task loaded with the filename
of the command. A loader rotine is called and the requested
task is loaded and started with the TID USPx where x is the
name of the terminal requesting its service,

6. If no task with the filename of the command is found, a
routine is called which logs the message "Seg-error" on the
terminal.

The routines contained in COMx use SVC requests, just like every
other task, when they have to use a system resource.

THE CON DEVICE

When a multi-user system is running we have the problem if a
task wants to communicate with "its" terminal device, how do we
guide the request to the right terminal? In OS.8MT the problem
is solved by making all terminal requests to a dummy device
called CON.
CON only consists of a RRT which points at an entry address in
MICM where a routine is reached which guides the request to the
right terminal.
The terminal accessed by CON is always the terminal from which
the task was started.

PAGE 17:4

OS.8MT ORIENTATION 831220 THE MULTI TERMINAL MANAGER

COMMAND MODES

Depending on the nature of the task requesting the use of the
terminal, COMx goes through different command modes. These modes

have

TASK

iP

4,

different priorities making them able to suspend eachother.

COMMAND MODE. This is when commands can be given to the
system. A "-" promt indicates the mode.

UTILITY MODE. The mode when a command - resident or non-

resident - is executed on behalf of COMx.

USER PROGRAM MODE. A task - primary or background - is
executed on behalf of COMx.

REQUESTS FOR THE TERMINAL DEVICE

When a user program wants to perform terminal I/O it must
first assign itself to the CON: device (SVC 7 ASSIGN call,

BASIC OPEN command etc.).

Then the task can make a read or write request for the
terminal (by making a SVC 1 call, BASIC PRINT call etc.).

COMx looks in the bit map of the modes to find which
mode he presently is in.

If no higher mode is present the editor's request is passed
to the terminal.

You can naturally have the case where more than one task want to
use a terminal. A priority therefore exist between tasks. The
local commands have the highest priority followed by the non-
local commands and last the user programs.
This is why you can give the CTRL-command which puts COMx in
command mode. A task will be paused if it makes a request for
the terminal while in command mode.

{ COMMAND MODE ox \
CTRL-A RETURN

CTRL-A QL UTILITY MODE _7” RETURN

NO USER PROGRAM MODE _4%

Pic 17.2 The command mode is entered from utility- and user
program mode by a CTRL-A command. To come back to the
previous mode - just press the return key.

PAGE 17:5

OS.8MT ORIENTATION 831220 THE MULTI TERMINAL MANAGER

PROMTS

Promts give you an indication which mode the system was in when
CTRL-A is entered.

- The command mode is recognised by a "-" promt.

~- If a command is interrupted by CTRL-A a "#" promt shown.

~ If a utility or user task is interrupted by CTRL-A a "x"
promt is shown.

A BASIC EXAMPLE OF A "LOGG ON CONSOLE" CALL

100 INTEGER : EXTEND
110 DIM Svcbik3 (4)

! LOGG MESSAGE WITH TIME ON CONSOLE

The string Messagex holds the message to be logged on the
! terminal device.

=

uo

fo
)

—

—

g
a

—

@
-
—

=

g
a
n

160 DEF FNSvc22logg (Messagex)
170 Msgx=Messagex
180 Msg=LEN(Msg*) ! The length of the message is calculated

!

200 Svcblk(1)=2 ! Subfunction 2
210 Svcblk(2)=VARPTR(Msg#) ! Pointer to message string
220 = Svcblk(3)=Msg ! Length of message

1 230 !
240 SVC 2,Svcblk ! Make the SVC call
250 RETURN

260 FNEND
270 !
280 !

READ AHEAD

OS.8MT offers a read-ahead facility which means that a buffer
is held in MTCM so commands can be entered while other commands
are processed.
A user task may also use this facility either by keeping a self
contained buffer or using a buffer managed by MICM. Read ahead
is specified in the SVC 1 call to the terminal device.

PAGE 17:6

OS.8MT ORIENTATION 831220 THE MULTI TERMINAL MANAGER

TASK MTCM TERMINAL DEVICE

< Buffer Le

TASK MTCM TERMINAL DEVICE

Buffer | ~

Pic 17.3 Read-ahead. The buffer can either be contained in MICM
or the user task.

Examples of read ahead SVC 1 calls are found in the OS.8MT PM.

PAGE 17:7

OS8.MT ORIENT. 831220 ‘TASK COMMUNICATION AND SYNCRONISATION

KKKEKKKKKKEKRKEERERERERERERERERREREKEEEK

TASK COMMUNICATION AND SYNCRONISATION
KK KKKKKK KARA KERE REE EERE RER ERE

When you use tasks which are dependent on external and internal
events and the time outside the computer you talk about a real

time system.
A multitasking multiuser operating system like OS.8MT is one by

definition. You have in the former chapters been given several
examples of things happening inside the computer which are
dependent on the real time. Among them are the time sharing
Management and the device time-out handling.
In many applications you may want to add tasks yourself that
need to by syncronised with other tasks and the real time. OS.8MT
therefore provides the programmer with powerful tools yo make
real time programming easier.
We have already mentioned the use of the event queue of a task
and how to use the SVC 3 timer request but we will now give a
deeper explanation of their value.

THE EVENT QUEUE

The function of the event queue is given by its name, to tell
the task something has happend outside the task. These events
include:

- The completion of a no-wait request to a device.

- Another task wants to leave a message or request.

The items which are added to the event queue are nodes which
contain the address of the parameter block to the SVC which
caused the event. They also include the TID of the task which
made the SVC. If the TID is 0 it means the task itself is
responsible for the SVC. Before the event queue can be used it
must be opened. This is acomplished by making an SVC 6 S6F.QENI

call.

Task Control Block (TCB)

C— —->

Pic 18.1 The event queue is the "mailbox" of a task.

PAGE 18:1

OS8.MT ORIENT. 831220 TASK COMMUNICATION AND SYNCRONISATION

MONITORING THE EVENT QUEUE

When a task wants to check the existanse of nodes in the event
queue the following resorts can be taken:

~ A SVC 6 S6F.QTST (test event queue) is made. If the queue
is empty the return status is 0, else the return status
will be 67. A closed event queue will result in a return
status of 64.

~ The making of an SVC 6 S6F.QWAI (wait for event). If the
queue is empty we are put into wait state until an item is
added to the queue. When this happens, or if the queue is
not empty, the SVC returns and we are taken out of wait —
state. The parameterblock can be investigated to find
out the reason for the event.

If the task have other work to do and does not want to get
"stuck" in wait state if the queue is empty, it must test the is
event queue before doing the wait for event call.

IDENTIFING EXTERNAL AND INTERNAL REQUESTS

The S6.TID field of the WAIT FOR EVENT shows if the request is
internal or not.

1. S6.TID=0 An internal request which can be of three types:

- A message from another task. S6.PRIO=6 and S6 OPT=41
(SVC function S6F.ADDQ). S6.PAR is a 16 bit message
from another task without information from which task
the request came.

- A cancel request from another task.S6.PRIO=6 and
S6.O0PT=33 (SVC funktion S6F.CAN). This is a request
from another task that the receiving task should be
cancelled, and is only be received if the option of
the task is non-abortable.

- A completion node from a previosly issued no-wait
call. The S6.PAR block holds the address of the no-
wait SVC block.

2. S6.TID>O An external request.

- The S6.TID holds the task number of the external task
which made the request. S6.PAR holds the address to a
node with more information about the request.
After having performed any requesting actions the task
must terminate the an external request to inform the
calling task the request is completed.

PAGE 18:2

OS8.MT ORIENT. 831220 ‘TASK COMMUNICATION AND SYNCRONISATION

TASK COMMUNICATION

Task communication calls can under OS.8MT be divided into three
different groups:

- One task leaving a message to another task. The receiving
task can determine what to do with the message.

- One task changing the nature of another task. It may mean
canceling pausing etc.

- One task wants to syncronise itself with some other tasks
actions.

Whatever a task may want to do with another task it must be sure
the other task really exist. If doubted a SVC 6 S6F.TST (test

task) call can be done.

TASK MESSAGES

The SVC 6 S6F.ADDQ (add to event queue) call is used to give
another task a message. The S6.PAR field of the parameter block
can either be used itself for the message or contain a pointer
to additional data. This causes an internal node to be added to
the another tasks event queue. The node does not contain any
inforation about from which task it came.
The PAR field of the WAIT FOR EVENT call made by the receiving
task holds the address to the node. If the task is busy with
other things it can save the node in a self contained queue, and
deal with it later. Such a queue is sometimes called a SLOUGH

QUEUE.

SVC 1 read/write requests are used to a task, similar toa
request to a resource, producing an external on the event queue.

When the node no longer is neccesary it must be returned to the
system and the calling task must be informed that the request is
completed. This is done by making an SVC 6 S6F.QTRM (TERMINATE
EVENT) call.

CHANGING THE NATURE OF ANOTHER TASK

We will go through the different calls in list form.

- S6F.LOAD (LOAD TASK).

~— CANCEL TASK (S6F.CAN), is used to terminate a task. All the

task's files and devices are closed.

- PAUSE TASK (S6F.PAUS), causes a specified task to enter
pause state.

PAGE 18:3

OS8.MT ORIENT. 831220 TASK COMMUNICATION AND SYNCRONISATION

~ CONTINUE TASK (S6F.CONT), takes a specified task out of wait
state.

- CHANGE TASK TYPE (S6F.TYPE) .

- CHANGE TASK OPTION (S6F.OPT).

CHANGE TASK PRIORITY (S6F.PRI).

SYNCRONISATION WITH OTHER TASKS

Sometimes a task may want to wait for a certain move by another -_
task. The SVC calls which can be used are:

~- WAIT FOR TASK TERMINATION (S6F.TSKW) (See example below)

- WAIT FOR TASK STATUS CHANGE (S6F.STSW) . WY

The completion of these task may also be received as a
completion node on the event queue (no-wait call).

EXAMPLE OF A BASIC TASK WAITING FOR ANOTHER TASK'S TERMINATION

80 INTEGER : EXTEND

90 !
100 DIM Svcblk (7) ,Fdx=33
110 !
2040
2050
2060
2065
2066
2067
2070 DEF FNSvc6wait (Task®)
2080) 3=Fds=FNSvc23pack (Taskx)

WAIT FOR A TASK TO TERMINATE

_ The string Task= holds the name of the task to wait for.

Pack the file descriptor.
2085 ! ~
2090 Svcblk(0)=40 ! Function wait for task term.
2091 Svceblk(1)=0 ! Reserved
2092 = Svcb1k(2)=VARPTR(Fdx)+4 ! Pointer to the packed name.
2095 SVC 6,Svcbik ! Make the SVC call!
2097 !
2100 RETURN FNSOrs ! Pick up return status.
2110 FNEND
2120 !
2280 !
2290 ! CONVERT A HUMAN-FILENAME TO OS.8-FILEDESCRIPTOR
2300 | SsesessssssssssssssssnsmsssSsesssssssssssssssa=
2310 !
2320 DEF FNSvc23pack(Filenamex)

PAGE 18:4

OS8.MT ORIENT, 831220 TASK COMMUNICATION AND SYNCRONISATION

2330 3 =©FX=Filename=+CHRx(0) ! Note the termination character!
2340 Fdx=CHR«(0)+SPACEx (28)
2350 !

2360 Svcblk(0)=9 Function: Pack
2370 Sveblk(1)=3 ! Subfunction 3
2380 Svcblk(2)=VARPTR(Fx) ! Pointer to the string to pack
2390 Svcblk(3)=VARPTR(Fd=x)+1 ! Pointer to receiving area
2400 !

2410 SVC 2,Svcblk ! Make the SVC call!
2420 RETURN RIGHT: (Fdx, 2) +LEFTs(Fdx,1)
2430 FNEND
2440 !
2560 !
2570 ! FEED-BACK RETURN STATUS
2580 !
2585 |!
2590 DEF FNSOrs

2600 SOrs=SWAP$(Svcb1k(0)) AND 255
2610 RETURN SOrs

2620 FNEND

SELF DIRECTED CHANGES

Most of the calls mentioned can also be used by a task to change
some aspect of itself. The changing of TYPE, OPTION and PRIORITY
can be done. A task may also PAUSE and CANCEL itself.

SYNCRONISATION WITH THE REAL TIME

We have already mentioned SVC 3 when talking about the real time
handling. The task can either make the timer request with wait
or no-wait.

- WAIT. The task is put into wait state until the specified
interval has elapsed, or time of day occured.

- NO-WAIT. A node is added to the tasks event queue at that
time.

PAGE 18:5

OS8.MT ORIENT. 831220 TASK COMMUNICATION AND SYNCRONISATION

EXAMPLE OF A BASIC TASK DELAYING ITS EXECUTION

410 !
420 ! DELAY THE EXECUTION

430 !
440 !
450 DEF FNSvc3delay (Milliseconds)
460 !
470 Svcblk(0)=1 ! Function code "milliseconds"
480 Svcblk(1)=Milliseconds ! Give the millisecond value
490 !

500 SVC 3,Svcblk ! Make the SVC call!
510 RETURN
520 FNEND
530 !
540 !

By changing the function code to "2" the delay is given is
seconds, instead of milliseconds.

The BASIC command SLEEP uses the SVC 3 call.

PAGE 18:6

OS.8MT ORIENT. 831220 TASK DEVICES AND EVENT DRIVEN TASKS

KKKKKEKKRREKKKKERE EER ERERERRRRRREREREE

TASK DEVICES AND EVENT DRIVEN TASKS
KKKKKKEKRKEKKKRERERRRRREERERKERREKRRERREKE

In many applications it is not sufficent just to make a simple
I/O call to a device. Conmunication protocols or special
formatting may be needed. It is not good programming to load the
tasks with the burdon of these jobs.
One solution is to use a dedicated task which makes the I/O
calls to the device and performs the hard work. The tasks
wanting to communicate with the device then make their calls to
the dedicated task, not the device.
An example, perhaps is a little more accessable, is a SPOOLER.
The function of a spooler is to accept all inputs to a device,
for instance a printer, even if the printer is busy. The spooler
instead writes the data temporarily on a disc. When the printer
becomes free the spooler transfers the data on the disc to it.
The tasks have no idea their output does not go directly to the
printer as the spooler from their point of view in all actions
resembles a printer.
Such a spooler is available as a utility to OS.8MT. The spooler
renames the printer device PR: to PRA: and establishes a new
device called PR: which is the input to the spooler.

There are actually two kinds of these dedicated tasks:

- An EVENT DRIVEN task, to which the other tasks directly
perform their I/O.
From the users point of view this simply means direct the
I/O calls to a task instead of a device.

- A TASK (the owner task) which uses a number of TASK

DEVICES, to which the other tasks make I/O calls.

EVENT DRIVEN TASKS

The best way to get an understanding of event driven tasks is to
go into an example right away.
The task A handles the conmunication with another computer via
an USART board which is connected to a telefone line. When using
syncronous data transfer, a protocol is used to add the

neccesary control data when sending data and subtract them when
receiving data.
The data to be sent and having been received is kept into
separate buffers contained in task A.
When a task wants to make an I/O call to the other computer all
it has to do is to make an I/O call to task A.
To go more into details, what happens is:

1. The task assigns itself for read or write to task A by
making an SVC 7 ASSIGN call with the task name instead of
the device name.

PAGE 19:1

OS.8MT ORIENT. 831220 TASK DEVICES AND EVENT DRIVEN TASKS

2. The SVC 1 read or write call is made to task A. The same
procedure is used as in a regular I/O call to a device. The
OS treats the request in the same way, except for the fact
that the request is queued or connected to a TCB instead of
a DCB (actually the RCB of the TCB).

3. The request connected to the TCB an external event node to
task A. If A has nothing to do and has made an WAIT FOR
EVENT call the request can be performed, else the node
remains in the event queue until task A is ready to perform
the request.

4. As described in the previous chapter the address to the
external node is given to task A in the parameter block of
the WAIT FOR EVENT call.

5. It is now up to task A to check the I/O parameter block to
find out what kind of I/O call which has been made, and
where to put or get the data in the calling task.

6. If task A can service the request the datatransfer to or
from the calling task can start. It is again the
responsibility of task A to take the neccesary actions.

7. The other task may be in an other segment than task A.
Therefore an SVC 2.6 "Transfer from other segment to me"
call must be made. The node from the calling task includes
information about the segment base of his buffer. This
information is given together with other details about the
transfer in the SVC 2.6 call.

8. When the request has been serviced, task A makes an SVC 6
TERMINATE EVENT call. This call terminates the request of
the calling task in the same way as a normal I/O call would
be terminated returning a return status code to the calling
task.

It is important to notice it is the duty of the event driven
task to fetch the parameterblock of the I/O call, and to manage
the datatransfer. These things are normally done by the OS or a
driver.
The OS.8MT PM contains detailed information and examples of
event driven tasks.

A complete program listing of an event driven task is found in
appendix B of this manual.

OTHER APPLICATIONS FOR EVENT DRIVEN TASKS

Event driven tasks are naturally not limited to handling
protocols. One application is to serve as a pipeline to other
tasks. A pipeline can be looked upon as a "mailbox" to which

PAGE 19:2

OS.8MT ORIENT. 831220 TASK DEVICES AND EVENT DRIVEN TASKS

other tasks can leave and collect data.
A pipeline utility is available in OS.8MT (see the OS.8MT UM)
but under some circumstances you may want to create your own
mailbox,

TASK WITH TASK DEVICES

Tasks with task devices are somewhat more complicated than event
driven task but has some added features as other tasks directly
can perform their I/O to devices created by an owner task. Task
devices may be written so they all ways resemble a physical
device. The following parts are involved when using task
devices.

- An initalisation part of the owner task which builds the
neccesary task devices. SVC 8 calls, specifing TASK DEVICE,
are used.

- Device Control Blocks (DCB) for each task device to which
other task may make their I/O requests. The DCBs are
created by the SVC 8 call

~ A small administration part of the owner task which
receives any no-wait completion nodes from SVC requests
issued by its task devices and re-triggs the appropriate
task device for action.
In many cases the user may chose to have more code directly
within the owner task instead of the task device code part.

- Driver routines which performs the actual requests in
exactly the same way as a device driver would, but with the
priority and identety of the owner task instead of the
interrupt level.
As the routines execute on task level they may do more
complicated protocol handling, formatting etc than a device
Griver and may issue any type of SVC requests which a
device driver is forbidden to do.
The driver routine is within the memory area of the owner
task, but is entered directly from the OS at a request toa
control block of the task device. The driver routine
returns directly to the OS when completed, like described
earlier when talking about devices.
A normal device driver which is mapped in as the pure
segment of the calling task may however directly access the
data areas in the impure task area, while a task device
must use an SVC 2.6 call (Intersegment Data Transfer) to

access the data areas in the physical memory of the calling
task.
The owner task itself must be in WAIT FOR EVENT status to
enable the execution of the driver routines.

PAGE 19:3

OS.8MT ORIENT. 831220 TASK DEVICES AND EVENT DRIVEN TASKS

We will now return to the same example as we used when we
described event driven tasks.
The task device handles a protocol which is used to receive and
transmit data to another computer via an USART-board and a
telphone line.
The communication with the USART functions in this way:

READ. The task device makes a no-wait SVC 1 request to the
USART whenever it is able to receive data.

WRITE. When the task device has received data from a task
which is to be sent to the other computer it makes a no-
wait SVC 1 write call to the USART.

When the requests to the USART has gone to completion the
owner task gets a node added to its event queue. The
administration part of the owner task examines the node and re-
triggs the appropriate task device to perform the required
actions.
takes the neccesary actions. When a task wants to perform I/O to
the other computer the following actions are taken:

1. The task assignes itself to one of the task devices by
making an SVC 7 ASSIGN call. (in our example two task
devices are used. One for read and one for write)

An SVC 1 READ call is made to the "read" task device.

The SVC call is treated like a normal call to a device, and
the OS enters the task device. Only one entry point exist
in the task device taking care of all the functions of a
device driver: Initialisation, Continuation, Time-out
handling as well as cancel request functions.

The read call can be handled by the owner task when the
node is the head of the request queue, and the task device
has made an SVC 6 WAIT FOR EVENT call.

The driver can now initialise the data transfer. There is,
however, a chance no data exist in the read buffer. In that
case the request is suspended temporarily.
The task device had previosly issued a no-wait I/O request
to the USART. When this request is completed the owner task
receives the completion node and re-triggs the task device
with an SVC 4 Trigg Initiator request, to continue the data
transfer to the calling task.

When finished the task device exits with "carry" set to
indicate that the request is completed, just lika a
physical device driver would do.

A write call to the other computer is made in a similar way,
exept the call is made to the "write" task device.

PAGE 19:4

OS.8MT ORIENT. 831220 TASK DEVICES AND EVENT DRIVEN TASKS

A complete listing of a task using task devices is found in the
OS.8MT PM.

A WORD OF WARNING

As you may have noticed, many things which normally are taken
care of by the OS is performed by the event driven- and symbiont
tasks themselves. It is therefore a good idea to be carful when
using them, or else the followings may not be what you have
expected.

PAGE 19:5

os.8

When

ORIENTATION 831220 USING OS.8MT FOR THE FIRST TIME

RRKKEEKREKKEEKERERERERKKEEKEKERRRKRKKEKE

USING OS.8 MT FOR THE FIRST TIME
KKKKKKKEKEKKRERERKREREARERERERERERE

working with OS.8MT for the first time you are perhaps a
little unsure on how to use all the commands and utilities.
While the OS.8MT Operators Manual in detail show all available
functions, this chapter will give a brief guide on how to use
the computer so you can get started quickly. Please note that
the complete syntax and possibilities with each command in many
cases NOT will be given here. For this you must use the OS.8MT
Operators Manual.

THE COMMAND SYNTAX

There is a general command structure which is used both in this text
and in the OS.8MT OPERATORS MANUAL.

MNEMONIC(, (SWITCHES) (,ADDMEM)) ((PARAMETER1) , (PARAMETER2) ,...

Example: COPYLIB,GV,20 VOL1,VOL2

The MNEMONIC is the command, utility or task you want to
use. In the example above it is the utility COPYLIB.

SWITCHES specify options in the specifyed command. In the
example above the swich "G" indicates that the COPYLIB
utility should by executed immediatly while the "V" swich
indicates that the copy process should be verified
afterwards.

ADDMEM specifies the amout of extra memory added to a
program. In the example above the work area is expanded 20
Kbytes this makes the copying process faster. ADDMEM can
also be given in Kilobytes. COPYLIB,GV,20000...... thus
give the same result.

PARAMETERS are separated from the mnemonic and the switches
with one or more spaces. Parameters are separated from
each other with a comma. In the example above the
parameters are VOL1, the disc to copy from, and VOL2 the
disc to copy to.

BRACKETS () indicate optional arguments. Commas inside
brackets must be entered if the optional argument is
chosen.

SPACES may mot be used in any place in a command except
before the parameters. If a parameter contains a space it
must be given whithin apostrophes.

PAGE 20:1

OS.8 ORIENTATION 831220 USING OS.8MT FOR THE FIRST TIME

FILE DESCRIPTORS

The (somewhat incomplete) syntax for a file descriptor is:

VOLN: FILENAME/MODIFIER

VOLN is the name of the volume the file resides on. If not
specified the file is fetched from the system volume.

FILENAME is the name of the file.

MODIFIER os the type of the file (see the OS.MT OM). It is
not always necessary to include the modifier.

Example: EDIT VOL1:TEST is used to edit the file "test" on the |
volume "voll". EDIT VOL1:TEST/A would have derived the
same result as the editor works with ASCII files
indicated by the modifier "A". —

OS.8MT recognises element file directories (efd). An efd is a
sub directory to the master file directory

If you want to reach a file in a element directory the syntax
is:

VOLN: FILENAME. ELEMENT/MODIFIER

FILENAME is here the name of the element directory.

ELEMENT is the name of the file in the element directory.

PAGE 20:2

OS.8 ORIENTATION 831220 USING OS.8MT FOR THE FIRST TIME

MFD

VOL1

EFD EFD EFD

OLLE NILS SVEN

FILE FILE FILE FILE

TEST TEXT5 STYR TXT

Pic 20.1 Some of the files and directorys on a volume. The name
of the volume is "VOL1". Three Element File
Directories are shown: "OLLE", "NILS" and "SVEN"

Examples: The file "TEST" has the file descriptor: VOL1:OLLE.TEST
The file "TEXT5" has the file descriptor: VOL1:OLLE.TEXT5
The file "STYR" has the file descriptor: VOL1:NILS.STYR
The file "TXT" has the file descriptor: VOL1:TXT

SYSTEM VOLUME

OS.8MT always keeps a system volume which normally holds the
system programs and commands. When you swich on a DataBoard
computer the system searches for a volume from which it can load
the operating system. This volume becomes the system volume. If
you want to reach a file on the system volume the file
descriptor does not have to include the volume name.

Example: If the name of the system volume is "VOL1" the file
TEST in the example above has the file descriptor:
OLLE.TST The file desctiptor VOL1:OLLE.TEST may
naturally also be used.

ORIENTING YOURSELF

When the OS has been booted you have received a signon on the
terminal followed by a promt. You are now free to enter any commands.

PAGE 20:3

OS.8 ORIENTATION 831220 USING OS.8MT FOR THE FIRST TIME

SETTING THE DATE AND TIME

Your first step ought to be to set the time in the system. To do this
you give the command:

TIme YYYY-MM-DD,HH.MM.SS

Where YYYY=year, MM=month, DD=day, HH=hours, MM=month, SS=seconds

If you give the TIme command without parameters, the current time
Will be displayed.

CHECKING THE DEVICES NN

Now it is time to check the devices present in the system. This |
is done with the command: |

DEVices (fd) _

This result in a list of information about the devices. It may look
like this: |

MNEM NR STAT TYPE VOLN ODCB-ADR REQ SVC-BIK CS _ IL
PR 6 2597
MFPO 8 DIR ABC 2677
MFPl 9 OFFL 260F
TRMO 64 28BB
TRMl 69 24BA
CON 65 2700
NULL 66

From this information we can find out the system is configured with:

- A printer device (PR), to which you direct everything to be ~
printed.

- Two minifloppy drives (MFPO and MFP1). DIR in the TYPE
field indicates a directory oriented device. VOLN shows the
name of the volume. OFFL in the STAT field of FPY1 means
that FPY1 has not been opened yet.

- Two terminal devices (TRMO and TRM1)

~- A device called CON to which all output on the screen
should be directed.

- A NULL device which accepts all input and does nothing with
it, like a "waist paper basket". This can be useful
sometimes.

PAGE 20:4

OS.8 ORIENTATION 831220 USING OS.8MT FOR THE FIRST TIME

CHECKING THE TASKS IN THE PRIMARY MEMORY

The next resort is to check the tasks that presently occupy the
primary memory. This is simply done with the command:

TASK

The output may look like this:

TASK NR STAT TYPE PROGRAM PRI TCB-ADR’ SIZE _ ENTRY
MTCM 1 WwW RN 20
COMO 2 W EN 90
UTLO 3 E 90

- The task field shows the tasks. MICM is the monitor, COMO
is the task that manages your terminal and UTLO is the name
that has been given the TASK utility while it is executed.

- The STAT field shows the status of the task at the time
when the TASK utility runs. W means waiting, for an event.

- The TYPE field indicates the type of the task. It may be:
E=executive, N=non-abortable, P=pure code and
R=resident.

- The PRI field shoes the current priority assigned to the
task

- The NR field show the task number of each task.

If you give the command EXA 3F00,100 you can see the bit map
corresponding to the primary memory. Each byte corresponds to a
byte in the primary memory. FF in the beginning of the bit map
means the area is occypied by the OS.8MT. FF in the end of the
Imap means that that part of the primary memory does not exist.
(This is dependent on the amount of memory boards the machine is
configured with). Other numbers indicate that an area of the
primary memory is "owned" by a task. The number show which task.

CHECKING THE CONTENT OF A VOLUME

Handling different kinds of external memory is an important part
of the operators duties. The command:

Library

is used to display the content of the system volume. See the
OPERATORS MANUAL for a complete description of the options of
this command.

PAGE 20:5

OS.8 ORIENTATION 831220 USING OS.8MT FOR THE FIRST TIME

If you want to introduce a new disc to the system the disc must
be opened. This is done with the command:

OPEn devname

If you, for example, want to open the second floppy disk (after
a diskette as been put in the drive) give the command:

OPEn MFP1:

The system responds with the name of the volume. You can check
with the DEVICES command that MFPO has been opened. The command:

Library volname

where volname is the name of the volume, will display the
content of it.

CHANGING THE SYSTEM VOLUME

OS.8MT has always a system volume which is the default volume in
the file descriptors. The system volume can be changed with the
command :

Volume volname

Where volname is the name of the new volume.

PREPARING DISCS

You want to use a "fresh" disc with OS.8MT it must be formatted
and initialized.
The first step is to put the magnetic structure on the disc.
This is done with the utility DISKFORM. Just give the command:

DISKFORM

A formatted disc can be initialized. This will put an empty
library on the disc.
Use the command:

DISKINIT

And the required commands will be shown.

PAGE 20:6

|

OS.8 ORIENTATION 831220 USING OS.8MT FOR THE FIRST TIME

COPYING DISCS

Several copy utilitys is avialable with OS.8MT. The most
important are: COPYLIB, COPYA and COPYI.

COPYLIB - COPY AND DELETE UNDER DIRECTORY CONTROL

COPYLIB copies and/or deletes files under directory control. You
can either use copylib in direct mode or interactive mode.

Example: COPYLIB VOL1:,VOL2 will present a list of the files on
the volume VOL1 and you have the option to copy any of
the files to the volume VOL2 and you may give the
files new names on the new disc, or keep the old
name.

Example: COPYLIB VOL1:YOURLIB,VOL1:MYLIB will present a list of
the files in the EFD "YOURLIB" to be copied to the EFD
"MYLIB".

The swich "G" which indicates that the copying process should be
done immediatly without presenting a list of the files on the
source volume.

Example: COPYLIB,G VOL1:,VOL2: copies the content of the volume
VOL1 to the volume VOL2.

The swich "D" indicates that the COPYLIB utility is used to
delete files.

Example: COPYLIB,D VOL1: will present a list of the available
files on the volume VOL1 which may be deleted.

A good way to gain confidence using the COPYLIB utility is to
try all the variations of COPYLIB while checking with the
LIBRARY command if the result is the expected.

COPYI - IMAGE COPY

COPYI makes image (exact) copys of files and volumes. If the
source file is continous, the destination file will also be

continous.

Example: COPYI VOL1:,VOL2 makes the volume VOL1 an exact copy
of VOL2

PAGE 20:7

OS.8 ORIENTATION 831220 USING OS.8MT FOR THE FIRST TIME

COPYA —- ASCII COPY

COPYA, which copies ASCII data between files or devices.

Example: COPYA VOL1:TEST,PR: copies the content of the file
"TEST" on the volume "VOL1" to the printer:

Example: COPYA VOL1:TEST,CON: copies the content of the file
"test" on the volume "VOL1" to the terminal.

‘Example: COPYA VOL1:TEST,VOL2:TEST2 copies the content of the
ASCII file "TEST" on the volume "VOL1" to the volume
"VOL2" giving it the new name "TEST2"

Several swiches is available. One useful swich is "A" (append).
If you append the sourcefile to the destination, the resulting
file will consist of the destination followed by the sourcefile.

COMMAND FILES

Routine work like formatting and copying files can sometimes be
tedious work if done repetivly. A good idea is to use command
files when such work is to be done.
A command file is an ASCCI file containing the commands commands
you want to give the system.
If you for example want to format and initialize a disk and then
make it a copy of another disc present with the system this is
how it is done.

1. Use the editor to create an ASCCI file with one command on
each line.

2. Enter the command !CMDFILE, where CMDFILE is the name of your
ASCCI commandfile.

An example of such a command file is:

1. DISKFORM DEVICE=M4 ,DRIVE=MPF0:

2. DISKINIT DEVICE=M4,DRIVE=MPF0: , VOLUME=OLLE: ,CLEAR

36 COPYLIB,GV,30000 MAST: ,OLLE:

When the command file is executed the mini floppy disk on drive
1 will be formatted, initialized and given the name OLLE. The
content of the volume MAST will then be copied to OLLE.

PAGE 20:8

OS.8 ORIENTATION 831220 USING OS.8MT FOR THE FIRST TIME

COMMAND FILES WITH PARAMETERS

You can also give parameters while executing a command file.

1. Create a command file using the characters él - €9 instead
of the parameters.

2. Execute the command file while including the parameters
after the name of the command file. é1 will be substituted
for the first parameter €2 for the second etc.

This is best shown with an example:

The command file:

1. DISKFORM DEVICE=é1 ,DRIVE=é2
2. DISKINIT DEVICE=é1 ,DRIVE=€2 , VOLUME=€3 , CLEAR
3. COPYLIB,GV,30000 &4,63

And the command:

!CMDFILE M4,FPY1: ,OLLE,MAST:

Will derive the same result as the previous example.

COMMENTS IN COMMAND FILES

A line beginning with a "*" character is interpreted as a
command and will not be executed, although shown on the screen.
A line beginning with a "#" character will not be shown on the
screen while executed. This affects commands as well as comments.

AUTOSTART

A useful feature in the DataBoard system is autostart which
means that for each terminal a task can be loaded and started at
system start up time, like an application program. A command
file may also be executed.
The AUTOSTART utility uses an Efd called AUTO which holds a
number of files (TRMO,TRM1,TRM2 etc.), one for each terminal.
The files are regular command files to be executed at system
start-up.

PAGE 20:9

OS.8MT ORIENTATION 831220 APPENDIX A

EKKKKKKEKKKEKKE

APPENDIX A
KKKKKKKEREKKE

This appendix contain a number of examples in BASIC and
Assembler.

A BASIC SVC EXAMPLE USING FUNCTIONS

oO

W
O
O
W
N
D

O
P
W

db

o
o
o
c
o
c
o
0
o
°
o

Se
ll

oo
n

t
e
l

oe

a
C
e

ee

This is a set of useful SVC-functions You may use in Your
own BASIC-programs. The calling sequence is more or less
self-explanatory, but more detailed information will found
in the OS.8 manuals.

NIEGER : EXTEND

100 DIM Svcb1k% (7%) ,Fdx=33%
140 !
150
160
170
171
180 DEF FNSvc22logg% (Messagex)
190 Msgx=Messagex
191 Msg%=LEN (Msg)
192
200 Svcblk% (0%) =2%
201 Svcblk%(1%)=2%
202 Svcb1k% (2%) =VARPTR (Msg®)

203. = =Svcb1k% (3%) =Msg%
204
210 SVC 2%,Svcb1k3%
220 RETURN FNSOrs%

230 FNEND

240
250
260
265
270 !
280 DEF FNSvc23packx (Filenamex)

290 =Fx=Filename®+CHR= (0%)
295 Fdx=CHR« (0%) +SPACE® (28%)

296
300 Svcblk% (0%) =9%
301 Svcblk%(1%)=33%
302 Svcb1k% (2%) =VARPTR (F®)

303 Svcblk% (3%) =VARPTR(Fd=) +1%
304
310 SVC 2%,Svcb1k%
320 RETURN RIGHT (Fd®, 2%) +LEFT= (Fdx,13)

330 FNEND
340 !

LOGG MESSAGE WITH TIME ON CONSOLE

-
_

o
—

om
e

om
e

om
e

CONVERT A HUMAN-FILENAME TO OS.8-FILEDESCRIPTOR

PAGE A:l

OS.8MT ORIENTATION 831220 APPENDIX A

350
360
365
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
655
660
665
670
671
672
673
674
680
690
700
710
720
730
735
740
745
750
¥SL
752
753
760

CONVERT AN OS.8-FILEDESCRIPTOR TO HUMAN-FILENAME

DEF FNPackback® (Filedescriptor)
Filetypex="UALOBTI7 89abcdeD"
Filelangx=" ABCFP67 89abcEeM"
Fdx=FNField= (1% ,4% ,Filedescriptors,":")+FNField=(5%,12%,Filedescriptoru,"."
IF RIGHT (Fdx, LEN(Fd=))=":" GOTO 470

Fdx=Fdx+"/"+FNFieldx (17% ,12%,Filedescriptor=,"")
Filetype%=ASCII (MID= (Filedescriptor“,29%,1%))
Fds=Fds+MIDx (Filetypex, ((Filetype%/16%) AND 15%) +1%,1%)
Fds=Fde4+MIDx (Filelangx, (Filetype% AND 15%) +1%,1%)
RETURN Fax = |

FNEND

DEF FNField=(Start%,Length%,Filedescriptor“®,Delimiter®)
Fu=" wu"

FOR Dummy%=Start% TO Length%+Start%-1% ~ |

IF Dummy%>LEN(Filedescriptor=) GOTO 600
Cx=MIDx (Filedescriptor*,Dummy% ,1%)
IF (Dummy%=Start% AND Cx="_") GOTO 600
IF Ca="_" GOTO 590
FRS=Po+ CH

NEXT Dummy%
Fx=Fx+Delimiters

RETURN Fx
FNEND

DEF FNSvc27setslice% (Value$)

SET THE GLOBAL SYSTEM TIME-SLICE

Svcb1k3 (0%) =18% ~
Svcb1k% (1%) =7%
Svcb1k% (2%) =Slice%

SVC 2%,Svcblk%
RETURN FNSOrs%

FNEND

PICK-UP THE CURRENT GLOBAL TIME-SLICE VALUE

DEF FNSvc27getslice%
1

Svcb1k% (0%) =17%
Svcb1k$% (1%) =7%
SVC 2%,Svcb1k%

RETURN Svcblk% (23)

PAGE A:2

OS.8MT ORIENTATION 831220 APPENDIX A

770
780
790
800
810
815
820
830
835
840
843
845
847
850
860
870
880
890
900
910
915
920
930
940
945
950
951
952
953
960
970
980
990
1000
1010
1020
1025
1030
1040
1045
1050
1051
1052
1053
1060
1070
1080
1090 !
1100 !
1110
1120 !
1125
1130
1136 !

FNEND
!

!
! DECODE A COMMAND IN OS.8-MANNER
1
!

DEF FNSvc28decode% (Command=, Line)

Cmds=Command= ; Fdx=Linex+CHR= (0%)
!
Svcb1k% (1%) =83
Svcb1k% (2%) =VARPTR (Fd)
Svcb1k$% (3%) =VARPTR (Cmd*)

!

SVC 2%,Svcb1k%
RETURN (SWAP% (Svcb1k%(1%)) AND 255%) +13

FNEND
i
i
! OPEN A DEVICE
!
I

DEF FNSvc212o0penx (Devicex)
Dummy%=FNSvc212close% (Device®)
Fdx=FNSvc23packx (Devicex)

!

Svcb1k3 (0%) =2%
Svcb1k% (1%) =12%
Svcb1k3 (2%) =VARPTR (Fax)

1

SVC 2%,Svcblk%
RETURN FNPackback# (MID (Fd= ,5% , 24%) +SPACEx (4%) +RIGHT= (Fd, 29%))

FNEND

!

!

! CLOSE A DEVICE

!

!

DEF FNSvc212close% (Devicex)
Fde=FNSvc23pack® (Device®)

I

Svcb1k% (0%) =18
Svcb1k3 (1%) =12%
Svcb1k$% (2%) =VARPTR (Fd)

SVC 2%,Svcb1k%
RETURN FNSOrs%

FNEND
!

!

| DELAY THE EXECUTION
1

!

DEF FNSvc3delay% (Milliseconds$%)
!

PAGE A:3

OS.8MT ORIENTATION 831220 APPENDIX A

1140
1141
1142
1143
1150
1160
1170
1180
1190 1
1200 !
1215
1210
1220
1225
1230
1231
1232
1233
1234
1240
1250
1260
1270
1280
1290 !
1300
1310
1310
1320
1325
1330
1333
1334
1340
1345
1346
1350
1360
1370
1380
1390
1400
1410
1415
1420
1430
1440
1445
1450
1451
1452
1460
1464
1465

Svcb1k$ (0%) =1%

Svcb1k$% (1%) =Milliseconds%
!

SVC 3%,Svcb1k%
RETURN FNSOrs%

FNEND

!

!

DEF FNSvc5load? (Over lay=,Address$)
Fdx=FNSvc23pack» (Over lay=)

!

Svcb1k% (0%) =9%
Svcb1k% (2%) =0%
Svcb1k% (3%) =Address%
Svcb1k3 (5%) =VARPTR (Fd)

SVC 5%,Svcblk$%
RETURN FNSOrs%

FNEND

DEF FNSvc6load3 (Task® ,Extramemory%)
Fdx=FNSvc23pack® (Task)

1

Svcb1k% (0%) =1%
Svcb1k% (1%) =0%
Svcb1k$% (2%) =VARPTR (Fd=) +4%

Svcb1k% (5%) =VARPTR (Fd=)
Svcb1k% (6%) =Extramemory%

SVC 6%,Svcblk%
RETURN FNSOrs%

FNEND
1

!

! START A DORMANT TASK

!

|

DEF FNSvc6start% (Task2,Switch1$% ,Switch2% , Parameterx)
Fd2=FNSvc23packx (Task)
Pde=CVT$8 (LEN (Parameter)) +Parameter®+CHRX (0%)

Svcb1k% (0%) =2%
Svcb1k% (1%) =0%
Svcb1k% (2%) =VARPTR (Fd®) +4%
Svcb1k% (3%) =VARPTR (Pd®)
Svcb1k% (4%) =0%

!

PAGE A:4

OS.8MT ORIENTATION 831220 APPENDIX A

1470 SVC 6%,Svcb1k% ,Switchl% ,Switch2%

1480 RETURN FNSOrs%
1490 FNEND

1500 !
1510 !
1520 ! WAIT FOR A TASK TO TERMINATE

1530 !
1540 DEF FNSvc6waits (Task2)

1550) = Fd®=FNSvc23packx (Task)
1555 !
1560 Svcblk%(0%)=403%
1562 Svcblk% (2%) =VARPTR(Fd®) +4%
1563 !
1564 SVC 6%,Svcblk3%
1570 RETURN FNSOrs%

1580 FNEND
1590 !
1600 !
1610 ! LOAD & START A TASK, THEN WAIT FOR IT.

1620 !
1630 DEF FNSvc6run% (Taskx, Switch1% ,Switch2% , Extramemory% , Parameter®)
1640 Fde=FNSvc23pack2 (Task#)

1650 Pds=CVT$x(LEN(Parameter))+Parameter2®+CHR« (0%)
1655 !
1660 Svcblk%(0%)=3%
1661 Svcb1k%(1%)=0%
1662 Svcblk% (2%) =VARPTR(Fd=) +4%
1664 Svcblk% (3%) =VARPTR(Pd=)
1670 Svcblk%(4%)=0%
1672 Svcblk% (5%) =VARPTR(Fd)
1675 Svcblk% (6%) =Extramemory%
1677 !
1680 SVC 6%,Svcb1k% ,Switch1% ,Switch2%

1690 Svcblk%(0%)=40% : SVC 6%,Svcb1k%
1700 RETURN FNSOrs%
1710 FNEND
1870 !
1880 !
1890 ! FEED-BACK RETURN STATUS

1900 !
1910 DEF FNSOrs%
1920 SOrs%=SWAP% (Svcb1k%(0%)) AND 255%
1930 RETURN SOrs%

1940 FNEND

PAGE A:5

OS.8 ORIENTATION 831220 APPENDIX B

RREKEKKKEKKKKKKE

APPENDIX B
KKKKKERKKKKE

This appendix contain an exampel of task communication using
event driven tasks. The first task sends data to the other task.
A command file is included to execute the example.

TASK TO SEND DATA

110 DIM Parb1k%(7%) ! Size of an sve block. (in words)
120 !
130 Lut=1% ! Logical unit
140 !
150 OPEN "EVEN:" AS FILE Lu% ! EVEN = task to write to.

he

fo
)

Oo

-

170 | RRKKKKKKKK KA KKEK RAKE RERREKKEKERKEEEERERERE
180 ! FNSvclwrit : WRITE DATA TO OTHER TASK
190 =
200

At call :

NO

i)

(o>
) &

230 ! L% = Logical unit to write to.
240 ! Z% = BS size.
250

260 ! At return : Return status from SVC 1
270
280 DEF FNSvclwrit%(L%,B%,Z%) LOCAL L%,B%,2%

290 Parblk%(0%)=2% ! Write request.
300 =Parb1k%(1%)=L% ! Logical unit
310 Parb1lk%(2%)=B% ! Address in my segment
320 Parblk%(3%)=Z% ! Buffer size
330 Parblk%(4%)=0% ! Bute count at completion.

! 340 !
350 SVC 1%,Parblk%
360 !
370 RETURN FNSOrs% ! Return return-status.

380 FNEND
390 !
400 1 KEKKEKRKREKREREREKEEKERRKKKREREREKKRKRKKRKEKE

410 ! FNSOrs : FEED-BACK RETURN STATUS
420 | seessssssssssssssssssssass=
430 !
440 DEF FNSOrs%

PAGE B:1

= Adress to buffer containing data to send. (i.e VARPTR(B%(03)))

OS.8 ORIENTATION 831220

450 SOrs%=SWAP% (Parblk%(0%)) AND 255%

460 RETURN SOrs%

470 FNEND

480 !
490 !
500 Bad (0%) =10%
510 Bad% (1%) =20%
520 Bad (2%) =30%
530 Bsz%=6%
540 !
550 ; "Data sent :"
560 FOR I%=0 TO (Bsz%-(Bsz%/2%)) -1
570 =; "BADS(" I% ")=" Bads(I%)
580 NEXT I%
590 !
600 Status$=FNSvclwrit% (Lu% , VARPTR (Bad3 (0%)) ,Bsz%)
610 !
620 ; "Sending program terminated !"
630 BYE

TASK TO RECEIVE DATA

APPENDIX B

10 ! SAVE GSEVENT.EVENTR

30 GET DATA FROM OTHER TASK IN OS 8, USING SVC 2.6 (OS 8 Rev. 4.13 or later)

50 | Se
60 ! 83-11-14 / Greger Sernemar / DataSweden AB

a0 — : EXTEND

100 1 DEFINE SOME CONSTANTS

120 Nodseg%=5% ! Offset to segment number address
130 Nodsvc%=6% ! Offset to svc address in node.
140 Slbad%=2% ! Offset to buffer address filed in svc 1 block.

in node.

150 Slbsz%=3% ! Offset to buffer size filed in svc 1 block.
160 Slstr%=7% ! Max length of an svc block. (in words)
170 !
180 ! OS 8 SVC-FUNCTION CODES
190 !
200 S2f6get%=1% ! Transfer from other segment to me.
210 S6fqwait=9% ! SVC 6 function code - waite for
220 S6fqtrm%=10% ! SVC 6 funtion code - terminate

240 DIMENSION SOME BUFFERS

$60 DIM Parblk%(Slstr%) ! Parameter block for SVC

220 : FUNCTION DEFINITIONS

PAGE B:2

event.

event.

call.

OS.8 ORIENTATION 831220 APPENDIX B

300
310
320
330
340
300
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770

KAKKKKKEKKEKERERER ARK KERREEKERERRERERERER

FNGet : GET DATA FROM OTHER TASK.

At call : B% = Address to buffer to get data in. (i.e VARPTR(B%(0%)))

!
!
!
!
!
!
! At return : Returns the number of bytes recveied.
1

DEF FNGet%(B%) LOCAL T%,B%
Dummy%=FNSvc 26get% (VARPTR (T% (0%)) ,FNSvc6qwait% ,Seg% ,Slstr3%)
Size%=FNSvc26get% (B% , PEEK2 (VARPTR(T% (Slbad%))) ,Seg% , PEEK2 (VARPTR (T% (Slbsz$))
RETURN Size%

FNEND

KKKKKKKEKEKKEKERREREREREREREREEREEEEREEEEEE

FNSvc26get : GET DATA FROM OTHER SEGMENT

At call : M% = Address to buffer where to put data from caller.

At return : Return the number of bytes recveied.

DEF FNSvc26get% (M3 ,C3,S%,B%) LOCAL M%,C%,S%,B%
Parblk% (0%) =S2f6get% ! Transfer data from other segment.
Parblk% (1%) =256%3*S%+63 ! S%= Segment address of caller.
Parb1k% (2%) =M% ! Address in my segment
Parblk% (3%) =B% ! Buffer size
Parbl1k% (4%) =C% ! Caller address
!
SVC 2%,Parblk%
!

RETURN Parb1k$ (3%)
FNEND

!
1 KREEKKEKKEKEKEKEEKREREKRKEKEREKKEKEKEKERRERER

! FNSvc6qwait : WAIT FOR EVENT

!

!
! At call : Nothing.
!

! At return : The function returns the address to the svc block that
! caused the event.
! Seg% holds the segment address of the caller.
{

DEF FNSvc6qwait%
RETURN FNSvc6% (S6fqwaiz , 0%)

FNEND

!

PAGE B:3

OS.8 ORIENTATION 831220 APPENDIX B

TBO 1 RRKRRKKEKKKEKKKKKERKEERKEREKEREREEREKE

790 ! FNSvc6gtrm : TERMINATE EVENT.
800 !
810 !
820 DEF FNSvc6qtrm$ (P%)
830 Dummys=FNSvc6% (S6fqtrms ,P$)
840 RETURN FNSOrs% ! Return-status.

850 !
860 FNEND
870 !
‘880 !
890 !
900 !
910 !
920 ! At call : F% = Function code to svc 6.

1

!
!
!
!

KKKKKKKKKEKKKKERKEKERERERKEKERERERERERE

FNSvc6 : DO SVC 6

930 ! P& = Parameter to svc 6. (for S6fqtrm, this is s6.par from S6fqwai)
940
950 ! At return : The function returns the address of caller data.
960 ! In the global variable Seg% is the segment address for caller
970 ! In the global variable is the paramater from SVC 6 waite for event.
980 !
990 DEF FNSvc6%(F%,P%) LOCAL F%,P%
1000 = Parblk% (0%) =F% Function code.

1010 Parblk%(1%)=0% ! S6.PRIO, S6.OPT
1020 Parblk%(2%)=0% ! S6.TID
1030 Parblk%(3%)=P% ! S6.PAR
1040 =3!
1050 SVC 6%,Parblk% ! Execute svc 6
1060 !
1070 S6par%=Parblk% (3%)
1080 Seg%=PEEK (Parblk% (3%) +Nodseg%) ! Segment address of caller.
1090 RETURN PEEK2(Parblk% (3%)+Nodsvc%) ! Return svc address of caller.
1100 FNEND
1110 !
1120 i) RRKKEKRKEKKKEKKERKEKEKKEKERKEEKKEKRERREKEERKEREER

1130 ! FNSOrs : FEED-BACK RETURN STATUS

1140 ! SSenssssc=
1150 !
1160 DEF FNSOrs%
1170 SOrst=SWAP% (Parb1k%(0%)) AND 255%
1180 RETURN SOrs%

1190 FNEND
1200 !
1210 ! MAIN PROGRAM
1220 !
1230 DIM Buffer%(100%) ! Buffer in my program that shall get data.
1240 !

1250 Buffz%=FNGet% (VARPTR (Buffer (0%)))
1260 !
1270 ; : ; "Number of bytes recieved = " Buffz%
1280 ; "Data recieved :"
1290 FOR I%=0 TO (Buffzt-(Buffzt/2$))-1
1300 ; "BUFFER@(" I% ")=" Buffer (I$)
1310 NEXT I%

PAGE B:4

OS.8 ORIENTATION 831220 APPENDIX B

1320 !
1330 ! Terminate sending program
1340 !
1350 Statust=FNSvc6qtrms (S6par%) ! Use the global parameter S6par%

COMMAND FILE TO START THE EXAMPLE

LOAD BASIC,EVEN
ST EVEN GSEVENT. EVENTR
BASIC GSEVENT. EVENTT

PAGE B:5

OS.8MT ORIENTATION 831220 APPENDIX C

RKKEKKKKEKKKEE

APPENDIX C
KEKKKKKKEKK

This appendix contain an example of a simple device driver which
is established at run time. The link stream for the device
driver is also included. For a complete documentation on how to
write driver routines see OS.8MT Programmers Manual.

1 ESTXEXMPL PROG ** ESTABLISH DRIVER AT RUN-TIME **
2 *

3 *

4 * This is a little example of how to establish a driver and
5 * device in runtime under OS8MT !
6 * The driver is very simple, can just send characters !
7 k

8 k

9 PIC 0 THIS PART MAY BE IN A-SEGMENT
10 *
11 START EQU *

12 SVC 2,HELLO HELLO THERE !

13 SVC 8,DEVICE DO THE ESTABLISH

14 SOME.ERR EQU *

15 SVC 6,PAUSE THEN JUST SLEEP

16 *
17 * If we wake up, lets try to remove it
18 *
19 LI A,S8F .RMOV

20 ST A,DEVICE+S0.FC

21 SVC 8 ,DEVICE REMOVE

22 JNCS CANCEL GOOD WORK, GO TO CANCEL
23 *
24 SVC 2,BADREM DIDN'T WORK, MAYBE ASSIGNED
25 JMPS SOME.ERR
25 ©
27 ~=CANCEL EQU *
28 LI A,SOF.CAN

29 ST A,PAUSE+SO.FC

30 SVC 6 ,PAUSE BYE, BYE

31 JMPS CANCEL CATASTROPHICAL ERROR !!!!!
32 *
a5 «OF
34 PIC 1 SVC-BLOCKS MUST BE I B-SHGMENT

35 *
36 HELLO DB S1F.IASC+S1F .WRIT,0,2,0

37 DA HELLOBUF , HELLOSIZ , 0

38 *
39 HELLOBUF DB "Establish test-device',0
40 HELLOSIZ EQU *-HELLOBUF

4] *
42 BADREM DB S1F.IASC+S1F .WRIT,0,2,0

43 DA BADBUF ,BADSIZ ,0

44 *
45 BADBUF DB "Cant remove, maybe assigned?',0

PAGE C:1]

OS.8MT ORIENTATION 831220 APPENDIX C

46 BADSIZ EQU *-BADBUF
* 47

48 PAUSE DB S6F.PAUSE,0,0,0
49 DA 0,0,0,0,0
50 *
51 DEVICE EQU * THIS IS A SVC8-BLOCK

52 DB S8F.EST,0 FC AND RS
53 DB 0,0 LET OS CHOOSE THEM
54 DA NAME NAME POINTER

55 DB S8C.DEV IT'S A DEVICE

56 DB RTT.RCB AND IT'S EXLUSIVE

57 DA RDT.TST POINTER TO RDT

58 DB 40,5 CARD SELECT AND INTERUPT-LEVEL |
59 * — |

60 NAME DB =s''TEST' IT'S NAME |
61 *
62 RDT.TST DB RCT.DCB WE WANT A DCB |

63 DB 0 NO DCB-EXTENSION |

64 DA DRV.INIT INITIATOR ADDRES = |

65 DA 0 NO TERMINATOR

66 *
67 * The RDT is folowed by a DDT.
68 *
69 DA ATR.WRIT ONLY SUPPORTS WRITE

70 DA 0 VARIABLE RECORD LENGTH

71 DB 0 DEVICE CODE
72 DB DCT.ICB MUST HAVE AN ICB

73 DB S1.STR WAN'T THE WHOLE SVC1-BLOCK COPIED

74 *
77 * The DDT is followed by an IDT
716 * :

77 DB ICT.CCB WE NEED A CCB

78 DA 0 NO CONTINUATOR YET
79 *
80 * The IDT is followed by a CDT |
81 * _ |
82 DA 0 NO TIME-OUT HANDLER
83 DA 5*10 TIME-OUT, (10=1 SECOND)

84 *
85 * The CDT is followed by an EDT |
86 * -
87 DB 0,0 NO EXTENSION

88 *
89 *
90 PLC 0 THE DRIVER MUST BE IN A-SEGMENT
91 *
92 *

PAGE C:2

OS.8MT ORIENTATION 831220

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
135
116
il?
118
119
120
121
22
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

*

*

*

APPENDIX C

KRREREKRKKEKKEKREKKEKKRERRKKERERRREKKKKKREREE

* Driver Initiator
Pe ee See eee ee ee eee eee eee eee ee eee ee eee tts

*

At entry: *

*

*

*

*

* On return:
*

*

*

*

*

DRV.INIT EQU
CALL
JTCS
DECR
JTZS
DECR
JFZS
CALL

*

X -—> DCB

SVC - block in DCB
Formatter address in DCB.FMTE
Y —> SVC - block

X -> DCB
Y -> SVC - block
CY=0: Not complete
CY=1: Complete
A=Return status

*

DATA. FMT
WRONGE'C
E
WRONGEF'C
E
DONE
CHECK ..PNT

REKKKERKERERKEKRKEKEKEKKREEKERRKERREREREKEK

*DRIVER CONTINUATOR
KKKKKEREREKKEKKERERR EERE ERERERERERRERA
*

DRV.CONT EQU
OR
CALL
JTCS
OUT
RET

*

*

A CLEAR CARRY BIT
DATA. FMT LOAD THE NEXT BYTE
COMPLETE
DATA SEND DATA TO DEVICE

* REQUEST COMPLETE
*

COMPLETE EQU

DONE EQU

*

DATA.FMT POSTPROCESS THROUGH DATA FORM.

*

A RETURN STATUS 0
C4 DISABLE INTERFACE INTERRUPT
DCS.INT,DCB.STAT(X) DISABLE INTERRUPT POLLING

MARK COMPLETE

PAGE C:3

OS.8MT ORIENTATION 831220 APPENDIX C

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

*

RREKKKEKEKEEREREREEERER ERR REE RRREEEEE

* CALL THE DATA FORMATTER
KKKKKEKEKKEEKKEKKERERERERREREEEREREREREKE
*

DATA.FMT EQU
L
L
JDR

WRONGFC EQU

*

L,DCB.FMTE(X)
H,DCB.FMTE+1 (X)
HL ENTER THE DATA FORMATTER

*

A,SOS.IFC TELL HIM

AND WE ARE COMPLETE

PAGE C:4

o——~

OS.8MT ORIENTATION 831220 APPENDIX C

157 *
[5B RXR KRKKKKKRKKEKKEKKKRKREEREEREKERERERERKEKEKR

159 *ENABLE THE INTERFACE
OQ KRKKKKKKKKKKRKKKKERKERKEKEKKEREERERRERK

161 *
162 CHECK.PNT EQU) *
163 POP HL
164 ST L,ICB.CON(X) CHECKPOINT CONTINUATOR
165 ST H,ICB.CON+1 (X)
166 MVI 2,CCB.TM(X) LOAD STATUS TEST MASK
167 =* FOR ENABLE INTERUPT ON TRANSMITT
165 * BUFFER EMPTY !
169 LI A,80H SEND INTERRUPT ENABLE TO UART 4117
170 DIS DISABLE CPU
171 SBT DCS.INT,DCB.STAT(X) INTERRUPT POLLING ALLOWED
172 OUT C4 ENABLE THE INTERFACE
473 ENI ENABLE THE CPU
174 *
175 XR A MARK NOT COMPLETE
176 RET
ij7 *
178 *
179 END START

LINK STREAM FOR THE DRIVER

REMOTE

LOG CON:

NOLIST UNUSED
*

* LINK-STREAM FOR TEST-DEVICE
*

ABS MUST BE !
PLCBASE OFCOOH B-SEGMENT BASE
PLOORDER 0,1
OPTION PURE
OPTION EXCLUSIVE
PURENAM TSTE
SEGMENT 1024,0 A-SEGMENT SIZE 1024, AND ONLY PLCO CODE
INC TESTEX
IMPURE
LIB,A OS40BJ .M4DEFLB/
CHE
TASK XXX
END

PAGE C:5

OS.8MT ORIENTATION 831220 APPENDIX D

KREKKKEKEKKEKE

APPENDIX D
KEKKKKEREKKE

This appendix contain a selectfile to the DataBoard linker ESTAB
for a complete OS.8MT generation. The selectfile is included as
an example only. If you have the intention of generating your
own OS complete documentation is found in the OS.8MT Programmers
Manual.

AN OS.8MT GENERATION

ABORT IN CASE OF ERROR !
TELL WHAT'S HAPPENING.

GIVES A BOOT MODULE.

*

*

* THIS IS A COMPLETE OS8-4.13 - GENERATION
KK ee

*

* CUSTOMER:
* DATE
* ATHOUR
* ID
*

REMOTE
LOG CON:
*
*

* = MEMORY STRUCTURE
*

ABSOLUTE
AUTORST
PLCLIST 0,2
PLCORDER 1,2,6,3,5,30
PLCSTART

+o

B
o
g
e

eg

tt

s

SYSTEM GENERATION CONSTANTS

OS GENERATION OPTIONS

PAGE D:1

DON'T CHANGE THE ORDER !
GENERATES THE SYMBOLS *=PLCS..
GENERATES THE SYMBOLS “=PLCE..

SUPRESS ABSOLUTE VALUES.
SUPRESS UNUSED ENTRIES.

GENERATION DATE.

NUMBER OF SYSTEM NODES.
NUMBER OF DEFAULT FCB'S.
NUMBER OF FILE-MANAGER BUFFERS.

OS. 8MT ORIENTATION 831220

%

ELECT RST.OMAP

e
e
e

e
e

Fe

E
Y

F
H

HF

HF

KF

*

SELECT NMI .HAND
SELECT ILL.HINT
SELECT ERR.HAND
SELECT FILE.MGR
*
*

* CRASH PRINT-OUT FACILITIES
*

SELECT CRS.DUMP
EQU 750,CS.CRASH
EQU 2,TM.CRASH
EQU OFFH ,XM.CRASH

+
e
e

OPTIONAL NUCLEUS

SVC-FUNCTIONS

APPENDIX D

TO PRODUCE A MAPPED OS 8 FOR THE
THE NEW (4 MHz) CPU SELECT RST.MAP

IF YOU WANT TO HAVE A MAPPED OS 8
FOR THE OLD (2.5 MHz) CPU
SELECT RST.OMAP (Old MAP)

THIS COMMAND WILL PRODUCE A MAPPED
OS 8 FOR THE OLD (2.5 MHz) CPU.

NMI-HANDLER.
ILLEGAL HARDWARE INTERRUPT HANDLER.
SYSTEM ERROR HANDLER.
FILE-MANAGER, PHYSICAL ACCESS.

CRASH DUMP...
. «ON SYSTEM CONSOLE.
2 = 4117, 4 = 4110
FF = 4117, FA = 4110

SELECT SVC1,SVC3 ,SVC4,SVC5 ,SVC6 , SVC7 , SVC8
SELECT SVC2.1,SVC2.3 ,SVC2.4,SVC2.5,SVC2.6,SVC2.7 ,SVC2.8,SVC2.12
*
*

* — VOLUMES
*

SELECT DEV.FPY
SELECT DEV.BFPY
SELECT DEV.MFPY
SELECT DEV.BMFP
SELECT DEV.MH10
SELECT DEV.MM20
SELECT DEV.XBC
SELECT DEV.DRM
*

*

* DEVICES
*

SELECT DEV.NULL
SELECT DEV.RE

PAGE D:2

INTERFACE 4034, FLOPPY 8", 256KB.
INTERFACE 4108, FLOPPY 8", IMB.
INTERFACE 4076, FLOPPY 5", 80KB.
INTERFACE 4106, FLOPPY 5", 320KB.
INTERFACE 4610, HAWK 14", 5MB.
INTERFACE 4109, MARKSMAN 14", 20MB.
INTERFACE 4105, SEAGATE 5", 5MB.
INTERFACE 4034, DRUM, 512KB.

DUMMY DEVICE.
INTERFACE 4016, FACIT SP1-REC.

OS.8MT ORIENTATION 831220 APPENDIX D

SELECT DEV.PU INTERFACE 4015, FACIT SP1-XMT.
SELECT DEV.PR INTERFACE 4015/4017/4117, PRINTER.
SELECT DEV.CR INTERFACE 4037, CDC CARD-READER.
SELECT DEV. IEC INTERFACE 4025, INSTRUMENT-BUS.
SELECT DEV .MAG INTERFACE 4104, 9~-TRACK MAG~TAPE.
SELECT DEV.CTU INTERFACE 4015/4016, FACIT CASSETTE.
SELECT DEV.GRAF INTERFACE 4017/4117, DATACOLOUR.
*
*

* — CONFIGURATE MTM-TERMINALS
*

SELECT MTM.ADM3 GIVES TWO ADM3~-TERMINALS.
DATE GIVES CURRENT DATE FOR SIGN-ON.
*
*

* — COLLECT MODULES FOR EACH SEGMENT
*

SEGMENT 102400 em A-SEGMENT 0
INC -:0BJ413LIB.RST413LIB/O.SEGXHDR
LIB -:0BJ413LIB.RST413LIB/O
LIB -:0BJ413LIB.BAS413LIB/O
SEGMENT wenn A-SEGMENT 1
INC -:0BJ413LIB.RST413LIB/O.SEGHHDR
LIB -:0BJ413LIB.SVC413LIB/O
SECMENT meena A-SEGMENT 2
INC -:0BJ413LIB.RST413LIB/O.SEGHHDR
LIB -:0BJ413LIB.CON3XXLIB/O
LIB -:0BJ413LIB.CON413LIB/O
LIB -:0BJ413LIB.MIM413LIB/O
SEGMENT meen A-SEGMENT 3
INC -:0BJ413LIB.RST413LIB/O.SEGSHDR
LIB -:0BJ413LIB.DEV3XXLIB/O
LIB -:0BJ413LIB.DRV413LIB/O
LIB -:0BJ413LIB.DRV3XXLIB/O
LIB ~:0BJ413LIB.FMG413LIB/O.SV2210CM, .SV2"11DM, .FMGXOPCL
SEGMENT een nnn A-SEGMENT 4
INC -:0BJ413LIB.RST413LIB/O.SEGSHDR
LIB -:0BJ413LIB.FMG413LIB/O
SEGMENT
LIB,A -:O0BJ413LIB.DEF413LIB/O
*
*

* FINISH-UP PHASE
*

CEXT ERO.PRES DEFINE NOT SELECTED HANDLERS AS NOT PRESENT
EQU ERO.PRES ,FMG.CHKP
CHECK
END

PAGE D:3

