'/ =
-—i
il
- —
p——
—
—;.
—’
—j-’.'
7"
-,6
——
—
:—
—
-;—
——
—
7~
—
:-
i-
i-
;-
—
g
—
—
—
g

0Ss.8 MIT
OPERATOR'S VIANUAL

FOREWORD

This manual contains detailed reference material needed to control
an 0S.8 Operating System, and deals specifically with revision 2.50
and higher revisions. The manual 1is intended as an operator’s
reference manual for the Operating System.

This publication is divided into two separate manuals and three
appendices:

0S.8 TERMINAL REFERENCE MANUAL (TRM)
contains information pertinent to the Mult-Terminal Management

(MTM). It is designed primarily for the terminal user, however, it
could prove useful to the System programmer.

0S.8 UTILITY REFERENCE MANUAL (URM)

describes the system utility programs such as disc maintenance,
back-up handling, program development and language processors.

Appendix A contains a command summary.
Appendix B holds the crash codes.

Appendix C specifies the error codes.

TERMINAL REFERENCE MANUAL LT RN

Chapter

Chapter

Chapter

Chapter

Chapter

[AS TSI N

—_ e 3 e =
Ew N =

L L) L L Lo o W W w
o1 o Fw i =

FE R EFEEEFE

ot Wi
PN =

U oW
L L bl

EEEEFEEFEFWLWWN -

U =W -

w mn =

Fw M =

CONTENT

INTRODUCTION
Introduction.
Environment.

File System Operations.
System Crashes.

SYSTEM OPERATION
Start-up.
Shut-down.

MULTI TERMINAL MANAGEMENT (MTM)
Introduction.

User Environment.

Terminal use.

Promts.

Terminal Control Charatcers.
Command Handling

Unknown Commands.

Error Response.

COMMAND SYNTAX
General Form.
Mnemonics.
Switches.
Additional Memory.
Parameters.
Numbers.

Task Identifiers.
File Descriptors.
File Types.
Wild-Card Specifications.

MTM COMMANDS
Introduction.

General System Commands.
SLICE command.

TIME command.

VOLUME command.

Utility Commands.
BIAS command.
EXAMINE command.
MODIFY command.
RADIX command.

CONTENT 1
81-04-01 TRM.OS8

U U U Ut U gt U

[S206 IS IS IR I I IR RS 2 IR)]

= F EFEFEEEFEE

U U gl oo
W o100 &M =

W o1 O0J Fwhh =

Task Related Commands.
CANCEL command.
CONTINUE command.

LOAD command.

OPTIONS command.

PAUSE command.
PRIORITY command.

RUN command.

START command.

TASK command.

Device And File Related Commands.

ALLOCATE command.
CLOSE command.

DELETE command.
DEVICES command.
LIBRARY command.

OPEN command.
POSITIONING commands.
RENAME command.

SPACE command.

CONTENT 2
81-04-01 TRM.0S8

INTRODUCTION 1-1
81-04-01 TRM.0S8

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

The Operating System 0S5.8 1is a Real-Time Multi-Tasking System
normally controlled from an interactive terminal. The terminal may be
any that is TTY-compatible such as CRT.

Since the operator plays an important role in the successful
operation, it is necessary to understand the facilities available,
These facilities and the operating procedures necessary to run the

- Operating System are described in this manual.

The 0S.8 Programming Manual should be referred to if more detailed
information about the operating system is required.

The user ougth to be familiar with the following documents:
- DataBoard-4680 System Manual.
- DataBoard-4680 Software Catalog.
This manual is divided into four more chapters:
Chapter 2 describes the start-up and shut-down procedures.
Chapter 3 contains a general description of the Terminal Management.

Chapter 4 specifies the general command syntax structure.

Chapter 5 explains terminal user commands.

1.2 ENVIRONMENT

All tasks in the system are served on a priority basis. Thus,
real-time applications may be executed at a high priority to ensure
timely response. Task pricrities are set at task load time and may be
modified by the terminal operator.

1.3 FILE SYSTEM OPERATIONS

The operator frequently interacts with the Disk File System through
terminal commands. These commands are described in Chapter 5 of this
manual.

? INTRODUCTION 1-2
81-04-01 TRM.O0S8

1.4 SYSTEM CRASHES

When the system determines that futher execution may cause system or
user data to be destroyed, the system crashes in a controlled way. The
Operating System MUST be reloaded after a c¢rash ! Refer to
DataBoard-4680 0S.8 Programming Manual for more detailed information.

TASK —— SVC —
— 1 \\\‘___//
| TASK |—— SVC —
— 2
: 0S.8
h .| TASK SVC — _@
— 3 !
T i
|
|
|
TASK —— SVC —
— 255

I1/0 j

Figure: Principle System

SYSTEM OPERATION 2-1
81-04-01 TRM.0S8

CHAPTER 2

SYSTEM OPERATION

2.1 START=-UP

The Operating System is normally loaded from a disc device via the
System Bootstrap Loader, which loads a program sequence from the disc.
This sequence then loads the Operating System.

To load, proceed as follows:
1. Mount an initiated disc containing the Operating System.
2. Reset the processor,

Possible error codes:
0. No 0S image found.
All drives off line.
0S image larger than avalible memory.
Read error on 0S image file.
Checksum error on 0S image file.
0S image file not a contiguous file.
0S image must be located from zero and upward.

g FEw o —

When the loading is complete, the identity is written on the
terminal device as follows:

DOS.8MTM Rx.yz
Where x.yz 1is the release and update number, and the system is now
ready to accept commands.
2.2 SHUT-DOWN
In a disc based system it is necessary that the system 1is shutted
down in an orderly fashion, to assure the integrity of the discs in

use. Before shutting down the system, the operator should cancel and
delete all tasks, and close all opened discs.

3.1

3.2

TERMINAL MGMT 3-1
81-04-01 TRM.0S8

CHAPTER 3
MULTI TERMINAL MANAGEMENT (MTM)

INTRODUCTION

The Multi Terminal Management (MTM) provides a multi-access
environment for up to 8 concurrent users of suitable equipped
DataBoard-4680 computer systems. The number of users is defined when
configurating the MIM System. Each user operates at an interactive
terminal, such as any TTY-compatible CRT, and has access to all the
System resources and services needed to perform program development or
real-time control. The MIM will load and run tasks with the priority
given to a task at task establish time. Any program developed under
the MTM will run unaltered in a suitable priviliged environment under
0s.8.

The services available to a terminal user includes both a powerful
Command Set and different Languages, as well as a number of Utility
Programs. The command repertoire available to the MTM user gives
immediate and straight forward control over the computing facilities
avallable to the user.

The MTM System, in common with all multi-access time sharing
systems, requires a certain amount of human operational involvement
while it 1is in use. The actual amount will vary from installation to
installation, and may be variable within an installation due to
fluectuations in work load.

A valuable aspect of the MIM is its ability to support remote users.
The MIM wuses the standard input/output facilities of 0S.8, which
includes the use of remote terminals. Any or all of the MIM users can
be remote from the computer installation, and dial-up lines can be
supported.

ENVIRONMENT

Each terminal user is identified by a number <n>, where <n> 1is in
the range 0 to 7, which is appended to the users task names.

The terminal 1is controlled by a task named Multi Terminal Console
Monitor (MTCM). This task is responsible for the activation of the
terminal assistent task when a terminal device becomes active.

When a user enters the MTM System, an assistent task is started by
the MICM. This task, which is named Command-handler (COMn), handles
all the command and program execution for the user. The signon from
the COMn task is:

DOS.8MTM Rx.yz User n entered YYYY-MM-DD HH.MM.SS

3.3

3.4

3.5

TERMINAL MGMT 3-2
81-04-01 TRM.O0S8

Where <x> is the revision level, and <yz> is the update level of the
MTM System. The user is given the number <n>, and entered the MIM
System at specified date and time.

Some of the MTM-commands will force a task to be loaded for command
execution. The name of this task is UTLn (utility task user n).

Wwhen a program execution is requested, the program will be loaded
and started as +the primary task, and given the name User Program
(USPn). The user may then interact with the task during its execution,
or perform some command handling. This task can futher be referenced
by some commands without specifying the task identity. (Ref CANCEL,
CONTINUE etc).

TERMINAL USE

The MTM System is controlled by the user through a terminal device.
This device can be any TIY-compatible device. It has a special
relationship to the system in that the MIM System receives command
input from the terminal and writes messages to it. Tasks may log
messages to the user terminal without reference to its device name.

The name of the logical terminal device 1s always CON for every
user, and may be assigned to a task for ordinary I/0 operations, just
as any other device.

PROMPTS

When the terminal operator is expected te enter data at the
terminal, a prompt is output. This prompt takes one of the following
forms:

- Command Request (From COMn)
no prompt Data Request

The command request prompt is output whenever the system is ready to
accept another command.

The data request prompt is output whenever a task is attempting to
perform a read request to the terminal device. This request should be
satisfied as soon as practical, since messages are held in abeyance
until the data request is satisfied,

CONTROL CHARACTERS

The control character conventions in effect for terminal devices are
described below:

Deleting a Line
Depress simultaneously the CTRL-key and the X-key.

Deleting a Character
Depress simultaneously the CTRL-key and the H-key.

my w3 B3I OBED OBD OB OB OO OO TEOTMIOTMOOM™TOOYM™YI MmO OO mLO'mDOWLOmmYTOWml O mERYOMY O'Em BN

3.6

3.?

3.8

TERMINAL MGMT 3-3
81-04-01 TRM.0S8

Ending an Input Line
If the input 1line is complete and ready to be processed,
depress the carriage return key.

End-0f-File Function
To generate End-0Of-File, simultaneously depress the CTRL-key
and either the back=-slash or O-key.

Break Function
If the data request prompt appears and the user wishes to
communicate with the Command System rather than a task, the
CTRL-key and the A=key should be depressed simultaneously.
The system responds with the command request prompt, and is
ready to accept a command. To return to the data request,
just hit the Return-key.

If an input or output to the terminal is in progress, use of
the break function will interrupt the process. For example,
if the EXAMINE command has been entered and the output is in
progress, the break function halts the output in progress.
The system is then ready to accept a command.

Abort Function
Some commands and programs recognize an abort function,
which aborts the terminal transfer and cancels the task
execution. The abort function is generated by simultaneously
depressing the CTRL-key and the C-key.

COMMAND HANDLING

The command is the basic unit of conversation between a terminal
user and the MTM System. A command directs the MTM System to take a
specific action. In general, a single command results in a single
action being taken by the MIM System.

A command consists of a mnemonic which normally decribes the action
the user wishes to take place, and arguments which provide the details
necessary to perform the action.

Commands are accepted one line at a time. A command may not spread
over two or more lines. A command line is terminated by a carriage
return.

UNKNOWN COMMANDS

If an unknown command is entered, the MTM System tgies to load a
program with the same name. If found, it will be started as a primary
task, and the rest of the command 1line will be transferred as
parameters to that task.

ERROR RESPONSE

The MTM system responds to a command error by typing out a message
to the wuser indicating the type of error. In response to the error

TERMINAL MGMT 3-4
81-04-01 TRM.0S8

message the user must retype the entire command, correcting the error
as necessary. The error messages are:

; LOAD ERROR

Command or program not found. Memory space not enough, or
checksum error on a command or program file.

11 SIZE ERROR
3 Additional memory size improperly specified.

SEQ ERR
This message is given if the particular command cannot be
accepted due to the state of the system. This occurs either
when a command is executing and another command is entered, or
when a primary task is executing and execution of a new
program is requested.

FD ERR
Syntax errror in a File Descriptor, or the type of the file is
missing.

DEV ERR
Device not in system or not accessable.

ID ERR
Syntax error in a task name, or the task is not found.

PAR ERR
Parameter error, invalid or missing parameter.

[—

T bem ema s

TERMINAL MGMT 3-5
81-04-01 TRM.0S8

1
—
_{ UTLO | SVC _
/
L
COMO SVC _|
/ ™
~
/ ~J USPO SvVC _|
/
MTCM SVC{
\ 4 USPn | SVC
— -
| - } 0S.8
N COMn SVC o
L !
~ ~J UTLn |— SVC |
I svC |
TSKx
, sve
—q T255 |
[]

1/0 UJ

Figure: Principle MIM System

SYNTAX 4-1
81-04-01 TRM.0S8

CHAPTER 4

COMMAND SYNTAX

4.1 GENERAL FORM

The general command structure, that is used in this manual, 1is as
follows:

MNEMONIC(, (SWITCHES)(,ADDMEM)) ((PARAMETER1),(PARAMETER2),...)

Some commands have arguments that may or may not be specified. These
arguments are enclosed in brackets in this manual. If the optional
arguments are not furnished by the user, default values are supplied
by the system. These default values are defined in the deseription of
each of the command.

The, following notations are used in this manual when describing the
commands:

-capital letters indicates the minimum abbrevation for a mnemonic.

-punctuation marks and equal signs = must be entered exactly as
shown.

-commas , separates arguments and substitute omitted positional
arguments.

-brackets () indicate optional arguments.

-comma inside brackets (,) must be entered if the opticnal
argument is chosen.

-slash / indicate alternative arguments, i.e, any one of the
indicated arguments may be chosen.

-an elipsis ... indicates an optional repetition of the preceding
argument.

4.2 MNEMONICS

Mnemonics are shown in this manual in a mix of Uppercase and
Lowercase letters. A mnemonic may be entered into the system in its
entirely or in an abbreviated form. The minimum abbreviations are
indicated in this manual by Uppercase letters. Any number of
characters between the minimum and the entire command may be entered.

4.3.

4,

1

i

SYNTAX 4-2
81-04-01 TRM.0S8

For example:

The command TASK 1is given in the manual as TAsk. The following
forms of this command may be entered:
TA
TAS
TASK

Illegal forms of this command are:
T too short.
TAK misspelled.
TASKS too long.

4.3 SWITCHES

The switches follows the mnemonic immediately, and is separated from
the mnemonic by a comma. The switches provides the user with ability
to specify certain options in the form of unsequenced alphabetic
characters related to the particular mnemonic. These switches are
normally passed to the CPU registers of the task. Refer to 0S5.8
Program Reference Manual, SVC6, for futher information.

ADDITIONAL MEMORY

The <addmem> specifies the amount of extra memory, in bytes, to be
added to a program. This memory expands the working area, which
normally inecreases the execution speed of a program. The deseription
of the commands and programs, specifies if any additional memory will
be used or not.

PARAMETERS

The parameters are separated from the mnemonic and the switches by
one ore more spaces. These parameters are transferred to the CPU stack
of the task.

The following examples illustrate the use of the bracket:

COMmand(,ssss) aaaa(, (bbbb) (,ccce))

In this example, the operand aaaa is not optional, while the
operands bbbb and ccecc are optional. Note that the c¢omma preceding
operand cccc 1s also optional, but that the comma preceding operand
bbbb is required, if operand ccecc is specified.

ORder xxxx(,yyyy (,zzzz))
In this example, operand zzzz must not be entered without operand

yyyy. This 1is shown by the nested brackets. Legal forms of this
command are:

.OR XXXX
OR XXXX,YYYY
OR XXXX,YYYY,Z2ZZ

L. L. Le L= k= = = B BB BB BB BE OB\ OBEOBEOBY"SC BCOEBTCB BSOS OWFES Y WE O ™" L O TERX OWmHR

SYNTAX 4-3
81-04-01 TRM.0S8

Whereas in the previous example, legal forms are:

COM aaaa

CcOoM aaaa,bbbb

coM aaaa,bbbb,ccce
COM aaaa,,cccc

4.4,7 NUMBERS

4

R

JU

2

3

Numerical arguments are generally decimal rather than hexadecimal or
octal numbers. One major exception is addresses which are expressed in
chosen base.

Most numerical arguments are of integer form and thus, have no
decimal point. Leading zeros may be omitted in numerical arguments,
whether decimal, octal or hexadecimal.

Octal numbers are expressed in a split form. This means that the
octal value is divided into two parts, separated from each other by a
colon. In the following example, all values are equal:

7214 Decimal
1C2E Hexadecimal
34:56 Split Octal

TASK IDENTIFIERS

A task identifier (indicated as TID in this manual) consists of one
to four alphanumeric characters, the first of which must be
alphabetic.

Valid task identifiers are:
TSK3
MAX
X
T9X5

Invalid task identifiers are:
3TSK first character not alphabetic.
T4.2 nonalphanumeric character,.

FILE DESCRIPTORS

A file is a program or a collection of data stored on a direct
access storage device. Files stays in the system permanently unless
they are explicity removed. Files are identified in the system by a
File Descriptor. The File Descriptor contains the name of the volume
on which the file reside, the file name or the element directory name,
the element name, and the type of the file.

File Descriptors may refer to devices as well as to direct-access
files, in which case, the VOLN field is the four-character device
mnemonic. A FILENAME and ELEMENT, if entered, are ignored. The colon
following VOLN must always be entered in this case.

SYNTAX 4-4
81-04-01 TRM.0S8

File Descriptors <(abbreviated FD in this manual) are composed of
four fields:

VOLN:FILENAME.ELEMENT/TYPE

VOLN is the name of the volume on which the file resides, if FD
refers to a file. It may be from one to four characters.
The first character must be alphabetic and the remaining
alphanumeric. The volume need not to be specified, and the
default volume is then specified by the SYSTEM volume.

FILENAME is the name of the file. It may be from one to twelve
characters, the first alphabetic and the remaining

alphanumeric.

ELEMENT is the name of an element in a element directory. It may
be from one to twelve alphanumeric characters.

TYPE describes the type of the data within a file. Refer to
chapter titled FILE TYPES.

Example of legal File Descriptors are:

PACK:MAIN.LOOP
MAIN.LOOP the same, if PACK is the system volume.
CARD: name of a device

4.4.4 FILE TYPES

With each file there is a type specification that describes, for the
system and the user, what kind of data there is in the file. The type
is specified by one or two either alphabetic characters, or
hexadecimal digits, where the leftmost has the highest priority. The
type of the file is normally implied by the. programs, and does not
need to be specified. If the file type is not implied by the progranm,
it must be specified!

The first character or digit specifies the type of data in the file:

0x/U Und, undefined data, which verifies to any other type.
1x/A Asc, ASCII data readable without any special handling.

2x/L Lst, list file, ASCII data together with position information.
3x/0 0Obj, object code, readable by the Task Establisher. Cannot be

loaded and executed.
4x/B Bin, binary data, which is unspecified.

5x/T Tsk, task file, either relocatable or absoclute. Can be loaded

and executed.
6x/1 Ism, ISAM index file.

Tx Reserved.
. "

b'e Directories.

=
Iy

SYNTAX 4-5
81-04-01 TRM.(0S8

The second character or digit, if entered, 1is mostly wused for
information purpose and defines a set of languages and directory
types:

x0/U Und, undefined data, verifies to any other'subtype.
x1/A Asm, ASSEMBLER source code.

x2/B Bas, BASIC source code, or data produced by BASIC.
x3/C Cob, COBOL source code, or data produced by COBOL.
x4/F Ftn, FORTRAN source code, or data produced by FORTRAN.
x5/P Pas, PASCAL source code, or data produced by PASCAL.

x6 Reserved.
. "

FD/D Efd, Element File Directory.
FE Reserved.
FF/D Mfd, Master File Directory.

4.4.5 WILD-CARD
Some commands may handle generalized File Descriptors, which are
used to specify a searching key, when scanning for one or several
files.

Special formats:

An asterisk * is a position dependent replacement-for any character,
and may be placed anywhere except after a dash.

A dash - is a position independent replacement for any character

including space, and must be the last character in a
certain field.

Example of valid forms are:

ABC*¥* Any file that starts with ABC and has five characters in its
name.

¥pC¥_ Apny file that starts with any charcter, followed by BC, and
is at least four characters long.

5.

1

COMMANDS 5-1
81-04-01 TRM.0S8

CHAPTER 5
MTM COMMANDS

INTRODUCTION

This chapter describes the commands available to the terminal user.
These commands are grouped according to their function. Most of the
commands are performed by Supervisor Calls (SVC), which makes them
available to the programmer. More detailed information will be found
in 0S.8 Program Reference Manual.

D.

GENERAL 5-2
81-04-01 TRM.0S8

2 GENERAL SYSTEM COMMANDS
The following commands pertain to the system as a whole. As such,
they have a global effect on the system or display global system
information:
SLICE Handles the time-sharing function.

TIME Affects the time of day.

VOLUME Specifies the system volume.

e e e he kx B2 B BN BN BN BE BAR OB O BO OBR OB BN OB OB OB OB B OB W1 B B3 R B2 mR W ma

SLICE 5-3
81-04-01 TRM.0S8

5.2.1 SLICE Command

Two types of scheduling algoritms are available. Tasks may be
scheduled 1in strict priority order or time-sliced within priority. In
the former case, if two tasks of equal priority are started, a task
remains active until it relinquishes control of the processor. Care
should be taken in assigning priorities so that tasks which do not
frequently relinquish control of the processor do not inadvertently
lock out other tasks. A task may relinquish control in one of the
following ways:

- It is paused or cancelled by the console operator or another task.
- A higher priority task becomes ready because of some external event.
- It executes an SVC that places it it Wait, Paused or Dormant state.

Rather than scheduling on a striect priority basis, tasks may be
time-sliced within pricrity. This option allows the user to ensure
that tasks of equal priority receive equal shares of processor time.

When a task Dbecomes ready, it 1is queued on a round-robin basis
behind all ready tasks of equal priority.

The SLICE command is wused to invoke the time-slice scheduling
option. Its format is:

SLice (n)

where: <n> is a decimal number specifying the time slice in
milliseconds.

If <n> is omitted, the current slice value will be displayd. If <n>
is 0, time=-slice scheduling is disabled, otherwise, <n> represents the
the maximum time, in milliseconds, any task can remain active if
another task of equal priority is ready.

The time-slice option is initiated at the system generation time.

5.2.2

TIME 5-4
81-04-01 TRM.0S8

TIME Command

The TIME command should be entered when the system is loaded. It may
be entered at any other time that the system clock is incorrect. The
day, month and year are automatically updated by the system, even
during leap years. The format of this command is:

TIme (YYYY-MM-DD, HH.MM.SS)

where:
YYYY=year
MM=month
DD=day
HH=hours, 24-hour clock.
MM=minutes
SS=seconds

If <YYYY-MM-DD, HH.MM.SS> is omitted, the current time will be
displayed.

If a TIME command 1is entered while there are uncompleted time
intervals (see SVC 3), the tasks which initiated the incomplete
intervals are affected in the following way:

Seconds and milliseconds from now. Elapsed time intervals are
unaffected by a change in the time. Time-of-day requests will not
elapse at the right time.

VOLUME 5-5
81-04-01 TRM.0S8

5.2.3 VOLUME Command

The VOLUME command is used to set or change the name of the system
volume. Alternatively, it is used to interrogate the system for the
current name associated with the system volume. The format of this
command is:

Volume (voln)

where <voln> is the system volume identifier.

No test is made to ensure that the volume is actually on-line at the
time the command is entered. If <voln> is not specified, the name of
the currently default system volume is output to the console.

The following is an example of a VOLUME command:

-V

SYSTEM
DOS8

5.3 UTILITY COMMANDS

This group of commands 1is useful in
manipulation.
BIAS Sets a base address.

EXAMINE Displays the main memory.
MODIFY Changes the main memory.

RADIX Sets the base.

UTILITY 5-6

81-04-01

debugging

TRM.0S8

and memory

e N B B B R R R R R R R R T T sy

BIAS 5-7
81-04-01 TRM.0S8

5.3.1 BIAS Command

The BIAS command is used to set a base address for the EXAMINE and
MODIFY commands. Its format is:

BIas address

The operand <address> is a bias to be added to the address given in
any subsequent EXAMINE or MODIFY command.

A BIAS command overrides all previous BIASes.
To find out which the current BIAS is, enter EXAMINE O.

The operator should enter a BIAS command if the current value is
unknown.

EXAMINE 5-8
81-04-01 TRM.O0S8

5.3.2 EXAMINE Command

The EXAMINE command is used to examine the content of memory. The
formats is:

EXamine address(,n)

The EXAMINE command causes the contents of the memory location
specified by <address> (as modified by any previous BIAS command) to
be displayed. The operand <n> specifies the number of bytes to be
displayed, and is given in the same radix as the <address>. If <n> is
omitted, two bytes are displayed.

MODIFY 5-9
81-04-01 TRM.O0S8

5.3.3 MODIFY Command

The MODIFY command is used to change the contents of memory. Its
format is:

MOdify address,data(,data...)

This command causes the contents of the byte location specified by
<address> (modified by any previous BIAS command) to be replaced with
<data>. Each <data> field represents a byte to be written into the
memory starting at the location specified by <address>.

RADIX 5-10
81-04-01 TRM.0S8

5.3.4 RADIX Command

This command is used to select the notaion of the numeric values
used in all the utility commands. The format of this command is:

RAdix 8/16

If radix 8 is selected, then all address values will be represented
in split-octal.

m ol BB EREEREEBEREEBEEBREEBREEREEREEREEBREEREERERDRENR R R R R Rl

TASK 5-11
81-04-01 TRM.0S8

5.4 TASK RELATED COMMANDS

The following commands are related to particular tasks. If the TID
parameter is optional, the primary task USPn is assumed when omitted.

CANCEL

CONTINUE

LOAD

OPTIONS

PAUSE

PRIORITY

RUN

START

TASK

Abort the execution of a task,

Continue the execution of a paused task.
Load a program into the main memory.
Change the options of a task,

Pause an executing task.

Change the priority of a task.

Load and start a program

Start a task.

Display the present tasks and their characteristics.

CANCEL 5-12
81-04-01 TRM.0S8

S.4,1 CANCEL Command

The CANCEL command terminates a task as if it had executed an SVC-6
with cancel as function code and 0 as cancel code. The format of this
command is;:

CAncel (tid)

If the task is non-resident, it is removed from the system memory.
All outstanding I/0 must terminate and then the task’s Logical Units
(LU s) will be closed. If the task is resident, it is not removed from
the system memory.

This command may be entered even when the specified task is Dormant.
It has no effect on a resident task that has already gone to
End-of-Task (EOT), unless preceded by an OPTION,N command. If preceded
by an OPTION,N command, it can be used to remove a task from the
system memory.

a B BR BT OBR OB OB BRI O OB OE OB BB EEREREBER EEREGBDGBDGOD®ERBEREB EBBEER BBl

CONTINUE 5-13
81-04-01 TRM.0S8

5.4.2 CONTINUE Command

CONTINUE causes a task which has executed a Pause SVC, or has been
PAUSed by the operator to resume operation. The format of this command
is:

COntinue (tid)

LOAD 5-14
81-0L-01 TRM.0S8

5.4.3 LOAD Command

A task must be prepared by processing the component programs and
subroutines with ESTAB program. Once established, the task can be
loaded. A task is loded into the first memory segment large encugh to
~accommodate it. The format of this command is:

LOad fd(, (tid)(,size))

The <fd> is the file descriptor of the file containing the
established task, and the <tid> is the task identifier that the task
is to be known by once it is loaded. If <tid> is omitted, it defaults
to the first four characters in <fd>. The <size> is the amount of area
in the tasks impure memory segment. It is specified as a decimal
number in bytes, and if omitted, default is O.

If load 1is performed from a device, the logical record length must
be 256.

R AL LR RRRRRRERNRNNREN

OPTIONS 5~15
81-04-01 TRM.0S8

5.4.4 OPTION Command

The OPTION command, available from revision 3.00, is used to change
certain options of the specified task. The format of this command is:

OPTion,opt(opt...) taskid
where <opt> may be any of the following options:
R = resident, the task is memory resident.
N = nonresident, the task is to be removed at End-0f-Task.
A = abortable, the task is cancellable from other tasks.

P = protected, the task is not cancellable from other tasks.

5.

b,

PAUSE 5-16
81-04-01 TRM.0S8

5 PAUSE Command

The PAUSE command causes the specified task to pause. The format
of this command is:

PAuse (tid)

Any I/0-Proceed, on going at the time the task is paused, is allowed
to go to completion. If the task is in any Wait state at the time the
PAUSE command is entered, all external wait conditions must have been
satisfied before the PAUSE becomes effective. This command is rejected
if the task is dormant or paused at the time it is entered.

nmTMMnTnMA

PRIORITY 5-17
81-04-01 TRM.OS8

5.4.6 PRIORITY Command

The PRIORITY command, available from revision 3.00, 1is wused to
modify the priority of the specified task. Its format is:

PRIority tid,n

where <n> is a decimal number from 10 to 255 inclusive.

RUN 5-18
81-04-01 TRM.O0S8

5.4.7 RUN command.

The RUN command is used to load and start a program. The format of
this command is:

RUn(,switches) fd(,parameters)
The program is loaded from <fd>, and the task is given the first

four characters in <fd> as its name. Then the task is stared, and the
<{switches> and the <parameters> are passed to the task.

maaRERIIAERNI R I I I R R I IR I I I I NI I I M DN NN DN nA

START 5~19
81-04-01 TRM.OS8

5.4.8 START Command
The START command is used to initiate task execution. The task
specified is started only if it is dormant. The format of this command
is:
STart(,switches) tid(,parameters)

The <tid> is the name of the task, and may consist of from one to
four alphanumeric characters.

The optional fields <switches> and <{parameters> econtains arguments
that are to be passed to the task.

TASK 5-20
81-04-01 TRM.OS8

5.4.9 TASK Command

The TASK command causes a map of the present tasks to be output to
the console or the <fd>. The format of this command is:

TAsk(,F) (fd)

The following is an example of a TASK command output:

-TA,F

TASK NR STAT TYPE PROGRAM PRI TCB-ADR SIZE ENTRY
MTCM 1 W RN 20 367:124 010:000 123:456
COoMO 2 W 30 364:324 011:222 234:321
UTLO 3 128 235:164 037:765 236:124

The TASK field contains the symbolic name of the task, and the NR
field is the system task number.

The STAT field contains the current status of the task, which can
be:

DORM dormant, not started.

C cancel pending, on its way to terminate.
P paused

S suspended, ready to execute.

W waiting, for an event.

The TYPE field indicates the type of the task:

E-task
non-abortable
pure code
resident

m o = @

The PROGRAM field is reserved, and PRI is the currently priority
assigned to the task.

If fully display is requested (switch <F>) the TCB-ADR field
contains the address of the TCB for the task, the SIZE field holds the
memory size allocated to the task, and the ENTRY field is the default

start address of the task.

THE I R R R E R E R LR B A R B R R B R B R R

DEVFILE 5-21
81-04-01 TRM.0S8

5.5 DEVICE AND FILE CONTROL COMMANDS

The following set of commands are used for device and file control.

ALLOCATE Create a direct-access file.

CLOSE

DELETE

DEVICES

LIB

OPEN

POSIT

RENAME

SPACE

Take a device off-line.

Remove a direct-access file.

Display the present devices.

Display the files on a volume.

Take a device on-line.

Position a device.

Change the name of a direct-access file.

Examine the space available on a volume.

ALLOCATE 5-22
81-04-01 TRM.0S8

5.5.1 ALLOCATE Command

The ALLOCATE command is used to create a direct-access file. The
following formats exist for this command:

(a) ALlocate(,I) fd(, (lrecl) (, (size)(/blk)))
(b) ALlocate,C fd,size

The operand <fd> identifies the file to be allocated, where the file
type must be specified. Format (a) is wused to allocate an Indexed
file, and format (b) is used to allocate a Contiguous file.

If INDEX is chosen, the next operand, <lrecl>, is optional and
specifies the logical record length. It cannot exceed 65535 bytes. Its
default is 0 bytes (variable record length). The file size operand,
<size>, 1is optional and specifies the total allocation size in
sectors. The <blk> operand specifies the physical block size in
sectors.

If CONTIGUOUS is chosen, the file size operand, <size>, is required
and specifies the total allocation size in 256=-byte sectors. This may
be any value up to 65535%CLUSIZE, or the number of contiguous free
sectors existing on the specified volume at the time the command is
entered. The <size> 1is specified as a decimal number. Refer to the
DISKINIT program description for futher details about file parameters.

Examples of the ALLOCATE command:
AL THISFILE/B, 126

This example allocates, on the system volume, an Indexed file named
THISFILE/Bin with a logical record length of 126 bytes and default
preallocated.

AL,C NEW:BIGFILE/A,5000

This example allocates, on the volume NEW, a Contiguous file named
BIGFILE/Asc whose total length is 5000 sectors.

A R E R E R R R E R E R E E R E R E R E R R R

CLOSE 5-23
81-04-01 TRM.O0S8

5.5.2 CLOSE Command

The CLOSE command is used to take a device off-line. The format of
this command is:

CLose fd

The mnemonic name of the device is specified by <fd>. The CLOSE
command is rejected if it is directed to a device which is currently
assigned.

If the device being CLOSEd is a direct-access device, the <fd> used
in the command is not the volume identifier, but the actual device
mnemonic. For example, to CLOSE a dise named FPY1: which currently
contains a volume named DOS8:, the operator enters:

CLOSE FPY1:

This action removes the volume D0OS8: from the system. The disc may
now be removed or changed. If a direct-access device 1is dismounted
without being CLOSEd, it may only be OPENed on-line in the write
protect mode. (Valid from 3.00). This will ensure that the disk can
not be assigned for writing untill its structure has been checked out
by the DISKCHECK program.

DELETE 5-24
81-04-01 TRM.0S8

5.5.3 DELETE Command

The DELETE command is used to delete a direct-access file. 1Its
format is:

DELete fd(,fd...)
The <fd> identifies the file to be deleted. Type must be specified.

To be deleted, the file must not be currently assigned to any LU of
any task.

A A B R R R R R R R R R R BB

DEVICES 5-25
81-04-01 TRM.0S8

5.5.4 DEVICES Command

The DEVICES command allows the operator to determine the name,
number, status, type, volume name, current request, channel number,
interrupt level and the address of the Device Control Block (DCB) of
all devices in the system. The format of this command is:

DEVices (fd)
The optional operand <fd> specifies the device or file to which the
display is routed. If omitted, the display goes to the terminal

device.

The following is an example of a DEVICE command output:

-DEV

MNEM NR STAT TYPE VOLN DCB-ADR REQ SVC-BLK CS IL
NULL 0

RE 1 275:310 USPO 123:345 77 5
PR 6 275:034 T4 5
PU 7 274:306 76 5
FPYO 8 DIR DOS8 267:030 40 6
FPY1 9 OFFL 266:266 40 6
TRMO 64 265:342 75 4
CON 65 275:162

The MNEM field contains the symbolic name of the device, and the NR
field contains the system device number.

The STAT field gives the information about the status on the device,
which can be:

QFFL off-line
PROT write protected
on-line

The TYPE field indicates:

DIR directory oriented device
TASK task device
physical device

The VOLN field contains either the volume name of a directory
oriented device, or the name of +the Symbiont task that owns the
device.

The CS field contains the Card Select code, the IL field contains
the Interrupt Level and the DCB-ADR field the address of the DCB for
the devices. The REQ field contains the name of task currently
accessing the device, and the SVC~BLK field holds the address to the
involved parameter block.

LIB 5-26
81-04-01 TRM.OS8

5.5.5 LIB Command

The LIB command is used to display the content of a volume or an
element file. The format of this command is:

Lib(,F) ((VOLN:)(ELEMENTDIR),(FILESPEC),(LIST))

The switch <F> is used to display all information about each file,
such as length, creation date ete.

The VOLN is the name of the volume, from which the display will be
done. If omitted, the system volume will be used.

The ELEMENTDIR is the name of the Element File Directory, that
should be examined.

The FILESPEC is the name of a unique file, or a wild-card
specification of a group of file names, to be displayed. If omitted,
all files will be displayed.

The LIST 1is the name of the device or the file to whom the listing
should be directed. If omitted, the terminal device is assumed.

S AR R R R R R R E R R R REEEEEREEREEEEEERNEEBEEBEE M

OPEN 5-27
81-04-01 TRM.0S8

5.5.6 OPEN Command

The OPEN command is wused to bring on-line a device that was
previously off-line. The format of this command is:

OPEn(,(N)(P)) fd

The mnemonic name of the device is specified by <fd>. After opening
a direct-access device, the volume name associated with it is output
to the console device.

If the switech <P> 1is specified, the device is opened as write
protected. If the device is hardware write protected, it will be
automaticly opened protected.

The switch <N> is used to open a direct-access device
non-filestructured. That means that no directory is present and that
no volume name will be established at open.

While a device is off-line, it cannot be assigned to any task.
If the device being OPENed is a direct-access device, the <fd> used
in the command is not the volume identifier, but the actual device

mnemonic. For example, to make the new volume known to the system, the
operator enters:

QPEN FPY1:

POSITION 5-28
81-04-01 TRM.038

5.5.7 POSITION Commands

This set of commands allows the operator to manipulate with magnetic
tapes and cassettes from the console. The format of this command is:

POSit fd,cmd(,n)

The command <cmd> will be executed <n> times on <fd>, and if <n> is
omitted, the command is executed one time.

The command <cmd> may be one of the following:
BRecord, backspace one record.
BFile, backspace to filemark
FRecrod, forward-space one record
FFile, forward-space to filemark
REWind, rewind
RW, rewind

WFile, write filemark

RENAME 5-29
81-04-01 TRM.0S8

5.5.8 RENAME command.

The RENAME command is used to change the name of an unassigned
direct-access file. Its format is:

REName oldfd,newfd

If an element file is to be renamed, the directory name does not
need to be specified in <newfd>.

Note that RENAME FIL/A,FILE/AB is not possible since the main file
type does not change.

This command cannot be use to rename a direct-access volume., The
DISKINIT program must be used for this.

SPACE 5-30
81-04-01 TRM.0S8

5.5.9 SPACE command.

The SPACE command is used to examine the space available on a
direct-access volume. Its format is:

SPace (voln)

The optional parameter <voln> is the name of the volume to be
examined. If omitted, the system volume is assumed.

Al T E R R R E R R R R R EEEEE B R BB

088

¥ TITL1IT7TY REFERBENCE N®HANUAL (CBRM)

CONTENT 1
81-0L-01 URM.0S8

CONTENT

Chapter 1 INTRCDUCTIGCN
Introduction.

-
.
—

SYSTEM BOOTSTRAP LOADER (BOOTLOADER)
Installation.

Operation.

Commands.

Summary.

Chapter

[AS IR AR AV AV AN
Ew N -

DISK FORMATTER (DISKFORM)
Introduction.

System requirements.
Starting.

Required commands.
Optional commands.
Interactive commands.
Messages.

Example.

Chapter

L LAl L Lo Lo L) o o W
o~ WUl =W)

DISK INITIALIZER (DISKINIT)
Introduction.
System requirements.
Start options.
Starting.
Required commands.
Optional commands.
Interactive commands.
Messages.
Default parameters.

1 Example.

Chapter

rFErEEFEFEEEFEEFE
=W o100 EW N =

DISK BOOTSTRAP GENERATOR (BOOTGEN)
Introduction.

System requirements.

Starting.

Messages.

Example.

Chapter

Ui WU o
U Ew N =

DISK INTEGRITY CHECK (DISKCHECK)
Introduction.

System requirements.

Starting.

Messages.

Example.

Chapter

OO OV O
U Ew =

CONTENT 2
81-04-01 URM.OSS8

Chapter 7 DISK DUMP (DISKDUMP)
7.1 Introduction.
| 7.2 System requirements.
: 7.3 Starting.
| 7.4 Commands.
7.5 Messages.
7.6 Example.
Chapter 8 COPY
8.1 Introduction.
8.2 COPYLIB, copy under directory control.
8.2.1 Introduction.
8.2.2 System requirements.
: 8.2.3 Starting.
| 8.2.4 Commands.
i 8.2.5 Messages.
| 8.2.6 Example.
8.3 COPYA, copy ASCII data.
8.3.1 Introduction.
f 8.3.2 System requirements.
8.3.3 Starting.
8.3.4 Messages.
: 8.4 COPYT, copy a task.
; 8.4,1 Introduction.
‘ 8.4.2 System requirements.
8.4,3 Starting.
8.4.4 Messages.
8.5 COPYI, image copy.
8.5.1 Introduction.
8.5.2 System requirements.
8.5.3 Starting.
8.5.4 Messages.
Chapter 9 RESERVED
Chapter 10 OBJECT LIBRARY EDITOR (OBJLIB)
5 10.1 Introduction.
!' 10.2 System requirements.
f 10.3 Starting.
N 10.4 Commands.
10.5 Messages.
| 10.6 Example.
{ Chapter 11 TASK ESTABLISHER (ESTAB)
| 1.1 Introduction.
i 11.2 System requirements.
i 11.3 Starting.
| 11.4 Expression handling.
1.5 General.
11.6 Commands.
1.7 Messages.
11.8 Example.

T R TR R R EE R EEEEEEEEEE BB BB W

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

12

12.
12.
12.
12.
12.

12.
12.
12.
12.
12.
12.
12.
12.

12.
12.
12.
12.

13

13.
13.
13.
13.
13.
13.

14

14,
14,
14,
14,
14,
14,
14,

15

15.
15.
15.
15.
15.
15.

16

16.
16.
16,
16.
16.

17

18

T o

3 O o N = (o0 I — VS I A

LS AR 3 B =g U I AN B

o= N =

OOy OV OO YOO

(el e s BEL B

—~1 OV o Ell N =

TASK TRACE (TRACE)
Introduction.

System requirements.
Starting.
Environment.
Operating modes.

Command Mode.
Expression handling.
Task commands.
General commands.
Memory commands.

CPU commands.
Breakpoint commands.
Debug commands.

Trace Mode.
Trace commands.
Messages.
Example.

FILE PATCH (PATCH)
Introduction.

System requirements.
Starting.

Commands.

Messages.

Example.

PROM PROGRAMMER (PROMPROG)
Introduction.

System requirements.
Starting.

Commands.

Questions.

Messages.

Example.

TEXT EDIT (EDIT)
Introduction.

System requirements.
Starting.

Commands.

Messages.

Example.

MACRO ASSEMBLER (ASMZ)
Introduction.

System requirements.
Starting.

Messages.

Example.

RESERVED

RESERVED

CONTENT 3
81-04-01 URM.0S8

Chapter 19

19.
19.
19.
19.
19.
19.
19.

Chapter 20

-1 vl E W o —

FORTRAN-77S (FORTTT)
Introduction.

System requirements.
Starting.

Options.,

Linking.

Messages.

Example.

RESERVED

CONTENT &4
81-04-01 URM.O0S8

I

T B E E E Rl R R R R R R BB BB E AW

INTRODUCTION 1=1
81-04-01 URM.0S8

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION
This manual is designed as a reference manual for the utility
programs available. The system requirements and running procedures is
described for each program.
Use of this manual requires that the reader is familiar with the
features, functions and conventions of the DataBoard-4680 system from

the user’s point of view as documented in:

- DataBoard-4680 0S.8 Terminal Reference Manual.

This publication is divided into four more chapter groups:
Chapter 3-7 describes the disc maintenance programs.
Chapter 8 describes some copy programs.

Chapter 9-15 holds a set of development tools.

Chapter 16-20 describes the language processors.

2.

1

.2

BOOTLOADER 2~1
81-0L4-01 URM.OS8

SYSTEM BOOTSTRAP LOADER (BOOTLOADER)

INSTALLATION

The System Bootstrap Loader, BOOTLOADER, 1is available 1in two
versions, with or without an interactive part. It is necrmally
delivered without the interactive part, which has to be ordered
specially.

The BOOTLOADER is contained in two fusible link PROMs to be inserted
at location 3B, 3C on a Control Board (1044). The Boot Enable switch
located at the middle of the board should be in the close position.

OPERATION

When power are aserted or the Reset switch is pressed, the CPU
enters the Bootstrap Mode. The first step is to locate the highest
writable memory location, by scanning it downwards in 2KB steps. Then
the stackpointer is initialized to this address.

The second step, depending on the position of the switch located at
the Interval Clock Board (5018), is to enter, either the Automatic
Disc scan Boot sequence, or, depending on the presens of a console
interface, the Interactive or Character Boot Mode. The interactive
part is optional, and has to be ordered specially.

If the switch is in the lower position the disc scan mode is entered

and all possible disc devices are scanned in the following order:
1 Miniflexible disk, CS 55, Dev 0-1

Flexible disk, CS 40, Dev 0-3
10 MB Cartridge disk, CS 44, Dev 1,0,3,2
Flexible disk 4611, CS 45, Dev 0-3
67 MB Cartrideg disk, CS 46, Dev 0-3
Winchester disk, CS 47, Dev 0-3

(o2 TN) I S W \V]

If any device is found on line and Boot loading was successfull,
control is transferred to location 0100H.

If the switch is in upper position and the interactive part is
included, the presens of a console device is checked, and if found,
the Interactive mode is entered. Else the Character device load mode
is entered. This mode allows booting from a character device in either
Binary or Hexadecimal format. Character input devices are:

1 Card Reader
2 SP1 Reader
3 Console UART input

These devices are scanned until one of them becomes ready (has data)
and that device is selected for the further reading. If the load

BOOTLOADER 2-2
81-04-01 URM.0S8

appears to be 0K, transfer is done to the specified address, otherwise
the program halts.

In the Interactive mode there are a wide range of possibilities to
affect the booting. Some small things should however be kept in mind:

- If the message "ERR" is given, the booting should be restarted
from the very beginning.

- Each keyword and parameter is followed by a colon, which acts as
both delimiter and terminator.

- Leading zeros need not necessary be typed in, except when retyping
a number, e.g. the three last didgits are always valid. All
numbers are in octal.

- The dump printout is arranged for printers and if directed to the
console, the last part of the line will be lost if "AUTOLF" is
not supported.

- To abort a not completely typed command, the CTRL + C keys should
be strucked.

2.3 COMMANDS

If the interactive part is included, and the switch located on the
Interval Clock Board (5018) is in the upper position, the Interactive
mode is entered, provided that there is a UART board (4017) with the
Selection Code 75Q installed. The following commands are avaible:

READ:
When given, Cardreader, SP1-Reader and Console are scanned in
order until any of the devices becomes ready. From that only,
that device is used for data input.

DISK:type:cs:dev:
This command is used to transfer the boot loader portion from
the specified disk device into memory. The parameter list are
as follows:

type:
The type of disc-interface to be used:
H:
Disk devices connected with the common disk interface
board (4109).
F:
Single density, single sided flexible disks connected
with interface board (4034).
M:
Single density, single sided minflexible disks connected
with interface board (U4076).

cs:
Select Code for desired interface board, refer to summary
for standard device selection.

dev:
Logical unit selection.

START:
When given, control is transferred to the address obtained

from the previously used load routine. For disk devices, the
transfer address is-always 0100H.

BOOTLOADER 2-3
81-04-01 URM.0S8

BEGIN:adrh:adrl:

Similar to the START command, except that the transfer address
is given as argument. Address format is always expressed 1in
split octal.

DUMP:radix:cs:SAH:SAL:LH:LH:

This command is used to dump a selected portion of the memory
in the selected radix. Radix can be either H: for hexadecimal
or 0: for octal dump. The list device selectcode is <ecs> and
can be either a SP1 (4015) or UART (4017) board. SAH, SAL is
the start address expressed in octal, and LH, LL is the length
also expressed in octal.

2.4 SUMMARY
Command Summary
READ: Load from character device.
START: Transfer to obtained address.
BEGIN:adrh:adrl: Transfer to specified address.
DISK:type:cs:dev: Read boot from specified disk.

DUMP:radix:cs:SAH:SAL:LH:LL: Dump memory area.

Table Over Device Selection

Description IM?E;ﬁ;Iég*Tﬁé;?.hgemark—_q
Mini flexible disk j M -?55Q50—15H076 5
Flexivle disk | F|409|0-1 4034 7
Flexible disk | H éHSQ#O—?éH611

10 MB Cartridge disk . H EHHQ 0-7;&610-6

67 MB Cartridge disk D H f?46Q 0-3 4610-7 i
Winchester disk _~;{—~ 47Q] ‘4612 E
Tnteractive Comsole 750 4017 ?
SP1-Reader : [77Q .H016

Card Reader :h i;TOQ 14037
System Printer _ILJ:(HJE iums/uow

3.1

3.2

3.3

3.4

DISKFORM 3-1
81-04-01 URM.0S8

DISK FORMATTER (DISKFORM)

INTRODUCTION

The Disk Formatter (DISKFORM) generates the magnetic structure on
the diskpack, such as the pre-amble with the address mark, a data
section with dummy data, the post-amble containing the checksum and
the inter-record gap.
SYSTEM REQUIREMENTS

The program requires:

-10 KB of memory above the operating system, including buffer.

-a conscle device.

-a currently supported disc device.

STARTING THE DISC FORMATTER

To initialize a disc pack, first set the disc off-line wusing the
CLOSE command. Then start the program by the command:

DISKFORM

When started, the program displays a menu of available commands,
which are given in an interactive mode.

REQUIRED COMMANDS

The following keywords are required, and must be specified in the
following order:

DEvtype=t
The type of device, which 1s presented in a menu by the
program.

DRive=fd
Specifies the device, where <fd> is the name of the device..

DISKFORM 3-2
81-04-01 URM.0S8

3.5 OPTIONAL COMMAND

The following commands are optional:

Fill=n
Where <n> is a decimal value to be filled into all sectors.

Default is is 229 (ESH).

INterval s(-e)
This command is used to specify the track <s> to be formatted,
or the track interval starting at <s> and ending at <e>.
Default is all the tracks.

3.6 INTERACTIVE COMMANDS
In the interactive mode there are four more commands:

HElp
Displays the available commands.

PArameters
Will display the actual setting of formatting parameters. This
command will not affect any parameters.

STart
Will start the formatting.

ENd
Terminates the program execution.

3.7 MESSAGES
The program may output the following messages:

DISK FORMATTER Rx.yz
Signon by the program, where the revision level 1is <x>, and
the update level is <yz>.

COMMAND ERROR
When an unknown command is entrered.

ASSIGN ERROCR
Failed to assign the device specified in the DRIVE command.

NOT IMPLEMENTED IN THE VERSION
The device type specified in the DEVTYPE command is not
supported.

INTERVAL OUT OF DISK
The interval specified within the INTERVAL command is outside
the disk.

UNDEFINED DRIVE
The required command DRIVE has not been entered.

UNDEFINED DEVICE
The required command DEVTYPE has not been entered.

DISKFORM 3-3
81-04-01 URM.0S8

DISK NOT READY
Time-out on the disk drive.

I/0 ERROR <s>
When an error is detected during disc read or disc write. The

return status is <s>.

END OF TASK <s>
The program terminates, where <s> may contain the SVC error
status.

3.8 EXAMPLE

This is an example how to format a disk pack:

-DISKFORM Load and start the program.

Disk Formatter Rx.yz Signon by the program, then the command menu
is displayed on the terminal.

DEV=CART Device type is 10 MB cartridge.

DR=DPO: Drive specification.

ST Start formatting all the tracks.

END Terminate the task.

-12.34.56 End-of-task 0 The program terminates.

DISKINIT 4-1
81-04-01 URM.0S38

DISK INITIALIZER (DISKINIT)

4.1 INTRODUCTION

The Disk Initializer, DISKINIT, initializes a disc pack for use with
the Operating System. Initialization includes placing the Volume Name
and a pointer to the Bit Map and Master File Directory on the Volume
Descriptor, which is on the first sector of the disc.

The Volume Name consists of one to four characters, the first of
which must be alphabetic. This name identifies the disc to the system.
The DISKINIT allows a disc pack to be named or renamed.

The Master File Directory describes all files on the pack. Filenames
and starting sector address identify each file on the disc.

The Bit Map contains one bit for every cluster on the pack. If a bit
is set, the cluster it represents is allocated. Files are allocated on
free sectors in cluster quantities and these clusters are then marked
as used in the Bit Map. The DISKINIT allows the user to clear the
Directory and Bit Map in order to delete all files on the disc.
DISKINIT also provides a facility to clearing a new disc pack.

4,2 SYSTEM REQUIREMENTS

4,

3

The DISKINIT program requires:

-14 KB of memory above the operating system, including buffer for
the Read Check operation.

-a console device.

-a currently supported disc device.

START OPTIONS

Six options are available with the DISKINIT program: CLEAR,
NOREADCHECK, CLUSIZE, BLOCKSIZE, DEFAULT and DIRECTORY.

Whenever command CLEAR is specified, a read check operation checks
the disc for bad sectors, unless the command NOREADCHECK is given.
These sectors are marked as unavailable in the Bit Map. If the first
sector on the disc fails the read check operation, the pack cannot be
used and a message to that effect 1is printed. Because media
degradation may occur at any time, there are instances where sectors
which are not flagged at format time are flagged as bad sectors during
initialization. In such instances, it is recommended that the disc
pack be backed-up, re-formatted and re-~initialized. The data can then
be restored. .

4.

4.

4

5

DISKINIT 4-2
81-04-01 URM.0S8

The command NOREADCHECK could be given to speed up initialization,
and the dise will not be checked for bad sectors. This command should
not be used if the dise is not known to be "top shape", and is primary
used for test purposes.

The CLUSIZE command 1is used to specify the smallest allocatable
element on the disec, and is given in sectors. The value must be a

-

power of 2. E.g. 1, 2, 4, 8, 16 etc. Max value is 128.

The BLOCKSIZE command 1is used to specify the default blocksize in
sectors, at SVC7 allocate, (refer +to SVC7 FILE HANDLING in 0S.8
Program Reference Manual). The value given 1is rounded off to a
multiple of the CLUSIZE. The value may range from 1 to 255.

The DEFAULT command is wused to specify the number of blocks
specified in BLOCKSIZE to be allocated as default, if not given in the
SVCT7 Block. The value given may range from 1 to 65535.

The DIRECTORY command may be used to locate the Master File
Directory (MFD) on an other than default location on the disec. A
second parameter is used to specify the directory size in blocks of 16
sectors. Currently only 1 as size is supported.

STARTING THE DISC INITIALIZER

To initialize a dise pack, first put the disc off-line using the
CLOSE command. Then open the disc NON-FILESTRUCTURED by the command
OPEN,N fd.

All information required by the DISKINIT is specified within the
DISKINIT command or if no start parameters are given 1in Interactive
Mode:

DISKINIT (DEV=t,DR=fd,V=xxxx(,....))

REQUIRED COMMANDS

The following keywords are required, and must be specified in the
following order:

DEVtyp=t
The type of device, which is presented in a menu by the
program.

DRive=fd
Where fd is the name of the disc device.

Volume=xxxx
Where xxxx 1s the volume name to be given to the disc pack.

DISKINIT 4-3
81-04-01 URM.0S8

4.6 OPTIONAL COMMANDS

The following commands are optional, and may be entered in any

order:

CLEar
Specifies a clear disc and read check operation. When entered,
all files are deleted from the disc. A read check of the
entire dise 1is performed and bad sectors are flagged in the
Bit Map. All flagged sectors are identified in a message Dby
their decimal sector addresses on the disc.

Noreadcheck
Specifies whether the disc¢ should be checked for bad sectors
or not. If given, no read check will be performed. Should be
used with care.

Readcheck
Similar to NOREADCHECK, but will turn readcheck on.

CLUsize=n

Specifies clustersize in sectors where n must be a power of 2.
This command will affect the size of the Bit Map.

Blocksize=n
This parameter specifies the default block size in a file, and
is given in sectors. Number of sectors is, if not a multiple
of clustersize, rounded off at SVCT7 allocate. <n> may be 1in
the range from 1 to 255.

DEFault=n
The parameter given will specify the number of blocks to be
preallocated at allocation time. The value <n> is the number
of blocks ranging from 1 to 65535.

DIRectory=lsa/n
This command 1is wused to change the default location/size of
the Master File Directory. This command should be wused when
any of the system sectors is found to be bad. The starting
sector should be chosen so it will not interfere with any bad
starting sector. The size 1in sectors 1is calculated as
(n*16+1+bitmapsize) divided by (CLUSIZE*CLUSIZE+CLUSIZE).

4.7 INTERACTIVE COMMANDS
In the interactive mode there are three more commands:
PARameters
Will display the actual setting of initialization parameters.

This command will not affect any parameters.

STart
Will start the initialization.

ENd
Terminates the program execution.

DISKINIT L4-4
81-04-01 URM.0S8

4.8 MESSAGES

The DISKINIT outputs the following messages:

DISKINIT Rx.yz
Signon by the program, where the revision level is <x>, and
the update level is <yz>.

MORE THAN 65535 SECTORS FLAGGED, FORMAT DISC
Readchecks founds an extremly bad disc. The disc should be

formatted prior to use.

nnn SECTORS FLAGGED
Informs the operator how many sectors that where flagged in

the readcheck operation.

NO SECTORS FLAGGED
Informs the operator that no sectors on the disc was found

bad.

DIRECTORY WRITE ERROR
Is given when the program fails to write on the disc. Write

protect switch should be checked.

SYSTEM SECTOR FLAGGED IN READCHECK
Is given when the program sould be re-runed, and the DIRECTORY
command should be used to locate the directory on another

starting position.

READCHECK ERROR! LOGICAL SECTOR NNN(10) FLAGGED OFF
Informs the operator that one sector is found to be bad and is
marked busy in the Bit Map. NNN is the logical sector address

on the disc.

DISKERR FC=ffQ RETURN STATUS ssQ
Is given when an unexpected error occurs at disec read or
write. FF is the function code in octal; SS is the return

status in octal.

CMD~-ERR, TYPE=tttt
Informs the operator that a command was not recognized or in
bad format. TTTT is the error specification as:

DEV-TYPE, device type not found in the default table.

VOL-NAME, bad format on volume name.

TOO MANY ARGUMENTS, expected comma or end, found another
parameter.

INVALID PARAMETER, bad format or can’'t be accepted due to
range.

INVALID FD, bad format or device not found.

UNKNOWN COMMAND, command not recognized.

MISSING NONDEFAULT PARAMETER, the START command was given
and any of the commands DEVICE, DRIVE or VOLUMNE was
not given.

CAT OUT OF DISC, the start position given in DIRECTORY
command will not give sufficient space for the Bit
Map sectors.

SEQUENCE, the non default commands are not given in

proper order.

= mx B BE BN B: BE BN BN BN OBE BN OBR BR BN OB BT OB B OBl OB B0 OBl B WD R WD WL WO WL mR Wr Wy W

DISKINIT 4-5
81-04-01 URM.0S8

4.9 DEFAULT INITIALIZATION PARAMETERS

e e = ot . ,
DEVICE TYPE | CLUSIZE | BLOCKSIZE | DEFAULT | DIRECTORY
FLOPPY 5" Normali 1 i 4 ! 1 __ 8/1
I - - S PR S — H -
FLOPPY 5" Double§ 1 4 i 1 16/
! . '
R . i e e e
FLOPPY 5" Quad | 1 | y | 1 i 32/1
! | : |
I e e B s : {
{ FLOPPY 5" Oct : 1 y | 1 i 64/1 !
e . b e — i et
FLOPPY 8" SS, SD: 1 o1 i 16 130/1 i
- S — 1 e I 4
FLOPPY 8" SS, DD 1 1 16 auT/1 |
| : ; i :
_ 1 L
| FLOPPY 8" DS, SD| T 1 16 | 260/ |
! - :
FLOPPY 8" DS, DD 2 | 1 _ 16 | 507/1
' i i
| 1 I
HARD DISK 10MB | 2 | 4 ; 8 | 9600/
| t 1 !
WINCHESTER 10MB 2 _ “ 8 12800/1 _
WINCHESTER 20MB 2 _ b 8 | 12800/1 !
N L. i i i N S .
4,10 EXAMPLE
This is an example of an initialization of a discette.
-CLOSE FPY1: : Close the drive if it is opened. Then
mount the disc to be initialized.
-0OPEN, N FPY1: Open the drive non-filestructured.
-DISKINIT Load and start the diskinit program.
Diskinit Rx.yz Signon by the program, followed by a menu
of the possible device types.
DEV=FSS Device-type is 8" Floppy Single side,
Single density.
DR=FPY1: The drive where the disc is.
V=FMST Gives the disc the name 'FMST .
CLEAR Clear and readcheck of the disc.
START Start the initialization.
No sectors flagged When finished, the program presents a
table of the disc characteristices.
END Terminate the program.
-12.34.56 End-of-task O
-CLOSE FPY1: Close the drive.
-OPEN FPY1: Open the drive filestructured, if You want

to use the disc immediately.

BOOTGENERATOR 5-1
81-04-01 URM.0S8

DISK BOOTSTRAP GENERATOR (BOOTGEN)

5.1 INTRODUCTION
The Bootstrap Generator, BOOTGEN, is used to write a loader sequence
of 1 KB on the sectors 1 to 4 on a disc device. This loader sequence,
which 1is booted into the memory by the System Bootstrap Loader, then
loads the final program to be started, normally the Operating System.
5.2 SYSTEM REQUIREMENTS
The BOOTGEN program requires:
-6 KB of main memory above the operating system.
-a console device.
-a currently supported disc device containing the program to be
started.

5.3 STARTING

The following procedure is recommended to write the loader on the
disc:

-Open the disc-device NON-FILESTRUCTURED by the command:
OPEN,N dev:

-Start the program with the command:
BOOTGEN,t dev:filename

<t>, type of disec:
M, mini floppy interface, 4034. This 1is the default
type.
F, floppy interface, 4076
B, one-board floppy controller, either 4106 or 4108.
H, hard disc interface, 4109.

<dev>, name of the disc device, NOT volume !

{filename>, name of the program to be loaded and started.

5.4 MESSAGES

5.5

Possible messages are:

BOOTGEN Rx.yz

BOOTGENERATOR 5-2
81-0L4-01 URM.0S8

Signon at program start, where the revision level is <x>, and
the update level is <yz>.

PLEASE RELOAD PROGRAM, NOT RESTARTABLE
Impossible to restart the program without reloading it first.

NO PARAM.

Start parameter missing.

INV. NAME

Syntax error, or device/filename missing.

DISK-ASGN

Failed to assign the disc device.

DISK-READ

Read error either on sector 0, or in the directory.

NOT FOUND

Filename not found in the directory.

DISK-WRITE

Write error on one of the sectors 0 to 4.

END OF TASK n

Where <n> may be the SVC error status.

EXAMPLE

This is the normal sequence to write down a loader:

-CLOSE FPY1:

-0PEN, N FPY1:
~-BOOTGEN,F FPY1:0SNAME

Bootgen Rx.yz

Doing floppy boot !
-12.34.56 End-of-task 0O
-CLOSE FPY1:

Close the drive if it is opened file-
structured. Then mount the disc to be
bootgened.

Open the drive non-filestructured.
Load and start the program, and pass
start parameters to it.

Signon from the program.

Tells the type of boot written down.
Good task termination.

Finish-up by closing the drive. It is now
possible to boot from the disc.

e T B B R R R T T T T I TR .

DISKCHECK 6~1
81-04=01 URM.0S8

DISK INTEGRITY CHECK (DISKCHECK)

T

The Disc Integrity Check, DISKC provides a means of recovering

The program

S

]

opern disc fiies following an operating system cr
closes ali files founi to be assigned, and validates =some control
information on the disc,

€ SYSTEM REQUIREMENTS

[
—
(1]
o
[
in
;FQ
(9]
I
]
}

‘ogram requires:
=4 KB of memory above the operating system, including buffer.
-a console device.

-a currently supported disc device.

5.3 STARTING

The following procedures are recommended after an operating system
erash for systems configurated with direct-access devices:

-Relead the operating system.

-Mount the disc tec be checked.

-Jpen the disc-device NON-FILESTRUCTURED by the command
OPEN,N dev:

1

rt the program with the command

]
(97
ot
a
-3

ot

DISKCHECK dev:(,lis

ot

h

(1]

where <{dev> i3 the name of the device holding disc, and

<{list> is an optional list device.
~-Cloze the disc-devica.

is now pessible to open the disc file-structured.

o)

o)

L4

W

o
MESSAGES

The program may output the following messages:

DISKCHECK Hx.y

7
Signon by the program, where the revision level is <x>, and the
update level is Jyzd>.

PLEASE RELOAD PROCGRAM, NOT RESTARTABLE
be

ne Nrogram musu

!
L
3
3]
)
"3
3
O
m
3
]
¥,
[4:]
(4]
L
.6
%

NO PARAM.

Start parameter missing.

INV.NAME
' ile-descript or device name missing.

)

DISK-ASGN
Le

w 1 AP R, — 3 .
Failed to assign the devicel(s,.

DISK-RE/WR
Directory read/write error.
ERROR XF HASH KEY SECTOR IN tFD DIRECTORY
, > -11«}(

Read/write errcor in a type <t> directory.

SECTCR, I3 DELETED

s name in the directory is deleted.

{filename> HAS NO FIRST
A file only present

the standard procedure to close openad files:

if it is opened. Then
» Lo be checus
drive non-filestructure
nrogram and pass drive as

‘e* for read

Al N E R R R R R R R R R R R R R BT EEE R R

7

7.

-

1

.2

3

DISKDUMP T7-1
81-04-01 URM.0S8

DISK DUMP (DISKDUMP)

INTRODUCTION
The Disc Dump utility, DISKDUMP, provides a facility for displaying

the information on a disc volume, or in a dise file, in a format
useful for debugging system and user routines.

SYSTEM REQUIREMENTS
The program requires:
-4 KB of memory above the operating system, including buffer.
-a console device.

-a currently supported disc device.

STARTING
The program is started by the command:
DISKDUMP (cmdinput)

If the <cmdinput> file-descriptor is missing, the program enters the
interactive mode, and prompts on the console for command. If the
{emdinput> file-descriptor is specified, the program enters the remote
mode. If any error occur in the remote mode, the program terminates
with the error status as End-0f-Task code.

COMMANDS

The function of the program is controlled by commands, that could be
entered either in interactive or remote mode.

If <count> is omitted in any dump command, a default count equal to
one is used. If <sect> and <count> are omitted, then the next sector
in sequence is dumped.

INPUT FD
Assign data input to <fd>.

DUH SECT(,COUNT)
Dumps <count> sectors starting from <sect> in hexadecimal
format.

DUO SECT(,COUNT)
Dumps <count>:sectors starting from <{sect> in octal format.

DISKDUMP T7-2
81-04-01 URM.0S8

DUA SECT(,COUNT)
Dumps <count> sectors starting from <sect> in ASCII image
format, pure data only. Can be used to dump text files from
non 03.8 discs.

LIST ON FD
Turns on listing copy option to <fd>.

LIST OFF
Turns off listing copy option.

SKEW
Turns on skew read flag if skewed read is supported by the
driver.

UNSKEW
Turns off skewed read.

END

7.5 MESSAGES

The pr

DISK

BAD

UNKN

PARA

ASSI

DISK

END

Exit from program.

ogram may output the following messages:

DUMP Rx.yz
Signen by the program, where the revision level is <x>, and
the update level is <yz>.

COMMAND DEVICE
Failed to assign the command inpuf.

OWN COMMAND
When an unrecognized command is entered.

METER ERROR
Missing or bad parameter.

GN ERROR <s>Q, NAME <filename>
Error status <s> when failed to assign the input <filename>.

ERROR: FC=<f>Q, STAT=<s>Q
Input error <s> at function code <f> on the input device.

OF TASK <s>
Where <s3> is the SVC error status.

TTH EH EH A EE RN EEEEE NN AN E E NN Y

7.6 EXAMPLE

DISKDUMP 7-3
81-04-01 URM.0S8

This example shows how to examine a file, perhaps generated by a

user program:

-DISKDUMP
Diskdump Rx.yz
IN MYFILE

LIST ON PR:
DUH 0,2

END
~-12.34.56 End-of-task 0

Load and start the program.

Signon from the program.

Assign the file to be examined.

Assign list device for a copy.

Dump in hexadecimal, on the console and on
the list device, the first two sectors in the
file.

Exit the program.

Program terminates.

COPY 8-1
81-04-01 URM.OS8

COPY UTILITIES

8.1 INTRODUCTION

This chapter describes four different useful copy utilities, each
explained in its own part:

COPYLIB, copy/delete under directory control.
COPYA, copy ASCII data.
COPYT, copy a task.

COPYI, image copy.

8.2.

1

COPYLIB 8-2
81-04-01 URM.0S8

COPYLIB UTILITY (COPYLIB)

INTRODUCTION

The COPYLIB utility provides a fast method of saving files. The
files may be copied from volumes to either volumes, or files, or
devices. This is done by reading the content of the directory on the
source volume.

The transfer takes place without any regard to the type of the file,
or the content in the file, except transfer of ASCII files to a

printer.

The COPYLIB program may also be used to delete files under directory
control.

The program may, depending on the start switches, execute either in
an 1interactive mode, or in a remote mode. It is possible to use
wild-card specification of filenames, as well as a selection file.

The interactive mode works in two phases. The first is a questioning
phase of what to do with each file, and the second is the real
working.

8.2.2 SYSTEM REQUIREMENTS

The program requires:

-10 KB of memory above the operating system, including 1 KB
buffer.

-a console device.

-a currently supported disc device.

8.2.3 STARTING

The program requires some start parameters:
COPYLIB(,<D><G>(,BUFSIZE)) SOUHCE(,(DESTINATION)(,SELECTFILE))

The switeh <d> is used when the program should work with the delete
function.

The switch <g>, as in 'GO", is used to enter the remote mode .

The additional <bufsize> expands the copy buffer, which increases

the speed of the copy phase.

T A R E R R E I EE E E E E R BRI

COPYLIB 8-3
81-04-01 URM.0S8

The <source> specifies the input and/or delete volume, where
wild=card file-name specification may be used.

The <destination> is the name of the volume, or the device, or
perhaps the Element-File Directory, to which the files shall be
copied.

The <selectfile> is the name of a file or a device, that contains
the names of the files to be copied or deleted. The <selectfile> is an
ASCII-file, containing one filename or a wild-card specification on
each line. When a <selectfile> is specified, the program enters the
remote mode.

8.2.4 COMMANDS

When the program is entered in the interactive mode, a menu of the
present commands is displayed, and they are:

A Abort execution, don’t copy/delete.
C(=FILE(.ELEMENT)) Copy, perhaps using new name.

D Delete from source.

I Ignore the rest of the directory, start working.
P Pause the execution.

‘CR” Hit the “RETURN” key to skip the file.

A question is then raised for each found file, and one of the
commands above should be given as an answer.

8.2.5 MESSAGES
The program may output the following messages:

COPYLIB Rx.yz
Signon by the program, where the revision level 1is <x>, and
the update level is <yz>.

NOT RESTARTABLE, RELOAD PROGRAM
It 1is impossible to restart the program without relocading it
first.

ASSIGN ERROR
Failed to assign input or output.

SELECT FILE ERROR
Failed to assign or read from the select file,

INPUT OR OUTPUT NOT DIRECTORY ORIENTED
Invoked device of wrong type.

TABLE FULL
The interactive response table full.

ERROR AT READ
When failed to read.

ERROR AT WRITE i
When failed to write.

COPYLIB 8-4
81-04-01 URM.0S8

END OF TASK <s>
Where <s> 1s the SVC error status.

8.2.6 EXAMPLE

The examples shows some different situations of the copy and the
delete functions:

COPYLIB FMS3T:,FCPY:
Each file on the volume FMST: will be presented to the
operator, and a question of what to do 1is raised. If <e>
is specified, that file will be copied to FCPY:. If <d> is
specified, that file will be delete from FM3T:.

COPYLIB,DG FMST:*AB-
Each file containing “AB° in the second and the third
position will be deleted without answering any question.

COPYLIB,G, 14000 FMST:OWNDIR.AB-,FCPY:
Each element beginning with ’AB° in the Element-File
OWNDIR on the volume FMST:, is copied to the volume FCPY:.
File-names will be the same as the original element-names.

COPYLIB,G, 14000 FMST:FILE,FCPY:0WN
If FILE is an Element-File Directory, the elements are
copied into the Element-File Directory OWN on the volume
FCPY:. 1If FILE 1is a normal file, the first file in the
FMST:-directory named 'FILE", 1is copied to the volume
FCPY:, and given the name QWN.

COPYLIB,DG FMST:-/A
Delete all ASCII-files found on the volume 'FMST’.

COPYLIB FMST:,FCPY:,SELECT
Copy all files specified in the file "SELECT”, from the
volume ‘FMST’ to the volume "FCPY’.

En R B ERERARARABEDDIRI IR I i m R

COPYA 8-5
81-04-01 URM.OS8

COPY ASCII UTILITY (COPYA)

8.3.1 INTRODUCTION
The COPYA utility is used to copy ASCII data between devices and/or

files. There are some switches to control the data formatting and
access methods.

8.3.2 SYSTEM REQUIREMENTS
The program requires:

-2 KB of memory above the operating system, including 0.25 KB
buffer.

-currently supported devices.

8.3.3 STARTING
The program requires some start parameters:
COPYA(,<A><I><R>) SOURCE,DESTINATION

The switch <a> is used to append the sourcefile to the destination,.

The switch <i> indicates that the data sould be transferred as ASCII
image data. The default is formatted transfer, refer to 0S.8 Program
Reference Manual.

The switch <r> makes the transfer to take place as random access, to
be used to copy formatted ASCII files with positioning information.
Default is segquential access.

The <source> specifies the input file or device.

The <destination> is the name of the output file or device, created
if not existing.

8.3.4 MESSAGES
The program may output the following messages:
ASCII COPY Rx.yz
Signon by the program, where the revision level 1is <x>, and

the update level is <yz>.

NEW FILE
If the destination was created.

COPYA 8-6
81-04-01 URM.038

ERROR <s> ON INPUT LU O

Failed to assign to, or read from, the source. The SVC error

status is <s>.

ERROR <s> ON OUTPUT LU 1
Failed to create, or assign/write to the destination. The
error status is <s>.

END OF TASK O
The program terminates.

SvVC

mEanrREeEnaREnAAERAR AR AREEAEIE I E I EIII I I NN NN MMM

COPYT 8-7
81-04-01 URM.0S8

COPY TASK UTILITY (COPYT)

8.4.1 INTRODUCTION

The COPYT utility is used to copy task files between devices and/or
files. The program can copy both relocatable and absolute task files.

8.4.2 SYSTEM REQUIREMENTS
The program requires:
-6 KB of memory above the operating system, including 4 KB buffer.

-currently supported devices.

8.4.3 STARTING
The program requires some start parameters:
COPYT SOURCE,DESTINATION

If the <destination> is a file and already present, it will be
deleted and created again. This to allocate the exact amount of space,
to be able to handle absolute contiguous files.

8.4,4 MESSAGES
The program may output the following messages:

COPY TASK Rx.yz
Signon by the program, where the revision level is <x>, and
the update level is <{yz>.

BAD INPUT FILE DESCRIPTOR
Syntax error in source name.

BAD OQUTPUT FILE DESCRIPTOR
Syntax error in destination name.

INPUT ASSIGN ERROR <s>
Failed to assign the input file, where <s> 1is the error
status.

INPUT FORMAT ERROR
The input is not a task file.

OUTPUT ASSIGN ERROR. <s>

COPYT 8-8
81-04-01 URM.O0S8

Failed to create and assign the output file, where <s> is the
error status.

QOUTPUT ERROR
Failed to write to the output.

INPUT ERROR
Expecting more data, didn't find end-of-file or timeout.

RECORD SIZE ERROR
Inputted data not modulo 256 bytes.

<nnnnn> RECORDS COPIED
Number of records copied.

END OF TASK O
The program terminates.

EannaanananaanaaERnREaEnERnREReEaEnRE RN ERERNRTETEnRIETIENTnNIaEnNMmMnMmM i

COPYI 8-9
81-04-01 URM.0S8

IMAGE COPY UTILITY (COPYI)

8.5.1 INTRODUCTION
The COPYI utility is used to copy and/or verify data between devices
and/or files. There are some switches to control the action of the
program.
8.5.2 SYSTEM REQUIREMENTS
The program requires:
-5 KB of memory above the operating system, including 2 KB buffer.

-currently supported devices.

8.5.3 STARTING
The program requires some start parameters:
COPYI(,<V><0>(,BUFSIZE)) SOURCE,DESTINATION

The switch <V> 1is used to verify the sourcefile with the
destination, which is done after the copy job.

The switch <0> is used together with the switch <V>, and indicates
that no copy shall be done, verification only.

The additional <bufsize> expands the copy buffer, which increases
the speed of the copy and/or the verify phase.

The <source> specifies the input file or device.
The <destination> is the name of the output file, created if not
allocated, or the output device.
8.5.4 MESSAGES
The program may output the following messages:
IMAGE COPY Rx.yz
Signon by the program, where the revision level is <x>, and

the update level is <yz>.

NEW FILE
If the destination has to be created.

COPYI 8-10
81-04-01 URM.0S8

ERROR <s> ON INPUT LU O
Failed to assign to, or read from, the source. The 3VC error
status is <s>.

ERROR <s> ON OUTPUT LU 1
Failed to create, or assign/write to the destination. The SVC
error status is <s>.

COPY REQUESTED
Indicates start of the copy phase.

<nnnnn> RECORDS COPIED
Number of 256 bytes records copied.

VERIFY REQUESTED
Indicates start of the verify phase.

BYTE <S> NOT EQUAL TO <C> IN RECORD <R> AT <A>
Verify mismatch between source byte <s> and verified byte <c>
in record number <r> at relative address <a>. Each record is
256 bytes, and the address is within a record.

VERIFY OK
When no mismatch was found between source and destination.

END OF TASK O
The program terminates.

mEanannaAeEaAeEnRNERE RN NERNMEE RN EEE I EIE I I IENM I NN IR

OBJLIB 10-1
81-04-01 URM.0S8

OBJECT LIBRARY EDITOR (OBJLIB)

10.1 INTRODUCTION

10.

10.

.2

3

Y

The Object Library Editor, OBJLIB, is used to manipulate with Object
Library Files. The program will interactively accept c¢ommands and
respond with messages to the console operator. Through available
commands, an Object Library File can be created on a bulk storage
device. This file may be searched for a particular module, selectively
copied to another I/0-unit, or added to another under operator
control.

SYSTEM REQUIREMENTS
The program requires:
=3 KB of memory above the operating system, including buffer.
Qa console device.

-a currently supported disc device.

STARTING
When the program is started by the command
OBJLIB

it enters the interactive mode, and prompts on the console for
commands. The logical wunit 0 1is assigned to the console by the
program.

COMMANDS

The function of the program 1is controlled by commands, that is
entered in interactive mode:

ASsign LU,FD
Assign logical wunit <lu> to <fd>. The default file-type is
OBJ. The file will be created if it is nonexistent. Logical
unit 0 is assigned to the console,

CLose LU
Close the file presently assigned to logical unit <lu>.

COpy LUI,LUO(,MODULE)
Causes one module to be copied from <lui> to <luo>. If a
<module> is specified in the command, the <lui> is first

OBJLIB 10-2
81-04-01 URM.OS8

searched for the <module> as described under FIND. If no
{module> is specified, the first module encounted on the <lui>
is copied., After a COPY operation, the logical units are
positioned at the end of the module copied.

DUplicate LUI,LUO(,MCDULE)
Causes module(s) to be copied continucusly from <lui> to <luo>
until <module> is found. The specified modlue is not copied
and the operation is terminated. If no <module> is specified,
or not found, module(s) are copied until end-of-file on <lui>
is detected.

ENd
Terminate program.

FInd LU,MODULE
Causes <lu> to be searched until <module> is found. The unit
is then backspaced to the beginning of the found module. The
module may now be copied. The <lu> is not rewound when the
FIND command is given. This command should be used tec position
a file containing several modules.

PAuse
Will set the program in pause state.

RWind LU
Rewind the file assigned to <lu> to beginning of file.

TAble LU,LUL
Scans the <lu> and lists on <lul> all module names found from
the position of the file when this command was given. To
create a table of all module names the user must issue a
rewind command, or know that the file 1is at the beginning.
Thus a table of the content of a file containing many modules
may be obtained.

10.5 MESSAGES

The program outputs the following messages:

OBJLIB Rx.yz
Signon by the program, where the revision level 1is <x>, and
the update level is <yz>.

Al
When an unrecognized command is entered.

ECF
When end-of-file is detected.

NEXT MODULE IS:<MODULE>
Tells the name of next module after a copy, duplicate or find
command .

READ ERROR LU <n>
Abnormal read-status on logical unit <n>.

o OO OB EE E T E B EE N EEE T EEE Y.

OBJLIB 10-3
81-04-01 URM.0S8

I/0 ERROR
Write failed.

FILE OPEN ERROR, CODE:<s>
Failed to assign and/or allocate a file, where <s> 1is the
error status.

END OF TASK <s>
The program terminates, and where <s> is the SVC error status.
10.6 EXAMPLE

The following example shows the use of the Object Library Editor for
library manipulation:

-0BJLIB Load and start the Object Library Editor.

OBJLIB Rx-yz Signon from the program.

>AS 1,0LDLIB Assign and position to beginning of the old
master.

>AS 2,CURLIB Assign current master.

>AS 3,NEWLIB Assign, perhaps allocate, new master.

>DU 1,3,SUBR Duplicate all modules up to module SUBR,
from old master to new master.

>FI 2,SUBR Find and position to module SUBR in current
master.

>C0 2,3 Copy one module, SUBR, from current master
to new master.

>RW 3 Rewind new master,

>TA 3,0 List the content of the new master on the
console.

>EN Exit program.

-12.34.56 End-of-task O Program termination.

1.

1.

11.

1

ESTAB 11-1
81-04~01 URM.0S8

TASK ESTABLISHER

=]
9]
(=1
=
o s

INTRODUCTION

This chapter describes the 03.8 Task Establisher, ESTAB. Any task
must be established using ESTAB before it can run under 0S.8.

The functions of ESTAB and the commands used to control it, are
fully described in this document. The user should reference the 0S.8
Program Reference Manual for detailed information about task
preparation within an 0S.8 environment.

A task may be a single program or a group of programs linked
together. ESTAB processes object-code programs, links external
references, and produces either a relocatable task for loading and
running under 0S.8, or an absolute memory-image stand-alone task such
as the 0S5.8 itself.

The command stream directing ESTAB activity can be input in remote
mode or interactively. An operator uses the commands to specify
programs for inclusion in the task, as well as task options. The
establishment procedure requires two passes of the object code. In the
first pass, ESTAB collects the modules to be included, and compiles a
symbol table of external references and definitions. In the second
pass, the actual Task is built.

SYSTEM REQUIREMENTS

ESTAB requires 15KB of memory space, and as much space as 1is
reguired to house a dictionary of all external references and
definitions in the programs of the task being established. ESTAB
builds task modules using disc file as work storage. Required devices
include input and output binary discs for the input object code and
output relocatable or absolute code. A temporary dise file Iis
allocated on the system volume to hold pass one input programs for use
during pass two. ASCII devices requirements are one for the command
input and another for the list output.

STARTING
The generalized start command format is:
ESTAB(,,ADDMEM) (INPUT)(,(OUTPUT)(,(RADIX)(,LIST)))
The <ADDMEM> is the additional memory size in bytes, that should be

added to the ESTAB to hold the symbol table. A default table
sufficient for 100 symbols is contained within the ESTAB.

11.

ESTAB 11-2
81~-04-01 URM.0S8

The <INPUT> file specification determines the program operating
mode. If it does not exist, the program will enter the command mode,
and prompt at the console for commands. If an input file is specified,
the program will enter either the direct mode or the command mode. The
direct mode is entered if the file is in OBJECT format, and that file
will be used as the only input file during the task establishment, and
no command processing will take place. If the file is in ASCII format,
the command mode will be entered. The command mode can also be entered
if the prefix "CMD=" 1is typed in front of the input file
specification.

The <QUTPUT> file specification will cause creation and assignment
of an output file.

The <RADIX> is "O" or "H" and sets the values in the listing to be
written in Octal or Hexadecimal form. Default is Hexadecimal.

The <LIST> determines where and if the 1linking list should be
written. '

All parameters above may be overidden by a command in the command
mode.

EXPRESSION HANDLING

All values can be entered as expressions, which are evaluated from
left to right on a strict 16-bit integer basis. Operands can be either
symbols already defined, or numerics such as octal, decimal, hex
values and ASCII-strings. Legal operations are +(PLUS), -(MINUS),
/(DIVISION), *(MULTIPLICATION), &(AND), !(OR), ?(XOR) and #(SHIFT).
Note that only the PLUS and MINUS operations are allowed on
non-absolute values. Note also that some commands require absolute
values, such as ORG and PLCBASE. The value of the PLC selected by the
PLCNR command can be addressed by the symbol “#°, where this value
never is absolute.

11.5 GENERAL

The following shortenings are used through the section:

FOMD
Standard File Or Module Description.

SYMBOL
Any legal symbol, see Assembler Manual.

VALUE
An expression that can be evaluated to a value.

PLCNR
An expression that can be evaluated to a value representing a
PLC. The value must be between 0 and 31, where 0 represents
PLC O.

ESTAB 11-3
81-04-01 URM.0S8

OPT
File search options used together with the INC and LIB
commands:
A, define the unsolved absclute symbols, do not include the
module.

E, search through the file until End-0f-File is found.

R, (default) the file is searched from the current position.
When End-0f-File 1is found, the file 1is rewound and
searching resumed. This process continues until either no
unsolved references exist, or no more references can be
solved in that file.

W, same as "R", but the file is rewound before searching is
started.

11.6 COMMANDS

This section describes the commands that can be given. A command
line starting with an asterisk “# in the first column is handled as a
comment .

ABOrt
Program execution is aborted. The output file is deleted.

ABSolute
Generates an absolute task. Default is relocatable.

CHAin FOMD
Re-assign the command file.

CHEck
Lists unsolved or multiple defined references on the conscle,
with the location first referenced.

CEQu VALUE,SYMBOL(,SYMBOL...)
Same as EQU with the exception: If the symbols already have a
value, that wvalue is not changed, and no error occurs.

CEXternal VALUE
Gives the VALUE ¢to those CEXTRN symbols that are referenced
but not given any value through the linking.

ENd (VALUE)
End of command sequnce. The output file and the listing are
produced. If VALUE is present, it defines the program start
address.

EQu VALUE,SYMBOL(,SYMBOL...)
The SYMBOLs listed are given the specified VALUE. If the
symbols are not found, they are entered into the symbol table.
If the symbols already have a value, they become multiple
defined.

EXpand VALUE
Is used to add additional memory to a task beyond what is
required to hold the code body. VALUE is the number of bytes
to be added.

ESTAB 11-4
81-04-01 URM.0S8

INclude(,0PT) FOMD(,FOMD...)
Will include a file or a module into the the 1linking. If a
filename is given, the old file, if any, is closed and the new
file is assigned. If a module name is given, the file assigned
will be searched for the module and the module will be
included. If no module is given, the whole file is included.
The search and inclusion depends on the options given.

LIBrary(,0PT) FOMD(,FOMD...)

Will search through the file or module and look for any ENTRY
that corresponds to an undefined symbol. If so, the module is
included. If a module 1is given, the file will first be
searched for the module, and then the module will be searched
for entries corresponding to undefined symbols. If no module
is given, each module in the file will be interpreted. The
search through the file, depends on the option given. If E
option is given, the file must be ordered in such a way, that
a module only will refer another module appearing later on in
the file.

LISt/NOList (ABSolute/UNUSed)
Will enable/disable the listing of either all symbols, or
either all symbols with an absolute value, or all symbols not
referenced during the linking.

LOg FD
Directs a log of the commands and the error messages to a log
file. Each INC and LIB command will be printed separatly on
the linking list.

MAXLu n
Is used to set the upper limit of the number of disk files the
established task can use. Default <n> is 3.

MAXNode n
Sets the number of nodes that will be generated to the task at
load time. Default <n> is 8.

OBject FD
Renames the temporary file and saves it. This 1s wuseful to
ereate a new object library from others, using the LIB and INC
commands.

OPtion opt(,opt...)
Set task load options:
RESident, makes task memory resident.
NONAbortable, not abortable from other tasks.
DEFAssign, default Logical Unit assignment.
NOStackcheck, disables stack limit check at SVC.
ERMsg, error messages generated by operating system.

ORG VALUE
Will origin the PLC given in a previous PLCNR command.

PAuse
Will put the Task Establisher in pause state.

muEanRmEERERERLERERAEREEENEEREE NI RN RE RN NN NN NTNANNR

ESTAB 11-5
81-04-01 URM.0S8

PLCBase VALUE
Orginates the first PLC in a sequence defined by a PLCOrder
command.

PLCCommon plecnr
Selects the <{plenr> under which any common-areas will be
allocated. Default PLC is 1,

PLCEnd
Generates the symbols $$PLCEOO0 through $$PLCE31. These
symbols, that may be referenced in the user program, will,
after the END command, be given the value of the first free
location after respective Program Location Counter.

PLCList plenr(,plenr)
Selects the PLC(s) to be printed in the linking list. Default
is PLC O and 1.

PLCNr plenr
Selects a PLC for a subsequent ORG command.

PLCOrder plenr(,plenr...)
Enables the wuser to specify in which order the PLC-segments
are to be putted into memory.

PLCStart
Generates the symbols 3PLCSO0 through $$PLCS31. Each symbol
is given the start value of each PLC, which is controlled by
the PLCBase command.

PRINt FD
Specifies where the linking 1list should be written. This
command will overide the <FD> given in the start command.

PRIOrity prio
Sets the default priority to a task. The priority must be an
absolute value and in the range 9<prio<250. Default priority
is 128.

RADix 8/16
Selects the base to be used when printing values.

REDefine VALUE,SYMBOL({,SYMBOL...)
Will change each already defined SYMBOL to the new VALUE.

RELocatable
Will generate 0S.8 Relocatable Task File as output. This is
default.

REMote
Causes the linking to be aborted, if an error is detected.

SELect SYMBOL(,SYMBOL...)
Enters the SYMBOls as undefined into the symbol table.

STACKlimit VALUE
Will set the task load stack size. Default is 256.

ESTAB 11-6
81-04-01 URM.0S8

TAsk FD
Specifies the output task file.

UNSolved VALUE
Gives VALUE to those symbols that are referenced but not given
any value through the linking.

VERsion X.YZ
Sets the version number in task files. Default is 0.00.

11.7 MESSAGES

The following messages may be written by the ESTAB:

ESTAB R.xyz
Signon by the program, where the revision level is <x>, and
the update level is <yz>.

RELOAD PROGRAM
Is written if the program is restared without being reloaded.

CONSOLE ASSIGN ERROCR
Failed to assign the console.

COMMAND ERROCR
Undefined command.

COMMAND NOT YET IMPLEMENTED _
A command to be implemented in the future.

PARAMETER ERROR
Parameter missing or invalid expressed.

THAT SYMBOL IS ALREADY DEFINED
Tries to define an existing symbol.

FILE NAME ERROR
Syntax error in a file-descriptor.

FILE NOT FOUND
File or device not present.

INPUT FILE NOT SPECIFIED
Tries to include a module without having an input file
assigned.

MODULE <name> NOT FOUND
Module not present in the file.

END OF TASK <s>
Program terminates, and where <s> c¢an be: 0-No errors,
1-Undefined or Multiple Defined Symbols, 2-Aborted.

A N E R RN R R R RN EEEEEEREEEEEE W

11.8 EXAMPLE

ESTAB 11=7
81-04-01 URM.0S8

This example illustrates how to establish a simple task. The object
library file MYLIB contains the object module(s):

~ESTAB

Estab Rx.yz

TASK MYTASK

INCLUDE MYLIB

PRINT PR:

END

-12.34.56 End-of-task O

Load and start the task establisher.
Signon from the program,

Assign, perhaps allocate too, the result.
Include the module(s).

Produces a map of the task on the printer.
Generate the result, and exit.

Terminates with good status.

TRACE 12-1
81-04-01 URM.0S8

TASK TRACE (TRACE)

12.1 INTRODUCTION
The Task Trace Utility, TRACE, is an interactive wutility program
designed to assist the wuser in debugging tasks in the assembly
language level in an Operating System environment. It has powerful
facilities for monitoring the execution of a program, either in

real-time or interpretive mode, and allows modifications to be made
easily at run time.

The TRACE program is available in a disk version supported by an
operating system, or in a stand-alone version.
12.2 SYSTEM REQUIREMENTS
The program requires:
-9 KB of memory above the operating system, including buffér.
-a console device.

-a currently supported load device.

12.3 STARTING
When the program is started by the command
TRACE(,D/H/0) (fd(,sw) (pari1(,par2...)))

it enters the interactive mode, and prompts on the console for
commands.

The optional switches D, H and O is used to set up either decimal,
hexadecimal or octal as the default radix. If omitted, hexadecimal
radix is chosen.

The optional parameter <fd> 1is the name of a file containing the
program to be traced. This program is loaded and the debug session is
started automatically. The optional switches <sw> and parameters
<par1> and <par2...> are passed to the started task.

12.4 ENVIRONMENT
There are no demands or requirements on a program that should be

traced, and it 1is possible to debug interrupt routines with the
stand-alone version of the TRACE.

12.6

12.6.1

TRACE 12-2
81-04-01 URM.0S8

If the TRACE is started without parameter, the first thing to do is
to load the program that should be debugged. The second is to start
the program, with or without switches and parameters. The TRACE task
will then reside in memory in a paused state and be used as a run-time
library by the debugged task.

When the debug session is finished, the TRACE task may be removed
with the CANCEL command, or continued with the CONTINUE command. 1In
that case the TRACE will prompt the user for the next command.

OPERATING MODES

The TRACE works in two modes, a Command Mode and a Trace Mode. The
Command Mode is used to prepare for the debugging session, and the
Trace Mode is the real debugging.

The Command Mode handles the debug preparation such as loading and
starting the program to be traced, specifying trace conditions and
manipulating memory and register contents etc.

The program execution is controlled in the Trace Mode by single-key
commands, which alsc allows the user to specify certain trace
condition.

COMMAND MODE

A large set of commands are available in the command mode.
commands controls the futher action of the TRACE, and allows the

to specify breakpoint addresses and thier actions. The user 1is su
supported with the possibility of a copy function and user defined
symbols.

EXPRESSION HANDLING

All values can be entered as expressions, which are evaluated from
left to right on a strict 16-bit integer basis. Operands can be either
symbols already defined or numerics such as octal, decimal,
hexadecimal values and ASCII characters. Legal operations are +(PLUS)
and -{(MINUS). The current program location can be refered to with the
symbol “*’, and the last inputted address value can be refered to with
the symbol “#°. Numeric values are expressed in the default radix.
Some commands have switches that allows the use of another radix than
the default radix.

12.6.2 TASK COMMANDS

These commands are related to task functions:

ENd
Terminates the debugging. Don’'t forget to remove the TRACE
task.

LOad fd(,(tid)(,addmem)
Load a task from <fd>. The optional parameter <tid> will be
the name task, and if omitted, it is set to the first four

TRACE 12-3
81-04-01 URM.0S8

characters in <fd>. The <addmem> is the amount of area that
sould be added to the task at load time.

PAuse
The user program is paused. The command COntinue TID should be
used to resume the debugging, where <tid> is the name of the
user program - not the TRACE identity USPn !

STart, (switches) tid(,parameter)
Start debugging the task named <tid>, and pass <switches> and
<{parameters> to it. The task is started at its ordinary entry
address on which a single-step breakpoint 1is inserted., Then
the TRACE task pauses itself and the debugging continues under
the started program identity, which uses the TRACE program
code as a subroutine package.

12.6.3 GENERAL COMMANDS
This is a command group that contains general pupose commands:

CONvert value
Convert and dispaly the <value> to both decimal, octal and
hexadecimal values.

COPy ON fd
Enables the copy function to <fd>. All commands and
informations displayed on the terminal is copied to <fd>.

, [:
obs f_é?/d’ > measte exevters

COPy OFF o » s
Disables the copy function. b el | v
o o Ve ‘.‘*
RADix 8/10/16 i

Selects the default base for numeric values.

SET name=addr
Set a symbolic relocation register <name> to the value <addr>.
The <name> is a user defined symbol, not exceeding 6
characters length, which may be used in any expression, In
hexadecimal radix the name must not conflict with a
hexadecimal number such as AE or BED ete.

SVe OFf/0N
Disables/enables the interpretaion of the RST 7 instruction as
a SVC. Default is enabled.

12.6.4 MEMORY COMMANDS

This group of commands are used to manipulate the content of main
memory:

EXamine(,A/D/H/0) addr(,size)
Displays the memory content in either ASCII (A), or decimal
(D), or hexadecimal (H), or octal (0). The display starts at
the address specified by <addr>, and <size> bytes are
displayed. If <size> is omitted, 1 byte is displayed.

TRACE 12-4
81-04-01 URM.038

FILL(,D/H/0) addr,size,value
Fills a memory area <size> bytes large starting at <addr> with
<value>. The radix of the <value> is defined by the optional
switches and may be either decimal (D), or hexadecimal (H) or
octal (0).

MOdify addr
Displays 16 bytes of memory starting at address <addr>, the
operator may now modify the content of the memory cells by
typing the new values separated by a comma and terminated by a
return. If only return is entered nothing is modified.

12.6.5 CPU COMMANDS

In order to support the user with the possibility to control the
Central Processor Unit, this set of commands has been implemented:

DISable
Disables the interrupt logic of the CPU. Use only with the
stand-alone version.

ENAble
Enables the interrupt logiec of the CPU. Use only with the
stand-alone version.

INput port
Displays the content in the I/O-port with the address <port>.

NMI
Enables the TRACE to take care of non-maskable interrupts,
which will act as a breakpoint when it occurs.

OUT port,value
Sends the data <value> to the 1I/0-port with the address

<{port>.

REGister (register=value)
Display the content of the current register set if the
parameter is omitted. Change the content of the <register> to
the <value>. The registes are specified by a mnemonic:

A = byte register A,
F = condition code, where the flags are abbreviated:
Z = zero true
= carry true
sign true
= parity true
To clear all flags enter REG=return-key.

™ WO
L1}

BC = register pair BC.
DE = register pair DE.
HL = register pair HL.
X = index register X, 16-bit.
Y = index register Y, 16-bit.
SP = stack pointer, 16-bit.

TRACE 12-5
81-04-01 URM.0S8

12.6.6 BREAKPOINT COMMANDS

Breakpoints are user-selected locations at which the program
execution is halted to permit interaction between the user program and
the TRACE. Breakpoint facilitate free-run execution of the program. A
breakpoint is furnished by a RST-instruction (normally RST 1), which
is placed at any instruction location in the user program. The number
of breakpoints is only limited by the amount of memory added to the
TRACE at task establish time. When a breakpoint is reached, the TRACE
checks that the location belongs to an adequate instruction.

During an active debugging session no breakpoints are placed in the
user program at single-step or interpreting mode. When the trace mode
changes to free-run, all breakpoints will be stored into their
locations and the control is transferred to the user program. The
breakpoints will be removed when a breakpoint is encountered, and the
original instructions will be restored.

This chapter describes the commands which is used to control the use
of breakpoints.

Halt addr
Stops the program execution at <addr>.

JTAble addr
Specifies a base address for a jump-table containg 256 bytes.
The address is always at a 256 byte boundary. All programmed
entries through this table will not be traced.

LIst
Displays the current trace conditions and their addresses.

REmove (addr)
Remove all trace conditions if the parameter is omitted, or
the breakpoint at the address <addr>.

SUBroutine addr
Defines a subroutine, by its entry address <addr>, not to be
traced. Subroutines may be debugged in an earlier stage and
excluded from being traced when debugging program modules.
When the defined subroutine is called from the user program, a
message 1s printed and the subroutine is executed in free-run.
Refer to the warning described with the trace command "X~ !

TRace(,D/J/M/R/3) addr
Put a trace condition at the address <addr>. The trace
condition is specified by the switch:

Omitted
Enter the single-step mode,.

D{isable)
Enter the free-run mode. The program execution will
continue until a new breakpoint is encountered.

J (ump)
Enter the interpreting mode. Print only executed JMP, CALL
and RET instructions.

TRACE 12-6
81-04~01 URM,0S8

M(emory)
Enter the interpreting mode. Print the change of any
memory cell defined by the WATCH command at breakpoint
time.

S(ecan)
Enter the free-run mode. Print every change of any memory
cell defined by the WATCH command.

R(egister)
Enter the free-run mode. Print every change of any
CPU=-register at breakpoint time.

WATch addr(,addr...)
Define an address in memory to be watched for any changes. The
defined memory cell will be printed if changed. The printing
occurs both in the interpreting mode, and in the free-run mode
when a breakpoint is reached.

12.6.7 DEBUG COMMANDS

These commands are used to enter the Trace Mode, where the program
execution is controlled:

DEBug addr
Start debugging at the address specified by the <addr>.

PROceed
Continue the debugging at the last program location when the
command mode was entered.

12.7 TRACE MODES

This mode works in two sub-modes of the real debugging session, the
Interpreting Mode and the Free-run Mode.

In the Interpreting Mode the execution of the wuser program is
performed by TRACE and not by the user himself. The execution takes
place through an emulating technique, where the TRACE acts in the same
way as the Central Processor does.

In the Free-run Mode the control is transferred to the user program,
and if neither any breakpoints are specified, nor a breakpoint is
reached, the user program never returns to the TRACE.

The Trace Mode is identified by the cursor position, which is
located at the same line as the instruction that is to be executed.
The cursor is placed immediately after the instruction, and the action
is controlled by trace commands.

When the control ' is returned to the TRACE, it always displays any
register changes and the next instruction tc be executed. The
instruction 1is displayed by its mnemonic, and indirect addresses are
displayed with their absolute values.

TRACE 12-7
81-04-01 URM.0S8

12.7.1 TRACE COMMANDS

This chapter describes a set of one-key commands that are to be used
in the trace mode: SPACE KEY
Step to next instruction in single-step mode.

D(isable)
Enter free-run mode at the current location.

J{ump)
Set a breakpoint at the target address location.

K(ill)
Remove the breakpoint at the current location, if any.

L(oop)
Execute the current DJNZ instruction until end. May be wused at
any two bytes instruction. Eg put a temporary breakpoint at
current program location+2.

R(egister)
Print all CPU-register content. Does not affect any register or
the trace mode.

T(race)
Specify a single-step breakpoint at the current location.

W(atch)
Specify the current address argument to be checked for changes.

X(ecute)
Supress the currently entered subroutine. The return address
must be last item push on the CPU-stack.
WARNING !
Note that the top of stack is not the address to return in the
user program, but an address in the TRACE program to catch the
next return instruction. If the top of stack item is used as a
parameter, dont use 'X’ or SUBROUTINE or JTABLE commands !

ANY OTHER KEY
Exit trace mode and enter command mode.

12.8 MESSAGES
The program outputs the following messages:

TRACE.8 Rx.yz
Signon by the program, where the revision level is <x>, and
the update level is <yz>.

NQO I/0-RAM
Informs that no I/0-RAM is present on the controller card.

ERR-TYPE:tttt, POS:pppp
When either an invalid command, or parameter or switch is
entered. The position field <pppp> describes where in the
command line the error occured, and the type field <tttt>
contains a detailed explanation:

TRACE 12-8
81-04-01 URM.0s8

COMMAND, when an unknown command is entered.

PARAM., when an invalid parameter is entered.

OPTION, when a non-existing switch 1s entered, or cant be
satisfied.

NAME, the file descriptor is not found or invalid.

TASKID, the specified task is not found or invalid.

END OF MEMORY
End of memory when defining a symbol in the SET command.

TAB-OVF
Table overflow. Can’'t specifiy any more trace locations.

CAN'T FIND IT
The address specified in a REMOVE command is not found.

ILLEGAL BREAKPOINT

A RST-instruction occured at a non specified address. Start

the debug session from the beginning.

addr WAS co IS nn
The memory cell at address <addr> has been changed. The
original content was <oo> and the new content is <nn>.

SUBROUTINE RUN..
An excluded subroutine is entered.

TRACE STOP
A previous defined HALT location is reached.

HALT TRACED
The CPU-instruction HLT is discovered. Will never be executed.

TRACE ABORT
A non-maskable interrupt has occurred.

ILLEGAL INSTRUCTION
An unknown CPU-instruction is detected in the interpreting
mode.

END OF TASK <s>
The program terminates, where <s> may be the SVC error status.

12.9 EXAMPLE

TRACE 12-9
81-04-01 URM.0S8

The following example shows the use of the TRACE program.

-TRACE

Trace Rx-yz

LOAD MYTASK

START MYTA

-12.34.56 Paused
BC=0000 DE=0000 etec.
9000 SVC 2,9345

SET MAIN=*

TRACE MAIN+12A

PROCEED

BC=0000 DE=0000 etec..

9000 sSVC 2,9234
DE=003F

912A LI A,0D .

END

-12.34,56 End-of=-task 0
-CA
-12.34.59 End-of-task 0O

Load and start the TRACE.

Signon from the program.

Load the task to be traced.

Start it. No parameters required.

The TRACE-task pauses.

The current register set and the first
instruction in the program is displayed.
The RETURN-key was typed, and the current
program location value is assigned to the
symbol <main>.

Set up a single-step breakpoint at the
relative address <12A> biased the symbol
<main>.

Enter the trace mode at the current program
location.

First the complete register set is shown,
then the next instruction is displayed.
The single-key command 'D° was typed and
the free-run mode was entered. Then the
previous specified breakpoint was reached,
and register changes as well as the new
instruction is displayed.

The RETURN-key was typed to enter the
command mode, where the END-command was
entered.

Program termination.

Remove the TRACE code,

The TRACE task terminates.

13.1

PATCH 13-1
81-04-01 URM.O0S8

FILE PATCH UTILITY (PATCH)

INTRODUCTION

The File Patch utility, PATCH, provides a facility for changing the
code in both absolute and relocatable Task files. The new code 1is
appended to a relocatable task, and inserted at their proper places in
an absolute task.

13.2 SYSTEM REQUIREMENTS

The program requires:
-4 KB of memory above the operating system, including buffer.
~a console device.

-a currently supported disc device.

13.3 STARTING

The program is started by the command
PATCH(,0) TASKFILE

where <taskfile> is the name of the task to be changed, and <o»> 1is
used to select octal notation. Default notation is hexadecimal.
COMMANDS

The function of the program is controlled by commands entered in an
interactive mode. Depending on the type of the taskfile, the program
enters either the absolute, or the relocatable mode.

All values can be entered as expressions, which are evaluated from
left to right on a strict 16-bit integer basis. Operands can only be
numerics, either octal or hexadecimal depending on the start switch.

Legal operations are +(PLUS) and - (MINUS).

When started, the.program displays a menu of available commands:

ABSOLUTE MODE

EXamine ADDR,LENGTH
Display <length> bytes of the file starting at memory
address <addr>.

PATCH 13-2
81-04-01 URM.0S8

MOdify ADDR,DATA(,DATA...)
Change the content of the file starting at memory address

<addr> to absolute byte(s) with the value <data,...>.

Help
Displays the possible commands.

ENd
Terminates the program.

RELOCATABLE MODE

ABs ADDR,DATA(,DATA...)
Change the content starting at address <addr> to absolute
byte(s) with value <data,...>.

RELAdr ADDR,RADDR(,RADDR...) «
Change the content starting at address <addr> to relocatable
address(es) with the value <raddr,...>.

RELBYte ADDR,DATA(,DATA...)
Change the content starting at address <addr> to relocatable
byte(s) with the value <data,...>.

RELBY256 ADDR,DATA(,DATA...)
Change the content starting at address <addr> to relocatable
byte(s) with the value <data,...) divided by 256.

HElp
Displays the possible commands.

ENd
Terminates the program.

13.5 MESSAGES
The program may ocutput the following messages:

PATCH R.xyz
Signon by the program, where the revision level 1is <x>, and
the update level is <yz>.

BAD FILE TYPE
The file was not a task file.

COMMAND ERROR
When an unrecognized command is entered, or an illegal value.

ADDRESS OUT OF RANGE
Address specification 1is outside the limits of an absolute
file.

END OF TASK <s>
The program terminates, and where <s> is the SVC error status.

13.6 EXAMPLE

PATCH 13-3
81-04-01 URM.0S8

This example shows how to modify a task file:

-PATCH FILENAME
Patch Rx.yz

ABS 1234,0,1
RELA 89AB, 1234

END
-12.34.56 End-of-task 0

Load and start the program, use hexadecimal
notation.

Signon from the program, then the proper
command menu is displaved.

Puts out the absolute values 0" and “17 to
the addresses 12347 and "1235°.

Puts out the relocatable address "1234°7 to
the addresses “89AB”~ and “89AC”.

Exit the program.

Program terminates.

14.1

14,2

14.3

4.4

PROMPROG 14-1
81-04-01 URM.0S8

PROM PROGRAMMER (PROMPROG)

INTRODUCTION

The Prom-Program utility, PROMPROG, is used to transfer an absolute
task file to EPROM-chips, which type could be either 2758, or 2716, or
2732.

The program is controlled through commands, and uses an internal
buffer (programming buffer) to transfer the data to and from the
EPROMs.

SYSTEM REQUIREMENTS

The program requires:

-10 KB of memory above the operating system, including buffer.
-a console device.
-3 currently supported disc device.

-a prom programmer.

-a prom memory card.

STARTING

Connect the Prom-Programming card to any free I/0-slot. Mount the
proper type-plug, which specifies the EPROM-type, on the Prom-Memory
card. Select the base-address of the Prom-Memory card, and attach it
to the Prom-Programmer.

When the program is started by the command

PROMPROG
the program displays a menu of available commands, the type-plug and

the base address of the memory card. Then the program enters an
interactive mode, and prompts on the console for commands.

COMMANDS

The function of the program is controlled by commands, that is
entered in an interactive mode:

EXplain
Displays the .pessible commands.

PROMPROG 14-2
81-0L-01 URM.0S8

FIle FILENAME
Assign data input to <filename>.

Get PROMNR
Load the programming buffer with data for the EPROM with the
number <promnr>. The <promnr> specified in this command, will
be the default EPROM-number in all following commands, that
has the <promnr> as an optional parameter.

NExt
Increments the default <promnr>, and loads the programming
buffer with data, from the file, for next EPROM,

DUmp PROMNR
Transfers the content of the EPROM with number <promnr> to the
programming buffer. This command 1is very useful when
duplicating an already programmed EPROM.

INVert
To use inverted data or not.

TEst (PROMNR)
Test if the EPROM is erased or not.

PROgram (PROMNR)
Start program the EPROM with data from the programming buffer.
When the FEPROM is programmed, this command is followed by a

verify phase.

VERify (PROMNR)
Verify the content of the EPROM with the content of the
programming buffer. This 1is always done automatically after

each “PROGRAM” command.

TYpe (PROMTYPE)
Sets the current EPROM-type to <promtype>. If the <{promtype>
is omitted, the possible EPROM-types are displayed.

RAdix 8/16
Selects base for numeric input and output. Default is 16.

ENd
Exit from the program.

14.5 QUESTIONS

Some commands responds with further questions, that has to be
answered before any action takes place.

When the command “INVERT is entered, the following question 1is
raised: '

DATA INVERTED OR NOT (Y/N)?
Reply ‘Y” or ‘N’ if the data should be inverted or not.

PROMPROG 14-3
81-04-01 URM.OS8

When the optional parameter <promnr> is entered to the "PROGRAM’
comnmand, and the <promnr> is not equal to the default <promnr>,
answer the following question:

ARE YOU SURE YOU WANT TO PROGRAM PROM s DATA INTO PROM d (Y/N)?
Reply YY" or "N’ depending on if this is true or not.

14.6 MESSAGES
The program may output the following messages:

PROM-PROGRAMMER R.xyz
Signon by the program, where the revision level is <x>, and the
update level is <yz>.

NO PROGRAMMER
Prom-programming card is missing.

PROGRAMMER NOT READY
The programmer doesn t accept commands.

CARD SENSE ERROR
The memory card does not respond.

CARD ADDRESS ERROR
The base address, or the address range of the memory card is
not matching the type of the EPROM.

PROM SIZE DOESN'T FIT PROGRAMMER
The memory card doesn’t respond to addresses within the size of
the EPROM-type.

CARD ADDRESS RANGE: ssss - eeee
The PROM-card is starting at address <ssss> and ending at
address <eeee>.

PROM SIZE bb KBITS
The size of each prom 1is <bb> Kilo Bits. Depends on the
EPROM-type.

COMMAND DOES NOT EXIST, ENTER 'EXPALAIN ® FOR COMMAND MENU
When an unrecognized command is enetered.

INPUT FILE NOT ASSIGNED
Tries to load data prior to a 'FILE command.

INPUT FILE MUST BE IN ABS FORMAT
Input file is not an absolute task.

CHECKSUM ERROR
Wrong checksum of the task file.

FILE RANGE: ssss - eeee
The data in the task file starts at address <ssss> and ends at
address address <eeee>,

ILLEGAL PROM NUMBER
Invalid PROM number, perhaps out of the allowed range 0-7.

PROMPROG 14-4
81-04~01 URM.0S8

BUFFER LOADED - CHECKSUM:cc
Wnen the programming buffer is loaded either with the ‘GET ", or
the 'DUMP’ command. The checksum of the data is <cc>.

NO DATA
The programming buffer is empty.

PROM pp ADDRESS RANGE ssss - eeee
The EPROM number <pp> starts at address <ssss> and ends at
address <eeee’>.

PROGRAMMING...(*)(*)(...)
Programming of the EPROM has started. An asterisk is written
for each modulo 256 bytes being programmed.

PROM pp VERIFICATION:
Verification of EPROM number <pp> has started.

0K
Verification without any mismatch.

ERROR IN ADDRESS: aaaa PROM=pp BUFFER=bD
Verify failed at address <aaaa>, data in the EPROM is <pp>, and
the data in the programming buffer is <bb>.

MORE THAN 20 ERRORS
When there are more than 20 mismatches between the EPROM and
the programming buffer, the verification stops.

PROM pp IS (NOT) ERASED, CHECKSUM=cc
EPROM NUMBER <pp> is/isn’t empty, current checksum is <cc>.

THAT TYPE IS NOT SUPPORTED
The type of the EPROM specified is not supported.

PROGRAMMING MODE NOW SET TO <PROMTYPE> TYPE
Informs of the current EPROM-type.

BAD RADIX
Radix missing or wrong radix.

END OF TASK 255
Program terminates.

PROMPROG 14-5
81-04-01 URM.OS8

14.7 EXAMPLE

This example shows how to program eight EPROMs with the same

content:

-PROMPROG Load and start the program.
Prom-Program Rx.yz Signon from the program.

TEST O Check if the EPROMs are emptlty.
TEST 1

TEST 7

FILE TASKNAME Assign file to be programmed.
GET 0 Read data from the file.
PROGRAM 0O Program and verify the EPROMs.
PROGRAM 1

PROGRAM 7

END Exit the program.

-12.34.56 End-of-task 255 Program terminates.

EDIT 15-1
81-04-01 URM.0S8

TEXT EDIT UTILITY (EDIT)

15.1 INTRODUCTIOCN
The Text Edit Utility (EDIT) is a general purpose, ASCII-oriented,
text editor to edit or create text interactively. The text may be any

sequence of characters such as source programs, progran data or
documents.

Text is read sequentially from the input unit into an area of memory
called the Edit-Buffer. This edit-buffer may be operated freely in any
order, and the content of the edit-buffer may be written onto the
output unit.

The EDIT takes advantage of any amount of additional memory for the
edit-buffer, and any Operating System supported peripheral device can
be used as input and output units.

The EDIT is edit-buffer oriented within the file, line oriented
Wwithin the edit-buffer, and character oriented within a line.

This chapter gives only a breaf description of the EDIT, refer to
DataBoard-4680 Edit Manual for futher information.
15.2 SYSTEM REQUIREMENTS
The program requires:

-13 KB of memory above the operating system, including 8 KB
buffer.

-a console device.

-a currently supported text device.

15.3 STARTING
The program is started by the command:
EDIT(,,ADDMEM) INPUT(,OQUTPUT)
The <addmem> will expand the edit-buffer.

The <input> is the name of the file or the device that contains, or
shall contain, the text.

The optional <output> is the name of the file or the device where
the result should be placed. If no <output> 1is specified, the EDIT
uses a temporary file to hold the modified text.

EDIT 15-2
81-04-01 URM.0S8

15.4 COMMANDS

The function of the program is controlled by commands:

RE

PR

WR

OR

IL

in

ED

DL

KI

Reads text from the input unit into the edit-buffer. The EDIT
does not automatically reads the input wunit. diting an old
text file starts by this command, which reads the first part of
the input file into the edit-buffer. The edit-buffer is then
open for all commands. If the text is larger than the
edit-buffer available, the operator can successively edit
through the input file in increments of the edit-buffer size.
This is done by concurrent use of the RE command, editing, and
the OR command.

(L1(-12))

Displays the line(s) between, and including, <11> and <12>. The
display may be aborted by simultaneously depressing the
CTRL-key and the C-key.

Writes the content of the edit-buffer to the new file. The
content of the edit-buffer is maintained.

Qutputs the edit-buffer to the new file, clears the edit-buffer
and the next part of the input-file 1s read into the
edit-buffer, Line numbering will continue from the last line
number in the preceeding.

(1n)

Lines of text are read from the terminal, and are inserted
after either the last line in the edit-buffer, or the line <ln>
specified in the command. Line numbers are assigned by the EDIT
in increments of .01 following the current line. A number-sign
(#) in the first column followed by a carriage return,
terminates the insertion operation and returns toc the EDIT
command mode.

(s)

The line with the number <1ln> is deleted if no string <s> |is
typed, else the string <s> will either replace an existing line
with number <ln>, or be appended/inserted with the line number
<ln>.

1n

This command is used to character-edit the line <{ln>. After the
carriage return key, the TAB-key (or CTRL/I) is used to display
the content of the line. For each TAB-key one character 1s
displayed. The CTRL/H key is used to delete a character, and to
insert new characters, Jjust enter them. This command 1is
terminated by a carriage return.

11(=-12)
Delete all lines between, and including, <11> and <12>,

Deletes the content of the edit-buffer.

SV

LC

uc

NU

BT

AB

EN

EDIT 15-3
81-04-01 URM.0S8

3

Searches for all occurences of the string <s>. Only one or no
space is allowed to separate the command from the string. The
string is a sequence of one or more ASCII characters that in
the text are surrounded by any delimiter or non-alphabetic or
numerical character.

s1(,s2)

Replaces every occurence of the string <s1>, with the string
<{s2>.

Enables lower case input from a terminal with lower case set of
keys.

Forces lower case 1input from a terminal to be converted toe
upper case. Concerns terminals with UC/LC facility.

Renumber the edit-buffer.

t1,t2,t3
This command is used to set the tabulation columns. Default 1is
11, 17, 35. The tabulation function is generated Dby the

TAB-key, or CTRL/I.

The session is aborted, and neither changes nor a new file will
be done.

Finishes the EDIT session. The content of the edit-buffer, 1if
any, is written to the output file, and if more text is present
in the input file, this text is copied to the output file. If
the output file is a temporary file, it is renamed to the name
of the input file. The input file, if any, is renamed by
replacing/appending the last character to a "&°.

15.5 MESSAGES

The EDIT outputs the following messages:

EDIT Rx.yz

Signon from the program, where the revision level is <x>, and
the update level is <yz>.

BAD PARAMETERS

Parameters missing, or syntax error in file descriptors.

ASSIGN ERROR

NO

Failed to assign the file(s).

OUTPUT FILE
Output file missing.

TOO NAMY EDIT TEMP FILES

Failed to create a temporary file.

EDIT 15-4
81-04-01 URM.0S8

ERROR s
Qutput error <s>.

BAD COCMMAND
Unknown command entered.

LINE TOO LONG
The text line exceeds eighty characters.

CAN'T FINT IT
Unable to find the string requested in a SV command.

SYNTAX ERROR
Parameter(s) missing, or invalid.

END OF MEMORY
End of edit-buffer at insert or append.

END OF TASK s
Task termination, where <s> is the SVC error status.

15.6 EXAMPLE

This example shows how to edit an existing file:

-EDIT FILE Load and start the program.

Edit Rx.y=z Signon from the program.

>RE Load the edit-buffer.

>IL 2 Insert new text after line number two.
2.01#SOME NEW TEXT Type in the new text.

2.024## Terminate the insertion.

>EN Exit the program.

-12.34.56 End-of-task 0 Program terminates.

ASMZ 16-1
81-04-01 URM.0S8

MACRO ASSEMBLER (ASMZ)

16.1 INTRODUCTION

The MACRO ASSEMBLER (ASMZ) provides the capability to assemble a
program for both the Z-80 and the 8080 Processors. The ASMZ produces
relocatable object code and has a full complement of user features,
including macro handling, conditional assembly, page control,
arithmetic expressions, and support of common. It contains over 40
pseudo-ops. Refer to DataBoard-4680 Assembler Manual for more detailed

information.

The ASSEMBLER consists of a main program named ASMZ, and an overlay
named ASMZOVL. The ASMZ compiles source statements to a temporary work
file, and the ASMZOVL updates an object library with the content in

the temporary work file.

16.2 SYSTEM REQUIREMENTS
The program requires:
-21 KB of memory above the operating system, including buffer.

-currently supported devices.

16.3 STARTING
The program is started by the command
ASMZ(,(E)(N)(I)(C)(,ADDMEM)) SOURCE(,(OBJECT),(COPY)(,LIST))
The switch <e> is used to generate an error listing only.
<n> disables the listing of the macro expansion.
<i> enables the listing of the conditional assembly.

<c> enables the 8080 target code checking.

The <addmem> is the additional size in bytes, that should be added
to the ASMZ to hold the symbol table. A default table sufficient for

100 symbols is normally contained within the ASMZ.

The parameter <source> 1is the name of the source file ¢to
assembled.

<object> is the the name of the object library, created if not
existing, to whom the assembled module shall be appended or replaced.

ASMZ 16-2
81-04-01 URM.0S8

{copy> is the name of the unit, from which source statements shall
be included.

¢<list> 1is the name of the file or device that will receive the
listing.

16.4 MESSAGES

The program may output the following messages:

MACRO ASSEMBLER Rx.yz
Signon by the program, where the revision level 1is <x>», and

the update level is <yz>.

BAD START PARAMETERS
Syntax error in start parameters.

SOQURCE ASSIGN ERROR
Failed to assign the source input.

COPY FILE ASSIGN ERROR
Failed to assign the copy file.

LIST ASSIGN ERROR
Failed to assign the list unit.

TEMP FILE ASSIGN ERROR
Failed to create and/or assign a temporary work file.

ERROR s ON SOURCE LU
Input error <s> on the source unit.

WRITE ERROR s ON OBJECT LU
Qutput error <s> on the temporary work file.

END OF MEMORY
End of memory for the label list.

ERRORS: e WARNINGS: w
There where <e&> errors and <w> warnings in the program.

END OF ASSEMBLY
The assembly phase terminates.

ASMZOVL MISSING
The assembler overlay is missing.

OBJECT UPDATER Rx.yz
Signon by the assembler overlay, where the revision level is

<{x>, and the update lavel is {yz>.

TEMP FILE IS EMPTY
There is no program in the temporary work file.

LIBRARY CREATED
A new object library is created.

ASMZ 16-3
81-04-01 URM.0S8

PROGRAM: name REPLACED/APPENDED
The program named <name> is replaced or appended to the object
library.

END OF TASK <s>
The program terminates, and where <s> is the SVC error status.

16.5 EXAMPLE

This example shows how to assemble a file name SOURCE:

-ASMZ SOURCE Load and start the program.
MACRO ASSEMBLER Rx.yz Signon from the program.
ERRORS: 0 WARNINGS: O No errors and no warnings.
END OF ASSEMBLY Assembly phase terminates.

-12.34.56 End-of-task 0O Program terminates.

FORT77 19-1
81-04-01 URM.0S8

FORTRAN-77S (FORTTT7)

19.1 INTRODUCTION

FORTRAN-77S is a high level language processor intended to support
the programming requirements of not only both scientific and
process-control applications, but also when to use file manipulation.
The compiler produces relocatable object code. It is a two-pass high
level language processor that supports the ANSI standard FORTRAN 77
(X3.9-1978) subset, with extension of some parts of full language.
PROMable code may be generated by the Task Establisher, ESTAB.

The FORTRAN system consists of the compiler, named FORTT77, and two
run-time libraries named FORTRTLS and FORTRTLM.

This chapter is only a breaf description and more detailed
information will be found in DataBoard-4680 Fortran Manual.

19.2 SYSTEM REQUIREMENTS

15.

The program requires:
-30 KB of memory above the operating system, including buffer.

~currently supported devices.

3 STARTING

The program is started by the command
FORT77(,(D)(X)(,ADDMEM)) SOURCE(, (OBJECT)(,LIST))

The switches <d> and <x> are used to compile statements that has
either a D" or a X" in its first column.

The <addmem> is used to expand the symbol table.

The parameter <source> is the name of the source file to be
compiled.

<object> is the the name of the object library, created if not
existing, to whom the compiled module shall be appended or replaced.

<list> 1is the name of the file or device that will receive the
listing.

FORTT77 19-2
81-04-01 URM.0S8

19.4 OPTIONS

Compilation options may be inbedded in the source code and should be
preceded by a $ sign. Following is a list of available options that
may be used during the compilation phase:

BATCH
Enables batch compilations of modules separated by END
statement.

BEND
Terminates batch compilation.

LIST
Enables listing of source statements.

NLIST
Disables listing of source statements.

NODBG
Supresses listing of location counter.

EJECT
Starts a new page.

LCNT n
Changes paper hight to value <n>. Must be greater than 14,
and will be activated from the next page.

TITLE text
Moves up to 60 characters of <text> to list heading.

PREC n
Changes integer constant calculation precision to <n> bytes,
where <n> can be 1, 2 or 4. The default precision is 2.

19.5 LINKING

When linking the final task, some unique declarations must be
entered to the ESTAB program:

PLCORD 0,1,2,3 The order of the involved PLC’s.
PLC 0 contains instruction, PROMable.
PLC 1 contains data, PROMable.
PLC 2 contains variables, not PROMable.
PLC 3 is used for scratches, not PROMable.

EQU O,LU.CON Logical unit for the console.
EQU 5,LU.PR Logical unit for the printer.
LIB FORTRTLS Runtime library select file.
LIB FORTRTLM Runtime library module file.

FORT7T 19-3
81-04-01 URM.0S8

19.6 MESSAGES
The program may output the following messages:

FORT77S Rx.yz
Signon by the program, where the revision level is <x>, and
the update level is <yz>.

BAD START PARAMETERS
Missing or syntax error in start parameters.

CAN'T ASSIGN SOURCE/OBJECT/LIST
Failed to assign the source/object/list units.

oUT OF MEMORY
End of memory for the symbol table, restart the compiler with
additional memory.

ERROR s ON SQURCE LU
Read error <s> on the source input.

I/0 ERROR s ON SCRATCH LU n
Write error <s> on the scratch logical unit <n>

COMPILATION ABORTED
The compiler terminates abnormal before it has reached end of
file in the source file.

END OF COMPILATION
The compilation phase terminates normal.

END OF TASK <s>
The program terminates, and where <s> is the SVC error status.

19.7 EXAMPLE

This example shows how to compile a file named TEST.

-FORT77 TEST Load and start the program.
FORT77 Rx.yz Signon from the program.

NO COPILATION ERRORS3 The compilation was successful.
END OF COMPILATION The compiler phase terminates.

-12.34.56 End-of=-task 0 Program terminates.

SUMMARY A-1
81-04-01 APP.OS8

APPENDIX A

COMMAND SUMMARY

ALlocate(,I) fd(, (lrecl) (, (size){(/blk)))
Allocates indexed file <fd> with
{lrecl> = record length default = 0, variable
<{size> = file size in sectors default = as initiated
<blk> data block size in sectors, default = as initiated

ALloacte,C fd,size
Allocates contigouos files <fd> with
{size> = file size in sectors

BIas address
Sets BIAS to <address>.

CAncel (tid)
Cancels task named <tid>.

CLOse fd
Closes device <fd> to the Operating System.

COntinue (tid)
Continues task named <tid>, if paused.

DELete fd(,fd...)
Deletes specified file(s).

DEVices (fd)
Displays on <fd> the names of the devices and direct access volumes
in the system.

EXamine address(,n)
Displays the contents of the <n> locations, starting with
<address>+BIAS.
<n> defaults to 2

Lib ({(voln:)(directory),(wildeard),(list))
Displays the content of the volume <voln> and the directory file
{directory>, file names is specified by <wildecard>, and the output
is directed to <list>.

SUMMARY A-2
81-04-01 APP.0S8

LOad fd(, (tid)(,size))
Loads task from <fd>, names it <tid> and adds memory <size>.

MOdify address,data(,data...)
Changes location specified by <address>+BIAS to <data>.

OPEn(,(N)(P)) fd
Opens device <fd> on-line to the Operating System. Protect <P>
specifies device is read-only, and Non-filestructured <N> specifies
no directory present.

OPTion,opt{(opt...) tid
Sets task named <tid> to <opt>. Possible <opt> are Abortable,
Protected, Resident, Nonresident.

PAuse (tid)
Pauses task named <tid>.

POSit fd,emd(,n)
Position <fd> according to <cmd> times <n>, where <cmd> is BF, BR, FF,
FR, REW, RW or WF,

PRIority tid,n
; Sets priority of <tid> to <n>.

RAdix 8/16
| Set radix to octal (8) or hexadecimal (16).

REName oldfd,newfd
Renames file <oldfd> to name <newfd>.

RUn(,switches) fd(,parameter)
Load and start the program on the file <fd>. Pass <switches> and
transfer <parameters> to the task.

SLice (n)
Set and/or display the time slicing constant in milliseconds.
<n>=0, switches off time slicing.

SPace (voln)
Displays the space available on <voln>.

3Tart(,switches) tid(,paramaters)
Start task with taskid <tid> at ordinary start address. Pass
<{switches> to the tasks registers, and transfer <parameters> to the
tasks stack.

mannnneEEERREBEERAERERAEEREREEAIEIENIIIIEIIIENIINIINIRAER

SUMMARY A-3
81-04-01 APP.0S8

TAsk(,F) (fd)
Display information about the present task(s) on <fd>.

Ime (YYYY-MM-DD, HH.MM.SS)
Set or display the date and time.

Volume (voln)
Set or display the name of the system volume.

CRASH LAYOUT B-1
81-04-01 APP.0S8

APPENDIX B

CRASH LAYOUT

II=ii CC=cc IL=il CS=cs TP=tp TN=tn TC=tteb SS=sspp
PC=ppcc SP=sspp F=flag A=az BC=bbce DE=ddee HL=hhll
Y=yyyy X=xxxx F=flag A=aa BC=bbcc DE=ddee HL=hhll
SS

addr aabbecedd4ih sivn taee wese s... VVXXYYZZ
aadr aabbeedd +s.vh cheh e seae ea.. VVXXYYZZ
SP

addr aabbecedd (... ... ciel iiie seee ... VVXXYYZZ
addr aabbeedd0 ceee evs seee ee.. VVXXYVZZ

System pointer table (SPT):

II = illegal interrupt counter.

CC = crash code.

IL = interrupt level, system mode if less than 80.
CS = card selection code.

TP = task priority.

TN = task number.

TC = task control block.
SS = system stack-pointer.

Primary register set:

PC = program location counter.
SP = program stack-pointer.

F = condition code.

A = A-register.
BC = BC-register pair.

DE = DE-register pair.

HL = HL-register pair.

Secondary register set:

= Y-index register.
=z X-index register
condition code.

= A-register,.

BC = BC-register pair.
DE = DE-register pair.
HL = HL-regsiter pair.

[I-— e -
i

(SPT)
(Primary)
(Secondary)

(System stack)

(Current stack)

CRASH CODES B-2
81-04-01 APP.0S8

APPENDIX B (Continued)

CRASH CODES

SVC-8 failed in cold start.

Entry trough address zero.

Too many non-maskable interrupts.

Too many un-exspected vector interrupts.

Too many illegal interrupts in 4680 I/O=-structure.
Real-time service never done, loops on levels =< 10,
Attempt to set up a non-existing level.

Attempt to trigg a non-existing level.

Attempt to trigg an 'ICB” with a non-existing level.
Attempt to execute on a non-existing level,

Attempt to add a 'DCB’ on a non-existing level.
Attempt to remove a 'DCB’ from a non-existing level.
Failed to remove a 'DCB” from an interrupt chain.
Attempt teo add a "TCB” twice to Ready-Q.

Failed to remove a 'TCB” from Ready-Q.

Failed to remove a "TCB’ from Buffer-Q.

Attempt to add a ‘RCB’ twice to System-Q.

Failed to remove a 'RCB’ from System-Q.

Attempt to find a non-generated task-number.

Attempt to stop a task in System Mode.

Attempt to connect at decendent in a tree.

Attempt to propagate priority on a non-existing task.

Attempt to trigg a non-existing task-device,.
Attempt to dispatch a non-existing task.
Attempt to disconnect a non-existing task.
Failed to remove a node from “SPT.MLNK®,
Attempt to release a non-existing node.

A queue has become a circular 1list.

Failed to remove a 'RMT from symbolic chain.
Failed to remove a 'RRT’ from numeric chain.
Failed to cancel a task.

Attempt to allocate memory twice.

NR SYMBOLIC DESCRIPTION
1 CC.COLD
2 CC.USER User crash entry.
3 CC.ZERO
4 CC.NMI
5 CC.VINT
6 CC.INTER
7 CC.TIME
8 CC.SETSL
9 CC.TRGSL
A CC.ICBIL
B CC.SINT
C CC.ADDIL
D CC.RMVIL
E CC.RMVIQ
F CC.ADDRQ

10 CC.RMVRQ

11 CC.RMVBQ

12 CC.ADDSQ

13 CC.RMVSQ

14 CC.TASK

15 CC.STOP

16 CC.DESC

17 CC.PROP

18 CC.TTDEV

1 CC.DISP

14 CC.DISC

1 CC.RMVTQ

1C CC.NODE

1D CC.QUEUE
1E CC.RMTQ
1F CC.RRTQ

20 CC.TCAN

21 CC.AMEM

22 CC.RMEM

Attempt to release memory twice.

=
v}

CRASH COND B-3
81-04-01 APP.0OS8

APPENDIX B (Continued)

CRASH CONDITIONS

CONDITION

IO O e O o= U E W) e

A := Return status, Y -> 3VC-blk, HL -> next in cold start table.
Specified by user.

SP -> last item pushed on stack.

SP -> previous A.

SP -> previous A.

:= current system level, X -> previous DCB in chain.
-> BC, AF, HL, PC.

non-existing system level.

non-existing system level.

non-existing system level in an ICB.

non-existing system level.

non-existing system level in an ICB, X -> DCB.
non-existing system level in an ICB, X -> DCB.
DCB, DE -> ICB.IQLK, HL => root of chain.

TCB.

TCB, DE -> TCB.RQLK, HL -> SPT.RQUE.

TCB, DE -> TCB.RQLK, HL -> SPT.BUFQ.

RCB, DE -> RCB.SQLK.

RCB.

task number.

-> AF1, BC1, DE1, HL1, CSIL, Y, X, AF, BC, DE, HL, PC.
RCB, Y -> SVC-blk, B := SVC-type, C := resource number.
task number, (SP) := RCB, DE -> xxx.CPRI.

task number, DE => node, (SP) := DCB.

task number, (SP) := RCB.

task number, SP -> Y, X, PC.

-> node, HL -> SPT.MLNK.

:= invalid node address.

0!

resource number, DE -> RMT.

resource number, DE -> RRT.

TCB.

aw e
o

-] s e
([RV RV V" " | I |}

I
[| IV
]

M OOWUO U WW W MMMNNNPE P ==
v

|
A4

COMMON ERRORS

OCT HEX DEC SYMBOLIC
olele] 00 0 S0S8.0K
001 07 1 S0S.EON
002 02 e S0S.IFC
003 03 3 S0S.PRO
oo o4 4 S0S.0FFL
005 05 5 SO0S.PRES
006 06 6 SOS.NYET
007 Q7 7 S03.CAN
010 08 8 S0S.5VC
3VC-1 1/0 ERROR CODES
OCT HEX DEC SYMBOLIC
012 OA 10 S18.LU
013 0B 11 S1S.AM
014 0cC 12 S18.TOUT
015 oD 13 S13.DWN
016 OE 14 S13.EQOF
017 OF 15 S15.EOM
020 10 16 S1S.RER
021 LN 17 S1S5.UNR
022 12 18 S1S.RND
023 13 19 S1S.NRND

SVC-2 SUBFUNCTION ERRORS

OCT HEX DEC
024 14 20

SYMBOLIC
S25.1ISB

SVC~-3 TIMER ERRORS

OCT HEX DEC
036 1E 30

SYMBOLIC
S3S.PAR

SVC-U4 TASK DEVICE ERRORS

OCT HEX DEC SYMBOLIC
050 28 40 S4S.ASGN
051 29 41 S4S.TYPE

APPENDIX C

. ERROR CODES

ERROR TEXT

No error.

End of nodes.

Invalid function code.

ERROR CODES C-1
81-04-01 APP.0S8

Can’t connect at unconditional proceed.

Off line.

Not present in this system.
Not yet implemented function.

Request is cancelled.
Invalid SVC function.

ERROR TEXT

Illegal LU, LU not assigned.

Invalid access modes.
Time-out.

Device down.
End-of-file.
End-of-media.
Recoverable error.
Unrecoverable error.
Invalid random address.

Non-exsistent random address.

ERROR TEXT

Illegal sub-function number.

ERROR TEXT
Invalid timer parameter.

ERROR TEXT
Not assigned.
Invalid device type.

SVC-5 LOADER ERRORS

OCT HEX DEC SYMBOLIC
062 32 50 S53.TID

063 33 51 S53.PRES
o064 34 52 S58.PRIO
065 35 53 858.0PT

066 36 54 S55.CODE
067 37 55 358.8IZE

SVC-6 TASK ERRORS

OCT HEX DEC SYMBOLIC
074 3C 60 S6S.TID

075 3D 61 S6S.PRES
076 3E 62 S65.PRIO
077 3F 63 S65.0PT

100 40 6L S63.EQUE
101 41 65 S63.STAT

SVC-7 FILE ERRORS

OCT HEX DEC SYMBOLIC
106 B 70 STS.ASGN
107 L 71 S73.AM
110 ug 72 S7S.SIZE
111 49 73 STS.TYPE
112 4a 74 STS.FD
13 4B 75 S7S.NAME
114 4¢ 76 S7S.KEY
115 4D T S7S.FEX

SVC-8 RESOURCE ERRORS

OCT HEX DEC SYMBOLIC
120 50 80 S85.1D

121 51 81 S8S.CLAS
122 52 82 383.PRES
123 53 83 S8S.PRNT
124 54 84 583.DUAL
125 55 85 S8S.RCB
126 56 86 S83.EOM

ERROR CODES C-2

81-04-01

ERROR TEXT

Illegal task-id.

Task present.

Illegal priority.

Illegal option.

Illegal code/item at load.
Overlay don’t fit.

ERROR TEXT

Illegal task-id.

Task present.

Illegal priority.
Iliegal option.

Event queue disabled.
Invalid task status.

ERROR TEXT

Assignment error, double assign.

Illegal access modes.
Size error.

Type error.

Illegal file descriptor.
Name error.

Invalid key.

File exist error.

ERROR TEXT

Illegal resource-id.
Invalid resource class.
Resource already present.
Parent not present.

Dual DCB not present.
Invalid RCB-type.

End-of -memory.

APP.0S8

A E N RN R R R R R R R E R RN BN EEEEEEEE . .

