/* -------------------------------------------------------------------------- * Portions Copyright © 2019 STMicroelectronics International N.V. All rights reserved. * Copyright (c) 2013-2019 Arm Limited. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Name: cmsis_os2.c * Purpose: CMSIS RTOS2 wrapper for FreeRTOS * *---------------------------------------------------------------------------*/ #include #include "cmsis_os2.h" // ::CMSIS:RTOS2 #include "cmsis_compiler.h" #include "FreeRTOS.h" // ARM.FreeRTOS::RTOS:Core #include "task.h" // ARM.FreeRTOS::RTOS:Core #include "event_groups.h" // ARM.FreeRTOS::RTOS:Event Groups #include "semphr.h" // ARM.FreeRTOS::RTOS:Core /*---------------------------------------------------------------------------*/ #ifndef __ARM_ARCH_6M__ #define __ARM_ARCH_6M__ 0 #endif #ifndef __ARM_ARCH_7M__ #define __ARM_ARCH_7M__ 0 #endif #ifndef __ARM_ARCH_7EM__ #define __ARM_ARCH_7EM__ 0 #endif #ifndef __ARM_ARCH_8M_MAIN__ #define __ARM_ARCH_8M_MAIN__ 0 #endif #ifndef __ARM_ARCH_7A__ #define __ARM_ARCH_7A__ 0 #endif #if ((__ARM_ARCH_7M__ == 1U) || \ (__ARM_ARCH_7EM__ == 1U) || \ (__ARM_ARCH_8M_MAIN__ == 1U)) #define IS_IRQ_MASKED() ((__get_PRIMASK() != 0U) || (__get_BASEPRI() != 0U)) #elif (__ARM_ARCH_6M__ == 1U) #define IS_IRQ_MASKED() (__get_PRIMASK() != 0U) #elif (__ARM_ARCH_7A__ == 1U) /* CPSR mask bits */ #define CPSR_MASKBIT_I 0x80U #define IS_IRQ_MASKED() ((__get_CPSR() & CPSR_MASKBIT_I) != 0U) #else #define IS_IRQ_MASKED() (__get_PRIMASK() != 0U) #endif #if (__ARM_ARCH_7A__ == 1U) /* CPSR mode bitmasks */ #define CPSR_MODE_USER 0x10U #define CPSR_MODE_SYSTEM 0x1FU #define IS_IRQ_MODE() ((__get_mode() != CPSR_MODE_USER) && (__get_mode() != CPSR_MODE_SYSTEM)) #else #define IS_IRQ_MODE() (__get_IPSR() != 0U) #endif #define IS_IRQ() (IS_IRQ_MODE() || (IS_IRQ_MASKED() && (KernelState == osKernelRunning))) /* Limits */ #define MAX_BITS_TASK_NOTIFY 31U #define MAX_BITS_EVENT_GROUPS 24U #define THREAD_FLAGS_INVALID_BITS (~((1UL << MAX_BITS_TASK_NOTIFY) - 1U)) #define EVENT_FLAGS_INVALID_BITS (~((1UL << MAX_BITS_EVENT_GROUPS) - 1U)) /* Kernel version and identification string definition (major.minor.rev: mmnnnrrrr dec) */ #define KERNEL_VERSION (((uint32_t)tskKERNEL_VERSION_MAJOR * 10000000UL) | \ ((uint32_t)tskKERNEL_VERSION_MINOR * 10000UL) | \ ((uint32_t)tskKERNEL_VERSION_BUILD * 1UL)) #define KERNEL_ID ("FreeRTOS " tskKERNEL_VERSION_NUMBER) /* Timer callback information structure definition */ typedef struct { osTimerFunc_t func; void *arg; } TimerCallback_t; /* Kernel initialization state */ static osKernelState_t KernelState = osKernelInactive; /* Heap region definition used by heap_5 variant Define configAPPLICATION_ALLOCATED_HEAP as nonzero value in FreeRTOSConfig.h if heap regions are already defined and vPortDefineHeapRegions is called in application. Otherwise vPortDefineHeapRegions will be called by osKernelInitialize using definition configHEAP_5_REGIONS as parameter. Overriding configHEAP_5_REGIONS is possible by defining it globally or in FreeRTOSConfig.h. */ #if defined(USE_FREERTOS_HEAP_5) #if (configAPPLICATION_ALLOCATED_HEAP == 0) /* FreeRTOS heap is not defined by the application. Single region of size configTOTAL_HEAP_SIZE (defined in FreeRTOSConfig.h) is provided by default. Define configHEAP_5_REGIONS to provide custom HeapRegion_t array. */ #define HEAP_5_REGION_SETUP 1 #ifndef configHEAP_5_REGIONS #define configHEAP_5_REGIONS xHeapRegions static uint8_t ucHeap[configTOTAL_HEAP_SIZE]; static HeapRegion_t xHeapRegions[] = { { ucHeap, configTOTAL_HEAP_SIZE }, { NULL, 0 } }; #else /* Global definition is provided to override default heap array */ extern HeapRegion_t configHEAP_5_REGIONS[]; #endif #else /* The application already defined the array used for the FreeRTOS heap and called vPortDefineHeapRegions to initialize heap. */ #define HEAP_5_REGION_SETUP 0 #endif /* configAPPLICATION_ALLOCATED_HEAP */ #endif /* USE_FREERTOS_HEAP_5 */ #if defined(SysTick) #undef SysTick_Handler /* CMSIS SysTick interrupt handler prototype */ extern void SysTick_Handler (void); /* FreeRTOS tick timer interrupt handler prototype */ extern void xPortSysTickHandler (void); /* SysTick handler implementation that also clears overflow flag. */ void SysTick_Handler (void) { /* Clear overflow flag */ SysTick->CTRL; if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED) { /* Call tick handler */ xPortSysTickHandler(); } } #endif /* SysTick */ /* Setup SVC to reset value. */ __STATIC_INLINE void SVC_Setup (void) { #if (__ARM_ARCH_7A__ == 0U) /* Service Call interrupt might be configured before kernel start */ /* and when its priority is lower or equal to BASEPRI, svc intruction */ /* causes a Hard Fault. */ /* * the call below has introduced a regression compared to revious release * The issue was logged under:https://github.com/ARM-software/CMSIS-FreeRTOS/issues/35 * until it is correctly fixed, the code below is commented */ /* NVIC_SetPriority (SVCall_IRQn, 0U); */ #endif } /*---------------------------------------------------------------------------*/ osStatus_t osKernelInitialize (void) { osStatus_t stat; if (IS_IRQ()) { stat = osErrorISR; } else { if (KernelState == osKernelInactive) { #if defined(USE_FREERTOS_HEAP_5) && (HEAP_5_REGION_SETUP == 1) vPortDefineHeapRegions (configHEAP_5_REGIONS); #endif KernelState = osKernelReady; stat = osOK; } else { stat = osError; } } return (stat); } osStatus_t osKernelGetInfo (osVersion_t *version, char *id_buf, uint32_t id_size) { if (version != NULL) { /* Version encoding is major.minor.rev: mmnnnrrrr dec */ version->api = KERNEL_VERSION; version->kernel = KERNEL_VERSION; } if ((id_buf != NULL) && (id_size != 0U)) { if (id_size > sizeof(KERNEL_ID)) { id_size = sizeof(KERNEL_ID); } memcpy(id_buf, KERNEL_ID, id_size); } return (osOK); } osKernelState_t osKernelGetState (void) { osKernelState_t state; switch (xTaskGetSchedulerState()) { case taskSCHEDULER_RUNNING: state = osKernelRunning; break; case taskSCHEDULER_SUSPENDED: state = osKernelLocked; break; case taskSCHEDULER_NOT_STARTED: default: if (KernelState == osKernelReady) { state = osKernelReady; } else { state = osKernelInactive; } break; } return (state); } osStatus_t osKernelStart (void) { osStatus_t stat; if (IS_IRQ()) { stat = osErrorISR; } else { if (KernelState == osKernelReady) { /* Ensure SVC priority is at the reset value */ SVC_Setup(); /* Change state to enable IRQ masking check */ KernelState = osKernelRunning; /* Start the kernel scheduler */ vTaskStartScheduler(); stat = osOK; } else { stat = osError; } } return (stat); } int32_t osKernelLock (void) { int32_t lock; if (IS_IRQ()) { lock = (int32_t)osErrorISR; } else { switch (xTaskGetSchedulerState()) { case taskSCHEDULER_SUSPENDED: lock = 1; break; case taskSCHEDULER_RUNNING: vTaskSuspendAll(); lock = 0; break; case taskSCHEDULER_NOT_STARTED: default: lock = (int32_t)osError; break; } } return (lock); } int32_t osKernelUnlock (void) { int32_t lock; if (IS_IRQ()) { lock = (int32_t)osErrorISR; } else { switch (xTaskGetSchedulerState()) { case taskSCHEDULER_SUSPENDED: lock = 1; if (xTaskResumeAll() != pdTRUE) { if (xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED) { lock = (int32_t)osError; } } break; case taskSCHEDULER_RUNNING: lock = 0; break; case taskSCHEDULER_NOT_STARTED: default: lock = (int32_t)osError; break; } } return (lock); } int32_t osKernelRestoreLock (int32_t lock) { if (IS_IRQ()) { lock = (int32_t)osErrorISR; } else { switch (xTaskGetSchedulerState()) { case taskSCHEDULER_SUSPENDED: case taskSCHEDULER_RUNNING: if (lock == 1) { vTaskSuspendAll(); } else { if (lock != 0) { lock = (int32_t)osError; } else { if (xTaskResumeAll() != pdTRUE) { if (xTaskGetSchedulerState() != taskSCHEDULER_RUNNING) { lock = (int32_t)osError; } } } } break; case taskSCHEDULER_NOT_STARTED: default: lock = (int32_t)osError; break; } } return (lock); } uint32_t osKernelGetTickCount (void) { TickType_t ticks; if (IS_IRQ()) { ticks = xTaskGetTickCountFromISR(); } else { ticks = xTaskGetTickCount(); } return (ticks); } uint32_t osKernelGetTickFreq (void) { return (configTICK_RATE_HZ); } uint32_t osKernelGetSysTimerCount (void) { uint32_t irqmask = IS_IRQ_MASKED(); TickType_t ticks; uint32_t val; __disable_irq(); ticks = xTaskGetTickCount(); val = ticks * ( configCPU_CLOCK_HZ / configTICK_RATE_HZ ); if (irqmask == 0U) { __enable_irq(); } return (val); } uint32_t osKernelGetSysTimerFreq (void) { return (configCPU_CLOCK_HZ); } /*---------------------------------------------------------------------------*/ osThreadId_t osThreadNew (osThreadFunc_t func, void *argument, const osThreadAttr_t *attr) { const char *name; uint32_t stack; TaskHandle_t hTask; UBaseType_t prio; int32_t mem; hTask = NULL; if (!IS_IRQ() && (func != NULL)) { stack = configMINIMAL_STACK_SIZE; prio = (UBaseType_t)osPriorityNormal; name = NULL; mem = -1; if (attr != NULL) { if (attr->name != NULL) { name = attr->name; } if (attr->priority != osPriorityNone) { prio = (UBaseType_t)attr->priority; } if ((prio < osPriorityIdle) || (prio > osPriorityISR) || ((attr->attr_bits & osThreadJoinable) == osThreadJoinable)) { return (NULL); } if (attr->stack_size > 0U) { /* In FreeRTOS stack is not in bytes, but in sizeof(StackType_t) which is 4 on ARM ports. */ /* Stack size should be therefore 4 byte aligned in order to avoid division caused side effects */ stack = attr->stack_size / sizeof(StackType_t); } if ((attr->cb_mem != NULL) && (attr->cb_size >= sizeof(StaticTask_t)) && (attr->stack_mem != NULL) && (attr->stack_size > 0U)) { mem = 1; } else { if ((attr->cb_mem == NULL) && (attr->cb_size == 0U) && (attr->stack_mem == NULL)) { mem = 0; } } } else { mem = 0; } if (mem == 1) { hTask = xTaskCreateStatic ((TaskFunction_t)func, name, stack, argument, prio, (StackType_t *)attr->stack_mem, (StaticTask_t *)attr->cb_mem); } else { if (mem == 0) { if (xTaskCreate ((TaskFunction_t)func, name, (uint16_t)stack, argument, prio, &hTask) != pdPASS) { hTask = NULL; } } } } return ((osThreadId_t)hTask); } const char *osThreadGetName (osThreadId_t thread_id) { TaskHandle_t hTask = (TaskHandle_t)thread_id; const char *name; if (IS_IRQ() || (hTask == NULL)) { name = NULL; } else { name = pcTaskGetName (hTask); } return (name); } osThreadId_t osThreadGetId (void) { osThreadId_t id; id = (osThreadId_t)xTaskGetCurrentTaskHandle(); return (id); } osThreadState_t osThreadGetState (osThreadId_t thread_id) { TaskHandle_t hTask = (TaskHandle_t)thread_id; osThreadState_t state; if (IS_IRQ() || (hTask == NULL)) { state = osThreadError; } else { switch (eTaskGetState (hTask)) { case eRunning: state = osThreadRunning; break; case eReady: state = osThreadReady; break; case eBlocked: case eSuspended: state = osThreadBlocked; break; case eDeleted: state = osThreadTerminated; break; case eInvalid: default: state = osThreadError; break; } } return (state); } uint32_t osThreadGetStackSpace (osThreadId_t thread_id) { TaskHandle_t hTask = (TaskHandle_t)thread_id; uint32_t sz; if (IS_IRQ() || (hTask == NULL)) { sz = 0U; } else { sz = (uint32_t)uxTaskGetStackHighWaterMark (hTask); } return (sz); } osStatus_t osThreadSetPriority (osThreadId_t thread_id, osPriority_t priority) { TaskHandle_t hTask = (TaskHandle_t)thread_id; osStatus_t stat; if (IS_IRQ()) { stat = osErrorISR; } else if ((hTask == NULL) || (priority < osPriorityIdle) || (priority > osPriorityISR)) { stat = osErrorParameter; } else { stat = osOK; vTaskPrioritySet (hTask, (UBaseType_t)priority); } return (stat); } osPriority_t osThreadGetPriority (osThreadId_t thread_id) { TaskHandle_t hTask = (TaskHandle_t)thread_id; osPriority_t prio; if (IS_IRQ() || (hTask == NULL)) { prio = osPriorityError; } else { prio = (osPriority_t)uxTaskPriorityGet (hTask); } return (prio); } osStatus_t osThreadYield (void) { osStatus_t stat; if (IS_IRQ()) { stat = osErrorISR; } else { stat = osOK; taskYIELD(); } return (stat); } osStatus_t osThreadSuspend (osThreadId_t thread_id) { TaskHandle_t hTask = (TaskHandle_t)thread_id; osStatus_t stat; if (IS_IRQ()) { stat = osErrorISR; } else if (hTask == NULL) { stat = osErrorParameter; } else { stat = osOK; vTaskSuspend (hTask); } return (stat); } osStatus_t osThreadResume (osThreadId_t thread_id) { TaskHandle_t hTask = (TaskHandle_t)thread_id; osStatus_t stat; if (IS_IRQ()) { stat = osErrorISR; } else if (hTask == NULL) { stat = osErrorParameter; } else { stat = osOK; vTaskResume (hTask); } return (stat); } __NO_RETURN void osThreadExit (void) { #ifndef USE_FreeRTOS_HEAP_1 vTaskDelete (NULL); #endif for (;;); } osStatus_t osThreadTerminate (osThreadId_t thread_id) { TaskHandle_t hTask = (TaskHandle_t)thread_id; osStatus_t stat; #ifndef USE_FreeRTOS_HEAP_1 eTaskState tstate; if (IS_IRQ()) { stat = osErrorISR; } else if (hTask == NULL) { stat = osErrorParameter; } else { tstate = eTaskGetState (hTask); if (tstate != eDeleted) { stat = osOK; vTaskDelete (hTask); } else { stat = osErrorResource; } } #else stat = osError; #endif return (stat); } uint32_t osThreadGetCount (void) { uint32_t count; if (IS_IRQ()) { count = 0U; } else { count = uxTaskGetNumberOfTasks(); } return (count); } uint32_t osThreadEnumerate (osThreadId_t *thread_array, uint32_t array_items) { uint32_t i, count; TaskStatus_t *task; if (IS_IRQ() || (thread_array == NULL) || (array_items == 0U)) { count = 0U; } else { vTaskSuspendAll(); count = uxTaskGetNumberOfTasks(); task = pvPortMalloc (count * sizeof(TaskStatus_t)); if (task != NULL) { count = uxTaskGetSystemState (task, count, NULL); for (i = 0U; (i < count) && (i < array_items); i++) { thread_array[i] = (osThreadId_t)task[i].xHandle; } count = i; } (void)xTaskResumeAll(); vPortFree (task); } return (count); } uint32_t osThreadFlagsSet (osThreadId_t thread_id, uint32_t flags) { TaskHandle_t hTask = (TaskHandle_t)thread_id; uint32_t rflags; BaseType_t yield; if ((hTask == NULL) || ((flags & THREAD_FLAGS_INVALID_BITS) != 0U)) { rflags = (uint32_t)osErrorParameter; } else { rflags = (uint32_t)osError; if (IS_IRQ()) { yield = pdFALSE; (void)xTaskNotifyFromISR (hTask, flags, eSetBits, &yield); (void)xTaskNotifyAndQueryFromISR (hTask, 0, eNoAction, &rflags, NULL); portYIELD_FROM_ISR (yield); } else { (void)xTaskNotify (hTask, flags, eSetBits); (void)xTaskNotifyAndQuery (hTask, 0, eNoAction, &rflags); } } /* Return flags after setting */ return (rflags); } uint32_t osThreadFlagsClear (uint32_t flags) { TaskHandle_t hTask; uint32_t rflags, cflags; if (IS_IRQ()) { rflags = (uint32_t)osErrorISR; } else if ((flags & THREAD_FLAGS_INVALID_BITS) != 0U) { rflags = (uint32_t)osErrorParameter; } else { hTask = xTaskGetCurrentTaskHandle(); if (xTaskNotifyAndQuery (hTask, 0, eNoAction, &cflags) == pdPASS) { rflags = cflags; cflags &= ~flags; if (xTaskNotify (hTask, cflags, eSetValueWithOverwrite) != pdPASS) { rflags = (uint32_t)osError; } } else { rflags = (uint32_t)osError; } } /* Return flags before clearing */ return (rflags); } uint32_t osThreadFlagsGet (void) { TaskHandle_t hTask; uint32_t rflags; if (IS_IRQ()) { rflags = (uint32_t)osErrorISR; } else { hTask = xTaskGetCurrentTaskHandle(); if (xTaskNotifyAndQuery (hTask, 0, eNoAction, &rflags) != pdPASS) { rflags = (uint32_t)osError; } } return (rflags); } uint32_t osThreadFlagsWait (uint32_t flags, uint32_t options, uint32_t timeout) { uint32_t rflags, nval; uint32_t clear; TickType_t t0, td, tout; BaseType_t rval; if (IS_IRQ()) { rflags = (uint32_t)osErrorISR; } else if ((flags & THREAD_FLAGS_INVALID_BITS) != 0U) { rflags = (uint32_t)osErrorParameter; } else { if ((options & osFlagsNoClear) == osFlagsNoClear) { clear = 0U; } else { clear = flags; } rflags = 0U; tout = timeout; t0 = xTaskGetTickCount(); do { rval = xTaskNotifyWait (0, clear, &nval, tout); if (rval == pdPASS) { rflags &= flags; rflags |= nval; if ((options & osFlagsWaitAll) == osFlagsWaitAll) { if ((flags & rflags) == flags) { break; } else { if (timeout == 0U) { rflags = (uint32_t)osErrorResource; break; } } } else { if ((flags & rflags) != 0) { break; } else { if (timeout == 0U) { rflags = (uint32_t)osErrorResource; break; } } } /* Update timeout */ td = xTaskGetTickCount() - t0; if (td > tout) { tout = 0; } else { tout -= td; } } else { if (timeout == 0) { rflags = (uint32_t)osErrorResource; } else { rflags = (uint32_t)osErrorTimeout; } } } while (rval != pdFAIL); } /* Return flags before clearing */ return (rflags); } osStatus_t osDelay (uint32_t ticks) { osStatus_t stat; if (IS_IRQ()) { stat = osErrorISR; } else { stat = osOK; if (ticks != 0U) { vTaskDelay(ticks); } } return (stat); } osStatus_t osDelayUntil (uint32_t ticks) { TickType_t tcnt, delay; osStatus_t stat; if (IS_IRQ()) { stat = osErrorISR; } else { stat = osOK; tcnt = xTaskGetTickCount(); /* Determine remaining number of ticks to delay */ delay = (TickType_t)ticks - tcnt; /* Check if target tick has not expired */ if((delay != 0U) && (0 == (delay >> (8 * sizeof(TickType_t) - 1)))) { vTaskDelayUntil (&tcnt, delay); } else { /* No delay or already expired */ stat = osErrorParameter; } } return (stat); } /*---------------------------------------------------------------------------*/ static void TimerCallback (TimerHandle_t hTimer) { TimerCallback_t *callb; callb = (TimerCallback_t *)pvTimerGetTimerID (hTimer); if (callb != NULL) { callb->func (callb->arg); } } osTimerId_t osTimerNew (osTimerFunc_t func, osTimerType_t type, void *argument, const osTimerAttr_t *attr) { const char *name; TimerHandle_t hTimer; TimerCallback_t *callb; UBaseType_t reload; int32_t mem; hTimer = NULL; if (!IS_IRQ() && (func != NULL)) { /* Allocate memory to store callback function and argument */ callb = pvPortMalloc (sizeof(TimerCallback_t)); if (callb != NULL) { callb->func = func; callb->arg = argument; if (type == osTimerOnce) { reload = pdFALSE; } else { reload = pdTRUE; } mem = -1; name = NULL; if (attr != NULL) { if (attr->name != NULL) { name = attr->name; } if ((attr->cb_mem != NULL) && (attr->cb_size >= sizeof(StaticTimer_t))) { mem = 1; } else { if ((attr->cb_mem == NULL) && (attr->cb_size == 0U)) { mem = 0; } } } else { mem = 0; } if (mem == 1) { hTimer = xTimerCreateStatic (name, 1, reload, callb, TimerCallback, (StaticTimer_t *)attr->cb_mem); } else { if (mem == 0) { hTimer = xTimerCreate (name, 1, reload, callb, TimerCallback); } } } } return ((osTimerId_t)hTimer); } const char *osTimerGetName (osTimerId_t timer_id) { TimerHandle_t hTimer = (TimerHandle_t)timer_id; const char *p; if (IS_IRQ() || (hTimer == NULL)) { p = NULL; } else { p = pcTimerGetName (hTimer); } return (p); } osStatus_t osTimerStart (osTimerId_t timer_id, uint32_t ticks) { TimerHandle_t hTimer = (TimerHandle_t)timer_id; osStatus_t stat; if (IS_IRQ()) { stat = osErrorISR; } else if (hTimer == NULL) { stat = osErrorParameter; } else { if (xTimerChangePeriod (hTimer, ticks, 0) == pdPASS) { stat = osOK; } else { stat = osErrorResource; } } return (stat); } osStatus_t osTimerStop (osTimerId_t timer_id) { TimerHandle_t hTimer = (TimerHandle_t)timer_id; osStatus_t stat; if (IS_IRQ()) { stat = osErrorISR; } else if (hTimer == NULL) { stat = osErrorParameter; } else { if (xTimerIsTimerActive (hTimer) == pdFALSE) { stat = osErrorResource; } else { if (xTimerStop (hTimer, 0) == pdPASS) { stat = osOK; } else { stat = osError; } } } return (stat); } uint32_t osTimerIsRunning (osTimerId_t timer_id) { TimerHandle_t hTimer = (TimerHandle_t)timer_id; uint32_t running; if (IS_IRQ() || (hTimer == NULL)) { running = 0U; } else { running = (uint32_t)xTimerIsTimerActive (hTimer); } return (running); } osStatus_t osTimerDelete (osTimerId_t timer_id) { TimerHandle_t hTimer = (TimerHandle_t)timer_id; osStatus_t stat; #ifndef USE_FreeRTOS_HEAP_1 TimerCallback_t *callb; if (IS_IRQ()) { stat = osErrorISR; } else if (hTimer == NULL) { stat = osErrorParameter; } else { callb = (TimerCallback_t *)pvTimerGetTimerID (hTimer); if (xTimerDelete (hTimer, 0) == pdPASS) { vPortFree (callb); stat = osOK; } else { stat = osErrorResource; } } #else stat = osError; #endif return (stat); } /*---------------------------------------------------------------------------*/ osEventFlagsId_t osEventFlagsNew (const osEventFlagsAttr_t *attr) { EventGroupHandle_t hEventGroup; int32_t mem; hEventGroup = NULL; if (!IS_IRQ()) { mem = -1; if (attr != NULL) { if ((attr->cb_mem != NULL) && (attr->cb_size >= sizeof(StaticEventGroup_t))) { mem = 1; } else { if ((attr->cb_mem == NULL) && (attr->cb_size == 0U)) { mem = 0; } } } else { mem = 0; } if (mem == 1) { hEventGroup = xEventGroupCreateStatic (attr->cb_mem); } else { if (mem == 0) { hEventGroup = xEventGroupCreate(); } } } return ((osEventFlagsId_t)hEventGroup); } uint32_t osEventFlagsSet (osEventFlagsId_t ef_id, uint32_t flags) { EventGroupHandle_t hEventGroup = (EventGroupHandle_t)ef_id; uint32_t rflags; BaseType_t yield; if ((hEventGroup == NULL) || ((flags & EVENT_FLAGS_INVALID_BITS) != 0U)) { rflags = (uint32_t)osErrorParameter; } else if (IS_IRQ()) { yield = pdFALSE; if (xEventGroupSetBitsFromISR (hEventGroup, (EventBits_t)flags, &yield) == pdFAIL) { rflags = (uint32_t)osErrorResource; } else { rflags = flags; portYIELD_FROM_ISR (yield); } } else { rflags = xEventGroupSetBits (hEventGroup, (EventBits_t)flags); } return (rflags); } uint32_t osEventFlagsClear (osEventFlagsId_t ef_id, uint32_t flags) { EventGroupHandle_t hEventGroup = (EventGroupHandle_t)ef_id; uint32_t rflags; if ((hEventGroup == NULL) || ((flags & EVENT_FLAGS_INVALID_BITS) != 0U)) { rflags = (uint32_t)osErrorParameter; } else if (IS_IRQ()) { rflags = xEventGroupGetBitsFromISR (hEventGroup); if (xEventGroupClearBitsFromISR (hEventGroup, (EventBits_t)flags) == pdFAIL) { rflags = (uint32_t)osErrorResource; } } else { rflags = xEventGroupClearBits (hEventGroup, (EventBits_t)flags); } return (rflags); } uint32_t osEventFlagsGet (osEventFlagsId_t ef_id) { EventGroupHandle_t hEventGroup = (EventGroupHandle_t)ef_id; uint32_t rflags; if (ef_id == NULL) { rflags = 0U; } else if (IS_IRQ()) { rflags = xEventGroupGetBitsFromISR (hEventGroup); } else { rflags = xEventGroupGetBits (hEventGroup); } return (rflags); } uint32_t osEventFlagsWait (osEventFlagsId_t ef_id, uint32_t flags, uint32_t options, uint32_t timeout) { EventGroupHandle_t hEventGroup = (EventGroupHandle_t)ef_id; BaseType_t wait_all; BaseType_t exit_clr; uint32_t rflags; if ((hEventGroup == NULL) || ((flags & EVENT_FLAGS_INVALID_BITS) != 0U)) { rflags = (uint32_t)osErrorParameter; } else if (IS_IRQ()) { rflags = (uint32_t)osErrorISR; } else { if (options & osFlagsWaitAll) { wait_all = pdTRUE; } else { wait_all = pdFAIL; } if (options & osFlagsNoClear) { exit_clr = pdFAIL; } else { exit_clr = pdTRUE; } rflags = xEventGroupWaitBits (hEventGroup, (EventBits_t)flags, exit_clr, wait_all, (TickType_t)timeout); if (options & osFlagsWaitAll) { if (flags != rflags) { if (timeout > 0U) { rflags = (uint32_t)osErrorTimeout; } else { rflags = (uint32_t)osErrorResource; } } } else { if ((flags & rflags) == 0U) { if (timeout > 0U) { rflags = (uint32_t)osErrorTimeout; } else { rflags = (uint32_t)osErrorResource; } } } } return (rflags); } osStatus_t osEventFlagsDelete (osEventFlagsId_t ef_id) { EventGroupHandle_t hEventGroup = (EventGroupHandle_t)ef_id; osStatus_t stat; #ifndef USE_FreeRTOS_HEAP_1 if (IS_IRQ()) { stat = osErrorISR; } else if (hEventGroup == NULL) { stat = osErrorParameter; } else { stat = osOK; vEventGroupDelete (hEventGroup); } #else stat = osError; #endif return (stat); } /*---------------------------------------------------------------------------*/ osMutexId_t osMutexNew (const osMutexAttr_t *attr) { SemaphoreHandle_t hMutex; uint32_t type; uint32_t rmtx; int32_t mem; #if (configQUEUE_REGISTRY_SIZE > 0) const char *name; #endif hMutex = NULL; if (!IS_IRQ()) { if (attr != NULL) { type = attr->attr_bits; } else { type = 0U; } if ((type & osMutexRecursive) == osMutexRecursive) { rmtx = 1U; } else { rmtx = 0U; } if ((type & osMutexRobust) != osMutexRobust) { mem = -1; if (attr != NULL) { if ((attr->cb_mem != NULL) && (attr->cb_size >= sizeof(StaticSemaphore_t))) { mem = 1; } else { if ((attr->cb_mem == NULL) && (attr->cb_size == 0U)) { mem = 0; } } } else { mem = 0; } if (mem == 1) { if (rmtx != 0U) { hMutex = xSemaphoreCreateRecursiveMutexStatic (attr->cb_mem); } else { hMutex = xSemaphoreCreateMutexStatic (attr->cb_mem); } } else { if (mem == 0) { if (rmtx != 0U) { hMutex = xSemaphoreCreateRecursiveMutex (); } else { hMutex = xSemaphoreCreateMutex (); } } } #if (configQUEUE_REGISTRY_SIZE > 0) if (hMutex != NULL) { if (attr != NULL) { name = attr->name; } else { name = NULL; } vQueueAddToRegistry (hMutex, name); } #endif if ((hMutex != NULL) && (rmtx != 0U)) { hMutex = (SemaphoreHandle_t)((uint32_t)hMutex | 1U); } } } return ((osMutexId_t)hMutex); } osStatus_t osMutexAcquire (osMutexId_t mutex_id, uint32_t timeout) { SemaphoreHandle_t hMutex; osStatus_t stat; uint32_t rmtx; hMutex = (SemaphoreHandle_t)((uint32_t)mutex_id & ~1U); rmtx = (uint32_t)mutex_id & 1U; stat = osOK; if (IS_IRQ()) { stat = osErrorISR; } else if (hMutex == NULL) { stat = osErrorParameter; } else { if (rmtx != 0U) { if (xSemaphoreTakeRecursive (hMutex, timeout) != pdPASS) { if (timeout != 0U) { stat = osErrorTimeout; } else { stat = osErrorResource; } } } else { if (xSemaphoreTake (hMutex, timeout) != pdPASS) { if (timeout != 0U) { stat = osErrorTimeout; } else { stat = osErrorResource; } } } } return (stat); } osStatus_t osMutexRelease (osMutexId_t mutex_id) { SemaphoreHandle_t hMutex; osStatus_t stat; uint32_t rmtx; hMutex = (SemaphoreHandle_t)((uint32_t)mutex_id & ~1U); rmtx = (uint32_t)mutex_id & 1U; stat = osOK; if (IS_IRQ()) { stat = osErrorISR; } else if (hMutex == NULL) { stat = osErrorParameter; } else { if (rmtx != 0U) { if (xSemaphoreGiveRecursive (hMutex) != pdPASS) { stat = osErrorResource; } } else { if (xSemaphoreGive (hMutex) != pdPASS) { stat = osErrorResource; } } } return (stat); } osThreadId_t osMutexGetOwner (osMutexId_t mutex_id) { SemaphoreHandle_t hMutex; osThreadId_t owner; hMutex = (SemaphoreHandle_t)((uint32_t)mutex_id & ~1U); if (IS_IRQ() || (hMutex == NULL)) { owner = NULL; } else { owner = (osThreadId_t)xSemaphoreGetMutexHolder (hMutex); } return (owner); } osStatus_t osMutexDelete (osMutexId_t mutex_id) { osStatus_t stat; #ifndef USE_FreeRTOS_HEAP_1 SemaphoreHandle_t hMutex; hMutex = (SemaphoreHandle_t)((uint32_t)mutex_id & ~1U); if (IS_IRQ()) { stat = osErrorISR; } else if (hMutex == NULL) { stat = osErrorParameter; } else { #if (configQUEUE_REGISTRY_SIZE > 0) vQueueUnregisterQueue (hMutex); #endif stat = osOK; vSemaphoreDelete (hMutex); } #else stat = osError; #endif return (stat); } /*---------------------------------------------------------------------------*/ osSemaphoreId_t osSemaphoreNew (uint32_t max_count, uint32_t initial_count, const osSemaphoreAttr_t *attr) { SemaphoreHandle_t hSemaphore; int32_t mem; #if (configQUEUE_REGISTRY_SIZE > 0) const char *name; #endif hSemaphore = NULL; if (!IS_IRQ() && (max_count > 0U) && (initial_count <= max_count)) { mem = -1; if (attr != NULL) { if ((attr->cb_mem != NULL) && (attr->cb_size >= sizeof(StaticSemaphore_t))) { mem = 1; } else { if ((attr->cb_mem == NULL) && (attr->cb_size == 0U)) { mem = 0; } } } else { mem = 0; } if (mem != -1) { if (max_count == 1U) { if (mem == 1) { hSemaphore = xSemaphoreCreateBinaryStatic ((StaticSemaphore_t *)attr->cb_mem); } else { hSemaphore = xSemaphoreCreateBinary(); } if ((hSemaphore != NULL) && (initial_count != 0U)) { if (xSemaphoreGive (hSemaphore) != pdPASS) { vSemaphoreDelete (hSemaphore); hSemaphore = NULL; } } } else { if (mem == 1) { hSemaphore = xSemaphoreCreateCountingStatic (max_count, initial_count, (StaticSemaphore_t *)attr->cb_mem); } else { hSemaphore = xSemaphoreCreateCounting (max_count, initial_count); } } #if (configQUEUE_REGISTRY_SIZE > 0) if (hSemaphore != NULL) { if (attr != NULL) { name = attr->name; } else { name = NULL; } vQueueAddToRegistry (hSemaphore, name); } #endif } } return ((osSemaphoreId_t)hSemaphore); } osStatus_t osSemaphoreAcquire (osSemaphoreId_t semaphore_id, uint32_t timeout) { SemaphoreHandle_t hSemaphore = (SemaphoreHandle_t)semaphore_id; osStatus_t stat; BaseType_t yield; stat = osOK; if (hSemaphore == NULL) { stat = osErrorParameter; } else if (IS_IRQ()) { if (timeout != 0U) { stat = osErrorParameter; } else { yield = pdFALSE; if (xSemaphoreTakeFromISR (hSemaphore, &yield) != pdPASS) { stat = osErrorResource; } else { portYIELD_FROM_ISR (yield); } } } else { if (xSemaphoreTake (hSemaphore, (TickType_t)timeout) != pdPASS) { if (timeout != 0U) { stat = osErrorTimeout; } else { stat = osErrorResource; } } } return (stat); } osStatus_t osSemaphoreRelease (osSemaphoreId_t semaphore_id) { SemaphoreHandle_t hSemaphore = (SemaphoreHandle_t)semaphore_id; osStatus_t stat; BaseType_t yield; stat = osOK; if (hSemaphore == NULL) { stat = osErrorParameter; } else if (IS_IRQ()) { yield = pdFALSE; if (xSemaphoreGiveFromISR (hSemaphore, &yield) != pdTRUE) { stat = osErrorResource; } else { portYIELD_FROM_ISR (yield); } } else { if (xSemaphoreGive (hSemaphore) != pdPASS) { stat = osErrorResource; } } return (stat); } uint32_t osSemaphoreGetCount (osSemaphoreId_t semaphore_id) { SemaphoreHandle_t hSemaphore = (SemaphoreHandle_t)semaphore_id; uint32_t count; if (hSemaphore == NULL) { count = 0U; } else if (IS_IRQ()) { count = uxQueueMessagesWaitingFromISR (hSemaphore); } else { count = (uint32_t)uxSemaphoreGetCount (hSemaphore); } return (count); } osStatus_t osSemaphoreDelete (osSemaphoreId_t semaphore_id) { SemaphoreHandle_t hSemaphore = (SemaphoreHandle_t)semaphore_id; osStatus_t stat; #ifndef USE_FreeRTOS_HEAP_1 if (IS_IRQ()) { stat = osErrorISR; } else if (hSemaphore == NULL) { stat = osErrorParameter; } else { #if (configQUEUE_REGISTRY_SIZE > 0) vQueueUnregisterQueue (hSemaphore); #endif stat = osOK; vSemaphoreDelete (hSemaphore); } #else stat = osError; #endif return (stat); } /*---------------------------------------------------------------------------*/ osMessageQueueId_t osMessageQueueNew (uint32_t msg_count, uint32_t msg_size, const osMessageQueueAttr_t *attr) { QueueHandle_t hQueue; int32_t mem; #if (configQUEUE_REGISTRY_SIZE > 0) const char *name; #endif hQueue = NULL; if (!IS_IRQ() && (msg_count > 0U) && (msg_size > 0U)) { mem = -1; if (attr != NULL) { if ((attr->cb_mem != NULL) && (attr->cb_size >= sizeof(StaticQueue_t)) && (attr->mq_mem != NULL) && (attr->mq_size >= (msg_count * msg_size))) { mem = 1; } else { if ((attr->cb_mem == NULL) && (attr->cb_size == 0U) && (attr->mq_mem == NULL) && (attr->mq_size == 0U)) { mem = 0; } } } else { mem = 0; } if (mem == 1) { hQueue = xQueueCreateStatic (msg_count, msg_size, attr->mq_mem, attr->cb_mem); } else { if (mem == 0) { hQueue = xQueueCreate (msg_count, msg_size); } } #if (configQUEUE_REGISTRY_SIZE > 0) if (hQueue != NULL) { if (attr != NULL) { name = attr->name; } else { name = NULL; } vQueueAddToRegistry (hQueue, name); } #endif } return ((osMessageQueueId_t)hQueue); } osStatus_t osMessageQueuePut (osMessageQueueId_t mq_id, const void *msg_ptr, uint8_t msg_prio, uint32_t timeout) { QueueHandle_t hQueue = (QueueHandle_t)mq_id; osStatus_t stat; BaseType_t yield; (void)msg_prio; /* Message priority is ignored */ stat = osOK; if (IS_IRQ()) { if ((hQueue == NULL) || (msg_ptr == NULL) || (timeout != 0U)) { stat = osErrorParameter; } else { yield = pdFALSE; if (xQueueSendToBackFromISR (hQueue, msg_ptr, &yield) != pdTRUE) { stat = osErrorResource; } else { portYIELD_FROM_ISR (yield); } } } else { if ((hQueue == NULL) || (msg_ptr == NULL)) { stat = osErrorParameter; } else { if (xQueueSendToBack (hQueue, msg_ptr, (TickType_t)timeout) != pdPASS) { if (timeout != 0U) { stat = osErrorTimeout; } else { stat = osErrorResource; } } } } return (stat); } osStatus_t osMessageQueueGet (osMessageQueueId_t mq_id, void *msg_ptr, uint8_t *msg_prio, uint32_t timeout) { QueueHandle_t hQueue = (QueueHandle_t)mq_id; osStatus_t stat; BaseType_t yield; (void)msg_prio; /* Message priority is ignored */ stat = osOK; if (IS_IRQ()) { if ((hQueue == NULL) || (msg_ptr == NULL) || (timeout != 0U)) { stat = osErrorParameter; } else { yield = pdFALSE; if (xQueueReceiveFromISR (hQueue, msg_ptr, &yield) != pdPASS) { stat = osErrorResource; } else { portYIELD_FROM_ISR (yield); } } } else { if ((hQueue == NULL) || (msg_ptr == NULL)) { stat = osErrorParameter; } else { if (xQueueReceive (hQueue, msg_ptr, (TickType_t)timeout) != pdPASS) { if (timeout != 0U) { stat = osErrorTimeout; } else { stat = osErrorResource; } } } } return (stat); } uint32_t osMessageQueueGetCapacity (osMessageQueueId_t mq_id) { StaticQueue_t *mq = (StaticQueue_t *)mq_id; uint32_t capacity; if (mq == NULL) { capacity = 0U; } else { /* capacity = pxQueue->uxLength */ capacity = mq->uxDummy4[1]; } return (capacity); } uint32_t osMessageQueueGetMsgSize (osMessageQueueId_t mq_id) { StaticQueue_t *mq = (StaticQueue_t *)mq_id; uint32_t size; if (mq == NULL) { size = 0U; } else { /* size = pxQueue->uxItemSize */ size = mq->uxDummy4[2]; } return (size); } uint32_t osMessageQueueGetCount (osMessageQueueId_t mq_id) { QueueHandle_t hQueue = (QueueHandle_t)mq_id; UBaseType_t count; if (hQueue == NULL) { count = 0U; } else if (IS_IRQ()) { count = uxQueueMessagesWaitingFromISR (hQueue); } else { count = uxQueueMessagesWaiting (hQueue); } return ((uint32_t)count); } uint32_t osMessageQueueGetSpace (osMessageQueueId_t mq_id) { StaticQueue_t *mq = (StaticQueue_t *)mq_id; uint32_t space; uint32_t isrm; if (mq == NULL) { space = 0U; } else if (IS_IRQ()) { isrm = taskENTER_CRITICAL_FROM_ISR(); /* space = pxQueue->uxLength - pxQueue->uxMessagesWaiting; */ space = mq->uxDummy4[1] - mq->uxDummy4[0]; taskEXIT_CRITICAL_FROM_ISR(isrm); } else { space = (uint32_t)uxQueueSpacesAvailable ((QueueHandle_t)mq); } return (space); } osStatus_t osMessageQueueReset (osMessageQueueId_t mq_id) { QueueHandle_t hQueue = (QueueHandle_t)mq_id; osStatus_t stat; if (IS_IRQ()) { stat = osErrorISR; } else if (hQueue == NULL) { stat = osErrorParameter; } else { stat = osOK; (void)xQueueReset (hQueue); } return (stat); } osStatus_t osMessageQueueDelete (osMessageQueueId_t mq_id) { QueueHandle_t hQueue = (QueueHandle_t)mq_id; osStatus_t stat; #ifndef USE_FreeRTOS_HEAP_1 if (IS_IRQ()) { stat = osErrorISR; } else if (hQueue == NULL) { stat = osErrorParameter; } else { #if (configQUEUE_REGISTRY_SIZE > 0) vQueueUnregisterQueue (hQueue); #endif stat = osOK; vQueueDelete (hQueue); } #else stat = osError; #endif return (stat); } /*---------------------------------------------------------------------------*/ /* Callback function prototypes */ extern void vApplicationIdleHook (void); extern void vApplicationTickHook (void); extern void vApplicationMallocFailedHook (void); extern void vApplicationDaemonTaskStartupHook (void); extern void vApplicationStackOverflowHook (TaskHandle_t xTask, signed char *pcTaskName); /** Dummy implementation of the callback function vApplicationIdleHook(). */ #if (configUSE_IDLE_HOOK == 1) __WEAK void vApplicationIdleHook (void){} #endif /** Dummy implementation of the callback function vApplicationTickHook(). */ #if (configUSE_TICK_HOOK == 1) __WEAK void vApplicationTickHook (void){} #endif /** Dummy implementation of the callback function vApplicationMallocFailedHook(). */ #if (configUSE_MALLOC_FAILED_HOOK == 1) __WEAK void vApplicationMallocFailedHook (void){} #endif /** Dummy implementation of the callback function vApplicationDaemonTaskStartupHook(). */ #if (configUSE_DAEMON_TASK_STARTUP_HOOK == 1) __WEAK void vApplicationDaemonTaskStartupHook (void){} #endif /** Dummy implementation of the callback function vApplicationStackOverflowHook(). */ #if (configCHECK_FOR_STACK_OVERFLOW > 0) __WEAK void vApplicationStackOverflowHook (TaskHandle_t xTask, signed char *pcTaskName) { (void)xTask; (void)pcTaskName; } #endif /*---------------------------------------------------------------------------*/ /* External Idle and Timer task static memory allocation functions */ extern void vApplicationGetIdleTaskMemory (StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize); extern void vApplicationGetTimerTaskMemory (StaticTask_t **ppxTimerTaskTCBBuffer, StackType_t **ppxTimerTaskStackBuffer, uint32_t *pulTimerTaskStackSize); /* Idle task control block and stack */ static StaticTask_t Idle_TCB; static StackType_t Idle_Stack[configMINIMAL_STACK_SIZE]; /* Timer task control block and stack */ static StaticTask_t Timer_TCB; static StackType_t Timer_Stack[configTIMER_TASK_STACK_DEPTH]; /* vApplicationGetIdleTaskMemory gets called when configSUPPORT_STATIC_ALLOCATION equals to 1 and is required for static memory allocation support. */ void vApplicationGetIdleTaskMemory (StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize) { *ppxIdleTaskTCBBuffer = &Idle_TCB; *ppxIdleTaskStackBuffer = &Idle_Stack[0]; *pulIdleTaskStackSize = (uint32_t)configMINIMAL_STACK_SIZE; } /* vApplicationGetTimerTaskMemory gets called when configSUPPORT_STATIC_ALLOCATION equals to 1 and is required for static memory allocation support. */ void vApplicationGetTimerTaskMemory (StaticTask_t **ppxTimerTaskTCBBuffer, StackType_t **ppxTimerTaskStackBuffer, uint32_t *pulTimerTaskStackSize) { *ppxTimerTaskTCBBuffer = &Timer_TCB; *ppxTimerTaskStackBuffer = &Timer_Stack[0]; *pulTimerTaskStackSize = (uint32_t)configTIMER_TASK_STACK_DEPTH; }