// // Top level module for the FPGA on the MAX80 board by // Per MÃ¥rtensson and H. Peter Anvin // // This is for MAX80 as target on the ABC-bus. // // Sharing JTAG pins (via JTAGEN) `undef SHARED_JTAG module max80 ( // Clock oscillator input clock_48, // 48 MHz // ABC-bus input abc_clk, // ABC-bus 3 MHz clock input [15:0] abc_a, // ABC address bus inout [7:0] abc_d, // ABC data bus output abc_d_oe, // Data bus output enable input abc_rst_n, // ABC bus reset strobe input abc_cs_n, // ABC card select strobe input [4:0] abc_out_n, // OUT, C1-C4 strobe input [1:0] abc_inp_n, // INP, STATUS strobe input abc_xmemfl_n, // Memory read strobe input abc_xmemw800_n, // Memory write strobe (ABC800) input abc_xmemw80_n, // Memory write strobe (ABC80) input abc_xinpstb_n, // I/O read strobe (ABC800) input abc_xoutpstb_n, // I/O write strobe (ABC80) // The following are inverted versus the bus IF // the corresponding MOSFETs are installed output abc_rdy_x, // RDY = WAIT# output abc_resin_x, // System reset request output abc_int80_x, // System INT request (ABC80) output abc_int800_x, // System INT request (ABC800) output abc_nmi_x, // System NMI request (ABC800) output abc_xm_x, // System memory override (ABC800) // Host/device control output abc_host, // 1 = host, 0 = target output abc_a_oe, // Bus isolation output abc_d_ce_n, // ABC-bus extension header // (Note: cannot use an array here because HC and HH are // input only.) inout exth_ha, inout exth_hb, input exth_hc, inout exth_hd, inout exth_he, inout exth_hf, inout exth_hg, input exth_hh, // SDRAM bus output sr_clk, output sr_cke, output [1:0] sr_ba, // Bank address output [12:0] sr_a, // Address within bank inout [15:0] sr_dq, // Also known as D or IO output [1:0] sr_dqm, // DQML and DQMH output sr_cs_n, output sr_we_n, output sr_cas_n, output sr_ras_n, // SD card output sd_clk, output sd_cmd, inout [3:0] sd_dat, // USB serial (naming is FPGA as DCE) input tty_txd, output tty_rxd, input tty_rts, output tty_cts, input tty_dtr, // SPI flash memory (also configuration) output flash_cs_n, output flash_sck, inout [1:0] flash_io, // SPI bus (connected to ESP32 so can be bidirectional) inout spi_clk, inout spi_miso, inout spi_mosi, inout spi_cs_esp_n, // ESP32 IO10 inout spi_cs_flash_n, // ESP32 IO01 // Other ESP32 connections inout esp_io0, // ESP32 IO00 inout esp_int, // ESP32 IO09 // I2C bus (RTC and external) inout i2c_scl, inout i2c_sda, input rtc_32khz, input rtc_int_n, // LED (2 = D23/G, 1 = D22/R, 0 = D17/B) output [2:0] led, // GPIO pins inout [5:0] gpio, // HDMI output [2:0] hdmi_d, output hdmi_clk, inout hdmi_scl, inout hdmi_sda, inout hdmi_hpd ); // PLL and reset parameter reset_pow2 = 12; // Assert internal reset for 4096 cycles after PLL lock reg rst_n = 1'b0; // Internal reset wire [1:0] pll_locked; // Clocks wire sdram_clk; // SDRAM clock wire sdram_out_clk; // SDRAM clock, phase shifted wire sys_clk; // System clock wire vid_clk; // Video pixel clock wire vid_hdmiclk; // D:o in the HDMI clock domain wire flash_clk; // Serial flash ROM clock reg reset_cmd_q = 1'b0; wire reset_cmd; pll pll ( .areset ( reset_cmd_q ), .inclk0 ( clock_48 ), .c0 ( sdram_out_clk ), // SDRAM external clock (168 MHz) .c1 ( sys_clk ), // System clock (84 MHz) .c2 ( vid_clk ), // Video pixel clock (48 MHz) .c3 ( flash_clk ), // Serial flash ROM clock (134 MHz) .c4 ( sdram_clk ), // SDRAM internal clock (168 MHz) .locked ( pll_locked[0] ), .phasestep ( 1'b0 ), .phasecounterselect ( 3'b0 ), .phaseupdown ( 1'b1 ), .scanclk ( 1'b0 ), .phasedone ( ) ); wire all_plls_locked = &pll_locked; // sys_clk pulse generation of various powers of two // Also used to generate rst_n reg [23:1] sys_clk_ctr; reg [23:1] sys_clk_ctr_q; reg [23:1] sys_clk_stb; always @(negedge all_plls_locked or posedge sys_clk) if (~&all_plls_locked) begin rst_n <= 1'b0; reset_cmd_q <= 1'b0; sys_clk_ctr <= 1'b0; sys_clk_ctr_q <= 1'b0; sys_clk_stb <= 1'b0; end else begin sys_clk_ctr <= sys_clk_ctr + 1'b1; sys_clk_ctr_q <= sys_clk_ctr; sys_clk_stb <= ~sys_clk_ctr & sys_clk_ctr_q; reset_cmd_q <= rst_n & (reset_cmd_q | reset_cmd); rst_n <= rst_n | sys_clk_stb[reset_pow2]; end // Unused device stubs - remove when used // Reset in the video clock domain reg vid_rst_n; always @(negedge all_plls_locked or posedge vid_clk) if (~all_plls_locked) vid_rst_n <= 1'b0; else vid_rst_n <= rst_n; // HDMI - generate random data to give Quartus something to do reg [23:0] dummydata = 30'hc8_fb87; always @(posedge vid_clk) dummydata <= { dummydata[22:0], dummydata[23] }; wire [7:0] hdmi_data[3]; wire [9:0] hdmi_tmds[3]; wire [29:0] hdmi_to_tx; assign hdmi_data[0] = dummydata[7:0]; assign hdmi_data[1] = dummydata[15:8]; assign hdmi_data[2] = dummydata[23:16]; generate genvar i; for (i = 0; i < 3; i = i + 1) begin : hdmitmds tmdsenc enc ( .rst_n ( vid_rst_n ), .clk ( vid_clk ), .den ( 1'b1 ), .d ( hdmi_data[i] ), .c ( 2'b00 ), .q ( hdmi_tmds[i] ) ); end endgenerate assign hdmi_scl = 1'bz; assign hdmi_sda = 1'bz; assign hdmi_hpd = 1'bz; // // The ALTLVDS_TX megafunctions is MSB-first and in time-major order. // However, TMDS is LSB-first, and we have three TMDS words that // concatenate in word(channel)-major order. // transpose #(.words(3), .bits(10), .reverse_b(1), .reg_d(0), .reg_q(0)) hdmitranspose ( .clk ( vid_clk ), .d ( { hdmi_tmds[2], hdmi_tmds[1], hdmi_tmds[0] } ), .q ( hdmi_to_tx ) ); hdmitx hdmitx ( .pll_areset ( ~pll_locked[0] ), .tx_in ( hdmi_to_tx ), .tx_inclock ( vid_clk ), .tx_coreclock ( vid_hdmiclk ), // Pixel clock in HDMI domain .tx_locked ( pll_locked[1] ), .tx_out ( hdmi_d ), .tx_outclock ( hdmi_clk ) ); // // Internal CPU bus // wire cpu_mem_valid; wire cpu_mem_instr; wire [ 3:0] cpu_mem_wstrb; wire [31:0] cpu_mem_addr; wire [31:0] cpu_mem_wdata; reg [31:0] cpu_mem_rdata; wire cpu_mem_ready; wire cpu_la_read; wire cpu_la_write; wire [31:0] cpu_la_addr; wire [31:0] cpu_la_wdata; wire [ 3:0] cpu_la_wstrb; // cpu_mem_valid by address quadrant wire [ 3:0] cpu_mem_quad = cpu_mem_valid << cpu_mem_addr[31:30]; // I/O device map from iodevs.conf wire iodev_mem_valid = cpu_mem_quad[3]; `include "iodevs.vh" // // SDRAM // // ABC interface wire [24:0] abc_sr_addr; wire [ 7:0] abc_sr_rd; wire abc_sr_rrq; wire abc_sr_rack; wire abc_sr_rready; wire [ 7:0] abc_sr_wd; wire abc_sr_wrq; wire abc_sr_wack; // CPU interface wire [31:0] sdram_rd; wire sdram_rack; wire sdram_rready; wire sdram_wack; reg sdram_acked; wire sdram_valid = cpu_mem_quad[1]; wire sdram_req = sdram_valid & ~sdram_acked; always @(posedge sdram_clk) sdram_acked <= sdram_valid & (sdram_acked | sdram_rack | sdram_wack); // Romcopy interface wire [15:0] sdram_rom_wd; wire [24:1] sdram_rom_waddr; wire [ 1:0] sdram_rom_wrq; wire sdram_rom_wacc; sdram sdram ( .rst_n ( rst_n ), .clk ( sdram_clk ), // Internal clock .out_clk ( sdram_out_clk ), // External clock (phase shifted) .sr_clk ( sr_clk ), // Output clock buffer .sr_cke ( sr_cke ), .sr_cs_n ( sr_cs_n ), .sr_ras_n ( sr_ras_n ), .sr_cas_n ( sr_cas_n ), .sr_we_n ( sr_we_n ), .sr_dqm ( sr_dqm ), .sr_ba ( sr_ba ), .sr_a ( sr_a ), .sr_dq ( sr_dq ), .a0 ( abc_sr_addr ), .rd0 ( abc_sr_rd ), .rrq0 ( abc_sr_rrq ), .rack0 ( abc_sr_rack ), .rready0 ( abc_sr_rready ), .wd0 ( abc_sr_wd ), .wrq0 ( abc_sr_wrq ), .wack0 ( abc_sr_wack ), .a1 ( cpu_mem_addr[24:2] ), .rd1 ( sdram_rd ), .rrq1 ( sdram_req & ~|cpu_mem_wstrb ), .rack1 ( sdram_rack ), .rready1 ( sdram_rready ), .wd1 ( cpu_mem_wdata ), .wstrb1 ( {4{sdram_req}} & cpu_mem_wstrb ), .wack1 ( sdram_wack ), .a2 ( sdram_rom_waddr ), .wd2 ( sdram_rom_wd ), .wrq2 ( sdram_rom_wrq ), .wacc2 ( sdram_rom_wacc ) ); // // ABC-bus interface // abcbus abcbus ( .rst_n ( rst_n ), .sys_clk ( sys_clk ), .sdram_clk ( sdram_clk ), .stb_1mhz ( sys_clk_stb[6] ), .abc_valid ( iodev_valid_abc ), .map_valid ( iodev_valid_abcmemmap ), .cpu_addr ( cpu_mem_addr ), .cpu_wdata ( cpu_mem_wdata ), .cpu_wstrb ( cpu_mem_wstrb ), .cpu_rdata ( iodev_rdata_abc ), .cpu_rdata_map ( iodev_rdata_abcmemmap ), .irq ( iodev_irq_abc ), .abc_clk ( abc_clk ), .abc_a ( abc_a ), .abc_d ( abc_d ), .abc_d_oe ( abc_d_oe ), .abc_rst_n ( abc_rst_n ), .abc_cs_n ( abc_cs_n ), .abc_out_n ( abc_out_n ), .abc_inp_n ( abc_inp_n ), .abc_xmemfl_n ( abc_xmemfl_n ), .abc_xmemw800_n ( abc_xmemw800_n ), .abc_xmemw80_n ( abc_xmemw80_n ), .abc_xinpstb_n ( abc_xinpstb_n ), .abc_xoutpstb_n ( abc_xoutpstb_n ), .abc_rdy_x ( abc_rdy_x ), .abc_resin_x ( abc_resin_x ), .abc_int80_x ( abc_int80_x ), .abc_int800_x ( abc_int800_x ), .abc_nmi_x ( abc_nmi_x ), .abc_xm_x ( abc_xm_x ), .abc_host ( abc_host ), .abc_a_oe ( abc_a_oe ), .abc_d_ce_n ( abc_d_ce_n ), .exth_ha ( exth_ha ), .exth_hb ( exth_hb ), .exth_hc ( exth_hc ), .exth_hd ( exth_hd ), .exth_he ( exth_he ), .exth_hf ( exth_hf ), .exth_hg ( exth_hg ), .exth_hh ( exth_hh ), .sdram_addr ( abc_sr_addr ), .sdram_rd ( abc_sr_rd ), .sdram_rrq ( abc_sr_rrq ), .sdram_rack ( abc_sr_rack ), .sdram_rready ( abc_sr_rready ), .sdram_wd ( abc_sr_wd ), .sdram_wrq ( abc_sr_wrq ), .sdram_wack ( abc_sr_wack ) ); // GPIO assign gpio = 6'bzzzzzz; // Embedded RISC-V CPU parameter cpu_fast_mem_bits = SRAM_BITS-2; /* 2^[this] * 4 bytes */ // Edge-triggered IRQs. picorv32 latches interrupts // but doesn't edge detect for a slow signal, so do it // here instead and use level triggered signalling to the // CPU. wire [31:0] cpu_eoi; reg [31:0] cpu_eoi_q; // sys_irq defined in iodevs.vh reg [31:0] sys_irq_q; reg [31:0] cpu_irq; // CPU permanently hung? wire cpu_trap; always @(negedge rst_n or posedge sys_clk) if (~rst_n) begin sys_irq_q <= 32'b0; cpu_eoi_q <= 32'b0; cpu_irq <= 32'b0; end else begin sys_irq_q <= sys_irq & irq_edge_mask; cpu_eoi_q <= cpu_eoi & irq_edge_mask; cpu_irq <= (sys_irq & ~sys_irq_q) | (cpu_irq & irq_edge_mask & ~(cpu_eoi & ~cpu_eoi_q)); end picorv32 #( .ENABLE_COUNTERS ( 1 ), .ENABLE_COUNTERS64 ( 1 ), .ENABLE_REGS_16_31 ( 1 ), .ENABLE_REGS_DUALPORT ( 1 ), .LATCHED_MEM_RDATA ( 1 ), .BARREL_SHIFTER ( 1 ), .TWO_CYCLE_COMPARE ( 0 ), .TWO_CYCLE_ALU ( 0 ), .COMPRESSED_ISA ( 1 ), .CATCH_MISALIGN ( 1 ), .CATCH_ILLINSN ( 1 ), .ENABLE_FAST_MUL ( 1 ), .ENABLE_DIV ( 1 ), .ENABLE_IRQ ( 1 ), .ENABLE_IRQ_QREGS ( 1 ), .ENABLE_IRQ_TIMER ( 1 ), .MASKED_IRQ ( irq_masked ), .LATCHED_IRQ ( 32'h0000_0007 ), .REGS_INIT_ZERO ( 1 ), .STACKADDR ( 32'h4 << cpu_fast_mem_bits ) ) cpu ( .clk ( sys_clk ), .resetn ( rst_n ), .trap ( cpu_trap ), .progaddr_reset ( _PC_RESET ), .progaddr_irq ( _PC_IRQ ), .mem_instr ( cpu_mem_instr ), .mem_ready ( cpu_mem_ready ), .mem_valid ( cpu_mem_valid ), .mem_wstrb ( cpu_mem_wstrb ), .mem_addr ( cpu_mem_addr ), .mem_wdata ( cpu_mem_wdata ), .mem_rdata ( cpu_mem_rdata ), .mem_la_read ( cpu_la_read ), .mem_la_write ( cpu_la_write ), .mem_la_wdata ( cpu_la_wdata ), .mem_la_addr ( cpu_la_addr ), .mem_la_wstrb ( cpu_la_wstrb ), .irq ( cpu_irq ), .eoi ( cpu_eoi ) ); // cpu_mem_ready is always true for fast memory; for SDRAM we have to // wait either for a write ack or a low-high transition on the // read ready signal. reg sdram_rready_q; reg sdram_mem_ready; reg [31:0] sdram_rdata; always @(posedge sys_clk) begin sdram_rready_q <= sdram_rready; if (cpu_mem_quad[1]) sdram_mem_ready <= sdram_mem_ready | sdram_wack | (sdram_rready & ~sdram_rready_q); else sdram_mem_ready <= 1'b0; sdram_rdata <= sdram_rd; end // Add a mandatory wait state to iodevs to reduce the size // of the CPU memory input MUX (it hurts timing on memory // accesses...) reg iodev_mem_ready; always @(*) case ( cpu_mem_quad ) 4'b0000: cpu_mem_ready = 1'b0; 4'b0001: cpu_mem_ready = 1'b1; 4'b0010: cpu_mem_ready = sdram_mem_ready; 4'b0100: cpu_mem_ready = 1'b1; 4'b1000: cpu_mem_ready = iodev_mem_ready; default: cpu_mem_ready = 1'bx; endcase // case ( mem_quad ) // // Fast memory. This runs on the SDRAM clock, i.e. 2x the speed // of the CPU. The .bits parameter gives the number of dwords // as a power of 2, i.e. 11 = 2^11 * 4 = 8K. // wire [31:0] fast_mem_rdata; fast_mem // #(.bits(cpu_fast_mem_bits), .mif("../fw/boot")) fast_mem( .rst_n ( rst_n ), .clk ( sys_clk ), .read ( cpu_la_read & cpu_la_addr[31:30] == 2'b00 ), .write ( cpu_la_write & cpu_la_addr[31:30] == 2'b00 ), .wstrb ( cpu_la_wstrb ), .addr ( cpu_la_addr[14:2] ), .wdata ( cpu_la_wdata ), .rdata ( fast_mem_rdata ) ); // Register I/O data to reduce the size of the read data MUX reg [31:0] iodev_rdata_q; // Read data MUX always @(*) case ( cpu_mem_quad ) 4'b0001: cpu_mem_rdata = fast_mem_rdata; 4'b0010: cpu_mem_rdata = sdram_rdata; 4'b1000: cpu_mem_rdata = iodev_rdata_q; default: cpu_mem_rdata = 32'hxxxx_xxxx; endcase // Miscellaneous system control/status registers wire [ 4:0] sysreg_subreg = cpu_mem_addr[6:2]; wire [31:0] sysreg = iodev_valid_sys << sysreg_subreg; tri1 [31:0] sysreg_rdata[0:31]; assign iodev_rdata_sys = sysreg_rdata[sysreg_subreg]; // // Board identification // // Magic number: "MAX8" // Board revision: 1.0 // Board rework flags: // [0] - RTC 32 kHz pullup and serial port RxD/TxD swap // [15:1] - reserved // wire [ 7:0] max80_major = 8'd1; wire [ 7:0] max80_minor = 8'd0; wire [15:0] max80_fixes = { 14'b0, rtc_32khz_rework }; // Workarounds assign sysreg_rdata[0] = SYS_MAGIC_MAX80; assign sysreg_rdata[1] = { max80_major, max80_minor, max80_fixes }; // Hard system reset under program control assign reset_cmd = (sysreg[3] & cpu_mem_wstrb[0] & cpu_mem_wdata[0]) | cpu_trap; // CPU hung // LED indication from the CPU reg [2:0] led_q; always @(negedge rst_n or posedge sys_clk) if (~rst_n) led_q <= 3'b000; else if ( sysreg[2] & cpu_mem_wstrb[0] ) led_q <= cpu_mem_wdata[2:0]; assign led = led_q; assign sysreg_rdata[2] = { 29'b0, led_q }; // // Serial ROM (also configuration ROM.) Fast hardwired data download // unit to SDRAM. // wire rom_done; reg rom_done_q; spirom ddu ( .rst_n ( rst_n ), .rom_clk ( flash_clk ), .ram_clk ( sdram_clk ), .sys_clk ( sys_clk ), .spi_sck ( flash_sck ), .spi_io ( flash_io ), .spi_cs_n ( flash_cs_n ), .wd ( sdram_rom_wd ), .waddr ( sdram_rom_waddr ), .wrq ( sdram_rom_wrq ), .wacc ( sdram_rom_wacc ), .cpu_rdata ( iodev_rdata_romcopy ), .cpu_wdata ( cpu_mem_wdata ), .cpu_valid ( iodev_valid_romcopy ), .cpu_wstrb ( cpu_mem_wstrb ), .cpu_addr ( cpu_mem_addr[3:2] ), .irq ( iodev_irq_romcopy ) ); // // Serial port. Direct to the CP2102N for reworked // boards or to GPIO for non-reworked boards, depending on // whether DTR# is asserted on either. // // The GPIO numbering matches the order of pins for FT[2]232H. // gpio[0] - TxD // gpio[1] - RxD // gpio[2] - RTS# // gpio[3] - CTS# // gpio[4] - DTR# // wire tty_data_out; // Output data wire tty_data_in; // Input data wire tty_cts_out; // Assert CTS# externally wire tty_rts_in; // RTS# received from outside assign tty_cts_out = 1'b0; // Assert CTS# tty console ( .rst_n ( rst_n ), .clk ( sys_clk ), .valid ( iodev_valid_console ), .wstrb ( cpu_mem_wstrb ), .wdata ( cpu_mem_wdata ), .rdata ( iodev_rdata_console ), .addr ( cpu_mem_addr[3:2] ), .irq ( iodev_irq_console ), .tty_txd ( tty_data_out ) // DTE -> DCE ); `ifdef WORKAROUNDS reg [1:0] tty_dtr_q; always @(posedge sys_clk) begin tty_dtr_q[0] <= tty_dtr; tty_dtr_q[1] <= gpio[4]; end // // Route data to the two output ports // // tty_rxd because pins are DCE named assign tty_data_in = (tty_txd | tty_dtr_q[0]) & (gpio[0] | tty_dtr_q[1]); assign tty_rxd = tty_dtr_q[0] ? 1'bz : tty_data_out; assign gpio[1] = tty_dtr_q[1] ? 1'bz : tty_data_out; assign tty_rts_in = (tty_rts | tty_dtr_q[0]) & (gpio[2] | tty_dtr_q[1]); assign tty_cts = tty_dtr_q[0] ? 1'bz : tty_cts_out; assign gpio[3] = tty_dtr_q[1] ? 1'bz : tty_cts_out; // DTR on GPIO -> assume RTC 32 kHz output is nonfunctional assign rtc_32khz_rework = tty_dtr_q[1]; `else assign tty_data_in = tty_txd; assign tty_rxd = tty_data_out; assign tty_rts_in = tty_rts; assign tty_cts = tty_cts_out; assign rtc_32khz_rework = 1'b1; `endif // SD card sdcard #( .with_irq_mask ( 8'b0000_0001 ) ) sdcard ( .rst_n ( rst_n ), .clk ( sys_clk ), .sd_cs_n ( sd_dat[3] ), .sd_di ( sd_cmd ), .sd_sclk ( sd_clk ), .sd_do ( sd_dat[0] ), .sd_cd_n ( 1'b0 ), .sd_irq_n ( 1'b1 ), .wdata ( cpu_mem_wdata ), .rdata ( iodev_rdata_sdcard ), .valid ( iodev_valid_sdcard ), .wstrb ( cpu_mem_wstrb ), .addr ( cpu_mem_addr[6:2] ), .wait_n ( iodev_wait_n_sdcard ), .irq ( iodev_irq_sdcard ) ); assign sd_dat[2:1] = 2'bzz; // System local clock (not an RTC, but settable from one) // Also provides a periodic interrupt (set to 32 Hz) // // XXX: the RTC 32 kHz signal is missing a pull-up, // so unless the board has been reworked, use a // divider down from the 84 MHz system clock. The // error is about 200 ppm; a proper NCO could do better. `ifdef WORKAROUNDS reg ctr_32khz; reg [10:0] ctr_64khz; always @(posedge sys_clk) begin if (~|ctr_64khz) begin ctr_32khz <= ~ctr_32khz; ctr_64khz <= 11'd1280; end else ctr_64khz <= ctr_64khz - 1'b1; end // 32kHz clock synchronized with sys_clk wire clk_32kHz = rtc_32khz_rework ? ~rtc_32khz : ctr_32khz; `else // !`ifdef WORKAROUNDS wire clk_32kHz = ~rtc_32khz; `endif sysclock #(.PERIODIC_HZ_LG2 ( TIMER_SHIFT )) sysclock ( .rst_n ( rst_n ), .sys_clk ( sys_clk ), .rtc_clk ( clk_32kHz ), .wdata ( cpu_mem_wdata ), .rdata ( iodev_rdata_sysclock ), .valid ( iodev_valid_sysclock ), .wstrb ( cpu_mem_wstrb ), .addr ( cpu_mem_addr[2] ), .periodic ( iodev_irq_sysclock ) ); // SPI bus to ESP32; using the sdcard IP as a SPI master for now at // least... `ifdef REALLY_ESP32 // ESP32 assign spi_cs_flash_n = 1'bz; assign esp_io0 = 1'b1; // If pulled down on reset, ESP32 will enter // firmware download mode sdcard #( .with_irq_mask ( 8'b0000_0101 ), .with_crc7 ( 1'b0 ), .with_crc16 ( 1'b0 ) ) esp ( .rst_n ( rst_n ), .clk ( sys_clk ), .sd_cs_n ( spi_cs_esp_n ), .sd_di ( spi_mosi ), .sd_sclk ( spi_clk ), .sd_do ( spi_miso ), .sd_cd_n ( 1'b0 ), .sd_irq_n ( esp_int ), .wdata ( cpu_mem_wdata ), .rdata ( iodev_rdata_esp ), .valid ( iodev_valid_esp ), .wstrb ( cpu_mem_wstrb ), .addr ( cpu_mem_addr[6:2] ), .wait_n ( iodev_wait_n_esp ), .irq ( iodev_irq_esp ) ); `else // !`ifdef REALLY_ESP32 reg [5:-13] esp_ctr; // 32768 * 2^-13 = 4 Hz always @(posedge clk_32kHz) esp_ctr <= esp_ctr + 1'b1; assign spi_clk = esp_ctr[0]; assign spi_mosi = esp_ctr[1]; assign spi_miso = esp_ctr[2]; assign spi_cs_flash_n = esp_ctr[3]; // IO01 assign spi_cs_esp_n = esp_ctr[4]; // IO10 assign spi_int = esp_ctr[5]; // IO09 assign esp_io0 = 1'b1; `endif // // I2C bus (RTC and to connector) // i2c i2c ( .rst_n ( rst_n ), .clk ( sys_clk ), .valid ( iodev_valid_i2c ), .addr ( cpu_mem_addr[3:2] ), .wdata ( cpu_mem_wdata ), .wstrb ( cpu_mem_wstrb ), .rdata ( iodev_rdata_i2c ), .irq ( iodev_irq_i2c ), .i2c_scl ( i2c_scl ), .i2c_sda ( i2c_sda ) ); // // Registering of I/O data and handling of iodev_mem_ready // always @(posedge sys_clk) iodev_rdata_q <= iodev_rdata; always @(negedge rst_n or posedge sys_clk) if (~rst_n) iodev_mem_ready <= 1'b0; else iodev_mem_ready <= iodev_wait_n & cpu_mem_valid; endmodule