// // Fast data download from 2-bit SPI flash. // // Feed a FIFO that then writes to SDRAM. // This unit is designed to write 8-byte chunks. // // This unit does *not* require a 2x SPI clock; // it uses a DDR buffer for clock out. // module spirom ( input rst_n, input rom_clk, input ram_clk, output spi_sck, inout [1:0] spi_io, output reg spi_cs_n, output [15:0] wd, // Data to RAM (* syn_preserve = 1 *) // Don't merge into FIFO output [24:1] waddr, // RAM address output reg [1:0] wrq, // Write request (min 8/16 bytes) input wacc, // Data accepted (ready for next data) output reg done ); // // XXX: make these CPU programmable // parameter [24:0] ramstart = 25'h000_0000; parameter [23:0] romstart = 24'h10_0000; // 1 MB parameter [23:0] datalen = 24'h08_0000; // 512K // // FIFO and input latches // reg [1:0] spi_in_q; reg spi_in_req; reg spi_in_req_q; wire [11:0] wrusedw; wire [8:0] rdusedw; wire [15:0] fifo_out; wire rdempty; ddufifo spirom_fifo ( .aclr ( ~rst_n ), .wrclk ( rom_clk ), .data ( spi_in_q ), .wrreq ( spi_in_req_q ), .wrfull ( ), .wrusedw ( wrusedw ), .rdclk ( ram_clk ), .q ( fifo_out ), .rdreq ( wacc ), .rdempty ( rdempty ), .rdusedw ( rdusedw ) ); // // Interfacing between FIFO and output signals // // Shuffle fifo_out because SPI brings in data in bigendian bit // order within bytes, but the FIFO IP assumes littleendian // assign wd[ 7: 6] = fifo_out[ 1: 0]; assign wd[ 5: 4] = fifo_out[ 3: 2]; assign wd[ 3: 2] = fifo_out[ 5: 4]; assign wd[ 1: 0] = fifo_out[ 7: 6]; assign wd[15:14] = fifo_out[ 9: 8]; assign wd[13:12] = fifo_out[11:10]; assign wd[11:10] = fifo_out[13:12]; assign wd[ 9: 8] = fifo_out[15:14]; always @(negedge rst_n or posedge ram_clk) if (~rst_n) begin wrq <= 2'b00; end else begin wrq[0] <= rdusedw >= 9'd4; // 4*2 = 8 bytes min available wrq[1] <= rdusedw >= 9'd8; // 8*2 = 16 bytes min available end reg [24:1] waddr_q; reg wacc_q; assign waddr = waddr_q; always @(negedge rst_n or posedge ram_clk) if (~rst_n) begin waddr_q <= ramstart >> 1; wacc_q <= 1'b0; done <= 1'b0; end else begin wacc_q <= wacc; waddr_q <= waddr_q + wacc_q; done <= done | (wacc_q & (waddr_q == (((ramstart + datalen) >> 1) - 1'b1))); end // else: !if(~rst_n) reg [5:0] spi_cmd_ctr; reg [26:0] spi_data_ctr; reg spi_clk_en = 1'b0; reg spi_mosi_en = 1'b1; ddio_out spi_clk_buf ( .aclr ( ~rst_n ), .datain_h ( spi_clk_en ), .datain_l ( 1'b0 ), .outclock ( rom_clk ), .dataout ( spi_sck ) ); always @(negedge rst_n or posedge rom_clk) if (~rst_n) begin spi_cmd_ctr <= 6'b0; spi_clk_en <= 1'b0; spi_data_ctr <= datalen << 2; spi_cs_n <= 1'b1; spi_in_req <= 1'b0; spi_in_req_q <= 1'b0; end else begin spi_in_q <= spi_io; spi_in_req <= 1'b0; spi_in_req_q <= spi_in_req; spi_clk_en <= 1'b0; if ( ~|spi_data_ctr ) begin spi_cs_n <= 1'b1; spi_clk_en <= 1'b0; end else begin spi_cs_n <= 1'b0; if ( ~spi_cs_n ) begin // 64/4 = 16 bytes min space spi_clk_en <= (~wrusedw) >= 12'd128; if ( spi_clk_en ) begin if ( spi_cmd_ctr[5] & spi_cmd_ctr[3] ) begin spi_in_req <= 1'b1; spi_data_ctr <= spi_data_ctr - 1'b1; end else begin spi_cmd_ctr <= spi_cmd_ctr + 1'b1; end end // if ( spi_clk_en ) end // if ( ~spi_cs_n ) end // else: !if( ~|spi_data_ctr ) end // else: !if(~rst_n) // SPI output data is shifted on the negative edge reg [31:0] spi_cmd; reg spi_clk_en_q; assign spi_io[0] = spi_mosi_en ? spi_cmd[31] : 1'bz; assign spi_io[1] = 1'bz; always @(negedge rst_n or negedge rom_clk) if (~rst_n) begin spi_cmd <= { 8'h3b, romstart }; // Fast Read Dual Output spi_mosi_en <= 1'b1; spi_clk_en_q <= 1'b0; end else begin spi_clk_en_q <= spi_clk_en; if ( spi_clk_en_q ) spi_cmd <= (spi_cmd << 1) | 1'b1; spi_mosi_en <= spi_cs_n | (spi_cmd_ctr < 6'd36); end endmodule // spirom