#include "common.h" #include "config.h" #include "fpga.h" #include "esplink.h" #include "xmalloc.h" #include #include #include #define PIN_FPGA_INT 9 #define PIN_FPGA_CS 10 #define PIN_FPGA_IO0 11 #define PIN_FPGA_CLK 12 #define PIN_FPGA_IO1 13 #define FPGA_SPI_HOST FSPI /* SPI2 */ #define FPGA_PRIORITY 10 #define FPGA_SVC_STACK 4096 #define RTC_TIMESYNC_PERIOD (511*configTICK_RATE_HZ) static spi_bus_config_t spi_bus_config = { .data0_io_num = PIN_FPGA_IO0, .data1_io_num = PIN_FPGA_IO1, .sclk_io_num = PIN_FPGA_CLK, .data2_io_num = -1, .data3_io_num = -1, .data4_io_num = -1, .data5_io_num = -1, .data6_io_num = -1, .data7_io_num = -1, .max_transfer_sz = 4096, .flags = SPICOMMON_BUSFLAG_MASTER | SPICOMMON_BUSFLAG_DUAL }; #define FPGA_IOV_MAX 4 static void ARDUINO_ISR_ATTR spi_callback(spi_transaction_t *); static const spi_device_interface_config_t spi_device_interface_config = { .command_bits = 8, .address_bits = 32, .dummy_bits = 0, .mode = 0, .cs_ena_pretrans = 0, .cs_ena_posttrans = 0, .clock_speed_hz = SPI_MASTER_FREQ_40M, .spics_io_num = PIN_FPGA_CS, .flags = SPI_DEVICE_HALFDUPLEX, .queue_size = FPGA_IOV_MAX, .post_cb = spi_callback }; static spi_device_handle_t spi_handle; static TaskHandle_t fpga_task; static TimerHandle_t fpga_timesync_timer; static SemaphoreHandle_t spi_mutex; static EventGroupHandle_t spi_done_evgroup; static volatile bool spi_abort_all; static struct esplink_head head; #define NOTIFY_INDEX 0 #define NOTIFY_FPGA (1 << 0) #define NOTIFY_ENABLE (1 << 1) #define NOTIFY_DISABLE (1 << 2) #define NOTIFY_TIMESYNC (1 << 3) #if 0 #define NOTIFY_SPI (1 << 3) #define NOTIFY_RINGBUF (1 << 4) #endif static uint32_t notify_poll_for(uint32_t flags) { return ulTaskNotifyValueClearIndexed(NULL, NOTIFY_INDEX, flags); } /* This supports multiple flags set */ static uint32_t notify_wait_for(uint32_t flags) { uint32_t notify_value; /* Already received? Might already have been waited for... */ notify_value = notify_poll_for(flags); while (!(notify_value & flags)) { xTaskNotifyWaitIndexed(NOTIFY_INDEX, 0, flags, ¬ify_value, portMAX_DELAY); } return notify_value; } static void ARDUINO_ISR_ATTR fpga_notify_from_isr(uint32_t flags) { BaseType_t wakeup = pdFALSE; if (xTaskNotifyIndexedFromISR(fpga_task, NOTIFY_INDEX, flags, eSetBits, &wakeup) != pdFAIL) portYIELD_FROM_ISR(wakeup); } static void fpga_notify_from_task(uint32_t flags) { xTaskNotifyIndexed(fpga_task, NOTIFY_INDEX, flags, eSetBits); } static void ARDUINO_ISR_ATTR fpga_interrupt(void) { fpga_notify_from_isr(NOTIFY_FPGA); } void fpga_timesync_trigger(void) { fpga_notify_from_task(NOTIFY_TIMESYNC); } static void ARDUINO_ISR_ATTR spi_callback(spi_transaction_t *t) { size_t flags = (size_t)t->user; if (!flags) return; BaseType_t wakeup = pdFALSE; if (xEventGroupSetBitsFromISR(spi_done_evgroup, (size_t)t->user, &wakeup) != pdFAIL) portYIELD_FROM_ISR(wakeup); } static void fpga_service_task(void *); static EventGroupHandle_t fpga_service_evgroup; void fpga_service_enable(bool on) { uint32_t flag = on ? NOTIFY_ENABLE : NOTIFY_DISABLE; fpga_notify_from_task(flag); xEventGroupWaitBits(fpga_service_evgroup, flag, 0, pdTRUE, portMAX_DELAY); } esp_err_t fpga_service_init(void) { pinMode(PIN_FPGA_INT, INPUT); setvar_bool(status_max80_fpga, false); fpga_service_evgroup = null_check(xEventGroupCreate()); spi_mutex = null_check(xSemaphoreCreateRecursiveMutex()); spi_done_evgroup = null_check(xEventGroupCreate()); /* The ordering here attempts to avoid race conditions... */ if (xTaskCreate(fpga_service_task, "fpga_svc", FPGA_SVC_STACK, NULL, FPGA_PRIORITY, &fpga_task) != pdPASS) return ESP_FAIL; fpga_timesync_timer = null_check(xTimerCreate("rtc_sync", RTC_TIMESYNC_PERIOD, pdTRUE, NULL, (TimerCallbackFunction_t)fpga_timesync_trigger)); esplink_init(); xEventGroupSetBits(fpga_service_evgroup, NOTIFY_DISABLE); return ESP_OK; } static bool fpga_link_enable(void) { esp_err_t err; if (spi_handle) return true; /* Already started */ xEventGroupClearBits(fpga_service_evgroup, NOTIFY_DISABLE); err = spi_bus_initialize(FPGA_SPI_HOST, &spi_bus_config, SPI_DMA_CH_AUTO); if (err) goto init_fail; err = spi_bus_add_device(FPGA_SPI_HOST, &spi_device_interface_config, &spi_handle); if (err) goto free_bus_fail; /* Only device on this bus, so acquire it permanently */ err = spi_device_acquire_bus(spi_handle, portMAX_DELAY); if (err) goto release_bus_fail; xEventGroupClearBits(spi_done_evgroup, EVENT_ALL_BITS); pinMode(PIN_FPGA_INT, INPUT); attachInterrupt(PIN_FPGA_INT, fpga_interrupt, FALLING); xEventGroupSetBits(fpga_service_evgroup, NOTIFY_ENABLE); xSemaphoreGiveRecursive(spi_mutex); fpga_notify_from_task(NOTIFY_FPGA); /* In case FPGA_INT was already low */ goto done; release_bus_fail: spi_bus_remove_device(spi_handle); spi_handle = NULL; free_bus_fail: spi_bus_free(FPGA_SPI_HOST); init_fail: xEventGroupSetBits(fpga_service_evgroup, NOTIFY_DISABLE); done: return !err; } static void fpga_link_disable(void) { if (!spi_handle) return; /* Already stopped */ xEventGroupClearBits(fpga_service_evgroup, NOTIFY_ENABLE); xSemaphoreTakeRecursive(spi_mutex, portMAX_DELAY); detachInterrupt(PIN_FPGA_INT); spi_device_release_bus(spi_handle); spi_bus_remove_device(spi_handle); spi_bus_free(FPGA_SPI_HOST); spi_handle = NULL; xEventGroupSetBits(fpga_service_evgroup, NOTIFY_DISABLE); } static void fpga_poll_set_time(void); esp_err_t fpga_send_config(void) { char *buf = NULL; size_t bufsize = head.cfg.buflen; esp_err_t err = ESP_ERR_NO_MEM; buf = xmalloc_dma(bufsize); if (!buf) goto fail; if (sysvar_marshall(sysvar_null, sysvar_count, buf, &bufsize, (uintptr_t)head.cfg.buf) != sysvar_count) goto fail; bufsize = (bufsize + 3) & ~3; /* Round to dword */ err = fpga_io_write(FPGA_CMD_IRQ(EL_DIRQ_CONFIG), head.cfg.buf, buf, bufsize); fail: if (buf) free(buf); printf("[FPGA] Configuration sent, %zu bytes, status = %u\n", bufsize, err); return err; } static bool fpga_online(void) { fpga_io_read(FPGA_CMD_ACK(EL_UIRQ_READY), ESPLINK_HDR_ADDR, &head, sizeof head); if (head.magic != ESPLINK_HEAD_MAGIC || head.hlen <= 8) { printf("[FPGA] Bad header received, magic = 0x%08x len = %u\n", head.magic, head.hlen); return false; } if (unlikely(head.hlen < sizeof head)) { /* Clear any fields not provided */ memset((char *)&head + head.hlen, 0, sizeof head - head.hlen); } printf("[FPGA] Ready, board = %u.%u fixes %02x fpga %u\n", head.board.major, head.board.minor, head.board.fixes, head.board.fpga); printf("[FPGA] online, signature \"%.*s\"\n", (int)(sizeof head.signature - 1), head.signature); esplink_start(&head); setvar_bool(status_max80_fpga, true); xSemaphoreGiveRecursive(spi_mutex); fpga_send_config(); xTimerStart(fpga_timesync_timer, portMAX_DELAY); fpga_poll_set_time(); return true; } static void fpga_offline(void) { memset(&head, 0, sizeof head); xSemaphoreTakeRecursive(spi_mutex, portMAX_DELAY); xTimerStop(fpga_timesync_timer, portMAX_DELAY); setvar_bool(status_max80_fpga, false); esplink_start(NULL); /* Stop esplink */ } esp_err_t fpga_iov(const struct fpga_iov *iov, size_t niov) { spi_transaction_ext_t trans[FPGA_IOV_MAX]; size_t ntrans = 0; if (niov > FPGA_IOV_MAX) return ESP_ERR_INVALID_ARG; for (size_t i = 0; i < niov; i++) { const struct fpga_iov *iv = &iov[i]; if (!iv->len && !(iv->cmd & FPGA_CMD_NULL)) continue; spi_transaction_ext_t *t = &trans[ntrans]; memset(t, 0, sizeof *t); t->base.flags = SPI_TRANS_MODE_DIO | SPI_TRANS_VARIABLE_DUMMY | SPI_TRANS_MULTILINE_CMD | SPI_TRANS_MULTILINE_ADDR; t->base.cmd = iv->cmd; t->base.addr = iv->iaddr; if (iv->cmd & FPGA_CMD_RD) { t->base.rxlength = iv->len << 3; t->base.rx_buffer = iv->rdata; /* Emulate partial word read by adding dummy bits for offset */ t->dummy_bits = 16 + ((iv->iaddr & 3) << 2); if (iv->cmd & FPGA_CMD_STATUS) { /* * Include the status "dummy" bits * THIS REQUIRES THE REMOTE ADDRESS TO BE 32-BIT ALIGNED */ t->base.rxlength += 32; t->dummy_bits -= 16; } } else { t->base.length = iv->len << 3; t->base.tx_buffer = iv->wdata; } ntrans++; } if (!ntrans) return ESP_OK; esp_err_t err = ESP_OK; xSemaphoreTakeRecursive(spi_mutex, portMAX_DELAY); if (!spi_handle) { err = ESP_FAIL; goto fail; } xEventGroupClearBits(spi_done_evgroup, EVENT_ALL_BITS); size_t tbit = 1; for (size_t i = 0; i < ntrans; i++) { spi_transaction_ext_t *t = &trans[i]; t->base.user = (void *)tbit; err = spi_device_queue_trans(spi_handle, &t->base, portMAX_DELAY); if (err) { ntrans = i; break; } tbit <<= 1; } if (likely(ntrans)) { xEventGroupWaitBits(spi_done_evgroup, tbit-1, pdTRUE, pdTRUE, portMAX_DELAY); while (ntrans--) { /* This is insanely stupid to have to do when not needed */ spi_transaction_t *tp; spi_device_get_trans_result(spi_handle, &tp, 0); } } fail: xSemaphoreGiveRecursive(spi_mutex); return err; } esp_err_t fpga_io_write(unsigned int cmd, const volatile void *addr, const void *data, size_t len) { struct fpga_iov iov; iov.cmd = cmd & ~FPGA_CMD_RD; iov.addr = addr; iov.wdata = data; iov.len = len; return fpga_iov(&iov, 1); } esp_err_t fpga_io_read(unsigned int cmd, const volatile void *addr, void *data, size_t len) { struct fpga_iov iov; iov.cmd = cmd | FPGA_CMD_RD; iov.addr = addr; iov.rdata = data; iov.len = len; return fpga_iov(&iov, 1); } /* * This should be executed after getting an EL_UIRQ_TIME notification; * do this in polling mode for best latency. */ static void fpga_get_time(void) { esp_err_t err; struct tm tm; struct timeval tv; struct tsbuf { /* These two words are the status word normally considered "dummy" */ uint16_t status; uint16_t tick; struct esplink_timesync_buf get; } tsbuf; if (!head.tsync) { fpga_io_status(FPGA_CMD_ACK(EL_UIRQ_TIME)); return; } spi_transaction_ext_t trans; memset(&trans, 0, sizeof trans); trans.base.flags = SPI_TRANS_MODE_DIO | SPI_TRANS_VARIABLE_DUMMY | SPI_TRANS_MULTILINE_CMD | SPI_TRANS_MULTILINE_ADDR; trans.base.rxlength = sizeof tsbuf << 3; trans.base.rx_buffer = &tsbuf; trans.base.addr = (size_t)&head.tsync->get; trans.base.cmd = FPGA_CMD_RD | FPGA_CMD_ACK(EL_UIRQ_TIME); xSemaphoreTakeRecursive(spi_mutex, portMAX_DELAY); err = spi_device_polling_transmit(spi_handle, &trans.base); xSemaphoreGiveRecursive(spi_mutex); if (err) return; if (time_net_sync_status) return; /* Ignore time from RTC if SNTP active now */ tm.tm_sec = tsbuf.get.tm.sec2 << 1; tm.tm_min = tsbuf.get.tm.min; tm.tm_hour = tsbuf.get.tm.hour; tm.tm_mday = tsbuf.get.tm.mday; tm.tm_mon = tsbuf.get.tm.mon - 1; tm.tm_year = tsbuf.get.tm.year + 80; tm.tm_isdst = -1; /* Unknown */ /* The third term handles wraparounds due to delay in transit */ tv.tv_sec = mktime(&tm) + (tsbuf.tick >> 15) + ((tsbuf.get.tick >= tsbuf.tick) << 1); tv.tv_usec = (((uint32_t)tsbuf.tick << 17) * UINT64_C(1000000)) >> 32; settimeofday(&tv, NULL); print_time("[FPGA] Time set from RTC: ", &tv); } static void fpga_poll_set_time(void) { if (!head.tsync) return; if (!time_net_sync_status) { /* Poll for current time; will call fpga_get_time() later */ fpga_io_status(FPGA_CMD_IRQ(EL_DIRQ_TIME)); return; } /* Otherwise transmit time to set the RTC */ esp_err_t err; struct timeval tv; struct esplink_timesync_buf tset; spi_transaction_t trans; memset(&trans, 0, sizeof trans); tset.update = 1; xSemaphoreTakeRecursive(spi_mutex, portMAX_DELAY); gettimeofday(&tv, NULL); const struct tm *tm = localtime(&tv.tv_sec); tset.tick = ((tv.tv_usec * ((1ULL << (32+15))/1000000+1)) >> 32) + ((tv.tv_sec & 1) << 15); tset.tm.sec2 = tm->tm_sec >> 1; tset.tm.min = tm->tm_min; tset.tm.hour = tm->tm_hour; tset.tm.mday = tm->tm_mday; tset.tm.mon = tm->tm_mon + 1; tset.tm.year = tm->tm_year - 80; trans.flags = SPI_TRANS_MODE_DIO | SPI_TRANS_MULTILINE_CMD | SPI_TRANS_MULTILINE_ADDR; trans.length = sizeof tset << 3; trans.tx_buffer = &tset; trans.addr = (size_t)&head.tsync->set; trans.cmd = FPGA_CMD_WR | FPGA_CMD_IRQ(EL_DIRQ_TIME) | FPGA_CMD_ACK(EL_UIRQ_TIME); err = spi_device_polling_transmit(spi_handle, &trans); xSemaphoreGiveRecursive(spi_mutex); if (err) return; print_time("[FPGA] RTC update: ", &tv); } /* * Get status in polling mode (small transaction, < 256 CPU cycles). * cmd typically would be IRQ/ACK bits. */ uint32_t fpga_io_status(unsigned int cmd) { spi_transaction_t trans; memset(&trans, 0, sizeof trans); trans.flags = SPI_TRANS_MODE_DIO | SPI_TRANS_MULTILINE_CMD | SPI_TRANS_MULTILINE_ADDR | SPI_TRANS_USE_RXDATA; trans.cmd = cmd | FPGA_CMD_RD; trans.addr = 0; trans.rxlength = 32; esp_err_t err = ESP_OK; xSemaphoreTakeRecursive(spi_mutex, portMAX_DELAY); err = spi_device_polling_transmit(spi_handle, &trans); xSemaphoreGiveRecursive(spi_mutex); return err ? 0 : *(const uint32_t *)trans.rx_data; } static int fpga_read_func(token_t token, void *buf, size_t len) { const void **pp = token; const char *p = *pp; esp_err_t err; err = fpga_io_read(0, p, buf, len); if (err) return -1; p += len; *pp = p; return len; } static void fpga_ota_update(void) { struct esplink_ota ota; fpga_io_read(0, head.ota, &ota, sizeof ota); if (!ota.data) return; esp_update(fpga_read_func, &ota.data, ota.len); fpga_io_status(FPGA_CMD_ACK(EL_UIRQ_OTA)|FPGA_CMD_IRQ(EL_DIRQ_DONE)); reboot_delayed(); } static void fpga_service_task(void *dummy) { (void)dummy; enum fpga_state { FPGA_DISABLED, /* FPGA services disabled */ FPGA_OFFLINE, /* FPGA services enabled, waiting for FPGA */ FPGA_ONLINE /* FPGA services active */ } fpga_state = FPGA_DISABLED; fputs("[FPGA] Starting FPGA services task\n", stdout); while (1) { uint32_t notifiers = 0; uint32_t status; switch (fpga_state) { case FPGA_DISABLED: notifiers = notify_wait_for(NOTIFY_ENABLE); if ((notifiers & NOTIFY_ENABLE) && fpga_link_enable()) { fputs("[FPGA] Enabling FPGA services\n", stdout); fpga_state = FPGA_OFFLINE; } break; case FPGA_OFFLINE: status = fpga_io_status(FPGA_CMD_IRQ(EL_DIRQ_HELLO)); printf("[FPGA] FPGA status flags = 0x%08x\n", status); if (!digitalRead(PIN_FPGA_INT)) { for (unsigned int i = 1; i < 8; i++) { if (status & (0x100 << i)) status = fpga_io_status(FPGA_CMD_ACK(i)); } if ((status & 0x301) == 0x300) { if (fpga_online()) { fpga_state = FPGA_ONLINE; break; } } } notifiers = notify_wait_for(NOTIFY_FPGA|NOTIFY_DISABLE); break; case FPGA_ONLINE: notifiers = notify_wait_for(NOTIFY_FPGA|NOTIFY_DISABLE| NOTIFY_TIMESYNC); if (notifiers & NOTIFY_DISABLE) { fpga_offline(); break; } while (!digitalRead(PIN_FPGA_INT)) { status = fpga_io_status(0); if ((status & 0x301) != 0x100) { fpga_offline(); printf("[FPGA] FPGA offline, status = 0x%08x\n", status); fpga_state = FPGA_OFFLINE; notifiers = 0; break; } if (status & (0x100 << EL_UIRQ_TIME)) fpga_get_time(); if (status & (0x100 << EL_UIRQ_RINGBUF)) esplink_poll(); if (status & (0x100 << EL_UIRQ_OTA)) fpga_ota_update(); for (unsigned int i = 5; i < 8; i++) { if (status & (0x100 << i)) { printf("[FPGA] Invalid interrupt %u received\n", i); status = fpga_io_status(FPGA_CMD_ACK(i)); } } } if (notifiers & NOTIFY_TIMESYNC) fpga_poll_set_time(); break; } if (notifiers & NOTIFY_DISABLE) { fputs("[FPGA] Disabling FPGA services\n", stdout); fpga_link_disable(); fpga_state = FPGA_DISABLED; } } }