module abcbus ( input rst_n, input sys_clk, input sdram_clk, // Assumed to be a multiple of sys_clk input stb_1mhz, // 1-2 MHz sys_clk strobe // CPU interface input abc_valid, // Control/status registers input map_valid, // Memory map input [31:0] cpu_addr, input [31:0] cpu_wdata, input [3:0] cpu_wstrb, output [31:0] cpu_rdata, // For the ABC-bus control output [31:0] cpu_rdata_map, // For the map RAM output reg irq, // ABC bus input abc_clk, input [15:0] abc_a, inout [7:0] abc_d, output reg abc_d_oe, input abc_rst_n, input abc_cs_n, input [4:0] abc_out_n, input [1:0] abc_inp_n, input abc_xmemfl_n, input abc_xmemw800_n, // Memory write strobe (ABC800) input abc_xmemw80_n, // Memory write strobe (ABC80) input abc_xinpstb_n, // I/O read strobe (ABC800) input abc_xoutpstb_n, // I/O write strobe (ABC80) // The following are inverted versus the bus IF // the corresponding MOSFETs are installed output abc_rdy_x, // RDY = WAIT# output abc_resin_x, // System reset request output abc_int80_x, // System INT request (ABC80) output abc_int800_x, // System INT request (ABC800) output abc_nmi_x, // System NMI request (ABC800) output abc_xm_x, // System memory override (ABC800) // Host/device control output abc_host, // 1 = host, 0 = device output reg abc_a_oe, // Bus isolation output abc_d_ce_n, // ABC-bus extension header // (Note: cannot use an array here because HC and HH are // input only.) inout exth_ha, inout exth_hb, input exth_hc, inout exth_hd, inout exth_he, inout exth_hf, inout exth_hg, input exth_hh, // SDRAM interface output [24:0] sdram_addr, input [7:0] sdram_rd, output reg sdram_rrq, input sdram_rack, input sdram_rready, output [7:0] sdram_wd, output reg sdram_wrq, input sdram_wack ); // Set if MOSFETs Q1-Q6 are installed rather than the corresponding // resistors. BOTH CANNOT BE INSTALLED AT THE SAME TIME. parameter [6:1] mosfet_installed = 6'b111_111; parameter [0:0] exth_reversed = 1'b0; // Synchronizer for ABC-bus input signals; also changes // the sense to positive logic where applicable wire abc_clk_s; wire [15:0] abc_a_s; wire [7:0] abc_di; wire abc_rst_s; wire abc_cs_s; wire [4:0] abc_out_s; wire [1:0] abc_inp_s; wire abc_xmemfl_s; wire abc_xmemw800_s; wire abc_xmemw80_s; wire abc_xinpstb_s; wire abc_xoutpstb_s; synchronizer #( .width(39) ) abc_synchro ( .rst_n ( rst_n ), .clk ( sys_clk ), .d ( { abc_clk, abc_a, abc_d, ~abc_rst_n, ~abc_cs_n, ~abc_out_n, ~abc_inp_n, ~abc_xmemfl_n, ~abc_xmemw800_n, ~abc_xmemw80_n, ~abc_xinpstb_n, ~abc_xoutpstb_n } ), .q ( { abc_clk_s, abc_a_s, abc_di, abc_rst_s, abc_cs_s, abc_out_s, abc_inp_s, abc_xmemfl_s, abc_xmemw800_s, abc_xmemw80_s, abc_xinpstb_s, abc_xoutpstb_s } ) ); assign abc_host = 1'b0; // Only device mode supported assign abc_d_ce_n = 1'b0; // Do not isolate busses assign abc_a_oe = 1'b0; // Only device mode, again... reg abc_clk_active; // On ABC800, only one of XINPSTB# or XOUTPSTB# will be active; // on ABC80 they will either be 00 or ZZ; in the latter case pulled // low by external resistors. wire abc80 = abc_xinpstb_s & abc_xoutpstb_s; wire abc800 = ~abc80; // Memory and I/O read/write strobes for ABC-bus reg abc_xmemrd; reg abc_xmemwr; reg [1:0] abc_inp; reg [4:0] abc_out; reg abc_rst; reg abc_cs; reg [3:1] abc_stb; // Delayed strobes always @(posedge sdram_clk) begin abc_xmemrd <= abc_clk_active & abc_xmemfl_s; abc_xmemwr <= abc_clk_active & (abc800 ? abc_xmemw800_s : abc_xmemw80_s); abc_inp <= abc_inp_s & {2{abc_clk_active}}; abc_out <= abc_out_s & {5{abc_clk_active}}; abc_rst <= abc_rst_s & abc_clk_active; abc_cs <= abc_cs_s & abc_clk_active; abc_stb <= { abc_stb, |{abc_inp, abc_out, abc_rst, abc_cs, abc_xmemrd, abc_xmemwr} }; end reg [7:0] abc_do; assign abc_d = abc_d_oe ? abc_do : 8'hzz; reg [8:0] ioselx; wire iosel_en = ioselx[8]; wire [5:0] iosel = ioselx[5:0]; // ABC-bus I/O select always @(negedge rst_n or posedge sdram_clk) if (~rst_n) ioselx <= 9'b0; else if (abc_rst) ioselx <= 9'b0; else if (abc_cs) ioselx <= { 1'b1, abc_di }; // Open drain signals with optional MOSFETs reg abc_wait = 1'b1; // Power up asserted; see below reg abc_int = 1'b0; reg abc_nmi = 1'b0; reg abc_resin = 1'b0; reg abc_xm = 1'b0; function reg opt_mosfet(input signal, input mosfet); if (mosfet) opt_mosfet = signal; else opt_mosfet = signal ? 1'b0 : 1'bz; endfunction // opt_mosfet assign abc_int80_x = opt_mosfet(abc_int & abc80, mosfet_installed[1]); assign abc_rdy_x = opt_mosfet(abc_wait, mosfet_installed[2]); assign abc_nmi_x = opt_mosfet(abc_nmi, mosfet_installed[3]); assign abc_resin_x = opt_mosfet(abc_resin, mosfet_installed[4]); assign abc_int800_x = opt_mosfet(abc_int & abc800, mosfet_installed[5]); assign abc_xm_x = opt_mosfet(abc_xm, mosfet_installed[6]); // Detect ABC-bus clock: need a minimum frequency of 84/64 MHz // to be considered live. reg [2:0] abc_clk_ctr; reg [1:0] abc_clk_q; always @(negedge rst_n or posedge sys_clk) if (~rst_n) begin abc_clk_q <= 2'b0; abc_clk_ctr <= 3'b0; abc_clk_active <= 1'b0; end else begin abc_clk_q <= { abc_clk_q[0], abc_clk_s }; case ( { abc_clk_q == 2'b10, stb_1mhz } ) 5'b10: begin if (abc_clk_ctr == 3'b111) abc_clk_active <= 1'b1; else abc_clk_ctr <= abc_clk_ctr + 1'b1; end 5'b01: begin if (abc_clk_ctr == 3'b000) abc_clk_active <= 1'b0; else abc_clk_ctr <= abc_clk_ctr - 1'b1; end default: begin // nothing end endcase // case ( {(abc_clk_q == 2'10), sys_clk_stb[6]} ) end // else: !if(~rst_n) // ABC-bus extension header (exth_c and exth_h are input only) // The naming of pins is kind of nonsensical: // // +3V3 - 1 2 - +3V3 // HA - 3 4 - HE // HB - 5 6 - HG // HC - 7 8 - HH // HD - 9 10 - HF // GND - 11 12 - GND // // This layout allows the header to be connected on either side // of the board. This logic assigns the following names to the pins; // if the ext_reversed is set to 1 then the left and right sides // are flipped. // // +3V3 - 1 2 - +3V3 // exth[0] - 3 4 - exth[1] // exth[2] - 5 6 - exth[3] // exth[6] - 7 8 - exth[7] // exth[4] - 9 10 - exth[5] // GND - 11 12 - GND wire [7:0] exth_d; // Input data wire [5:0] exth_q; // Output data wire [5:0] exth_oe; // Output enable assign exth_d[0] = exth_reversed ? exth_he : exth_ha; assign exth_d[1] = exth_reversed ? exth_ha : exth_he; assign exth_d[2] = exth_reversed ? exth_hg : exth_hb; assign exth_d[3] = exth_reversed ? exth_hb : exth_hg; assign exth_d[4] = exth_reversed ? exth_hf : exth_hd; assign exth_d[5] = exth_reversed ? exth_hd : exth_hf; assign exth_d[6] = exth_reversed ? exth_hh : exth_hc; assign exth_d[7] = exth_reversed ? exth_hc : exth_hh; wire [2:0] erx = { 2'b00, exth_reversed }; assign exth_ha = exth_oe[3'd0 ^ erx] ? exth_q[3'd0 ^ erx] : 1'bz; assign exth_he = exth_oe[3'd1 ^ erx] ? exth_q[3'd1 ^ erx] : 1'bz; assign exth_hb = exth_oe[3'd2 ^ erx] ? exth_q[3'd2 ^ erx] : 1'bz; assign exth_hg = exth_oe[3'd3 ^ erx] ? exth_q[3'd3 ^ erx] : 1'bz; assign exth_hd = exth_oe[3'd4 ^ erx] ? exth_q[3'd4 ^ erx] : 1'bz; assign exth_hf = exth_oe[3'd5 ^ erx] ? exth_q[3'd5 ^ erx] : 1'bz; assign exth_q = 6'b0; assign exth_oe = 6'b0; // ABC SDRAM interface // // Memory map for ABC-bus memory references. // 512 byte granularity for memory (registers 0-127), // one input and one output queue per select code for I/O (128-255). // // bit [15:0] = SDRAM address [24:9] ( bits 24:9 from CPU ) // bit [16] = write enable ( bit 30 from CPU ) // bit [17] = read enable ( bit 31 from CPU ) // // Accesses from the internal CPU supports 32-bit accesses only! // wire [17:0] rdata_abcmemmap; wire [17:0] abc_memmap_rd; abcmapram abcmapram ( .aclr ( ~rst_n ), .clock ( sdram_clk ), .address_a ( abc_a_s[15:9] ), .data_a ( 18'bx ), .wren_a ( 1'b0 ), .q_a ( abc_memmap_rd ), .address_b ( cpu_addr[8:2] ), .data_b ( { cpu_wdata[31:30], cpu_wdata[24:9] } ), .wren_b ( map_valid & cpu_wstrb[0] ), .q_b ( rdata_abcmemmap ) ); assign cpu_rdata_map = { rdata_abcmemmap[17:16], 5'b0, rdata_abcmemmap[15:0], 9'b0 }; wire abc_rden = abc_memmap_rd[17]; wire abc_wren = abc_memmap_rd[16]; wire [24:0] abc_memaddr = { abc_memmap_rd[15:0], abc_a_s[8:0] }; reg abc_memrd_en; reg abc_memwr_en; reg abc_do_memrd; reg abc_do_memwr; reg abc_racked; reg abc_wacked; wire abc_rack; wire abc_wack; wire abc_rready; always @(posedge sdram_clk or negedge rst_n) if (~rst_n) begin abc_memrd_en <= 1'b0; abc_memwr_en <= 1'b0; abc_do_memrd <= 1'b0; abc_do_memwr <= 1'b0; sdram_rrq <= 1'b0; sdram_wrq <= 1'b0; abc_racked <= 1'b0; abc_wacked <= 1'b0; end else begin // Careful with the registering here: need to make sure // abcmapram is caught up for I/O; for memory the address // will have been stable for some time abc_memwr_en <= abc_xmemwr; abc_memrd_en <= abc_xmemrd; abc_do_memrd <= abc_rden & abc_memrd_en; abc_do_memwr <= abc_wren & abc_memwr_en; abc_racked <= abc_do_memrd & (sdram_rack | abc_racked); abc_wacked <= abc_do_memwr & (sdram_wack | abc_wacked); sdram_rrq <= abc_do_memrd & ~abc_racked; sdram_wrq <= abc_do_memwr & ~abc_wacked; end // else: !if(~rst_n) assign sdram_addr = abc_memaddr; assign sdram_wd = abc_di; // I/O data registers; RST# is considered OUT 7 even through // it is an IN from the ABC point of view. // // OUT register, written from ABC: // IN register, written from CPU: // Busy register: // // [7:0] - busy OUT status (write-1-clear) // [9:8] - busy IN status (write-1-clear) // [15:12] - bus status change (write-1-clear) // same bit positions as the bus status register // // [23:16] - busy OUT mask // [25:24] - busy IN mask // [31:28] - bus status change IRQ enable // // Assert WAIT# (deassert RDY) if the masked busy status is nonzero // and an busy-unmasked I/O comes in. // // An IRQ is generated if the masked busy status is nonzero. // reg [9:0] busy_status; reg [9:0] busy_mask; reg [9:0] busy_io_q; reg [1:0] inp_en; reg [3:0] bus_change_status; reg [3:0] bus_change_mask; wire [9:0] is_io = { abc_inp[1:0], abc_rst, 1'b0, abc_out[4:1], abc_cs, abc_out[0] }; wire [9:0] busy_io = is_io & busy_mask; wire is_busy = |(busy_status & busy_mask); wire [9:0] busy_valid = 10'b11_1011_1111; wire [9:0] set_busy = busy_io_q & ~busy_io; always @(posedge sys_clk or negedge rst_n) if (~rst_n) busy_io_q <= 10'b0; else busy_io_q <= busy_io; // WAIT# logic reg abc_wait_force = 1'b1; // Power up asserted; ignores rst_n always @(posedge sys_clk) abc_wait <= abc_wait_force | (rst_n & |set_busy & is_busy); // // I/O data registers // reg [2:0] reg_out_addr; reg [7:0] reg_out_data; reg [7:0] reg_inp_data[0:1]; // OUT logic always @(posedge sdram_clk) begin if (|busy_io[7:0]) begin reg_out_data <= abc_di; case (busy_io[7:0]) 8'b0000_0001: reg_out_addr <= 3'd0; 8'b0000_0010: reg_out_addr <= 3'd1; 8'b0000_0100: reg_out_addr <= 3'd2; 8'b0000_1000: reg_out_addr <= 3'd3; 8'b0001_0000: reg_out_addr <= 3'd4; 8'b0010_0000: reg_out_addr <= 3'd5; 8'b0100_0000: reg_out_addr <= 3'd6; 8'b1000_0000: reg_out_addr <= 3'd7; default: reg_out_addr <= 3'dx; endcase // case (busy_io) end // if (|busy_io[7:0]) end // always @ (posedge sdram_clk) // // ABC data out (= ABC host read) logic // always @(negedge rst_n or posedge sdram_clk) if (~rst_n) begin abc_d_oe <= 1'b0; abc_do <= 8'bx; end else begin abc_d_oe <= 1'b0; abc_do <= 8'bx; if (abc_xmemrd & sdram_rready) begin abc_d_oe <= 1'b1; abc_do <= sdram_rd; end else if (abc_inp[0] & inp_en[0]) begin abc_d_oe <= 1'b1; abc_do <= reg_inp_data[0]; end else if (abc_inp[1] & inp_en[1]) begin abc_d_oe <= 1'b1; abc_do <= reg_inp_data[1]; end end // else: !if(~rst_n) // Bus status reg [3:0] abc_status[0:1]; always @(posedge sys_clk) begin abc_status[0] <= { 1'b0, abc800, abc_rst_s, abc_clk_active }; abc_status[1] <= abc_status[0]; end wire [3:0] bus_change = (abc_status[0] ^ abc_status[1]) & bus_change_mask; wire [3:0] bus_change_valid = 4'b0111; // // Busy/IRQ status and CPU register writes // always @(posedge sys_clk or negedge rst_n) if (~rst_n) begin busy_status <= 10'b0; busy_mask <= 10'h082; // Enable hold on RST# and CS# inp_en <= 2'b00; bus_change_status <= 4'b0; bus_change_mask <= 4'b0; // abc_resin, nmi, int and force_wait are deliberately not affected // by an internal CPU reset. They are, however, inherently asserted // when the FPGA is configured, and initialized to fixed values // at configuration time (RESIN# asserted, the others deasserted.) end else begin busy_status <= busy_status | set_busy; bus_change_status <= bus_change_status | bus_change; if (abc_valid) begin casez (cpu_addr[5:2] ) 5'b??010: begin if (cpu_wstrb[0]) busy_status[7:0] <= set_busy[7:0] | (busy_status[7:0] & ~cpu_wdata[7:0]); if (cpu_wstrb[1]) begin busy_status[9:8] <= set_busy[9:8] | (busy_status[9:8] & ~cpu_wdata[9:8]); bus_change_status <= bus_change | (bus_change_status & ~cpu_wdata[15:12]); end if (cpu_wstrb[2]) busy_mask[7:0] <= cpu_wdata[23:16] & busy_valid[7:0]; if (cpu_wstrb[3]) begin busy_mask[9:8] <= cpu_wdata[25:24] & busy_valid[9:8]; bus_change_mask <= cpu_wdata[31:28] & bus_change_valid; end end 5'b??011: begin if (cpu_wstrb[0]) begin abc_resin <= cpu_wdata[3]; abc_nmi <= cpu_wdata[2]; abc_int <= cpu_wdata[1]; abc_wait_force <= cpu_wdata[0]; end end 5'b??101: begin if (cpu_wstrb[0]) reg_inp_data[0] <= cpu_wdata[7:0]; if (cpu_wstrb[1]) reg_inp_data[1] <= cpu_wdata[15:8]; if (cpu_wstrb[2]) inp_en <= cpu_wdata[17:16]; end default: /* do nothing */ ; endcase // casez (cpu_addr[5:2]) end // if (abc_valid & cpu_wstrb[0]) end // Level triggered IRQ always @(posedge sys_clk) irq <= is_busy | (bus_change_status & bus_change_mask); // Read MUX always_comb casez (cpu_addr[5:2]) 5'b00000: cpu_rdata = { 28'b0, abc_status[0] }; 5'b00001: cpu_rdata = { 23'b0, ~iosel_en, ioselx[7:0] }; 5'b00010: cpu_rdata = { bus_change_mask, 2'b0, busy_mask, bus_change_status, 2'b0, busy_status }; 5'b00011: cpu_rdata = { 28'b0, abc_resin, abc_nmi, abc_int, abc_wait }; 5'b00100: cpu_rdata = { 21'b0, reg_out_addr, reg_out_data }; 5'b00101: cpu_rdata = { 14'b0, inp_en, reg_inp_data[1], reg_inp_data[0] }; default: cpu_rdata = 32'bx; endcase // casez (cpu_addr[5:2]) endmodule // abcbus