// // Top level module for the FPGA on the MAX80 board by // Per MÃ¥rtensson and H. Peter Anvin // // This is for MAX80 as slave. // // Sharing JTAG pins (via JTAGEN) `undef SHARED_JTAG module max80 ( // Clock oscillator input clock_48, // 48 MHz // ABC-bus input abc_clk, // ABC-bus 3 MHz clock input [15:0] abc_a, // ABC address bus inout [7:0] abc_d, // ABC data bus output abc_d_oe, // Data bus output enable input abc_rst_n, // ABC bus reset strobe input abc_cs_n, // ABC card select strobe input [4:0] abc_out_n, // OUT, C1-C4 strobe input [1:0] abc_inp_n, // INP, STATUS strobe input abc_xmemfl_n, // Memory read strobe input abc_xmemw800_n, // Memory write strobe (ABC800) input abc_xmemw80_n, // Memory write strobe (ABC80) input abc_xinpstb_n, // I/O read strobe (ABC800) input abc_xoutpstb_n, // I/O write strobe (ABC80) // The following are inverted versus the bus IF // the corresponding MOSFETs are installed output abc_rdy_x, // RDY = WAIT# output abc_resin_x, // System reset request output abc_int80_x, // System INT request (ABC80) output abc_int800_x, // System INT request (ABC800) output abc_nmi_x, // System NMI request (ABC800) output abc_xm_x, // System memory override (ABC800) // Master/slave control output abc_master, // 1 = master, 0 = slave output abc_a_oe, // Bus isolation output abc_d_ce_n, // ABC-bus extension header // (Note: cannot use an array here because HC and HH are // input only.) inout exth_ha, inout exth_hb, input exth_hc, inout exth_hd, inout exth_he, inout exth_hf, inout exth_hg, input exth_hh, // SDRAM bus output sr_clk, output sr_cke, output [1:0] sr_ba, // Bank address output [12:0] sr_a, // Address within bank inout [15:0] sr_dq, // Also known as D or IO output [1:0] sr_dqm, // DQML and DQMH output sr_cs_n, output sr_we_n, output sr_cas_n, output sr_ras_n, // SD card output sd_clk, output sd_cmd, inout [3:0] sd_dat, // USB serial (naming is FPGA as DCE) input tty_txd, output tty_rxd, input tty_rts, output tty_cts, input tty_dtr, // SPI flash memory (also configuration) output flash_cs_n, output flash_clk, output flash_mosi, input flash_miso, // SPI bus (connected to ESP32 so can be bidirectional) inout spi_clk, inout spi_miso, inout spi_mosi, inout spi_cs_esp_n, // ESP32 IO10 inout spi_cs_flash_n, // ESP32 IO01 // Other ESP32 connections inout esp_io0, // ESP32 IO00 inout esp_int, // ESP32 IO09 // I2C bus (RTC and external) inout i2c_scl, inout i2c_sda, input rtc_32khz, input rtc_int_n, // LED output [3:1] led, // GPIO pins inout [5:0] gpio, // HDMI output [2:0] hdmi_d, output hdmi_clk, inout hdmi_scl, inout hdmi_sda, inout hdmi_hpd ); // Set if MOSFETs Q1-Q6 are installed rather than the corresponding // resistors. parameter [6:1] mosfet_installed = 6'b000_000; // PLL and reset parameter reset_pow2 = 12; // Assert internal reset for 4096 cycles after PLL lock reg [reset_pow2-1:0] rst_ctr = 1'b0; reg rst_n = 1'b0; // Internal reset wire [1:0] pll_locked; // Clocks wire sdram_clk; wire clk; // System clock wire vid_clk; // Video pixel clock wire vid_hdmiclk; // D:o in the HDMI clock domain pll pll ( .areset ( 1'b0 ), .inclk0 ( clock_48 ), .c0 ( sdram_clk ), // SDRAM clock (168 MHz) .c1 ( clk ), // System clock (84 MHz) .c2 ( vid_clk ), // Video pixel clock (48 MHz) .locked ( pll_locked[0] ), .phasestep ( 1'b0 ), .phasecounterselect ( 3'b0 ), .phaseupdown ( 1'b1 ), .scanclk ( 1'b0 ), .phasedone ( ) ); wire all_plls_locked = &pll_locked; always @(negedge all_plls_locked or posedge clk) if (~&all_plls_locked) begin rst_ctr <= 1'b0; rst_n <= 1'b0; end else if (~rst_n) begin { rst_n, rst_ctr } <= rst_ctr + 1'b1; end // Unused device stubs - remove when used // Reset in the video clock domain reg vid_rst_n; always @(negedge all_plls_locked or posedge vid_clk) if (~all_plls_locked) vid_rst_n <= 1'b0; else vid_rst_n <= rst_n; // HDMI - generate random data to give Quartus something to do reg [23:0] dummydata = 30'hc8_fb87; always @(posedge vid_clk) dummydata <= { dummydata[22:0], dummydata[23] }; wire [7:0] hdmi_data[3]; wire [9:0] hdmi_tmds[3]; wire [29:0] hdmi_to_tx; assign hdmi_data[0] = dummydata[7:0]; assign hdmi_data[1] = dummydata[15:8]; assign hdmi_data[2] = dummydata[23:16]; generate genvar i; for (i = 0; i < 3; i = i + 1) begin : hdmitmds tmdsenc enc ( .rst_n ( vid_rst_n ), .clk ( vid_clk ), .den ( 1'b1 ), .d ( hdmi_data[i] ), .c ( 2'b00 ), .q ( hdmi_tmds[i] ) ); end endgenerate assign hdmi_scl = 1'bz; assign hdmi_sck = 1'bz; assign hdmi_hpd = 1'bz; // // The ALTLVDS_TX megafunctions is MSB-first and in time-major order. // However, TMDS is LSB-first, and we have three TMDS words that // concatenate in word(channel)-major order. // transpose #(.words(3), .bits(10), .reverse_b(1), .reg_d(0), .reg_q(0)) hdmitranspose ( .clk ( vid_clk ), .d ( { hdmi_tmds[2], hdmi_tmds[1], hdmi_tmds[0] } ), .q ( hdmi_to_tx ) ); hdmitx hdmitx ( .pll_areset ( ~pll_locked[0] ), .tx_in ( hdmi_to_tx ), .tx_inclock ( vid_clk ), .tx_coreclock ( vid_hdmiclk ), // Pixel clock in HDMI domain .tx_locked ( pll_locked[1] ), .tx_out ( hdmi_d ), .tx_outclock ( hdmi_clk ) ); // ABC bus // On ABC800, only one of XINPSTB# or XOUTPSTB# will be active; // on ABC80 they will either be 00 or ZZ; in the latter case pulled // low by external resistors. wire abc800 = abc_xinpstb_n | abc_xoutpstb_n; wire abc80 = ~abc800; // Memory read/write strobes wire abc_xmemrd = ~abc_xmemfl_n; // For consistency wire abc_xmemwr = abc800 ? ~abc_xmemw800_n : ~abc_xmemw80_n; // I/O read/write strobes wire abc_iord = (abc800 & ~abc_xinpstb_n) | ~(|abc_inp_n); wire abc_iowr = (abc800 & ~abc_xoutpstb_n) | ~(|abc_out_n); reg [7:0] abc_do; reg [7:0] abc_di; assign abc_d_oe = abc_xmemrd; assign abc_d = abc_d_oe ? abc_do : 8'hzz; // Open drain signals with optional MOSFETs wire abc_wait; wire abc_resin; wire abc_int; wire abc_nmi; wire abc_xm; function reg opt_mosfet(input signal, input mosfet); if (mosfet) opt_mosfet = signal; else opt_mosfet = signal ? 1'b0 : 1'bz; endfunction // opt_mosfet assign abc_int80_x = opt_mosfet(abc_int & abc80, mosfet_installed[1]); assign abc_rdy_x = opt_mosfet(abc_wait, mosfet_installed[2]); assign abc_nmi_x = opt_mosfet(abc_nmi, mosfet_installed[3]); assign abc_resin_x = opt_mosfet(abc_resin, mosfet_installed[4]); assign abc_int800_x = opt_mosfet(abc_int & abc800, mosfet_installed[5]); assign abc_xm_x = opt_mosfet(abc_xm, mosfet_installed[6]); // ABC-bus extension header (exth_c and exth_h are input only) // The naming of pins is kind of nonsensical: // // +3V3 - 1 2 - +3V3 // HA - 3 4 - HE // HB - 5 6 - HG // HC - 7 8 - HH // HD - 9 10 - HF // GND - 11 12 - GND // // This layout allows the header to be connected on either side // of the board. This logic assigns the following names to the pins; // if the ext_reversed is set to 1 then the left and right sides // are flipped. // // +3V3 - 1 2 - +3V3 // exth[0] - 3 4 - exth[1] // exth[2] - 5 6 - exth[3] // exth[6] - 7 8 - exth[7] // exth[4] - 9 10 - exth[5] // GND - 11 12 - GND wire exth_reversed = 1'b0; wire [7:0] exth_d; // Input data wire [5:0] exth_q; // Output data wire [5:0] exth_oe; // Output enable assign exth_d[0] = exth_reversed ? exth_he : exth_ha; assign exth_d[1] = exth_reversed ? exth_ha : exth_he; assign exth_d[2] = exth_reversed ? exth_hg : exth_hb; assign exth_d[3] = exth_reversed ? exth_hb : exth_hg; assign exth_d[4] = exth_reversed ? exth_hf : exth_hd; assign exth_d[5] = exth_reversed ? exth_hd : exth_hf; assign exth_d[6] = exth_reversed ? exth_hh : exth_hc; assign exth_d[7] = exth_reversed ? exth_hc : exth_hh; wire [2:0] erx = { 2'b00, exth_reversed }; assign exth_ha = exth_oe[3'd0 ^ erx] ? exth_q[3'd0 ^ erx] : 1'bz; assign exth_he = exth_oe[3'd1 ^ erx] ? exth_q[3'd1 ^ erx] : 1'bz; assign exth_hb = exth_oe[3'd2 ^ erx] ? exth_q[3'd2 ^ erx] : 1'bz; assign exth_hg = exth_oe[3'd3 ^ erx] ? exth_q[3'd3 ^ erx] : 1'bz; assign exth_hd = exth_oe[3'd4 ^ erx] ? exth_q[3'd4 ^ erx] : 1'bz; assign exth_hf = exth_oe[3'd5 ^ erx] ? exth_q[3'd5 ^ erx] : 1'bz; assign exth_q = 6'b0; assign exth_oe = 6'b0; // LED blink counter reg [28:0] led_ctr; always @(posedge clk or negedge rst_n) if (~rst_n) led_ctr <= 29'b0; else led_ctr <= led_ctr + 1'b1; //assign led = led_ctr[28:26]; // SDRAM controller reg abc_rrq; reg abc_wrq; reg abc_xmemrd_q; reg abc_xmemwr_q; reg abc_xmem_done; reg [9:0] abc_mempg; wire abc_rack; wire abc_wack; wire [7:0] abc_sr_rd; always @(posedge sdram_clk or negedge rst_n) if (~rst_n) begin abc_rrq <= 1'b0; abc_wrq <= 1'b0; abc_xmemrd_q <= 1'b0; abc_xmemwr_q <= 1'b0; abc_xmem_done <= 1'b0; abc_mempg <= 0; end else begin abc_di <= abc_d; abc_xmemrd_q <= abc_xmemrd; abc_xmemwr_q <= abc_xmemwr; abc_xmem_done <= (abc_xmemrd_q & (abc_xmem_done | abc_rack)) | (abc_xmemwr_q & (abc_xmem_done | abc_wack)); abc_rrq <= abc_xmemrd_q & ~(abc_xmem_done | abc_rack); abc_wrq <= abc_xmemwr_q & ~(abc_xmem_done | abc_wack); if (abc_rack & abc_rvalid) abc_do <= abc_sr_rd; // HACK FOR TESTING ONLY if (abc_iowr) abc_mempg <= { abc_a[1:0], abc_di }; end // else: !if(~rst_n) sdram sdram ( .rst_n ( rst_n ), .clk ( sdram_clk ), // Input clock .sr_clk ( sr_clk ), // Output clock buffer .sr_cke ( sr_cke ), .sr_cs_n ( sr_cs_n ), .sr_ras_n ( sr_ras_n ), .sr_cas_n ( sr_cas_n ), .sr_we_n ( sr_we_n ), .sr_dqm ( sr_dqm ), .sr_ba ( sr_ba ), .sr_a ( sr_a ), .sr_dq ( sr_dq ), .a0 ( { abc_mempg, abc_a } ), .rd0 ( abc_sr_rd ), .rrq0 ( abc_rrq ), .rack0 ( abc_rack ), .rvalid0 ( abc_rvalid ), .wd0 ( abc_d ), .wrq0 ( abc_wrq ), .wack0 ( abc_wack ), .a1 ( 24'hxxxxxx ), .be1 ( 8'b0000_0000 ), .rd1 ( ), .rrq1 ( 1'b0 ), .rack1 ( ), .rvalid1 ( ), .wd1 ( 32'hxxxx_xxxx ), .wrq1 ( 1'b0 ), .wack1 ( ) ); // SD card assign sd_clk = 1'b1; assign sd_cmd = 1'b1; assign sd_dat = 4'hz; // USB serial assign tty_rxd = 1'b1; assign tty_cts = 1'b1; // SPI bus (free for ESP32) assign spi_clk = 1'bz; assign spi_miso = 1'bz; assign spi_mosi = 1'bz; assign spi_cs_esp_n = 1'bz; assign spi_cs_flash_n = 1'bz; // ESP32 assign esp_io0 = 1'bz; assign esp_int = 1'bz; // I2C assign i2c_scl = 1'bz; assign i2c_sda = 1'bz; // GPIO assign gpio = 6'bzzzzzz; // Embedded RISC-V CPU parameter cpu_fast_mem_bits = 11; /* 2^[this] * 4 bytes */ wire cpu_mem_read; wire cpu_mem_write; wire [31:0] cpu_mem_addr; wire [31:0] cpu_mem_wdata; wire [ 7:0] cpu_mem_be; reg [31:0] cpu_mem_rdata; wire cpu_mem_valid = cpu_mem_read | cpu_mem_write; wire cpu_mem_instr; wire cpu_la_read; wire cpu_la_write; wire [31:0] cpu_la_addr; picorv32 #( .ENABLE_COUNTERS ( 1 ), .ENABLE_COUNTERS64 ( 1 ), .ENABLE_REGS_16_31 ( 1 ), .ENABLE_REGS_DUALPORT ( 1 ), .LATCHED_MEM_RDATA ( 1 ), .BARREL_SHIFTER ( 1 ), .TWO_CYCLE_COMPARE ( 0 ), .TWO_CYCLE_ALU ( 0 ), .COMPRESSED_ISA ( 1 ), .CATCH_MISALIGN ( 1 ), .CATCH_ILLINSN ( 1 ), .UNALIGNED_DATA ( 1 ), .ENABLE_FAST_MUL ( 1 ), .ENABLE_DIV ( 1 ), .ENABLE_IRQ ( 1 ), .ENABLE_IRQ_QREGS ( 1 ), .ENABLE_IRQ_TIMER ( 1 ), .REGS_INIT_ZERO ( 1 ), .STACKADDR ( 3'h4 << cpu_fast_mem_bits ) ) cpu ( .clk ( clk ), .resetn ( rst_n ), .trap ( ), .mem_instr ( cpu_mem_instr ), .mem_ready ( cpu_mem_ready ), .mem_read ( cpu_mem_read ), .mem_write ( cpu_mem_write ), .mem_addr ( cpu_mem_addr ), .mem_wdata ( cpu_mem_wdata ), .mem_be ( cpu_mem_be ), .mem_rdata ( cpu_mem_rdata ), .irq ( 0 ), .eoi ( ) ); // Address space addressed by CPU wire [3:0] cpu_aspace = 4'b0001 << cpu_mem_addr[31:30]; // cpu_mem_ready is always true for fast memory assign cpu_mem_ready = cpu_mem_valid; // // Fast memory. This runs on the SDRAM clock, i.e. 2x the speed // of the CPU. The .bits parameter gives the number of dwords // as a power of 2, i.e. 11 = 2^11 * 4 = 8K. // wire [31:0] fast_mem_rdata; fast_mem #(.bits(cpu_fast_mem_bits), .mif("../fw/boot")) fast_mem( .rst_n ( rst_n ), .clk ( ~clk ), .read ( cpu_aspace[0] & cpu_mem_read ), .write ( cpu_aspace[0] & cpu_mem_write ), .be ( cpu_mem_be ), .addr ( cpu_mem_addr[12:2] ), .wdata ( cpu_mem_wdata ), .rdata ( fast_mem_rdata ) ); always @(posedge clk) cpu_mem_rdata <= cpu_aspace[0] ? fast_mem_rdata : 32'hxxxx_xxxx; // Avoid optimizing out the CPU reg [3:1] led_q; always @(negedge rst_n or posedge clk) if (~rst_n) led_q <= 3'b000; else if ( cpu_mem_write & cpu_aspace[3] ) led_q <= cpu_mem_wdata[2:0]; assign led = led_q; endmodule