123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577 |
- //
- // Top level module for the FPGA on the MAX80 board by
- // Per Mårtensson and H. Peter Anvin
- //
- // This is for MAX80 as slave on the ABC-bus.
- //
- // Sharing JTAG pins (via JTAGEN)
- `undef SHARED_JTAG
- module max80 (
- // Clock oscillator
- input clock_48, // 48 MHz
- // ABC-bus
- input abc_clk, // ABC-bus 3 MHz clock
- input [15:0] abc_a, // ABC address bus
- inout [7:0] abc_d, // ABC data bus
- output abc_d_oe, // Data bus output enable
- input abc_rst_n, // ABC bus reset strobe
- input abc_cs_n, // ABC card select strobe
- input [4:0] abc_out_n, // OUT, C1-C4 strobe
- input [1:0] abc_inp_n, // INP, STATUS strobe
- input abc_xmemfl_n, // Memory read strobe
- input abc_xmemw800_n, // Memory write strobe (ABC800)
- input abc_xmemw80_n, // Memory write strobe (ABC80)
- input abc_xinpstb_n, // I/O read strobe (ABC800)
- input abc_xoutpstb_n, // I/O write strobe (ABC80)
- // The following are inverted versus the bus IF
- // the corresponding MOSFETs are installed
- output abc_rdy_x, // RDY = WAIT#
- output abc_resin_x, // System reset request
- output abc_int80_x, // System INT request (ABC80)
- output abc_int800_x, // System INT request (ABC800)
- output abc_nmi_x, // System NMI request (ABC800)
- output abc_xm_x, // System memory override (ABC800)
- // Master/slave control
- output abc_master, // 1 = master, 0 = slave
- output abc_a_oe,
- // Bus isolation
- output abc_d_ce_n,
- // ABC-bus extension header
- // (Note: cannot use an array here because HC and HH are
- // input only.)
- inout exth_ha,
- inout exth_hb,
- input exth_hc,
- inout exth_hd,
- inout exth_he,
- inout exth_hf,
- inout exth_hg,
- input exth_hh,
- // SDRAM bus
- output sr_clk,
- output sr_cke,
- output [1:0] sr_ba, // Bank address
- output [12:0] sr_a, // Address within bank
- inout [15:0] sr_dq, // Also known as D or IO
- output [1:0] sr_dqm, // DQML and DQMH
- output sr_cs_n,
- output sr_we_n,
- output sr_cas_n,
- output sr_ras_n,
- // SD card
- output sd_clk,
- output sd_cmd,
- inout [3:0] sd_dat,
- // USB serial (naming is FPGA as DCE)
- input tty_txd,
- output tty_rxd,
- input tty_rts,
- output tty_cts,
- input tty_dtr,
- // SPI flash memory (also configuration)
- output flash_cs_n,
- output flash_clk,
- output flash_mosi,
- input flash_miso,
- // SPI bus (connected to ESP32 so can be bidirectional)
- inout spi_clk,
- inout spi_miso,
- inout spi_mosi,
- inout spi_cs_esp_n, // ESP32 IO10
- inout spi_cs_flash_n, // ESP32 IO01
- // Other ESP32 connections
- inout esp_io0, // ESP32 IO00
- inout esp_int, // ESP32 IO09
- // I2C bus (RTC and external)
- inout i2c_scl,
- inout i2c_sda,
- input rtc_32khz,
- input rtc_int_n,
- // LED (2 = D23/G, 1 = D22/R, 0 = D17/B)
- output [2:0] led,
- // GPIO pins
- inout [5:0] gpio,
- // HDMI
- output [2:0] hdmi_d,
- output hdmi_clk,
- inout hdmi_scl,
- inout hdmi_sda,
- inout hdmi_hpd
- );
- // Set if MOSFETs Q1-Q6 are installed rather than the corresponding
- // resistors.
- parameter [6:1] mosfet_installed = 6'b000_000;
- // PLL and reset
- parameter reset_pow2 = 12; // Assert internal reset for 4096 cycles after PLL lock
- reg [reset_pow2-1:0] rst_ctr = 1'b0;
- reg rst_n = 1'b0; // Internal reset
- wire [1:0] pll_locked;
- // Clocks
- wire sdram_clk;
- wire sys_clk; // System clock
- wire vid_clk; // Video pixel clock
- wire vid_hdmiclk; // D:o in the HDMI clock domain
- wire tty_clk = vid_clk; // 48 MHz
- pll pll (
- .areset ( 1'b0 ),
- .inclk0 ( clock_48 ),
- .c0 ( sdram_clk ), // SDRAM clock (168 MHz)
- .c1 ( sys_clk ), // System clock (84 MHz)
- .c2 ( vid_clk ), // Video pixel clock (48 MHz)
- .locked ( pll_locked[0] ),
- .phasestep ( 1'b0 ),
- .phasecounterselect ( 3'b0 ),
- .phaseupdown ( 1'b1 ),
- .scanclk ( 1'b0 ),
- .phasedone ( )
- );
- wire all_plls_locked = &pll_locked;
- always @(negedge all_plls_locked or posedge sys_clk)
- if (~&all_plls_locked)
- begin
- rst_ctr <= 1'b0;
- rst_n <= 1'b0;
- end
- else if (~rst_n)
- begin
- { rst_n, rst_ctr } <= rst_ctr + 1'b1;
- end
- // Unused device stubs - remove when used
- // Reset in the video clock domain
- reg vid_rst_n;
- always @(negedge all_plls_locked or posedge vid_clk)
- if (~all_plls_locked)
- vid_rst_n <= 1'b0;
- else
- vid_rst_n <= rst_n;
- // HDMI - generate random data to give Quartus something to do
- reg [23:0] dummydata = 30'hc8_fb87;
- always @(posedge vid_clk)
- dummydata <= { dummydata[22:0], dummydata[23] };
- wire [7:0] hdmi_data[3];
- wire [9:0] hdmi_tmds[3];
- wire [29:0] hdmi_to_tx;
- assign hdmi_data[0] = dummydata[7:0];
- assign hdmi_data[1] = dummydata[15:8];
- assign hdmi_data[2] = dummydata[23:16];
- generate
- genvar i;
- for (i = 0; i < 3; i = i + 1)
- begin : hdmitmds
- tmdsenc enc (
- .rst_n ( vid_rst_n ),
- .clk ( vid_clk ),
- .den ( 1'b1 ),
- .d ( hdmi_data[i] ),
- .c ( 2'b00 ),
- .q ( hdmi_tmds[i] )
- );
- end
- endgenerate
- assign hdmi_scl = 1'bz;
- assign hdmi_sck = 1'bz;
- assign hdmi_hpd = 1'bz;
- //
- // The ALTLVDS_TX megafunctions is MSB-first and in time-major order.
- // However, TMDS is LSB-first, and we have three TMDS words that
- // concatenate in word(channel)-major order.
- //
- transpose #(.words(3), .bits(10), .reverse_b(1),
- .reg_d(0), .reg_q(0)) hdmitranspose
- (
- .clk ( vid_clk ),
- .d ( { hdmi_tmds[2], hdmi_tmds[1], hdmi_tmds[0] } ),
- .q ( hdmi_to_tx )
- );
- hdmitx hdmitx (
- .pll_areset ( ~pll_locked[0] ),
- .tx_in ( hdmi_to_tx ),
- .tx_inclock ( vid_clk ),
- .tx_coreclock ( vid_hdmiclk ), // Pixel clock in HDMI domain
- .tx_locked ( pll_locked[1] ),
- .tx_out ( hdmi_d ),
- .tx_outclock ( hdmi_clk )
- );
- // ABC bus
- // On ABC800, only one of XINPSTB# or XOUTPSTB# will be active;
- // on ABC80 they will either be 00 or ZZ; in the latter case pulled
- // low by external resistors.
- wire abc800 = abc_xinpstb_n | abc_xoutpstb_n;
- wire abc80 = ~abc800;
- // Memory read/write strobes
- wire abc_xmemrd = ~abc_xmemfl_n; // For consistency
- wire abc_xmemwr = abc800 ? ~abc_xmemw800_n : ~abc_xmemw80_n;
- // I/O read/write strobes
- wire abc_iord = (abc800 & ~abc_xinpstb_n) | ~(|abc_inp_n);
- wire abc_iowr = (abc800 & ~abc_xoutpstb_n) | ~(|abc_out_n);
- reg [7:0] abc_do;
- reg [7:0] abc_di;
- assign abc_d_oe = abc_xmemrd;
- assign abc_d = abc_d_oe ? abc_do : 8'hzz;
- // Open drain signals with optional MOSFETs
- wire abc_wait;
- wire abc_resin;
- wire abc_int;
- wire abc_nmi;
- wire abc_xm;
- function reg opt_mosfet(input signal, input mosfet);
- if (mosfet)
- opt_mosfet = signal;
- else
- opt_mosfet = signal ? 1'b0 : 1'bz;
- endfunction // opt_mosfet
- assign abc_int80_x = opt_mosfet(abc_int & abc80, mosfet_installed[1]);
- assign abc_rdy_x = opt_mosfet(abc_wait, mosfet_installed[2]);
- assign abc_nmi_x = opt_mosfet(abc_nmi, mosfet_installed[3]);
- assign abc_resin_x = opt_mosfet(abc_resin, mosfet_installed[4]);
- assign abc_int800_x = opt_mosfet(abc_int & abc800, mosfet_installed[5]);
- assign abc_xm_x = opt_mosfet(abc_xm, mosfet_installed[6]);
- // ABC-bus extension header (exth_c and exth_h are input only)
- // The naming of pins is kind of nonsensical:
- //
- // +3V3 - 1 2 - +3V3
- // HA - 3 4 - HE
- // HB - 5 6 - HG
- // HC - 7 8 - HH
- // HD - 9 10 - HF
- // GND - 11 12 - GND
- //
- // This layout allows the header to be connected on either side
- // of the board. This logic assigns the following names to the pins;
- // if the ext_reversed is set to 1 then the left and right sides
- // are flipped.
- //
- // +3V3 - 1 2 - +3V3
- // exth[0] - 3 4 - exth[1]
- // exth[2] - 5 6 - exth[3]
- // exth[6] - 7 8 - exth[7]
- // exth[4] - 9 10 - exth[5]
- // GND - 11 12 - GND
- wire exth_reversed = 1'b0;
- wire [7:0] exth_d; // Input data
- wire [5:0] exth_q; // Output data
- wire [5:0] exth_oe; // Output enable
- assign exth_d[0] = exth_reversed ? exth_he : exth_ha;
- assign exth_d[1] = exth_reversed ? exth_ha : exth_he;
- assign exth_d[2] = exth_reversed ? exth_hg : exth_hb;
- assign exth_d[3] = exth_reversed ? exth_hb : exth_hg;
- assign exth_d[4] = exth_reversed ? exth_hf : exth_hd;
- assign exth_d[5] = exth_reversed ? exth_hd : exth_hf;
- assign exth_d[6] = exth_reversed ? exth_hh : exth_hc;
- assign exth_d[7] = exth_reversed ? exth_hc : exth_hh;
- wire [2:0] erx = { 2'b00, exth_reversed };
- assign exth_ha = exth_oe[3'd0 ^ erx] ? exth_q[3'd0 ^ erx] : 1'bz;
- assign exth_he = exth_oe[3'd1 ^ erx] ? exth_q[3'd1 ^ erx] : 1'bz;
- assign exth_hb = exth_oe[3'd2 ^ erx] ? exth_q[3'd2 ^ erx] : 1'bz;
- assign exth_hg = exth_oe[3'd3 ^ erx] ? exth_q[3'd3 ^ erx] : 1'bz;
- assign exth_hd = exth_oe[3'd4 ^ erx] ? exth_q[3'd4 ^ erx] : 1'bz;
- assign exth_hf = exth_oe[3'd5 ^ erx] ? exth_q[3'd5 ^ erx] : 1'bz;
- assign exth_q = 6'b0;
- assign exth_oe = 6'b0;
- // SDRAM controller
- reg abc_rrq;
- reg abc_wrq;
- reg abc_xmemrd_q;
- reg abc_xmemwr_q;
- reg abc_xmem_done;
- reg [9:0] abc_mempg;
- wire abc_rack;
- wire abc_wack;
- wire abc_rvalid;
- wire [7:0] abc_sr_rd;
- always @(posedge sdram_clk or negedge rst_n)
- if (~rst_n)
- begin
- abc_rrq <= 1'b0;
- abc_wrq <= 1'b0;
- abc_xmemrd_q <= 1'b0;
- abc_xmemwr_q <= 1'b0;
- abc_xmem_done <= 1'b0;
- abc_mempg <= 0;
- end
- else
- begin
- abc_di <= abc_d;
- abc_xmemrd_q <= abc_xmemrd;
- abc_xmemwr_q <= abc_xmemwr;
- abc_xmem_done <= (abc_xmemrd_q & (abc_xmem_done | abc_rack))
- | (abc_xmemwr_q & (abc_xmem_done | abc_wack));
- abc_rrq <= abc_xmemrd_q & ~(abc_xmem_done | abc_rack);
- abc_wrq <= abc_xmemwr_q & ~(abc_xmem_done | abc_wack);
- if (abc_rack & abc_rvalid)
- abc_do <= abc_sr_rd;
- // HACK FOR TESTING ONLY
- if (abc_iowr)
- abc_mempg <= { abc_a[1:0], abc_di };
- end // else: !if(~rst_n)
- sdram sdram (
- .rst_n ( rst_n ),
- .clk ( sdram_clk ), // Input clock
- .sr_clk ( sr_clk ), // Output clock buffer
- .sr_cke ( sr_cke ),
- .sr_cs_n ( sr_cs_n ),
- .sr_ras_n ( sr_ras_n ),
- .sr_cas_n ( sr_cas_n ),
- .sr_we_n ( sr_we_n ),
- .sr_dqm ( sr_dqm ),
- .sr_ba ( sr_ba ),
- .sr_a ( sr_a ),
- .sr_dq ( sr_dq ),
- .a0 ( { abc_mempg, abc_a } ),
- .rd0 ( abc_sr_rd ),
- .rrq0 ( abc_rrq ),
- .rack0 ( abc_rack ),
- .rvalid0 ( abc_rvalid ),
- .wd0 ( abc_d ),
- .wrq0 ( abc_wrq ),
- .wack0 ( abc_wack ),
- .a1 ( 24'hxxxxxx ),
- .be1 ( 8'b0000_0000 ),
- .rd1 ( ),
- .rrq1 ( 1'b0 ),
- .rack1 ( ),
- .rvalid1 ( ),
- .wd1 ( 32'hxxxx_xxxx ),
- .wrq1 ( 1'b0 ),
- .wack1 ( )
- );
- // SD card
- assign sd_clk = 1'b1;
- assign sd_cmd = 1'b1;
- assign sd_dat = 4'hz;
- // SPI bus (free for ESP32)
- assign spi_clk = 1'bz;
- assign spi_miso = 1'bz;
- assign spi_mosi = 1'bz;
- assign spi_cs_esp_n = 1'bz;
- assign spi_cs_flash_n = 1'bz;
- // ESP32
- assign esp_io0 = 1'bz;
- assign esp_int = 1'bz;
- // I2C
- assign i2c_scl = 1'bz;
- assign i2c_sda = 1'bz;
- // GPIO
- assign gpio = 6'bzzzzzz;
- // Embedded RISC-V CPU
- parameter cpu_fast_mem_bits = 11; /* 2^[this] * 4 bytes */
- wire cpu_mem_valid;
- wire cpu_mem_instr;
- wire [ 3:0] cpu_mem_wstrb;
- wire [31:0] cpu_mem_addr;
- wire [31:0] cpu_mem_wdata;
- reg [31:0] cpu_mem_rdata;
- wire cpu_mem_read = cpu_mem_valid & ~|cpu_mem_wstrb;
- wire cpu_la_read;
- wire cpu_la_write;
- wire [31:0] cpu_la_addr;
- wire [31:0] cpu_la_wdata;
- wire [ 3:0] cpu_la_wstrb;
- picorv32 #(
- .ENABLE_COUNTERS ( 1 ),
- .ENABLE_COUNTERS64 ( 1 ),
- .ENABLE_REGS_16_31 ( 1 ),
- .ENABLE_REGS_DUALPORT ( 1 ),
- .LATCHED_MEM_RDATA ( 1 ),
- .BARREL_SHIFTER ( 1 ),
- .TWO_CYCLE_COMPARE ( 0 ),
- .TWO_CYCLE_ALU ( 0 ),
- .COMPRESSED_ISA ( 1 ),
- .CATCH_MISALIGN ( 1 ),
- .CATCH_ILLINSN ( 1 ),
- .ENABLE_FAST_MUL ( 1 ),
- .ENABLE_DIV ( 1 ),
- .ENABLE_IRQ ( 1 ),
- .ENABLE_IRQ_QREGS ( 1 ),
- .ENABLE_IRQ_TIMER ( 1 ),
- .REGS_INIT_ZERO ( 1 ),
- .STACKADDR ( 32'h4 << cpu_fast_mem_bits )
- )
- cpu (
- .clk ( sys_clk ),
- .resetn ( rst_n ),
- .trap ( ),
- .mem_instr ( cpu_mem_instr ),
- .mem_ready ( cpu_mem_ready ),
- .mem_valid ( cpu_mem_valid ),
- .mem_wstrb ( cpu_mem_wstrb ),
- .mem_addr ( cpu_mem_addr ),
- .mem_wdata ( cpu_mem_wdata ),
- .mem_rdata ( cpu_mem_rdata ),
- .mem_la_read ( cpu_la_read ),
- .mem_la_write ( cpu_la_write ),
- .mem_la_wdata ( cpu_la_wdata ),
- .mem_la_addr ( cpu_la_addr ),
- .mem_la_wstrb ( cpu_la_wstrb ),
- .irq ( 0 ),
- .eoi ( )
- );
- // cpu_mem_ready is always true for fast memory
- assign cpu_mem_ready = cpu_mem_valid;
- // Memory valid flag by quadrant
- wire [3:0] mem_quad = cpu_mem_valid << cpu_mem_addr[31:30];
- //
- // Fast memory. This runs on the SDRAM clock, i.e. 2x the speed
- // of the CPU. The .bits parameter gives the number of dwords
- // as a power of 2, i.e. 11 = 2^11 * 4 = 8K.
- //
- wire [31:0] fast_mem_rdata;
- fast_mem // #(.bits(cpu_fast_mem_bits), .mif("../fw/boot"))
- fast_mem(
- .rst_n ( rst_n ),
- .clk ( sys_clk ),
- .read ( cpu_la_read & cpu_la_addr[31:30] == 2'b00 ),
- .write ( cpu_la_write & cpu_la_addr[31:30] == 2'b00 ),
- .wstrb ( cpu_la_wstrb ),
- .addr ( cpu_la_addr[12:2] ),
- .wdata ( cpu_la_wdata ),
- .rdata ( fast_mem_rdata )
- );
- always @(*)
- case (cpu_mem_addr[31:30])
- 2'b00: cpu_mem_rdata = fast_mem_rdata;
- default: cpu_mem_rdata = 32'hxxxx_xxxx;
- endcase // case (cpu_mem_addr[31:30])
- // Decode for small devices; use address space within range of
- // negative offsets from the zero register [-1K,0)
- wire [15:0] iodev = mem_quad[3] << cpu_mem_addr[9:6];
- // LED indication from the CPU
- reg [2:0] led_q;
- always @(negedge rst_n or posedge sys_clk)
- if (~rst_n)
- led_q <= 3'b000;
- else
- if ( iodev[0] & cpu_mem_wstrb[0] )
- led_q <= cpu_mem_wdata[2:0];
- assign led = led_q;
- //
- // Serial port. Direct to the CP2102N for reworked
- // boards or to GPIO for non-reworked boards, depending on
- // whether DTR# is asserted on either.
- //
- // The GPIO numbering matches the order of pins for FT[2]232H.
- // gpio[0] - TxD
- // gpio[1] - RxD
- // gpio[2] - RTS#
- // gpio[3] - CTS#
- // gpio[4] - DTR#
- //
- wire tty_data_out; // Output data
- wire tty_data_in; // Input data
- wire tty_cts_out; // Assert CTS# externally
- wire tty_rts_in; // RTS# received from outside
- assign tty_cts_out = 1'b0; // Assert CTS#
- tty tty (
- .rst_n ( rst_n ),
- .sys_clk ( sys_clk ),
- .tty_clk ( tty_clk ),
- .valid ( iodev[1] ),
- .wstrb ( cpu_mem_wstrb ),
- .wdata ( cpu_mem_wdata ),
- .addr ( cpu_mem_addr[2] ),
- .tty_txd ( tty_data_out ) // DTE -> DCE
- );
- reg [1:0] tty_dtr_q;
- always @(posedge tty_clk)
- begin
- tty_dtr_q[0] <= tty_dtr;
- tty_dtr_q[1] <= gpio[4];
- end
- //
- // Route data to the two output ports
- //
- // tty_rxd because pins are DCE named
- assign tty_data_in = (tty_txd | tty_dtr_q[0]) &
- (gpio[0] | tty_dtr_q[1]);
- assign tty_rxd = tty_dtr_q[0] ? 1'bz : tty_data_out;
- assign gpio[1] = tty_dtr_q[1] ? 1'bz : tty_data_out;
- assign tty_rts_in = (tty_rts | tty_dtr_q[0]) &
- (gpio[2] | tty_dtr_q[1]);
- assign tty_cts = tty_dtr_q[0] ? 1'bz : tty_cts_out;
- assign gpio[3] = tty_dtr_q[1] ? 1'bz : tty_cts_out;
- endmodule
|