| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 | 
							- /* adler32.c -- compute the Adler-32 checksum of a data stream
 
-  * Copyright (C) 1995-2011, 2016 Mark Adler
 
-  * For conditions of distribution and use, see copyright notice in zlib.h
 
-  */
 
- /* @(#) $Id$ */
 
- #include "zutil.h"
 
- local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
 
- #define BASE 65521U     /* largest prime smaller than 65536 */
 
- #define NMAX 5552
 
- /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
 
- #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
 
- #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
 
- #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
 
- #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
 
- #define DO16(buf)   DO8(buf,0); DO8(buf,8);
 
- /* use NO_DIVIDE if your processor does not do division in hardware --
 
-    try it both ways to see which is faster */
 
- #ifdef NO_DIVIDE
 
- /* note that this assumes BASE is 65521, where 65536 % 65521 == 15
 
-    (thank you to John Reiser for pointing this out) */
 
- #  define CHOP(a) \
 
-     do { \
 
-         unsigned long tmp = a >> 16; \
 
-         a &= 0xffffUL; \
 
-         a += (tmp << 4) - tmp; \
 
-     } while (0)
 
- #  define MOD28(a) \
 
-     do { \
 
-         CHOP(a); \
 
-         if (a >= BASE) a -= BASE; \
 
-     } while (0)
 
- #  define MOD(a) \
 
-     do { \
 
-         CHOP(a); \
 
-         MOD28(a); \
 
-     } while (0)
 
- #  define MOD63(a) \
 
-     do { /* this assumes a is not negative */ \
 
-         z_off64_t tmp = a >> 32; \
 
-         a &= 0xffffffffL; \
 
-         a += (tmp << 8) - (tmp << 5) + tmp; \
 
-         tmp = a >> 16; \
 
-         a &= 0xffffL; \
 
-         a += (tmp << 4) - tmp; \
 
-         tmp = a >> 16; \
 
-         a &= 0xffffL; \
 
-         a += (tmp << 4) - tmp; \
 
-         if (a >= BASE) a -= BASE; \
 
-     } while (0)
 
- #else
 
- #  define MOD(a) a %= BASE
 
- #  define MOD28(a) a %= BASE
 
- #  define MOD63(a) a %= BASE
 
- #endif
 
- /* ========================================================================= */
 
- uLong ZEXPORT adler32_z(
 
-     uLong adler,
 
-     const Bytef *buf,
 
-     z_size_t len)
 
- {
 
-     unsigned long sum2;
 
-     unsigned n;
 
-     /* split Adler-32 into component sums */
 
-     sum2 = (adler >> 16) & 0xffff;
 
-     adler &= 0xffff;
 
-     /* in case user likes doing a byte at a time, keep it fast */
 
-     if (len == 1) {
 
-         adler += buf[0];
 
-         if (adler >= BASE)
 
-             adler -= BASE;
 
-         sum2 += adler;
 
-         if (sum2 >= BASE)
 
-             sum2 -= BASE;
 
-         return adler | (sum2 << 16);
 
-     }
 
-     /* initial Adler-32 value (deferred check for len == 1 speed) */
 
-     if (buf == Z_NULL)
 
-         return 1L;
 
-     /* in case short lengths are provided, keep it somewhat fast */
 
-     if (len < 16) {
 
-         while (len--) {
 
-             adler += *buf++;
 
-             sum2 += adler;
 
-         }
 
-         if (adler >= BASE)
 
-             adler -= BASE;
 
-         MOD28(sum2);            /* only added so many BASE's */
 
-         return adler | (sum2 << 16);
 
-     }
 
-     /* do length NMAX blocks -- requires just one modulo operation */
 
-     while (len >= NMAX) {
 
-         len -= NMAX;
 
-         n = NMAX / 16;          /* NMAX is divisible by 16 */
 
-         do {
 
-             DO16(buf);          /* 16 sums unrolled */
 
-             buf += 16;
 
-         } while (--n);
 
-         MOD(adler);
 
-         MOD(sum2);
 
-     }
 
-     /* do remaining bytes (less than NMAX, still just one modulo) */
 
-     if (len) {                  /* avoid modulos if none remaining */
 
-         while (len >= 16) {
 
-             len -= 16;
 
-             DO16(buf);
 
-             buf += 16;
 
-         }
 
-         while (len--) {
 
-             adler += *buf++;
 
-             sum2 += adler;
 
-         }
 
-         MOD(adler);
 
-         MOD(sum2);
 
-     }
 
-     /* return recombined sums */
 
-     return adler | (sum2 << 16);
 
- }
 
- /* ========================================================================= */
 
- uLong ZEXPORT adler32(
 
-     uLong adler,
 
-     const Bytef *buf,
 
-     uInt len)
 
- {
 
-     return adler32_z(adler, buf, len);
 
- }
 
- /* ========================================================================= */
 
- local uLong adler32_combine_(
 
-     uLong adler1,
 
-     uLong adler2,
 
-     z_off64_t len2)
 
- {
 
-     unsigned long sum1;
 
-     unsigned long sum2;
 
-     unsigned rem;
 
-     /* for negative len, return invalid adler32 as a clue for debugging */
 
-     if (len2 < 0)
 
-         return 0xffffffffUL;
 
-     /* the derivation of this formula is left as an exercise for the reader */
 
-     MOD63(len2);                /* assumes len2 >= 0 */
 
-     rem = (unsigned)len2;
 
-     sum1 = adler1 & 0xffff;
 
-     sum2 = rem * sum1;
 
-     MOD(sum2);
 
-     sum1 += (adler2 & 0xffff) + BASE - 1;
 
-     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
 
-     if (sum1 >= BASE) sum1 -= BASE;
 
-     if (sum1 >= BASE) sum1 -= BASE;
 
-     if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1);
 
-     if (sum2 >= BASE) sum2 -= BASE;
 
-     return sum1 | (sum2 << 16);
 
- }
 
- /* ========================================================================= */
 
- uLong ZEXPORT adler32_combine(
 
-     uLong adler1,
 
-     uLong adler2,
 
-     z_off_t len2)
 
- {
 
-     return adler32_combine_(adler1, adler2, len2);
 
- }
 
- uLong ZEXPORT adler32_combine64(
 
-     uLong adler1,
 
-     uLong adler2,
 
-     z_off64_t len2)
 
- {
 
-     return adler32_combine_(adler1, adler2, len2);
 
- }
 
 
  |