sdram.sv 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695
  1. // -----------------------------------------------------------------------
  2. //
  3. // Copyright 2010-2021 H. Peter Anvin - All Rights Reserved
  4. //
  5. // This program is free software; you can redistribute it and/or modify
  6. // it under the terms of the GNU General Public License as published by
  7. // the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
  8. // Boston MA 02110-1301, USA; either version 2 of the License, or
  9. // (at your option) any later version; incorporated herein by reference.
  10. //
  11. // -----------------------------------------------------------------------
  12. //
  13. // Simple SDRAM controller
  14. //
  15. // Very simple non-parallelizing SDRAM controller.
  16. //
  17. //
  18. // Two ports are provided:
  19. // Port 1 does aligned 4-byte accesses with byte enables.
  20. // Port 2 does aligned 8-byte accesses, write only, with no byte
  21. // enables; it supports streaming from a FIFO.
  22. //
  23. // Port 1 is multiplexed via an arbiter, which receives a bus
  24. // defined by the sdram_bus interface.
  25. //
  26. // All signals are in the sdram clock domain.
  27. //
  28. // [rw]ack is asserted at the beginning of a read- or write cycle and
  29. // deasserted afterwards; rready is asserted once all data is read and
  30. // the read data (rdX port) is valid; it remains asserted after the
  31. // transaction is complete and rack is deasserted.
  32. //
  33. //
  34. // The interface to the port modules. The read data is 16 bits
  35. // at a time, and is only valid in the cycle rstrb[x] is asserted.
  36. //
  37. // The only output signal that is unique to this port
  38. // is "start". All other signals are broadcast.
  39. //
  40. interface dram_bus;
  41. logic [1:0] prio; // Priority vs refresh
  42. logic rst_n;
  43. logic clk;
  44. logic [24:0] addr;
  45. logic addr0; // addr[0] latched at transaction start
  46. logic [15:0] rd;
  47. logic req;
  48. logic [1:0] rstrb; // Data read strobe
  49. logic [31:0] wd;
  50. logic [3:0] wstrb;
  51. logic start; // Transaction start
  52. logic wrack; // Transaction is a write
  53. // Upstream direction
  54. modport ustr (
  55. input prio,
  56. output rst_n,
  57. output clk,
  58. input addr,
  59. output addr0,
  60. output rd,
  61. input req,
  62. output rstrb,
  63. input wd,
  64. input wstrb,
  65. output start,
  66. output wrack
  67. );
  68. // Downstream direction
  69. modport dstr (
  70. output prio,
  71. input rst_n,
  72. input clk,
  73. output addr,
  74. input addr0,
  75. input rd,
  76. output req,
  77. input rstrb,
  78. output wd,
  79. output wstrb,
  80. input start,
  81. input wrack
  82. );
  83. endinterface // dram_bus
  84. // Port into the DRAM
  85. module dram_port
  86. #(parameter width = 32)
  87. (
  88. dram_bus.dstr bus,
  89. input [1:0] prio,
  90. input [24:0] addr,
  91. output reg [width-1:0] rd,
  92. input valid,
  93. output reg ready,
  94. input [width-1:0] wd,
  95. input [(width >> 3)-1:0] wstrb
  96. );
  97. reg started;
  98. assign bus.prio = prio;
  99. assign bus.addr = addr;
  100. assign bus.req = valid & ~started;
  101. always_comb
  102. begin
  103. bus.wd = 32'hxxxx_xxxx;
  104. bus.wstrb = 4'b0000;
  105. if (width == 8)
  106. begin
  107. bus.wd[15:0] = { wd, wd };
  108. bus.wstrb[1:0] = { wstrb[0] & addr[0], wstrb[0] & ~addr[0] };
  109. end
  110. else
  111. begin
  112. bus.wd[width-1:0] = wd;
  113. bus.wstrb[(width >> 3)-1:0] = wstrb;
  114. end
  115. end
  116. always @(negedge bus.rst_n or posedge bus.clk)
  117. if (~bus.rst_n)
  118. begin
  119. ready <= 1'b0;
  120. started <= 1'b0;
  121. end
  122. else
  123. begin
  124. if (~valid)
  125. begin
  126. ready <= 1'b0;
  127. started <= 1'b0;
  128. end
  129. else if (bus.start)
  130. begin
  131. started <= 1'b1;
  132. ready <= |bus.wstrb; // All write data latched
  133. end
  134. else if (started & ~ready)
  135. begin
  136. ready <= bus.rstrb[(width - 1) >> 4];
  137. end
  138. end // else: !if(~bus.rst_n)
  139. genvar i;
  140. generate
  141. for (i = 0; i < ((width + 15) >> 4); i++)
  142. begin : w
  143. always @(posedge bus.clk)
  144. if (started & ~ready & bus.rstrb[i])
  145. begin
  146. if (width == 8)
  147. rd <= bus.addr0 ? bus.rd[15:8] : bus.rd[7:0];
  148. else
  149. rd[i*16+15:i*16] <= bus.rd;
  150. end
  151. end
  152. endgenerate
  153. endmodule // dram_port
  154. module dram_arbiter
  155. #(parameter port_count = 1)
  156. (
  157. dram_bus.ustr ustr [1:port_count],
  158. dram_bus.dstr dstr,
  159. input [1:0] rfsh_prio,
  160. output logic do_rfsh
  161. );
  162. logic [port_count:0] requesting;
  163. logic [24:0] addr [1:port_count];
  164. logic [31:0] wd [1:port_count];
  165. logic [3:0] wstrb [1:port_count];
  166. logic [1:0] prio [1:port_count];
  167. always_comb
  168. requesting[0] = 1'b0;
  169. genvar i;
  170. generate
  171. for (i = 1; i <= port_count; i++)
  172. begin : u
  173. always_comb
  174. begin
  175. ustr[i].rst_n = dstr.rst_n;
  176. ustr[i].clk = dstr.clk;
  177. ustr[i].addr0 = dstr.addr0;
  178. ustr[i].rd = dstr.rd;
  179. ustr[i].rstrb = dstr.rstrb;
  180. ustr[i].wrack = dstr.wrack;
  181. ustr[i].start = 1'b0;
  182. addr[i] = ustr[i].addr;
  183. wd[i] = ustr[i].wd;
  184. wstrb[i] = ustr[i].wstrb;
  185. prio[i] = ustr[i].prio;
  186. if (~|requesting[i-1:0] & ustr[i].req)
  187. begin
  188. requesting[i] = 1'b1;
  189. ustr[i].start = dstr.start & (ustr[i].prio >= rfsh_prio);
  190. end
  191. else
  192. begin
  193. requesting[i] = 1'b0;
  194. ustr[i].start = 1'b0;
  195. end
  196. end // always_comb
  197. end // for (i = 1; i <= port_count; i++)
  198. endgenerate
  199. always_comb
  200. begin
  201. dstr.req = 1'b0;
  202. dstr.addr = 25'bx;
  203. dstr.wd = 32'bx;
  204. dstr.wstrb = 4'bx;
  205. do_rfsh = |rfsh_prio;
  206. for (int j = 1; j <= port_count; j++)
  207. begin
  208. if (requesting[j])
  209. begin
  210. dstr.req = 1'b1;
  211. dstr.addr = addr[j];
  212. dstr.wd = wd[j];
  213. dstr.wstrb = wstrb[j];
  214. do_rfsh = prio[j] < rfsh_prio;
  215. end
  216. end // for (int j = 1; j <= port_count; j++)
  217. end // always_comb
  218. endmodule // dram_arbiter
  219. module sdram
  220. #( parameter
  221. port1_count = 1,
  222. // Timing parameters
  223. // The parameters are hardcoded for Micron MT48LC16M16A2-6A,
  224. // per datasheet:
  225. // 100 MHz 167 MHz
  226. // ----------------------------------------------------------
  227. // CL 2 3 READ to data out
  228. // tRCD 18 ns 2 3 ACTIVE to READ/WRITE
  229. // tRFC 60 ns 6 10 REFRESH to ACTIVE
  230. // tRP 18 ns 2 3 PRECHARGE to ACTIVE/REFRESH
  231. // tRAS 42 ns 5 7 ACTIVE to PRECHARGE
  232. // tRC 60 ns 6 10 ACTIVE to ACTIVE (same bank)
  233. // tRRD 12 ns 2 2 ACTICE to ACTIVE (different bank)
  234. // tWR 12 ns 2 2 Last write data to PRECHARGE
  235. // tMRD 2 2 MODE REGISTER to ACTIVE/REFRESH
  236. //
  237. // These parameters are set by power of 2:
  238. // tREFi 64/8192 ms 781 1302 Refresh time per row (max)
  239. // tP 100 us 10000 16667 Time until first command (min)
  240. t_cl = 3,
  241. t_rcd = 3,
  242. t_rfc = 10,
  243. t_rp = 3,
  244. t_ras = 7,
  245. t_rc = 10,
  246. t_rrd = 2,
  247. t_wr = 2,
  248. t_mrd = 2,
  249. t_refi_lg2 = 10, // 1024 cycles
  250. t_p_lg2 = 15, // 32768 cycles
  251. burst_lg2 = 1 // log2(burst length)
  252. )
  253. (
  254. // Reset and clock
  255. input rst_n,
  256. input clk,
  257. // SDRAM hardware interface
  258. output sr_cke, // SDRAM clock enable
  259. output sr_cs_n, // SDRAM CS#
  260. output sr_ras_n, // SDRAM RAS#
  261. output sr_cas_n, // SDRAM CAS#
  262. output sr_we_n, // SDRAM WE#
  263. output [1:0] sr_dqm, // SDRAM DQM (per byte)
  264. output [1:0] sr_ba, // SDRAM bank selects
  265. output [12:0] sr_a, // SDRAM address bus
  266. inout [15:0] sr_dq, // SDRAM data bus
  267. // Port 1
  268. dram_bus.ustr port1 [1:port1_count],
  269. // Port 2
  270. input [24:1] a2,
  271. input [15:0] wd2,
  272. input [1:0] wrq2,
  273. output reg wacc2 // Data accepted, advance data & addr
  274. );
  275. `include "functions.sv" // For modelsim
  276. // Mode register data
  277. wire mrd_wburst = 1'b1; // Write bursts enabled
  278. wire [2:0] mrd_cl = t_cl;
  279. wire [2:0] mrd_burst = burst_lg2;
  280. wire mrd_interleave = 1'b0; // Interleaved bursts
  281. wire [12:0] mrd_val = { 3'b000, // Reserved
  282. ~mrd_wburst, // Write burst disable
  283. 2'b00, // Normal operation
  284. mrd_cl, // CAS latency
  285. mrd_interleave, // Interleaved bursts
  286. mrd_burst }; // Burst length
  287. // Where to issue a PRECHARGE when we only want to read one word
  288. // (terminate the burst as soon as possible, but no sooner...)
  289. localparam t_pre_rd_when = max(t_ras, t_rcd + 1);
  290. // Where to issue a PRECHARGE when we only want to write one word
  291. // (terminate the burst as soon as possible, but no sooner...)
  292. localparam t_pre_wr_when = max(t_ras, t_rcd + t_wr);
  293. // Actual burst length (2^burst_lg2)
  294. localparam burst_n = 1 << burst_lg2;
  295. // Command opcodes and attributes (is_rfsh, CS#, RAS#, CAS#, WE#)
  296. localparam cmd_desl = 5'b0_1111; // Deselect (= NOP)
  297. localparam cmd_nop = 5'b0_0111; // NO OPERATION
  298. localparam cmd_bst = 5'b0_0110; // BURST TERMINATE
  299. localparam cmd_rd = 5'b0_0101; // READ
  300. localparam cmd_wr = 5'b0_0100; // WRITE
  301. localparam cmd_act = 5'b0_0011; // ACTIVE
  302. localparam cmd_pre = 5'b0_0010; // PRECHARGE
  303. localparam cmd_ref = 5'b1_0001; // AUTO REFRESH
  304. localparam cmd_mrd = 5'b0_0000; // LOAD MODE REGISTER
  305. reg [4:0] dram_cmd;
  306. wire is_rfsh = dram_cmd[4];
  307. assign sr_cs_n = dram_cmd[3];
  308. assign sr_ras_n = dram_cmd[2];
  309. assign sr_cas_n = dram_cmd[1];
  310. assign sr_we_n = dram_cmd[0];
  311. assign sr_cke = 1'b1;
  312. // SDRAM output signal registers
  313. reg [12:0] dram_a;
  314. assign sr_a = dram_a;
  315. reg [1:0] dram_ba;
  316. assign sr_ba = dram_ba;
  317. reg [1:0] dram_dqm;
  318. assign sr_dqm = dram_dqm;
  319. reg [15:0] dram_d; // Data to DRAM
  320. reg [15:0] dram_q; // Data from DRAM (I/O buffers)
  321. reg dram_d_en; // Drive data out
  322. assign sr_dq = dram_d_en ? dram_d : 16'hzzzz;
  323. // State machine and counters
  324. reg [t_refi_lg2-2:0] rfsh_ctr; // Refresh timer
  325. wire rfsh_ctr_msb = rfsh_ctr[t_refi_lg2-2];
  326. reg rfsh_ctr_last_msb;
  327. wire rfsh_tick = rfsh_ctr_last_msb & ~rfsh_ctr_msb;
  328. reg [t_p_lg2:t_refi_lg2-1] init_ctr; // Reset to init counter
  329. reg [1:0] rfsh_prio; // Refresh priority (0-3)
  330. // Port1 and refresh arbiter
  331. dram_bus p1 ();
  332. wire do_rfsh;
  333. assign p1.rst_n = rst_n;
  334. assign p1.clk = clk;
  335. dram_arbiter #(.port_count(port1_count))
  336. arbiter (
  337. .ustr ( port1 ),
  338. .dstr ( p1.dstr ),
  339. .rfsh_prio ( rfsh_prio ),
  340. .do_rfsh ( do_rfsh )
  341. );
  342. // The actual values are unimportant; the compiler will optimize
  343. // the state machine implementation.
  344. typedef enum logic [3:0] {
  345. st_reset, // Reset until init timer expires
  346. st_init_rfsh, // Refresh cycles during initialization
  347. st_init_mrd, // MRD register write during initialization
  348. st_ready, // Ready to issue command in the next cycle
  349. st_rfsh, // Refresh cycle
  350. st_rd_wr_act, // Port 1 ACT command
  351. st_rd_wr, // Port 1 transaction
  352. st_wr2_act, // Port 2 write ACT command
  353. st_wr2 // Port 2 write (burstable)
  354. } state_t;
  355. state_t state = st_reset;
  356. always @(posedge clk or negedge rst_n)
  357. if (~rst_n)
  358. begin
  359. rfsh_ctr <= 1'b0;
  360. rfsh_prio <= 2'b00;
  361. init_ctr <= 1'b0;
  362. end
  363. else
  364. begin
  365. rfsh_ctr <= rfsh_ctr + 1'b1;
  366. rfsh_ctr_last_msb <= rfsh_ctr_msb;
  367. // Refresh priority management: saturating 2-bit counter
  368. if (is_rfsh)
  369. rfsh_prio <= 2'b00; // This is a refresh cycle
  370. else
  371. rfsh_prio <= rfsh_prio + (rfsh_tick & ~&rfsh_prio);
  372. // The refresh counter is also used as a prescaler
  373. // for the initialization counter.
  374. // Note that means init_ctr is two cycles "behind"
  375. // rfsh_ctr; this is totally fine.
  376. init_ctr <= init_ctr + rfsh_tick;
  377. end // else: !if(~rst_n)
  378. reg [5:0] op_ctr; // Cycle into the current state
  379. wire [3:0] op_cycle = op_ctr[3:0]; // Cycle into the current command
  380. wire [1:0] init_op_ctr = op_ctr[5:4]; // Init operation counter
  381. reg op_zero; // op_cycle wrap around (init_op_ctr changed)
  382. reg [31:0] wdata_q;
  383. reg [ 3:0] be_q;
  384. reg [24:0] addr;
  385. reg wrq2_more;
  386. wire [13:0] row_addr = addr[24:12];
  387. wire [1:0] bank_addr = addr[11:10];
  388. wire [8:0] col_addr = addr[9:1];
  389. assign p1.addr0 = addr[0];
  390. assign p1.rd = dram_q;
  391. //
  392. // Careful with the timing here... there is one cycle between
  393. // registers and wires, and the DRAM observes the clock 1/2
  394. // cycle from the internal logic. This affects read timing.
  395. //
  396. // Note that rready starts out as 1. This allows a 0->1 detection
  397. // on the rready line to be used as cycle termination signal.
  398. //
  399. always @(posedge clk or negedge rst_n)
  400. if (~rst_n)
  401. begin
  402. dram_cmd <= cmd_desl;
  403. dram_a <= 13'hxxxx;
  404. dram_ba <= 2'bxx;
  405. dram_dqm <= 2'b00;
  406. dram_d <= 16'hxxxx;
  407. dram_q <= 16'hxxxx;
  408. dram_d_en <= 1'b1; // Don't float except during read
  409. op_ctr <= 6'h0;
  410. op_zero <= 1'b0;
  411. state <= st_reset;
  412. p1.start <= 1'b0;
  413. p1.wrack <= 1'bx;
  414. p1.rd <= 16'hxxxx;
  415. p1.rstrb <= 2'b00;
  416. wacc2 <= 1'b0;
  417. wrq2_more <= 1'bx;
  418. wdata_q <= 32'hxxxx_xxxx;
  419. be_q <= 4'bxxxx;
  420. addr <= 25'bx;
  421. end
  422. else
  423. begin
  424. // Default values
  425. dram_a <= 13'b0;
  426. dram_ba <= bank_addr;
  427. dram_dqm <= 2'b00;
  428. dram_d <= { 8'hAA, 3'b000, dram_cmd };
  429. dram_cmd <= cmd_nop;
  430. dram_d_en <= 1'b1; // Don't float except during read
  431. dram_q <= sr_dq;
  432. p1.rstrb <= 2'b00;
  433. wacc2 <= 1'b0;
  434. op_ctr <= op_ctr + 1'b1;
  435. op_zero <= &op_cycle; // About to wrap around
  436. p1.start <= 1'b0;
  437. case (state)
  438. st_reset:
  439. begin
  440. op_ctr <= 6'b0;
  441. op_zero <= 1'b0;
  442. dram_a[10] <= 1'b1; // Precharge all banks
  443. dram_cmd <= cmd_nop;
  444. if (init_ctr[t_p_lg2])
  445. begin
  446. dram_cmd <= cmd_pre;
  447. state <= st_init_rfsh;
  448. end
  449. end
  450. st_init_rfsh:
  451. begin
  452. if (op_zero)
  453. begin
  454. dram_cmd <= cmd_ref;
  455. if (init_op_ctr == 2'b11)
  456. state <= st_init_mrd;
  457. end
  458. end
  459. st_init_mrd:
  460. begin
  461. dram_a <= mrd_val;
  462. dram_ba <= 2'b00;
  463. if (op_zero)
  464. if (init_op_ctr[0])
  465. state <= st_ready;
  466. else
  467. dram_cmd <= cmd_mrd;
  468. end
  469. st_ready:
  470. begin
  471. op_ctr <= 6'b0;
  472. op_zero <= 1'b0;
  473. dram_cmd <= cmd_desl;
  474. p1.wrack <= 1'bx;
  475. be_q <= 4'bxxxx;
  476. wdata_q <= 32'hxxxx_xxxx;
  477. addr <= 25'bx;
  478. dram_a <= 13'h1bb;
  479. dram_d <= 16'hbbbb;
  480. // Port 1 and refresh have priority over port 2;
  481. // the various port 1 instances and refresh have
  482. // priorities set by the arbiter block.
  483. if (do_rfsh)
  484. begin
  485. state <= st_rfsh;
  486. end
  487. else if (p1.req)
  488. begin
  489. addr <= p1.addr;
  490. p1.wrack <= |p1.wstrb;
  491. wdata_q <= p1.wd;
  492. be_q <= p1.wstrb;
  493. state <= st_rd_wr_act;
  494. p1.start <= 1'b1;
  495. end // if (p1.req)
  496. else if (wrq2[0])
  497. begin
  498. // Begin port 2 write
  499. addr <= { a2, 1'b0 };
  500. state <= st_wr2_act;
  501. end
  502. end // case: st_ready
  503. st_rfsh: begin
  504. if (op_cycle == 0)
  505. dram_cmd <= cmd_ref;
  506. else if (op_cycle == t_rfc-2)
  507. state <= st_ready;
  508. end
  509. st_rd_wr_act: begin
  510. op_ctr <= 6'b0;
  511. op_zero <= 1'b0;
  512. dram_cmd <= cmd_act;
  513. dram_a <= row_addr;
  514. dram_ba <= bank_addr;
  515. state <= st_rd_wr;
  516. end
  517. st_rd_wr:
  518. begin
  519. dram_d_en <= p1.wrack;
  520. dram_dqm <= {2{p1.wrack}};
  521. dram_d <= 16'hcccc ^ {16{p1.wrack}};
  522. // Commands
  523. //
  524. // This assumes:
  525. // tRCD = 3
  526. // rRRD = 2
  527. // CL = 3
  528. // tRC = 10
  529. // tRAS = 7
  530. // tWR = 2
  531. // tRP = 3
  532. //
  533. case (op_cycle)
  534. 2: begin
  535. dram_a[10] <= 1'b0; // No auto precharge
  536. dram_a[8:0] <= col_addr;
  537. dram_cmd <= p1.wrack ? cmd_wr : cmd_rd;
  538. dram_d <= wdata_q[15:0];
  539. dram_dqm <= {2{p1.wrack}} & ~be_q[1:0];
  540. end
  541. 3: begin
  542. dram_d <= wdata_q[31:16];
  543. dram_dqm <= {2{p1.wrack}} & ~be_q[3:2];
  544. end
  545. 6: begin
  546. // Earliest legal cycle to precharge
  547. // It seems auto precharge violates tRAS(?)
  548. // so do it explicitly.
  549. dram_a[10] <= 1'b1; // One bank
  550. dram_cmd <= cmd_pre;
  551. end
  552. // CL+2 cycles after the read command
  553. // The +2 accounts for internal and I/O delays
  554. 7: begin
  555. p1.rstrb[0] <= ~p1.wrack;
  556. end
  557. 8: begin
  558. p1.rstrb[1] <= ~p1.wrack;
  559. state <= st_ready;
  560. end
  561. endcase // case (op_cycle)
  562. end // case: st_rd_wr
  563. st_wr2_act:
  564. begin
  565. op_ctr <= 6'b0;
  566. op_zero <= 1'b0;
  567. dram_a <= row_addr;
  568. dram_ba <= bank_addr;
  569. dram_cmd <= cmd_act;
  570. state <= st_wr2;
  571. end
  572. st_wr2:
  573. begin
  574. // Streamable write from flash ROM
  575. dram_d <= wd2;
  576. dram_a[10] <= 1'b0; // No auto precharge/precharge one bank
  577. dram_a[8:0] <= a2[9:1];
  578. case (op_cycle)
  579. 0, 1: begin
  580. wacc2 <= 1'b1;
  581. end
  582. 2: begin
  583. dram_cmd <= cmd_wr;
  584. wacc2 <= 1'b1;
  585. wrq2_more <= wrq2[1];
  586. end
  587. 3: begin
  588. wacc2 <= 1'b1;
  589. end
  590. 4: begin
  591. dram_cmd <= cmd_wr;
  592. if (wrq2_more & ~(p1.req | do_rfsh))
  593. begin
  594. // Burst can continue
  595. wacc2 <= 1'b1;
  596. op_ctr[3:0] <= 4'd1;
  597. end
  598. end // case: 4
  599. 6: begin
  600. dram_dqm <= 2'b11; // This shouldn't be necessary?!
  601. end
  602. 7: begin
  603. // tWR completed
  604. dram_cmd <= cmd_pre;
  605. dram_dqm <= 2'b11;
  606. end
  607. 8: begin
  608. // tRP will be complete before the next ACT
  609. dram_dqm <= 2'b11;
  610. state <= st_ready;
  611. end
  612. endcase // case (op_cycle)
  613. end // case: st_wr2
  614. endcase // case(state)
  615. end // else: !if(~rst_n)
  616. endmodule // dram