fwupdate.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462
  1. #define MODULE "fwupdate"
  2. #define DEBUG 1
  3. #include "common.h"
  4. #include "jtag.h"
  5. #include "spiflash.h"
  6. #include "fpga.h"
  7. #include "ota.h"
  8. #include "spz.h"
  9. #include "httpd.h"
  10. #include "fw.h"
  11. #include <unzipLIB.h>
  12. #include <zlib.h>
  13. /* Needed for struct inflate_state, due to unziplib hacks */
  14. #include <zutil.h>
  15. #include <inftrees.h>
  16. #include <inflate.h>
  17. #ifndef local
  18. # define local static
  19. #endif
  20. #define BUFFER_SIZE SPIFLASH_SECTOR_SIZE
  21. #define FWUPDATE_STACK 8192
  22. #define FWUPDATE_PRIORITY 3
  23. static void *spz_calloc(void *opaque, unsigned int items, unsigned int size)
  24. {
  25. spz_stream *spz = opaque;
  26. MSG("spz_calloc(%u), sram %u/%u, spiram %u/%u = ", items*size,
  27. heap_caps_get_largest_free_block(MALLOC_CAP_INTERNAL),
  28. heap_caps_get_free_size(MALLOC_CAP_INTERNAL),
  29. heap_caps_get_largest_free_block(MALLOC_CAP_SPIRAM),
  30. heap_caps_get_free_size(MALLOC_CAP_SPIRAM));
  31. void *p = calloc(items, size);
  32. CMSG("%p\n", p);
  33. if (!p)
  34. spz->err = Z_MEM_ERROR;
  35. return p;
  36. }
  37. static void *spz_malloc(void *opaque, unsigned int size)
  38. {
  39. spz_stream *spz = opaque;
  40. MSG("spz_malloc(%u), sram %u/%u, spiram %u/%u = ", size,
  41. heap_caps_get_largest_free_block(MALLOC_CAP_INTERNAL),
  42. heap_caps_get_free_size(MALLOC_CAP_INTERNAL),
  43. heap_caps_get_largest_free_block(MALLOC_CAP_SPIRAM),
  44. heap_caps_get_free_size(MALLOC_CAP_SPIRAM));
  45. void *p = malloc(size);
  46. CMSG("%p\n", p);
  47. if (!p)
  48. spz->err = Z_MEM_ERROR;
  49. return p;
  50. }
  51. static void spz_free(void *opaque, void *ptr)
  52. {
  53. (void)opaque;
  54. free(ptr);
  55. }
  56. int spz_read_data(spz_stream *spz, void *buf, size_t len)
  57. {
  58. uint8_t *p = buf;
  59. while (len) {
  60. unsigned int avail = spz->zs.next_out - spz->optr;
  61. if (spz->err)
  62. break;
  63. if (avail) {
  64. if (avail > len)
  65. avail = len;
  66. memcpy(p, spz->optr, avail);
  67. p += avail;
  68. spz->optr += avail;
  69. len -= avail;
  70. } else {
  71. spz->optr = spz->zs.next_out = spz->obuf;
  72. spz->zs.avail_out = BUFFER_SIZE;
  73. while (spz->zs.avail_out) {
  74. if (!spz->zs.avail_in && !spz->eoi) {
  75. int rlen;
  76. spz->zs.next_in = spz->ibuf;
  77. rlen = spz->read_data(spz->token, spz->ibuf, BUFFER_SIZE);
  78. if (rlen < 0) {
  79. if (!spz->err)
  80. spz->err = rlen;
  81. rlen = 0;
  82. }
  83. spz->eoi = !rlen;
  84. spz->zs.avail_in = rlen;
  85. }
  86. int rv = inflate(&spz->zs, Z_SYNC_FLUSH);
  87. if (rv == Z_OK || (rv == Z_BUF_ERROR && !spz->eoi))
  88. continue;
  89. spz->eoi = true;
  90. if (rv != Z_STREAM_END && !spz->err)
  91. spz->err = rv;
  92. break;
  93. }
  94. }
  95. }
  96. return p - (uint8_t *)buf;
  97. }
  98. /*
  99. * spz needs to be initialized to zero except the read_data and cookie
  100. * fields.
  101. */
  102. static int fwupdate_data_init(spz_stream *spz)
  103. {
  104. spz->zs.zalloc = spz_calloc;
  105. spz->zs.zfree = spz_free;
  106. spz->zs.opaque = spz; /* For error reporting */
  107. spz->err = Z_OK;
  108. /* This is necessary due to unziplib damage */
  109. spz->zs.state = spz_calloc(spz, 1, sizeof(struct inflate_state));
  110. if (!spz->zs.state)
  111. goto err;
  112. for (int i = 0; i < SPZ_NBUF; i++) {
  113. spz->bufs[i] = spz_malloc(spz, BUFFER_SIZE);
  114. if (!spz->bufs[i])
  115. goto err;
  116. }
  117. /* gzip, max window size */
  118. int rv = inflateInit2(&spz->zs, 16 + 15);
  119. printf("[FWUP] fwupdate_data_init: inflateInit2 returned %d\n", rv);
  120. if (rv != Z_OK && rv != Z_STREAM_END) {
  121. spz->err = rv;
  122. goto err;
  123. }
  124. spz->cleanup = true;
  125. err:
  126. return spz->err;
  127. }
  128. static int fwupdate_data_cleanup(spz_stream *spz)
  129. {
  130. int err = 0;
  131. if (!spz)
  132. return 0;
  133. err = spz->err;
  134. if (spz->cleanup)
  135. inflateEnd(&spz->zs);
  136. /* Don't reload the FPGA on error; it wedges the JTAG bus */
  137. if (spz->fpga_updated && !err)
  138. fpga_reset();
  139. for (int i = 0; i < SPZ_NBUF; i++) {
  140. if (spz->bufs[i])
  141. free(spz->bufs[i]);
  142. }
  143. if (spz->zs.state)
  144. free(spz->zs.state);
  145. return err;
  146. }
  147. /*
  148. * Blash a full chunk of data as a JTAG SHIFT_DR transaction
  149. */
  150. int jtag_shift_spz(spz_stream *spz, enum jtag_io_flags flags)
  151. {
  152. unsigned int data_left = spz->header.len;
  153. int err = 0;
  154. if (!data_left)
  155. return 0;
  156. while (data_left) {
  157. unsigned int bytes = data_left;
  158. int rv;
  159. if (bytes > BUFFER_SIZE)
  160. bytes = BUFFER_SIZE;
  161. rv = spz_read_data(spz, spz->dbuf, bytes);
  162. if (rv < 1) {
  163. err = Z_DATA_ERROR;
  164. break;
  165. }
  166. data_left -= rv;
  167. jtag_io(rv << 3, data_left ? 0 : flags, spz->dbuf, NULL);
  168. }
  169. return err;
  170. }
  171. static void *fwupdate_read_chunk_str(spz_stream *spz)
  172. {
  173. int rv;
  174. if (spz->header.len >= BUFFER_SIZE) {
  175. spz->err = Z_DATA_ERROR;
  176. return NULL;
  177. }
  178. rv = spz_read_data(spz, spz->dbuf, spz->header.len);
  179. if (spz->err) {
  180. return NULL;
  181. }
  182. if (rv != (int)spz->header.len) {
  183. spz->err = Z_DATA_ERROR;
  184. return NULL;
  185. }
  186. spz->dbuf[spz->header.len] = '\0';
  187. return spz->dbuf;
  188. }
  189. /* Skip a data chunk */
  190. static int fwupdate_skip_chunk(spz_stream *spz)
  191. {
  192. unsigned int skip = spz->header.len;
  193. while (skip) {
  194. unsigned int block = skip;
  195. if (block > BUFFER_SIZE)
  196. block = BUFFER_SIZE;
  197. int rv = spz_read_data(spz, spz->dbuf, block);
  198. if (spz->err)
  199. return spz->err;
  200. if (rv != (int)block) {
  201. return spz->err = Z_DATA_ERROR;
  202. }
  203. skip -= block;
  204. }
  205. return 0;
  206. }
  207. /* Process a data chunk; return a nonzero value if done */
  208. static int fwupdate_process_chunk(spz_stream *spz)
  209. {
  210. int rv;
  211. char *str;
  212. rv = spz_read_data(spz, &spz->header, sizeof spz->header);
  213. if (spz->err)
  214. return spz->err;
  215. else if (!rv)
  216. return Z_STREAM_END;
  217. else if (rv != sizeof spz->header)
  218. return spz->err = Z_STREAM_ERROR;
  219. if (spz->header.magic != FW_MAGIC) {
  220. MSG("bad chunk header magic 0x%08x\n", spz->header.magic);
  221. return spz->err = Z_DATA_ERROR;
  222. }
  223. switch (spz->header.type) {
  224. case FDT_END:
  225. return Z_STREAM_END; /* End of data - not an error */
  226. case FDT_DATA:
  227. MSG("updating FPGA flash\n");
  228. return spiflash_write_spz(spz);
  229. case FDT_TARGET:
  230. str = fwupdate_read_chunk_str(spz);
  231. #if 0
  232. if (!str || strcmp(str, spz->flash->target)) {
  233. MSG("this firmware file targets \"%s\", need \"%s\"\n",
  234. str, spz->flash->target);
  235. return spz->err = Z_DATA_ERROR;
  236. }
  237. #else
  238. MSG("firmware target: \"%s\"\n", str);
  239. #endif
  240. return Z_OK;
  241. case FDT_NOTE:
  242. str = fwupdate_read_chunk_str(spz);
  243. MSG("%s\n", str);
  244. return Z_OK;
  245. case FDT_ESP_OTA:
  246. MSG("updating ESP32... ");
  247. spz->esp_updated = true;
  248. rv = esp_update((read_func_t)spz_read_data, (token_t)spz,
  249. spz->header.len);
  250. CMSG("done.\n");
  251. return rv;
  252. case FDT_FPGA_INIT:
  253. MSG("initializing FPGA for flash programming... ");
  254. spz->fpga_updated = true;
  255. rv = fpga_program_spz(spz);
  256. CMSG("done\n");
  257. return rv;
  258. default:
  259. if (spz->header.flags & FDF_OPTIONAL) {
  260. return fwupdate_skip_chunk(spz);
  261. } else {
  262. MSG("unknown chunk type: %u\n", spz->header.type);
  263. return spz->err = Z_DATA_ERROR;
  264. }
  265. }
  266. }
  267. const char *firmware_errstr(int err)
  268. {
  269. static char unknown_err[32];
  270. static const char * const errstr[] = {
  271. [-Z_STREAM_ERROR] = "Decompression error",
  272. [-Z_DATA_ERROR] = "Invalid data stream",
  273. [-Z_MEM_ERROR] = "Out of memory",
  274. [-Z_BUF_ERROR] = "Decompression error",
  275. [-FWUPDATE_ERR_IN_PROGRESS] =
  276. "Firmware update already in progress",
  277. [-FWUPDATE_ERR_BAD_CHUNK] = "Invalid firmware chunk header",
  278. [-FWUPDATE_ERR_ERASE_FAILED] = "FPGA flash erase failed",
  279. [-FWUPDATE_ERR_PROGRAM_FAILED] = "FGPA flash program failed",
  280. [-FWUPDATE_ERR_WRITE_PROTECT] = "FPGA flash write protected",
  281. [-FWUPDATE_ERR_NOT_READY] = "FPGA flash stuck at not ready",
  282. [-FWUPDATE_ERR_FPGA_JTAG] =
  283. "FPGA JTAG bus stuck, check for JTAG adapter or power cycle board",
  284. [-FWUPDATE_ERR_FPGA_MISMATCH] =
  285. "Bad FPGA IDCODE, check for JTAG adapter or power cycle board",
  286. [-FWUPDATE_ERR_FPGA_FAILED] = "FPGA reboot failed",
  287. [-FWUPDATE_ERR_UNKNOWN] = "Unidentified error",
  288. [-FWUPDATE_ERR_ESP_NO_PARTITION] = "No available ESP partition",
  289. [-FWUPDATE_ERR_ESP_BAD_OTA] = "ESP OTA information corrupt",
  290. [-FWUPDATE_ERR_ESP_FLASH_FAILED] = "ESP flash program failed",
  291. [-FWUPDATE_ERR_ESP_BAD_DATA] = "ESP firmware image corrupt",
  292. [-FWUPDATE_ERR_CONFIG_READ] = "Configuration upload failure",
  293. [-FWUPDATE_ERR_CONFIG_SAVE] = "Error saving configuration"
  294. };
  295. switch (err) {
  296. case Z_OK:
  297. return errstr[-FWUPDATE_ERR_UNKNOWN];
  298. case Z_ERRNO:
  299. return strerror(errno);
  300. case -ARRAY_SIZE(errstr)+1 ... Z_STREAM_ERROR:
  301. if (errstr[-err])
  302. return errstr[-err];
  303. /* fall through */
  304. default:
  305. snprintf(unknown_err, sizeof unknown_err, "error %d", -err);
  306. return unknown_err;
  307. }
  308. }
  309. static TaskHandle_t fwupdate_task;
  310. static spz_stream *fwupdate_spz;
  311. static SemaphoreHandle_t fwupdate_done;
  312. static int fwupdate_err;
  313. static void firmware_update_task(void *pvt)
  314. {
  315. spz_stream *spz = pvt;
  316. fpga_service_enable(false);
  317. printf("[FWUP] fwupdate_data_init()\n");
  318. spz->err = fwupdate_data_init(spz);
  319. if (spz->err)
  320. goto fail;
  321. printf("[FWUP] fwupdate_process_chunk loop\n");
  322. int err;
  323. while (!(err = fwupdate_process_chunk(spz))) {
  324. /* Process data chunks until end */
  325. }
  326. if (!spz->err && err != Z_STREAM_END)
  327. spz->err = err;
  328. printf("[FWUP] fwupdate_data_cleanup\n");
  329. err = fwupdate_data_cleanup(spz);
  330. if (err)
  331. spz->err = err;
  332. fail:
  333. if (spz->err)
  334. MSG("failed (err %d)\n", spz->err);
  335. xSemaphoreGive(fwupdate_done);
  336. exit_task();
  337. }
  338. static int firmware_update_cleanup(void)
  339. {
  340. int err = Z_OK;
  341. fwupdate_task = NULL;
  342. if (fwupdate_done) {
  343. SemaphoreHandle_t done = fwupdate_done;
  344. fwupdate_done = NULL;
  345. vSemaphoreDelete(done);
  346. } else {
  347. err = Z_MEM_ERROR;
  348. }
  349. if (fwupdate_spz) {
  350. struct spz_stream *spz = fwupdate_spz;
  351. if (spz->err)
  352. err = spz->err;
  353. fwupdate_spz = NULL;
  354. free(spz);
  355. } else {
  356. err = Z_MEM_ERROR;
  357. }
  358. return err;
  359. }
  360. int firmware_update_start(read_func_t read_data, token_t token)
  361. {
  362. int err;
  363. SemaphoreHandle_t done = NULL;
  364. if (fwupdate_spz)
  365. return FWUPDATE_ERR_IN_PROGRESS;
  366. fwupdate_spz = calloc(1, sizeof *fwupdate_spz);
  367. if (!fwupdate_spz)
  368. goto err;
  369. fwupdate_spz->read_data = read_data;
  370. fwupdate_spz->token = token;
  371. fwupdate_done = xSemaphoreCreateBinary();
  372. if (!fwupdate_done)
  373. goto err;
  374. if (xTaskCreate(firmware_update_task, "fwupdate",
  375. FWUPDATE_STACK, fwupdate_spz,
  376. FWUPDATE_PRIORITY, &fwupdate_task) != pdPASS) {
  377. xSemaphoreGive(fwupdate_done);
  378. }
  379. return Z_OK;
  380. err:
  381. return firmware_update_cleanup();
  382. }
  383. int firmware_update_wait(TickType_t delay)
  384. {
  385. if (!fwupdate_done)
  386. return Z_MEM_ERROR;
  387. if (!xSemaphoreTake(fwupdate_done, delay))
  388. return FWUPDATE_ERR_IN_PROGRESS;
  389. return firmware_update_cleanup();
  390. }