| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952 | //// Top level module for the FPGA on the MAX80 board by// Per Mårtensson and H. Peter Anvin//// This is for MAX80 as target on the ABC-bus.//// Sharing JTAG pins (via JTAGEN)`undef SHARED_JTAGmodule max80  #(parameter logic [6:1] x_mosfet,    parameter logic [7:0] fpga_ver)   (    // Clock oscillator    input	  master_clk, // 336 MHz from PLL2    input	  slow_clk, // ~12 MHz clock from PLL2    input	  master_pll_locked, // PLL2 is locked, master_clk is good    output	  reset_plls, // Reset all PLLs including PLL2    input	  board_id, // This better match the firmware    // ABC-bus    inout	  abc_clk, // ABC-bus 3 MHz clock    inout [15:0]  abc_a, // ABC address bus    inout [7:0]   abc_d, // ABC data bus    output	  abc_d_oe, // Data bus output enable    inout	  abc_rst_n, // ABC bus reset strobe    inout	  abc_cs_n, // ABC card select strobe    inout [4:0]   abc_out_n, // OUT, C1-C4 strobe    inout [1:0]   abc_inp_n, // INP, STATUS strobe    inout	  abc_xmemfl_n, // Memory read strobe    inout	  abc_xmemw800_n, // Memory write strobe (ABC800)    inout	  abc_xmemw80_n, // Memory write strobe (ABC80)    inout	  abc_xinpstb_n, // I/O read strobe (ABC800)    inout	  abc_xoutpstb_n, // I/O write strobe (ABC80)    // The following are inverted versus the bus IF    // the corresponding MOSFETs are installed    inout	  abc_rdy_x, // RDY = WAIT#    inout	  abc_resin_x, // System reset request    inout	  abc_int80_x, // System INT request (ABC80)    inout	  abc_int800_x, // System INT request (ABC800)    inout	  abc_nmi_x, // System NMI request (ABC800)    inout	  abc_xm_x, // System memory override (ABC800)    // Host/device control    output	  abc_host, // 1 = host, 0 = target    // ABC-bus extension header    // (Note: cannot use an array here because HC and HH are    // input only.)    inout	  exth_ha,    inout	  exth_hb,    input	  exth_hc,    inout	  exth_hd,    inout	  exth_he,    inout	  exth_hf,    inout	  exth_hg,    input	  exth_hh,    // SDRAM bus    output	  sr_clk,    output [1:0]  sr_ba, // Bank address    output [12:0] sr_a, // Address within bank    inout [15:0]  sr_dq, // Also known as D or IO    output [1:0]  sr_dqm, // DQML and DQMH    output	  sr_cs_n,    output	  sr_we_n,    output	  sr_cas_n,    output	  sr_ras_n,    // SD card    input	  sd_cd_n,    output	  sd_cs_n,    output	  sd_clk,    output	  sd_di,    input	  sd_do,    // Serial console (naming is FPGA as DCE)    input	  tty_txd,    output	  tty_rxd,    input	  tty_rts,    output	  tty_cts,    input	  tty_dtr,    // SPI flash memory (also configuration)    output	  flash_cs_n,    output	  flash_sck,    inout [1:0]   flash_io,    // SPI bus (connected to ESP32 so can be bidirectional)    inout	  spi_clk,	  // ESP32 IO12    inout [1:0]   spi_io,	  // ESP32 IO13,IO11    inout	  spi_cs_esp_n,   // ESP32 IO10    inout	  spi_cs_flash_n, // ESP32 IO01    // Other ESP32 connections    inout	  esp_io0,        // ESP32 IO00    inout	  esp_int,        // ESP32 IO09    // I2C bus (RTC and external)    inout	  i2c_scl,    inout	  i2c_sda,    input	  rtc_32khz,    input	  rtc_int_n,    // LEDs    output [2:0]  led,    // USB    inout	  usb_dp,    inout	  usb_dn,    output	  usb_pu,    input	  usb_rx,    input	  usb_rx_ok,    // HDMI    output [2:0]  hdmi_d,    output	  hdmi_clk,    inout	  hdmi_scl,    inout	  hdmi_sda,    inout	  hdmi_hpd,    // Unconnected pins with pullups, used for randomness    inout [2:0]   rngio,    // Various clocks available to the top level as well as internally    output	  sdram_clk, // 168 MHz SDRAM clock    output	  sys_clk, //  84 MHz System clock    output	  flash_clk, // 134 MHz Serial flash ROM clock    output	  usb_clk, //  48 MHz USB clock    output	  vid_clk, //  56 MHz Video pixel clock    output	  vid_hdmiclk	// 280 MHz HDMI serializer clock = vid_clk x 5    );   // -----------------------------------------------------------------------   //   PLLs and reset   // -----------------------------------------------------------------------   reg			    rst_n        = 1'b0; // Internal system reset   reg			    hard_rst_n   = 1'b0; // Strict POR reset only   wire			    reconfig_rst;	 // Reconfigure FPGA   assign reset_plls = 1'b0;   tri1 [4:1]		    pll_locked;   assign   pll_locked[2] = master_pll_locked;   fpgarst fpgarst (		    .rst_n    ( master_pll_locked ),		    .clk      ( slow_clk ),		    .reconfig ( reconfig_rst )		    );   //   // Clocks.   //   //  All clocks are derived from a common oscillator connected to an   //  input clock pin, which is a dedicated clock pin feeding into   //  hardware PLL2 and PLL4. The SDRAM clock output is a dedicated   //  clock out pin from PLL3.   //   //  The input frequency is not consistent across board revisions,   //  so PLL2 is configured to produce a common master clock (336 MHz)   //  in the appropriate top level file.   //   //  The following sets of clocks are closely tied and expected to   //  be synchronous, and therefore should come from the same PLL each;   //  furthermore, the design strictly assumes the ratios specified.   //   //  sdram_clk, sys_clk    - 2:1 ratio   //  vid_hdmiclk, vid_clk  - 5:1 ratio   //   pll3 pll3 (	      .areset ( ~pll_locked[2] ),	      .locked ( pll_locked[3] ),	      .inclk0 ( master_clk ),	      .c0     ( sr_clk ),	// Output to clock pin (phase shift)	      .c1     ( sdram_clk ),	// Internal logic/buffer data clock	      .c2     ( sys_clk ),	      .c3     ( flash_clk ),	      .c4     ( usb_clk )	      );   pll4 pll4 (	      .areset ( ~pll_locked[2] ),	      .locked ( pll_locked[4] ),	      .inclk0 ( master_clk ),	      .c0     ( vid_hdmiclk ),	      .c1     ( vid_clk )	      );   wire all_plls_locked = &pll_locked;   //   // sys_clk pulse generation of various powers of two; allows us to   // reuse the same counter for a lot of things that require periodic   // timing events without strong requirements on the specific timing.   // The first strobe is asserted 2^n cycles after rst_n goes high.   //   // The same counter is used to hold rst_n and hard_rst_n low for   // 2^reset_pow2 cycles.   //   // XXX: reuse this counter for the CPU cycle counter.   //   localparam reset_pow2 = 12;   reg [31:0] sys_clk_ctr;   reg [31:0] sys_clk_ctr_q;   reg [31:1] sys_clk_stb;   // 3 types of reset: system, hard, and reconfig   wire [3:1] cpu_reset_cmd;	// CPU-originated reset command   reg  [3:1] cpu_reset_cmd_q[0:1];   wire [3:1] aux_reset_cmd;	// Other reset sources   reg [3:1]  reset_cmd_q = 3'b0;   assign reconfig_rst = reset_cmd_q[3];   always @(negedge all_plls_locked or posedge sys_clk)     if (~all_plls_locked)       begin	  hard_rst_n         <= 1'b0;	  rst_n              <= 1'b0;	  reset_cmd_q[2:1]   <= 3'b0;	  cpu_reset_cmd_q[0] <= 3'b0;	  cpu_reset_cmd_q[1] <= 3'b0;	  sys_clk_ctr        <= (-'sb1) << reset_pow2;	  sys_clk_ctr_q      <= 'b0;	  sys_clk_stb        <= 'b0;       end     else       begin	  cpu_reset_cmd_q[0] <= cpu_reset_cmd;	  cpu_reset_cmd_q[1] <= cpu_reset_cmd_q[0];	  reset_cmd_q <= (cpu_reset_cmd_q[0] & ~cpu_reset_cmd_q[1]) |			 aux_reset_cmd;	  // Reconfig reset is sticky until FPGA reloaded...	  reset_cmd_q[3] <= reset_cmd_q[3] | cpu_reset_cmd_q[0][3] |			    aux_reset_cmd[3];	  if (|reset_cmd_q)	    begin	       // Soft or hard reset	       sys_clk_ctr   <= (-'sb1) << reset_pow2;	       sys_clk_ctr_q <= 1'b0;	       sys_clk_stb   <= 1'b0;	       rst_n         <= 1'b0;	       hard_rst_n    <= hard_rst_n & ~|reset_cmd_q[3:2];	    end	  else	    begin	       sys_clk_ctr   <= sys_clk_ctr + 1'b1;	       sys_clk_ctr_q <= ~rst_n ? 'b0 : sys_clk_ctr;	       sys_clk_stb   <= ~sys_clk_ctr & sys_clk_ctr_q;	       rst_n         <= rst_n      | ~sys_clk_ctr[reset_pow2];	       hard_rst_n    <= hard_rst_n | ~sys_clk_ctr[reset_pow2];	    end       end   // Reset in the video clock domain   reg vid_rst_n;   always @(negedge all_plls_locked or posedge vid_clk)     if (~all_plls_locked)       vid_rst_n <= 1'b0;     else       vid_rst_n <= rst_n;   // HDMI video interface   video video (		.rst_n       ( vid_rst_n ),		.vid_clk     ( vid_clk ),		.vid_hdmiclk ( vid_hdmiclk ),		.hdmi_d      ( hdmi_d ),		.hdmi_clk    ( hdmi_clk ),		.hdmi_scl    ( hdmi_scl ),		.hdmi_hpd    ( hdmi_hpd )		);   //   // Internal CPU bus   //   wire			      cpu_mem_valid;   wire			      cpu_mem_ready;   wire			      cpu_mem_instr;   wire [ 3:0]		      cpu_mem_wstrb;   wire [31:0]                cpu_mem_addr;   wire [31:0]                cpu_mem_wdata;   reg  [31:0]		      cpu_mem_rdata;   wire                       cpu_la_read;   wire                       cpu_la_write;   wire [31:0]                cpu_la_addr;   wire [31:0]		      cpu_la_wdata;   wire [ 3:0]		      cpu_la_wstrb;   // cpu_mem_valid by address space, using a bit of lookahead   // decoding for speed.   //   // Address space 0 = SRAM   //               1 = SDRAM   //               2 = I/O   typedef enum {	 AS_SRAM  = 0,	 AS_SDRAM = 1,	 AS_IO    = 2   } as_enum_t;   localparam as_enum_t AS_MAX = AS_IO;   function logic [AS_MAX:0] mem_as_decode(logic [31:0] addr);      mem_as_decode[AS_SRAM]  = addr[31:29] == 3'b000;      mem_as_decode[AS_SDRAM] = !addr[31] && addr[30:29] != 2'b00;      mem_as_decode[AS_IO]    = addr[31];   endfunction   reg  [AS_MAX:0] mem_as;   always @(negedge rst_n or posedge sys_clk)     if (~rst_n)       mem_as <= 'b0;     else if (cpu_mem_valid)       mem_as <= mem_as_decode(cpu_mem_addr);     else       mem_as <= mem_as_decode(cpu_la_addr);   wire [AS_MAX:0] cpu_mem_as = cpu_mem_valid ? mem_as : 'b0;   // I/O device map from iodevs.conf   wire		   iodev_mem_valid = cpu_mem_as[AS_IO];`include "iodevs.vh"   //   // SDRAM   //   localparam dram_port_count = 4;   dram_bus sr_bus[1:dram_port_count] ( );   // ABC interface   wire [24:0] abc_sr_addr;   wire [ 7:0] abc_sr_rd;   wire        abc_sr_valid;   wire        abc_sr_ready;   wire [ 7:0] abc_sr_wd;   wire        abc_sr_wstrb;   dram_port #(8)   abc_dram_port (		  .bus   ( sr_bus[1] ),		  .prio  ( 2'd3 ),		  .addr  ( abc_sr_addr ),		  .rd    ( abc_sr_rd ),		  .valid ( abc_sr_valid ),		  .ready ( abc_sr_ready ),		  .wd    ( abc_sr_wd ),		  .wstrb ( abc_sr_wstrb )		  );   // CPU interface   wire	       sdram_valid = cpu_mem_as[AS_SDRAM];   wire [31:0] sdram_mem_rdata;   wire        sdram_ready;   reg	       sdram_ready_q;   reg	       sdram_mem_ready;   //   // Retard sdram_ready by one sys_clk (multicycle path for the data,   // see max80.sdc)   //   // Note that if the CPU leaves valid asserted the CPU cycle after   // receiving ready, it is the beginning of another request. The   // sdram core expects valid to be strobed, so deassert valid   // to the sdram core while asserting ready to the CPU.   //   always @(posedge sys_clk)     sdram_mem_ready <= sdram_ready & sdram_valid;   dram_port #(32)   cpu_dram_port (		  .bus   ( sr_bus[4] ),		  .prio  ( 2'd1 ),		  .addr  ( cpu_mem_addr[24:0] ),		  .rd    ( sdram_mem_rdata ),		  .valid ( sdram_valid & ~sdram_mem_ready ),		  .ready ( sdram_ready ),		  .wd    ( cpu_mem_wdata ),		  .wstrb ( cpu_mem_wstrb )		  );   // Romcopy interface   wire [15:0] sdram_rom_wd;   wire [24:1] sdram_rom_waddr;   wire [ 1:0] sdram_rom_wrq;   wire        sdram_rom_wacc;   sdram #(.port1_count(dram_port_count))   sdram (	  .rst_n    ( rst_n ),	  .clk      ( sdram_clk ),       // Internal memory clock	  .init_tmr ( sys_clk_stb[14] ), // > 100 μs (tP) after reset	  .rfsh_tmr ( sys_clk_stb[8] ),  // < 3.9 μs (tREFI/2)	  .sr_cs_n  ( sr_cs_n ),	  .sr_ras_n ( sr_ras_n ),	  .sr_cas_n ( sr_cas_n ),	  .sr_we_n  ( sr_we_n ),	  .sr_dqm   ( sr_dqm ),	  .sr_ba    ( sr_ba ),	  .sr_a     ( sr_a ),	  .sr_dq    ( sr_dq ),	  .port1    ( sr_bus ),	  .a2       ( sdram_rom_waddr ),	  .wd2      ( sdram_rom_wd ),	  .wrq2     ( sdram_rom_wrq ),	  .wacc2    ( sdram_rom_wacc )	  );   //   // ABC-bus interface   //   wire        abc_clk_s;	// abc_clk synchronous to sys_clk   abcbus #(.mosfet_installed(x_mosfet))   abcbus (	   .rst_n ( rst_n ),	   .sys_clk ( sys_clk ),	   .sdram_clk ( sdram_clk ),	   .stb_1mhz ( sys_clk_stb[6] ),	   .abc_valid ( iodev_valid_abc ),	   .map_valid ( iodev_valid_abcmemmap ),	   .cpu_addr  ( cpu_mem_addr ),	   .cpu_wdata ( cpu_mem_wdata ),	   .cpu_wstrb ( cpu_mem_wstrb ),	   .cpu_rdata ( iodev_rdata_abc ),	   .cpu_rdata_map ( iodev_rdata_abcmemmap ),	   .irq       ( iodev_irq_abc ),	   .abc_clk   ( abc_clk ),	   .abc_clk_s ( abc_clk_s ),	   .abc_a     ( abc_a ),	   .abc_d     ( abc_d ),	   .abc_d_oe  ( abc_d_oe ),	   .abc_rst_n ( abc_rst_n ),	   .abc_cs_n  ( abc_cs_n ),	   .abc_out_n ( abc_out_n ),	   .abc_inp_n ( abc_inp_n ),	   .abc_xmemfl_n ( abc_xmemfl_n ),	   .abc_xmemw800_n ( abc_xmemw800_n ),	   .abc_xmemw80_n ( abc_xmemw80_n ),	   .abc_xinpstb_n ( abc_xinpstb_n ),	   .abc_xoutpstb_n ( abc_xoutpstb_n ),	   .abc_rdy_x ( abc_rdy_x ),	   .abc_resin_x ( abc_resin_x ),	   .abc_int80_x ( abc_int80_x ),	   .abc_int800_x ( abc_int800_x ),	   .abc_nmi_x ( abc_nmi_x ),	   .abc_xm_x ( abc_xm_x ),	   .abc_host ( abc_host ),	   .exth_ha ( exth_ha ),	   .exth_hb ( exth_hb ),	   .exth_hc ( exth_hc ),	   .exth_hd ( exth_hd ),	   .exth_he ( exth_he ),	   .exth_hf ( exth_hf ),	   .exth_hg ( exth_hg ),	   .exth_hh ( exth_hh ),	   .sdram_addr  ( abc_sr_addr ),	   .sdram_rd    ( abc_sr_rd ),	   .sdram_valid ( abc_sr_valid ),	   .sdram_ready ( abc_sr_ready ),	   .sdram_wd    ( abc_sr_wd ),	   .sdram_wstrb ( abc_sr_wstrb )	   );   // Embedded RISC-V CPU   // Edge-triggered IRQs. picorv32 latches interrupts   // but doesn't edge detect for a slow signal, so do it   // here instead and use level triggered signalling to the   // CPU.   reg  [31:0] cpu_irq;   reg  [31:0] sys_irq_q;   wire [31:0] cpu_eoi;   always @(negedge rst_n or posedge sys_clk)     if (~rst_n)       begin	  sys_irq_q <= 32'b0;	  cpu_irq   <= 32'b0;       end     else       begin	  sys_irq_q <= sys_irq & irq_edge_mask;	  cpu_irq   <= (sys_irq & ~sys_irq_q) |		       (cpu_irq & irq_edge_mask & ~cpu_eoi);       end   // CPU permanently hung?   wire	       cpu_trap;   // Request to halt the CPU on the next instruction boundary   wire        cpu_halt;   picorv32 #(	      .COUNTER_CYCLE_WIDTH ( 64 ),	      .COUNTER_INSTR_WIDTH ( 0 ), // No use...	      .ENABLE_REGS_16_31 ( 1 ),	      .ENABLE_REGS_DUALPORT ( 1 ),	      .LATCHED_MEM_RDATA ( 0 ),	      .BARREL_SHIFTER ( 1 ),	      .TWO_CYCLE_COMPARE ( 0 ),	      .TWO_CYCLE_ALU ( 0 ),	      .COMPRESSED_ISA ( 1 ),	      .CATCH_MISALIGN ( 1 ),	      .CATCH_ILLINSN ( 1 ),	      .ENABLE_FAST_MUL ( 1 ),	      .ENABLE_DIV ( 1 ),	      .ENABLE_IRQ ( 1 ),	      .ENABLE_IRQ_QREGS ( 1 ),	      .ENABLE_IRQ_TIMER ( 1 ),	      .MASKED_IRQ ( irq_masked ),	      .LATCHED_IRQ ( 32'h0000_0007 ),	      .REGS_INIT_ZERO ( 1 ),	      .STACKADDR ( 1'b1 << SRAM_BITS ),	      .USER_CONTEXTS ( 7 )   ) cpu (	.clk ( sys_clk ),	.resetn ( rst_n ),	.halt ( cpu_halt ),	.trap ( cpu_trap ),	.progaddr_reset ( _PC_RESET ),	.progaddr_irq   ( _PC_IRQ ),	.mem_instr ( cpu_mem_instr ),	.mem_ready ( cpu_mem_ready ),	.mem_valid ( cpu_mem_valid ),	.mem_wstrb ( cpu_mem_wstrb ),	.mem_addr  ( cpu_mem_addr ),	.mem_wdata ( cpu_mem_wdata ),	.mem_rdata ( cpu_mem_rdata ),	.mem_la_read  ( cpu_la_read ),	.mem_la_write ( cpu_la_write ),	.mem_la_wdata ( cpu_la_wdata ),	.mem_la_addr  ( cpu_la_addr ),	.mem_la_wstrb ( cpu_la_wstrb ),	.irq ( cpu_irq ),	.eoi ( cpu_eoi )	);   // Add a mandatory wait state to iodevs to reduce the size   // of the CPU memory input MUX (it hurts timing on memory   // accesses...)   reg	       iodev_mem_ready;   wire	       sram_mem_ready;   assign cpu_mem_ready = (cpu_mem_as[AS_SRAM] & sram_mem_ready) |			  (cpu_mem_as[AS_SDRAM] & sdram_mem_ready) |			  (cpu_mem_as[AS_IO] & iodev_mem_ready);   //   // Fast memory. This runs on the SDRAM clock, i.e. 2x the speed   // of the CPU. The .bits parameter gives the number of dwords   // as a power of 2, i.e. 11 = 2^11 * 4 = 8K.   //   wire [31:0] fast_mem_rdata;   wire [SRAM_BITS-1:2] vjtag_sram_addr;   wire			vjtag_sram_read;   wire			vjtag_sram_write;   wire [31:0]		vjtag_sram_rdata;   wire [31:0]		vjtag_sram_wdata;   fast_mem #(.words_lg2(SRAM_BITS-2),	      .data_file("mif/sram.mif"))   fast_mem(	    .rst_n ( rst_n ),	    .clk   ( sys_clk ),	    .read0  ( 1'b1 ), // cpu_la_read  & cpu_la_addr[31:30] == 2'b00	    .write0 ( cpu_la_write & cpu_la_addr[31:30] == 2'b00 ),	    .wstrb0 ( cpu_la_wstrb ),	    .addr0  ( cpu_la_addr[SRAM_BITS-1:2] ),	    .wdata0 ( cpu_la_wdata ),	    .rdata0 ( fast_mem_rdata ),	    .read1  ( 1'b1 ), // vjtag_sram_read	    .write1 ( vjtag_sram_write ),	    .wstrb1 ( 4'b1111 ),	    .addr1  ( vjtag_sram_addr ),	    .wdata1 ( vjtag_sram_wdata ),	    .rdata1 ( vjtag_sram_rdata )	    );   assign sram_mem_ready = 1'b1; // Always ready   // Register I/O data to reduce the size of the read data MUX   reg [31:0]  iodev_rdata_q;   // Read data MUX   always_comb     case ( cpu_mem_as )       1'b1 << AS_SRAM:  cpu_mem_rdata = fast_mem_rdata;       1'b1 << AS_SDRAM: cpu_mem_rdata = sdram_mem_rdata;       1'b1 << AS_IO:    cpu_mem_rdata = iodev_rdata_q;       default:		 cpu_mem_rdata = 32'hxxxx_xxxx;     endcase   // Miscellaneous system control/status registers   wire [ 4:0] sysreg_subreg = cpu_mem_addr[6:2];   wire [31:0] sysreg = iodev_valid_sys << sysreg_subreg;   tri1 [31:0] sysreg_rdata[0:31];   assign iodev_rdata_sys = sysreg_rdata[sysreg_subreg];   //   // Board identification   //   // Magic number:   "MAX8"   // Board revision: 1.0/2.0   // Board rework flags:   //  [7:0] - reserved   //   wire        rtc_32khz_rework = 1'b1;   reg	       board_id_q;   always @(posedge sys_clk)     board_id_q <= board_id;   wire [ 7:0] max80_fpga  = fpga_ver;   wire [ 7:0] max80_major = ~board_id_q ? 8'd2 : 8'd1;   wire [ 7:0] max80_minor = 8'd0;   wire [ 7:0] max80_fixes = 8'b0;   assign sysreg_rdata[0] = SYS_MAGIC_MAX80;   assign sysreg_rdata[1] = { max80_fpga, max80_major,			      max80_minor, max80_fixes };   // System reset   wire	       usb_rxd_break_rst; // Reset due to USB serial port BREAK   wire	       tty_rxd_break_rst; // Reset due to TTY serial port BREAK   wire        vjtag_reset_cmd;	  // Reset due to virtual JTAG request   // Reset control. Note that CPU reset command 0 is a noop.   wire [3:0] cpu_reset_io_cmd =	      (sysreg[3] & cpu_mem_wstrb[0]) << cpu_mem_wdata[1:0];   //   // Soft system reset: FPGA not reloaded, PLLs not reset,   // USB and console are not reset   //   // Triggered by:   //  - CPU reset command 1   //  - CPU entering TRAP state (irrecoverable error)   //  - BREAK received on console   //  - VJTAG request   //   assign cpu_reset_cmd[1] = cpu_reset_io_cmd[1] | cpu_trap;   assign aux_reset_cmd[1] = usb_rxd_break_rst | tty_rxd_break_rst |			     vjtag_reset_cmd;   //   // Hard system reset: FPGA not reloaded, PLLs reset, all hw units reset   //   assign cpu_reset_cmd[2] = cpu_reset_io_cmd[2];   assign aux_reset_cmd[2] = 1'b0;   //   // FPGA reload reset (not implemented yet)   //   assign cpu_reset_cmd[3] = cpu_reset_io_cmd[3];   assign aux_reset_cmd[3] = 1'b0;   // LED indication from the CPU   reg [2:0]   led_q;   always @(negedge rst_n or posedge sys_clk)     if (~rst_n)       led_q <= 3'b000;     else       if ( sysreg[2] & cpu_mem_wstrb[0] )	 led_q <= cpu_mem_wdata[2:0];   assign led = led_q;   assign sysreg_rdata[2] = { 29'b0, led_q };   // Random number generator   wire        rtc_clk_s;   rng #(.nclocks(2), .width(32)) rng     (      .rst_n     ( rst_n ),      .sys_clk   ( sys_clk ),      .read_stb  ( iodev_valid_random ),      .latch_stb ( sys_clk_stb[16] ),      .ready     ( iodev_irq_random ),      .q         ( iodev_rdata_random ),      .clocks    ( { rtc_clk_s, abc_clk_s } ),      .rngio     ( rngio )      );   //   // Serial ROM (also configuration ROM.) Fast hardwired data download   // unit to SDRAM.   //   wire        rom_done;   reg	       rom_done_q;   spirom ddu (	       .rst_n     ( rst_n ),	       .rom_clk   ( flash_clk ),	       .ram_clk   ( sdram_clk ),	       .sys_clk   ( sys_clk ),	       .spi_sck   ( flash_sck ),	       .spi_io    ( flash_io ),	       .spi_cs_n  ( flash_cs_n ),	       .wd        ( sdram_rom_wd ),	       .waddr     ( sdram_rom_waddr ),	       .wrq       ( sdram_rom_wrq ),	       .wacc      ( sdram_rom_wacc ),	       .cpu_rdata ( iodev_rdata_romcopy ),	       .cpu_wdata ( cpu_mem_wdata ),	       .cpu_valid ( iodev_valid_romcopy ),	       .cpu_wstrb ( cpu_mem_wstrb ),	       .cpu_addr  ( cpu_mem_addr[4:2] ),	       .irq       ( iodev_irq_romcopy )	       );   //   // Serial port. Direct to the CP2102N for v1 boards   // boards or to GPIO for v2 boards.   //   wire        tty_data_out;	// Output data   wire        tty_data_in;	// Input data   wire        tty_cts_out;	// Assert CTS# externally   wire        tty_rts_in;	// RTS# received from outside   wire        tty_dtr_in;	// DTR# received from outside   assign tty_data_in      = tty_txd;   assign tty_rxd          = tty_data_out;   assign tty_rts_in       = ~tty_rts;   assign tty_dtr_in       = ~tty_dtr;   assign tty_cts          = ~tty_cts_out;   assign tty_cts_out = 1'b1;	// Always assert CTS# for now   // The physical tty now just snoops USB ACM channel 0; as such it does   // not respond to any write requests nor issue any irqs   wire        serial_tx_full;   wire        serial_rx_break;   serial #(.ENABLE_RX_DATA    (1'b0),	    .ENABLE_RX_BREAK   (1'b1),	    .ENABLE_TX_DATA    (1'b1),	    .ENABLE_TX_BREAK   (1'b0),	    .BAUDRATE_SETTABLE (1'b0),	    .BAUDRATE          (921600),	    .TTY_CLK           (84000000))   (    .rst_n    ( hard_rst_n ),    .clk      ( sys_clk ),    // Snoops USB TTY channel 0    .tx_wstrb ( iodev_valid_tty &		cpu_mem_addr[6:2] == 5'b00000 &		cpu_mem_wstrb[0] ),    .tx_data  ( cpu_mem_wdata[7:0] ),    .tx_flush ( 1'b0 ),    .rx_flush ( 1'b0 ),    .tty_rx   ( tty_data_in ),    .tty_tx   ( tty_data_out ),    .tx_full  ( serial_tx_full ),    .rx_break ( tty_rxd_break_rst )    );   // If DTR# is asserted, block on full serial Tx FIFO; this allows   // us to not lose debugging messages.   assign iodev_wait_n_tty = ~(serial_tx_full & tty_dtr_in);   max80_usb #( .channels( TTY_CHANNELS ) ) usb (		  .hard_rst_n         ( hard_rst_n ),		  .clock48            ( usb_clk ),		  .rst_n              ( rst_n ),		  .sys_clk            ( sys_clk ),		  .cpu_valid_usbdesc  ( iodev_valid_usbdesc ),		  .cpu_valid_cdc      ( iodev_valid_tty ),		  .cpu_addr           ( cpu_mem_addr ),		  .cpu_rdata_usbdesc  ( iodev_rdata_usbdesc ),		  .cpu_rdata_cdc      ( iodev_rdata_tty ),		  .cpu_wdata          ( cpu_mem_wdata ),		  .cpu_wstrb          ( cpu_mem_wstrb ),		  .irq                ( iodev_irq_tty ),		  .tty_rxd_break ( usb_rxd_break_rst ),		  .usb_dp        ( usb_dp ),		  .usb_dn        ( usb_dn ),		  .usb_pu        ( usb_pu ),		  .usb_rx        ( usb_rx ),		  .usb_rx_ok     ( usb_rx_ok )		  );   // SD card   sdcard #(	    .with_irq_mask ( 8'b0000_0001 )	    )   sdcard (	   .rst_n    ( rst_n ),	   .clk      ( sys_clk ),	   .sd_cs_n  ( sd_cs_n ),	   .sd_di    ( sd_di ),	   .sd_sclk  ( sd_clk ),	   .sd_do    ( sd_do ),	   .sd_cd_n  ( sd_cd_n ),	   .sd_irq_n ( 1'b1 ),	   .wdata    ( cpu_mem_wdata ),	   .rdata    ( iodev_rdata_sdcard ),	   .valid    ( iodev_valid_sdcard ),	   .wstrb    ( cpu_mem_wstrb ),	   .addr     ( cpu_mem_addr[6:2] ),	   .wait_n   ( iodev_wait_n_sdcard ),	   .irq      ( iodev_irq_sdcard )	   );   //   // System local clock (not an RTC per se, but settable from one);   // also provides a periodic interrupt, currently set to 32 Hz.   //   // The RTC 32.768 kHz output is open drain, so use the negative   // edge for clocking.   //   wire clk_32kHz = ~rtc_32khz;	// Inverted   wire [15:0] rtc_ctr;   sysclock #(.PERIODIC_HZ_LG2 ( TIMER_SHIFT ))   sysclock (	     .rst_n     ( rst_n ),	     .sys_clk   ( sys_clk ),	     .rtc_clk   ( clk_32kHz ),	     .rtc_clk_s ( rtc_clk_s ),	     .wdata   ( cpu_mem_wdata ),	     .rdata   ( iodev_rdata_sysclock ),	     .valid   ( iodev_valid_sysclock ),	     .wstrb   ( cpu_mem_wstrb ),	     .addr    ( cpu_mem_addr[2] ),	     .periodic ( iodev_irq_sysclock ),	     .rtc_ctr  ( rtc_ctr )	     );   // ESP32   assign spi_cs_flash_n = 1'bz;   esp esp (	    .rst_n      ( rst_n ),	    .sys_clk    ( sys_clk ),	    .sdram_clk  ( sdram_clk ),	    .cpu_valid  ( iodev_valid_esp ),	    .cpu_addr   ( cpu_mem_addr[6:2] ),	    .cpu_wstrb  ( cpu_mem_wstrb ),	    .cpu_wdata  ( cpu_mem_wdata ),	    .cpu_rdata  ( iodev_rdata_esp ),	    .irq        ( iodev_irq_esp ),	    .esp_int    ( esp_int ),	    .spi_clk    ( spi_clk ),	    .spi_io     ( spi_io ),	    .spi_cs_n   ( spi_cs_esp_n ),	    .dram       ( sr_bus[2].dstr ),	    .rtc_ctr    ( rtc_ctr )	    );   //   // I2C bus (RTC and to connector)   //   i2c i2c (	    .rst_n ( rst_n ),	    .clk ( sys_clk ),	    .valid ( iodev_valid_i2c ),	    .addr  ( cpu_mem_addr[3:2] ),	    .wdata ( cpu_mem_wdata ),	    .wstrb ( cpu_mem_wstrb ),	    .rdata ( iodev_rdata_i2c ),	    .irq ( iodev_irq_i2c ),	    .i2c_scl ( i2c_scl ),	    .i2c_sda ( i2c_sda )	    );   // Virtual JTAG interface   wire        vjtag_cpu_halt;   vjtag_max80 #(.sdram_base_addr(SDRAM_ADDR),		 .sdram_bits(SDRAM_BITS),		 .sram_bits(SRAM_BITS))   vjtag (	  .rst_n	( rst_n ),	  .sys_clk      ( sys_clk ),	  .reset_cmd    ( vjtag_reset_cmd ),	  .sdram	( sr_bus[3].dstr ),	  .cpu_valid    ( iodev_valid_vjtag ),	  .cpu_addr     ( cpu_mem_addr[6:2] ),	  .cpu_wdata    ( cpu_mem_wdata ),	  .cpu_wstrb    ( cpu_mem_wstrb ),	  .cpu_rdata    ( iodev_rdata_vjtag ),	  .cpu_irq      ( iodev_irq_vjtag ),	  .cpu_halt     ( vjtag_cpu_halt ),	  .sram_addr    ( vjtag_sram_addr ),	  .sram_rdata   ( vjtag_sram_rdata ),	  .sram_wdata   ( vjtag_sram_wdata ),	  .sram_read    ( vjtag_sram_read ),	  .sram_write   ( vjtag_sram_write )	  );   assign cpu_halt = vjtag_cpu_halt;   //   // Registering of I/O data and handling of iodev_mem_ready   //   always @(posedge sys_clk)     iodev_rdata_q <= iodev_rdata;   always @(negedge rst_n or posedge sys_clk)     if (~rst_n)       iodev_mem_ready <= 1'b0;     else       iodev_mem_ready <= iodev_wait_n & cpu_mem_valid;endmodule
 |