| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801 | //// Top level module for the FPGA on the MAX80 board by// Per Mårtensson and H. Peter Anvin//// This is for MAX80 as slave on the ABC-bus.//// Sharing JTAG pins (via JTAGEN)`undef SHARED_JTAGmodule max80 (	      // Clock oscillator	      input	    clock_48, // 48 MHz	      // ABC-bus	      input	    abc_clk, // ABC-bus 3 MHz clock	      input [15:0]  abc_a, // ABC address bus	      inout [7:0]   abc_d, // ABC data bus	      output	    abc_d_oe, // Data bus output enable	      input	    abc_rst_n, // ABC bus reset strobe	      input	    abc_cs_n, // ABC card select strobe	      input [4:0]   abc_out_n, // OUT, C1-C4 strobe	      input [1:0]   abc_inp_n, // INP, STATUS strobe	      input	    abc_xmemfl_n, // Memory read strobe	      input	    abc_xmemw800_n, // Memory write strobe (ABC800)	      input	    abc_xmemw80_n, // Memory write strobe (ABC80)	      input	    abc_xinpstb_n, // I/O read strobe (ABC800)	      input	    abc_xoutpstb_n, // I/O write strobe (ABC80)	      // The following are inverted versus the bus IF	      // the corresponding MOSFETs are installed	      output	    abc_rdy_x, // RDY = WAIT#	      output	    abc_resin_x, // System reset request	      output	    abc_int80_x, // System INT request (ABC80)	      output	    abc_int800_x, // System INT request (ABC800)	      output	    abc_nmi_x, // System NMI request (ABC800)	      output	    abc_xm_x, // System memory override (ABC800)	      // Host/device control	      output	    abc_master, // 1 = host, 0 = device	      output	    abc_a_oe,	      // Bus isolation	      output	    abc_d_ce_n,	      // ABC-bus extension header	      // (Note: cannot use an array here because HC and HH are	      // input only.)	      inout	    exth_ha,	      inout	    exth_hb,	      input	    exth_hc,	      inout	    exth_hd,	      inout	    exth_he,	      inout	    exth_hf,	      inout	    exth_hg,	      input	    exth_hh,	      // SDRAM bus	      output	    sr_clk,	      output	    sr_cke,	      output [1:0]  sr_ba, // Bank address	      output [12:0] sr_a, // Address within bank	      inout [15:0]  sr_dq, // Also known as D or IO	      output [1:0]  sr_dqm, // DQML and DQMH	      output	    sr_cs_n,	      output	    sr_we_n,	      output	    sr_cas_n,	      output	    sr_ras_n,	      // SD card	      output	    sd_clk,	      output	    sd_cmd,	      inout [3:0]   sd_dat,	      // USB serial (naming is FPGA as DCE)	      input	    tty_txd,	      output	    tty_rxd,	      input	    tty_rts,	      output	    tty_cts,	      input	    tty_dtr,	      // SPI flash memory (also configuration)	      output	    flash_cs_n,	      output	    flash_sck,	      inout [1:0]   flash_io,	      // SPI bus (connected to ESP32 so can be bidirectional)	      inout	    spi_clk,	      inout	    spi_miso,	      inout	    spi_mosi,	      inout	    spi_cs_esp_n, // ESP32 IO10	      inout	    spi_cs_flash_n, // ESP32 IO01	      // Other ESP32 connections	      inout	    esp_io0, // ESP32 IO00	      inout	    esp_int, // ESP32 IO09	      // I2C bus (RTC and external)	      inout	    i2c_scl,	      inout	    i2c_sda,	      input	    rtc_32khz,	      input	    rtc_int_n,	      // LED (2 = D23/G, 1 = D22/R, 0 = D17/B)	      output [2:0]  led,	      // GPIO pins	      inout [5:0]   gpio,	      // HDMI	      output [2:0]  hdmi_d,	      output	    hdmi_clk,	      inout	    hdmi_scl,	      inout	    hdmi_sda,	      inout	    hdmi_hpd	      );   // PLL and reset   parameter reset_pow2 = 12; // Assert internal reset for 4096 cycles after PLL lock   reg			    rst_n   = 1'b0;	// Internal reset   wire [1:0]		    pll_locked;   // Clocks   wire	    sdram_clk;		// SDRAM clock   wire	    sdram_out_clk;	// SDRAM clock, phase shifted   wire	    sys_clk;		// System clock   wire	    vid_clk;		// Video pixel clock   wire	    vid_hdmiclk;	// D:o in the HDMI clock domain   wire     flash_clk;		// Serial flash ROM clock   reg	    reset_cmd_q = 1'b0;   wire     reset_cmd;   pll pll (	    .areset ( reset_cmd_q ),	    .inclk0 ( clock_48 ),	    .c0 ( sdram_out_clk ),	// SDRAM external clock (168 MHz)	    .c1 ( sys_clk ),		// System clock (84 MHz)	    .c2 ( vid_clk ),		// Video pixel clock (48 MHz)	    .c3 ( flash_clk ),		// Serial flash ROM clock (134 MHz)	    .c4 ( sdram_clk ),		// SDRAM internal clock (168 MHz)	    .locked ( pll_locked[0] ),	    .phasestep ( 1'b0 ),	    .phasecounterselect ( 3'b0 ),	    .phaseupdown ( 1'b1 ),	    .scanclk ( 1'b0 ),	    .phasedone ( )	    );   wire all_plls_locked = &pll_locked;   // sys_clk pulse generation of various powers of two   // Also used to generate rst_n   reg [23:1] sys_clk_ctr;   reg [23:1] sys_clk_ctr_q;   reg [23:1] sys_clk_stb;   always @(negedge all_plls_locked or posedge sys_clk)     if (~&all_plls_locked)       begin	  rst_n         <= 1'b0;	  reset_cmd_q   <= 1'b0;	  sys_clk_ctr   <= 1'b0;	  sys_clk_ctr_q <= 1'b0;	  sys_clk_stb   <= 1'b0;       end     else       begin	  sys_clk_ctr   <= sys_clk_ctr + 1'b1;	  sys_clk_ctr_q <= sys_clk_ctr;	  sys_clk_stb   <= ~sys_clk_ctr & sys_clk_ctr_q;	  reset_cmd_q   <= rst_n & (reset_cmd_q | reset_cmd);	  rst_n         <= rst_n | sys_clk_stb[reset_pow2];       end   // Unused device stubs - remove when used   // Reset in the video clock domain   reg vid_rst_n;   always @(negedge all_plls_locked or posedge vid_clk)     if (~all_plls_locked)       vid_rst_n <= 1'b0;     else       vid_rst_n <= rst_n;   // HDMI - generate random data to give Quartus something to do   reg [23:0] dummydata = 30'hc8_fb87;   always @(posedge vid_clk)     dummydata <= { dummydata[22:0], dummydata[23] };   wire [7:0] hdmi_data[3];   wire [9:0] hdmi_tmds[3];   wire [29:0] hdmi_to_tx;   assign hdmi_data[0] = dummydata[7:0];   assign hdmi_data[1] = dummydata[15:8];   assign hdmi_data[2] = dummydata[23:16];   generate      genvar   i;      for (i = 0; i < 3; i = i + 1)	begin : hdmitmds	   tmdsenc enc (		    .rst_n ( vid_rst_n ),		    .clk ( vid_clk ),		    .den ( 1'b1 ),		    .d ( hdmi_data[i] ),		    .c ( 2'b00 ),		    .q ( hdmi_tmds[i] )		    );	end   endgenerate   assign hdmi_scl = 1'bz;   assign hdmi_sda = 1'bz;   assign hdmi_hpd = 1'bz;   //   // The ALTLVDS_TX megafunctions is MSB-first and in time-major order.   // However, TMDS is LSB-first, and we have three TMDS words that   // concatenate in word(channel)-major order.   //   transpose #(.words(3), .bits(10), .reverse_b(1),	       .reg_d(0), .reg_q(0)) hdmitranspose     (      .clk ( vid_clk ),      .d ( { hdmi_tmds[2], hdmi_tmds[1], hdmi_tmds[0] } ),      .q ( hdmi_to_tx )      );   hdmitx hdmitx (		  .pll_areset ( ~pll_locked[0] ),		  .tx_in ( hdmi_to_tx ),		  .tx_inclock ( vid_clk ),		  .tx_coreclock ( vid_hdmiclk ), // Pixel clock in HDMI domain		  .tx_locked ( pll_locked[1] ),		  .tx_out ( hdmi_d ),		  .tx_outclock ( hdmi_clk )		  );   //   // Internal CPU bus   //   wire			      cpu_mem_valid;   wire			      cpu_mem_instr;   wire [ 3:0]		      cpu_mem_wstrb;   wire [31:0]                cpu_mem_addr;   wire [31:0]                cpu_mem_wdata;   reg  [31:0]		      cpu_mem_rdata;   wire			      cpu_mem_ready;   wire                       cpu_la_read;   wire                       cpu_la_write;   wire [31:0]                cpu_la_addr;   wire [31:0]		      cpu_la_wdata;   wire [ 3:0]		      cpu_la_wstrb;   // cpu_mem_valid by address quadrant   wire [ 3:0] cpu_mem_quad = cpu_mem_valid << cpu_mem_addr[31:30];   // I/O device map from iodevs.conf   wire        iodev_mem_valid = cpu_mem_quad[3];`include "iodevs.vh"   //   // SDRAM   //   // ABC interface   wire [24:0] abc_sr_addr;   wire [ 7:0] abc_sr_rd;   wire        abc_sr_rrq;   wire        abc_sr_rack;   wire        abc_sr_ready;   wire        abc_sr_wd;   wire        abc_sr_wrq;   wire        abc_sr_wack;   // CPU interface   wire [31:0] sdram_rd;   wire        sdram_rack;   wire        sdram_rready;   wire        sdram_wack;   reg	       sdram_acked;   wire        sdram_valid = cpu_mem_quad[1];   wire        sdram_req = sdram_valid & ~sdram_acked;   always @(posedge sdram_clk)     sdram_acked <= sdram_valid & (sdram_acked | sdram_rack | sdram_wack);   // Romcopy interface   wire [15:0] sdram_rom_wd;   wire [24:1] sdram_rom_waddr;   wire [ 1:0] sdram_rom_wrq;   wire        sdram_rom_wacc;   sdram sdram (		.rst_n    ( rst_n ),		.clk      ( sdram_clk ), // Internal clock		.out_clk  ( sdram_out_clk ), // External clock (phase shifted)		.sr_clk   ( sr_clk ),    // Output clock buffer		.sr_cke   ( sr_cke ),		.sr_cs_n  ( sr_cs_n ),		.sr_ras_n ( sr_ras_n ),		.sr_cas_n ( sr_cas_n ),		.sr_we_n  ( sr_we_n ),		.sr_dqm   ( sr_dqm ),		.sr_ba    ( sr_ba ),		.sr_a     ( sr_a ),		.sr_dq    ( sr_dq ),		.a0       ( abc_sr_addr ),		.rd0      ( abc_sr_rd ),		.rrq0     ( abc_sr_rrq ),		.rack0    ( abc_sr_rack ),		.rready0  ( abc_sr_rready ),		.wd0      ( abc_sr_wd ),		.wrq0     ( abc_sr_wrq ),		.wack0    ( abc_sr_wack ),		.a1       ( cpu_mem_addr[24:2] ),		.rd1      ( sdram_rd ),		.rrq1     ( sdram_req & ~|cpu_mem_wstrb ),		.rack1    ( sdram_rack ),		.rready1  ( sdram_rready ),		.wd1      ( cpu_mem_wdata ),		.wstrb1   ( {4{sdram_req}} & cpu_mem_wstrb ),		.wack1    ( sdram_wack ),		.a2       ( sdram_rom_waddr ),		.wd2      ( sdram_rom_wd ),		.wrq2     ( sdram_rom_wrq ),		.wacc2    ( sdram_rom_wacc )		);   //   // ABC-bus interface   //   abcbus abcbus (		  .rst_n ( rst_n ),		  .sys_clk ( sys_clk ),		  .sdram_clk ( sdram_clk ),		  .stb_1mhz ( sys_clk_stb[6] ),		  .abc_valid ( iodev_valid_abc ),		  .map_valid ( iodev_valid_abcmemmap ),		  .cpu_addr  ( cpu_mem_addr ),		  .cpu_wdata ( cpu_mem_wdata ),		  .cpu_wstrb ( cpu_mem_wstrb ),		  .cpu_rdata ( iodev_rdata_abc ),		  .cpu_rdata_map ( iodev_rdata_abcmemmap ),		  .irq       ( iodev_irq_abc ),		  .abc_clk   ( abc_clk ),		  .abc_a     ( abc_a ),		  .abc_d     ( abc_d ),		  .abc_d_oe  ( abc_d_oe ),		  .abc_rst_n ( abc_rst_n ),		  .abc_cs_n  ( abc_cs_n ),		  .abc_out_n ( abc_out_n ),		  .abc_inp_n ( abc_inp_n ),		  .abc_xmemfl_n ( abc_xmemfl_n ),		  .abc_xmemw800_n ( abc_xmemw800_n ),		  .abc_xmemw80_n ( abc_xmemw80_n ),		  .abc_xinpstb_n ( abc_xinpstb_n ),		  .abc_xoutpstb_n ( abc_xoutpstb_n ),		  .abc_rdy_x ( abc_rdy_x ),		  .abc_resin_x ( abc_resin_x ),		  .abc_int80_x ( abc_int80_x ),		  .abc_int800_x ( abc_int800_x ),		  .abc_nmi_x ( abc_nmi_x ),		  .abc_xm_x ( abc_xm_x ),		  .abc_master ( abc_master ),		  .abc_a_oe ( abc_a_oe ),		  .abc_d_ce_n ( abc_d_ce_n ),		  .exth_ha ( exth_ha ),		  .exth_hb ( exth_hb ),		  .exth_hc ( exth_hc ),		  .exth_hd ( exth_hd ),		  .exth_he ( exth_he ),		  .exth_hf ( exth_hf ),		  .exth_hg ( exth_hg ),		  .exth_hh ( exth_hh ),		  .sdram_addr ( abc_sr_addr ),		  .sdram_rd ( abc_sr_rd ),		  .sdram_rrq ( abc_sr_rrq ),		  .sdram_rack ( abc_sr_rack ),		  .sdram_rready ( abc_sr_rready ),		  .sdram_wd ( abc_sr_wd ),		  .sdram_wrq ( abc_sr_wrq ),		  .sdram_wack ( abc_sr_wack )		  );   // GPIO   assign gpio    = 6'bzzzzzz;   // Embedded RISC-V CPU   parameter cpu_fast_mem_bits = SRAM_BITS-2; /* 2^[this] * 4 bytes */   // Edge-triggered IRQs. picorv32 latches interrupts   // but doesn't edge detect for a slow signal, so do it   // here instead and use level triggered signalling to the   // CPU.   wire [31:0] cpu_eoi;   reg  [31:0] cpu_eoi_q;   // sys_irq defined in iodevs.vh   reg  [31:0] sys_irq_q;   reg  [31:0] cpu_irq;   // CPU permanently hung?   wire	       cpu_trap;   always @(negedge rst_n or posedge sys_clk)     if (~rst_n)       begin	  sys_irq_q <= 32'b0;	  cpu_eoi_q <= 32'b0;	  cpu_irq   <= 32'b0;       end     else       begin	  sys_irq_q <= sys_irq & irq_edge_mask;	  cpu_eoi_q <= cpu_eoi & irq_edge_mask;	  cpu_irq <= (sys_irq & ~sys_irq_q)	    | (cpu_irq & irq_edge_mask & ~(cpu_eoi & ~cpu_eoi_q));       end   picorv32 #(	      .ENABLE_COUNTERS ( 1 ),	      .ENABLE_COUNTERS64 ( 1 ),	      .ENABLE_REGS_16_31 ( 1 ),	      .ENABLE_REGS_DUALPORT ( 1 ),	      .LATCHED_MEM_RDATA ( 1 ),	      .BARREL_SHIFTER ( 1 ),	      .TWO_CYCLE_COMPARE ( 0 ),	      .TWO_CYCLE_ALU ( 0 ),	      .COMPRESSED_ISA ( 1 ),	      .CATCH_MISALIGN ( 1 ),	      .CATCH_ILLINSN ( 1 ),	      .ENABLE_FAST_MUL ( 1 ),	      .ENABLE_DIV ( 1 ),	      .ENABLE_IRQ ( 1 ),	      .ENABLE_IRQ_QREGS ( 1 ),	      .ENABLE_IRQ_TIMER ( 1 ),	      .MASKED_IRQ ( irq_masked ),	      .LATCHED_IRQ ( 32'h0000_0007 ),	      .REGS_INIT_ZERO ( 1 ),	      .STACKADDR ( 32'h4 << cpu_fast_mem_bits )	      )   cpu (	.clk ( sys_clk ),	.resetn ( rst_n ),	.trap ( cpu_trap ),	.progaddr_reset ( _PC_RESET ),	.progaddr_irq   ( _PC_IRQ ),	.mem_instr ( cpu_mem_instr ),	.mem_ready ( cpu_mem_ready ),	.mem_valid ( cpu_mem_valid ),	.mem_wstrb ( cpu_mem_wstrb ),	.mem_addr  ( cpu_mem_addr ),	.mem_wdata ( cpu_mem_wdata ),	.mem_rdata ( cpu_mem_rdata ),	.mem_la_read  ( cpu_la_read ),	.mem_la_write ( cpu_la_write ),	.mem_la_wdata ( cpu_la_wdata ),	.mem_la_addr  ( cpu_la_addr ),	.mem_la_wstrb ( cpu_la_wstrb ),	.irq ( cpu_irq ),	.eoi ( cpu_eoi )	);   // cpu_mem_ready is always true for fast memory; for SDRAM we have to   // wait either for a write ack or a low-high transition on the   // read ready signal.   reg sdram_rready_q;   reg sdram_mem_ready;   reg [31:0] sdram_rdata;   always @(posedge sys_clk)     begin	sdram_rready_q <= sdram_rready;	if (cpu_mem_quad[1])	  sdram_mem_ready <= sdram_mem_ready | sdram_wack |			     (sdram_rready & ~sdram_rready_q);	else	  sdram_mem_ready <= 1'b0;	sdram_rdata <= sdram_rd;     end   // Add a mandatory wait state to iodevs to reduce the size   // of the CPU memory input MUX (it hurts timing on memory   // accesses...)   reg	       iodev_mem_ready;   always @(*)     case ( cpu_mem_quad )       4'b0000: cpu_mem_ready = 1'b0;       4'b0001: cpu_mem_ready = 1'b1;       4'b0010: cpu_mem_ready = sdram_mem_ready;       4'b0100: cpu_mem_ready = 1'b1;       4'b1000: cpu_mem_ready = iodev_mem_ready;       default: cpu_mem_ready = 1'bx;     endcase // case ( mem_quad )   //   // Fast memory. This runs on the SDRAM clock, i.e. 2x the speed   // of the CPU. The .bits parameter gives the number of dwords   // as a power of 2, i.e. 11 = 2^11 * 4 = 8K.   //   wire [31:0] fast_mem_rdata;   fast_mem // #(.bits(cpu_fast_mem_bits), .mif("../fw/boot"))   fast_mem(	    .rst_n ( rst_n ),	    .clk   ( sys_clk ),	    .read  ( cpu_la_read  & cpu_la_addr[31:30] == 2'b00 ),	    .write ( cpu_la_write & cpu_la_addr[31:30] == 2'b00 ),	    .wstrb ( cpu_la_wstrb ),	    .addr  ( cpu_la_addr[14:2] ),	    .wdata ( cpu_la_wdata ),	    .rdata ( fast_mem_rdata )	    );   // Register I/O data to reduce the size of the read data MUX   reg [31:0]  iodev_rdata_q;   // Read data MUX   always @(*)     case ( cpu_mem_quad )       4'b0001: cpu_mem_rdata = fast_mem_rdata;       4'b0010: cpu_mem_rdata = sdram_rdata;       4'b1000: cpu_mem_rdata = iodev_rdata_q;       default: cpu_mem_rdata = 32'hxxxx_xxxx;     endcase   // Miscellaneous system control/status registers   wire [ 4:0] sysreg_subreg = cpu_mem_addr[6:2];   wire [31:0] sysreg = iodev_valid_sys << sysreg_subreg;   tri1 [31:0] sysreg_rdata[0:31];   assign iodev_rdata_sys = sysreg_rdata[sysreg_subreg];   assign sysreg_rdata[0] = 32'h5058414d;   assign sysreg_rdata[1] = { 31'b0, rtc_32khz_rework };   // Hard system reset under program control   assign reset_cmd =		     (sysreg[3] & cpu_mem_wstrb[0] & cpu_mem_wdata[0])		     | cpu_trap; // CPU hung  // LED indication from the CPU   reg [2:0]   led_q;   always @(negedge rst_n or posedge sys_clk)     if (~rst_n)       led_q <= 3'b000;     else       if ( sysreg[2] & cpu_mem_wstrb[0] )	 led_q <= cpu_mem_wdata[2:0];   assign led = led_q;   assign sysreg_rdata[2] = { 29'b0, led_q };   //   // Serial ROM (also configuration ROM.) Fast hardwired data download   // unit to SDRAM.   //   wire        rom_done;   reg	       rom_done_q;   spirom ddu (	       .rst_n    ( rst_n ),	       .rom_clk  ( flash_clk ),	       .ram_clk  ( sdram_clk ),	       .sys_clk  ( sys_clk ),	       .spi_sck  ( flash_sck ),	       .spi_io   ( flash_io ),	       .spi_cs_n ( flash_cs_n ),	       .wd       ( sdram_rom_wd ),	       .waddr    ( sdram_rom_waddr ),	       .wrq      ( sdram_rom_wrq ),	       .wacc     ( sdram_rom_wacc ),	       .cpu_rdata ( iodev_rdata_romcopy ),	       .cpu_wdata ( cpu_mem_wdata ),	       .cpu_valid ( iodev_valid_romcopy ),	       .cpu_wstrb ( cpu_mem_wstrb ),	       .cpu_addr  ( cpu_mem_addr[3:2] ),	       .irq       ( iodev_irq_romcopy )	       );   //   // Serial port. Direct to the CP2102N for reworked   // boards or to GPIO for non-reworked boards, depending on   // whether DTR# is asserted on either.   //   // The GPIO numbering matches the order of pins for FT[2]232H.   // gpio[0] - TxD   // gpio[1] - RxD   // gpio[2] - RTS#   // gpio[3] - CTS#   // gpio[4] - DTR#   //   wire        tty_data_out;	// Output data   wire        tty_data_in;	// Input data   wire        tty_cts_out;	// Assert CTS# externally   wire        tty_rts_in;	// RTS# received from outside   assign tty_cts_out  = 1'b0;	// Assert CTS#   tty console (	    .rst_n ( rst_n ),	    .clk   ( sys_clk ),	    .valid ( iodev_valid_console ),	    .wstrb ( cpu_mem_wstrb ),	    .wdata ( cpu_mem_wdata ),	    .rdata ( iodev_rdata_console ),	    .addr  ( cpu_mem_addr[3:2] ),	    .irq   ( iodev_irq_console ),	    .tty_txd ( tty_data_out ) // DTE -> DCE	    );   reg [1:0]   tty_dtr_q;   always @(posedge sys_clk)     begin	tty_dtr_q[0] <= tty_dtr;	tty_dtr_q[1] <= gpio[4];     end   //   // Route data to the two output ports   //   // tty_rxd because pins are DCE named   assign tty_data_in = (tty_txd | tty_dtr_q[0]) &			(gpio[0] | tty_dtr_q[1]);   assign tty_rxd = tty_dtr_q[0] ? 1'bz : tty_data_out;   assign gpio[1] = tty_dtr_q[1] ? 1'bz : tty_data_out;   assign tty_rts_in = (tty_rts | tty_dtr_q[0]) &		       (gpio[2] | tty_dtr_q[1]);   assign tty_cts = tty_dtr_q[0] ? 1'bz : tty_cts_out;   assign gpio[3] = tty_dtr_q[1] ? 1'bz : tty_cts_out;   // DTR on GPIO -> assume RTC 32 kHz output is nonfunctional   wire rtc_32khz_rework = tty_dtr_q[1];   // SD card   sdcard #(	    .with_irq_mask ( 8'b0000_0001 )	    )   sdcard (	   .rst_n   ( rst_n ),	   .clk     ( sys_clk ),	   .sd_cs_n ( sd_dat[3] ),	   .sd_di   ( sd_cmd ),	   .sd_sclk ( sd_clk ),	   .sd_do   ( sd_dat[0] ),	   .sd_cd_n ( 1'b0 ),	   .sd_irq_n ( 1'b1 ),	   .wdata   ( cpu_mem_wdata ),	   .rdata   ( iodev_rdata_sdcard ),	   .valid   ( iodev_valid_sdcard ),	   .wstrb   ( cpu_mem_wstrb ),	   .addr    ( cpu_mem_addr[6:2] ),	   .wait_n  ( iodev_wait_n_sdcard ),	   .irq     ( iodev_irq_sdcard )	   );   assign sd_dat[2:1] = 2'bzz;   // System local clock (not an RTC, but settable from one)   // Also provides a periodic interrupt (set to 32 Hz)   //   // XXX: the RTC 32 kHz signal is missing a pull-up,   // so unless the board has been reworked, use a   // divider down from the 84 MHz system clock. The   // error is about 200 ppm; a proper NCO could do better.   reg		ctr_32khz;   reg [10:0]	ctr_64khz;   always @(posedge sys_clk)     begin	if (~|ctr_64khz)	  begin	     ctr_32khz <= ~ctr_32khz;	     ctr_64khz <= 11'd1280;	  end	else	  ctr_64khz <= ctr_64khz - 1'b1;     end   // 32kHz clock synchronized with sys_clk   wire clk_32kHz = rtc_32khz_rework ? ~rtc_32khz : ctr_32khz;   sysclock #(.PERIODIC_HZ_LG2 ( 5 ))   sysclock (		      .rst_n ( rst_n ),		      .sys_clk ( sys_clk ),		      .rtc_clk ( clk_32kHz ),		      .wdata   ( cpu_mem_wdata ),		      .rdata   ( iodev_rdata_sysclock ),		      .valid   ( iodev_valid_sysclock ),		      .wstrb   ( cpu_mem_wstrb ),		      .addr    ( cpu_mem_addr[2] ),		      .periodic ( iodev_irq_sysclock )		      );   // SPI bus to ESP32; using the sdcard IP as a SPI master for now at   // least...`ifdef REALLY_ESP32   // ESP32   assign spi_cs_flash_n = 1'bz;   assign esp_io0  = 1'b1;	 // If pulled down on reset, ESP32 will enter				 // firmware download mode   sdcard #(	    .with_irq_mask ( 8'b0000_0101 ),	    .with_crc7     ( 1'b0 ),	    .with_crc16    ( 1'b0 )	    )   esp (	.rst_n    ( rst_n ),	.clk      ( sys_clk ),	.sd_cs_n  ( spi_cs_esp_n ),	.sd_di    ( spi_mosi ),	.sd_sclk  ( spi_clk ),	.sd_do    ( spi_miso ),	.sd_cd_n  ( 1'b0 ),	.sd_irq_n ( esp_int ),	.wdata  ( cpu_mem_wdata ),	.rdata  ( iodev_rdata_esp ),	.valid  ( iodev_valid_esp ),	.wstrb  ( cpu_mem_wstrb ),	.addr   ( cpu_mem_addr[6:2] ),	.wait_n ( iodev_wait_n_esp ),	.irq	( iodev_irq_esp )	);`else // !`ifdef REALLY_ESP32   reg [5:-13] esp_ctr;		// 32768 * 2^-13 = 4 Hz   always @(posedge clk_32kHz)     esp_ctr <= esp_ctr + 1'b1;   assign spi_clk        = esp_ctr[0];   assign spi_mosi       = esp_ctr[1];   assign spi_miso       = esp_ctr[2];   assign spi_cs_flash_n = esp_ctr[3]; // IO01   assign spi_cs_esp_n   = esp_ctr[4]; // IO10   assign spi_int        = esp_ctr[5]; // IO09   assign esp_io0        = 1'b1;`endif   //   // I2C bus (RTC and to connector)   //   i2c i2c (	    .rst_n ( rst_n ),	    .clk ( sys_clk ),	    .valid ( iodev_valid_i2c ),	    .addr  ( cpu_mem_addr[3:2] ),	    .wdata ( cpu_mem_wdata ),	    .wstrb ( cpu_mem_wstrb ),	    .rdata ( iodev_rdata_i2c ),	    .irq ( iodev_irq_i2c ),	    .i2c_scl ( i2c_scl ),	    .i2c_sda ( i2c_sda )	    );   //   // Registering of I/O data and handling of iodev_mem_ready   //   always @(posedge sys_clk)     iodev_rdata_q <= iodev_rdata;   always @(negedge rst_n or posedge sys_clk)     if (~rst_n)       iodev_mem_ready <= 1'b0;     else       iodev_mem_ready <= iodev_wait_n & cpu_mem_valid;endmodule
 |