| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596 | # -*- tcl -*-# Clock constraints# Input master clock for all PLLscreate_clock -name "clock_48" -period 20.834ns [get_ports {clock_48}]derive_pll_clocks# Handle both the RTC input clock and the internal workaround# The internal workaround clock should still be treated an asynchronouscreate_clock -name "rtc_32khz" -period 30517.578ns [get_ports {rtc_32khz}]create_clock -name "ctr_32khz" -period 30517.578ns [get_registers {ctr_32khz}]set_clock_groups -asynchronous -group {rtc_32khz}set_clock_groups -asynchronous -group {ctr_32khz}# Automatically calculate clock uncertainty to jitter and other effects.derive_clock_uncertainty# Don't report signaltap clock problems...set_false_path -to [get_registers sld_signaltap:*]# -------- PLL clock mappings --------set sdram_out_clk [get_clocks {pll|*|clk[0]}]set sdram_clk     [get_clocks {pll|*|clk[4]}]set sys_clk       [get_clocks {pll|*|clk[1]}]set vid_clk       [get_clocks {pll|*|clk[2]}]set flash_clk     [get_clocks {pll|*|clk[3]}]set main_clocks   [get_clocks {pll|*}]# Reset isn't actually a clock, but Quartus thinks it iscreate_generated_clock -name rst_n \    -source [get_nets {pll|*|*clk[1]}] \    [get_registers rst_n]# Reset is asynchronous  with everything as far as we are concerned.set_clock_groups -asynchronous \    -group $main_clocks \    -group [get_clocks rst_n]# Anything that feeds into a synchronizer is by definition# asynchronous, but encode it as allowing multicycle of one# clock, to limit the possible skew (but it is of course not possible# to eliminate it...)set synchro_inputs [get_registers *|synchronizer:*|qreg0*] set_multicycle_path -from [all_clocks] -to $synchro_inputs \    -start -setup 2set_multicycle_path -from [all_clocks] -to $synchro_inputs \    -start -hold 1# -------- SDRAM I/O constraints --------set sr_data_out [remove_from_collection [get_ports sr_*] sr_clk]set sr_data_in  [get_ports sr_dq\[*\]]set_max_skew -to $sr_data_out 0.100nsset_input_delay  -clock $sdram_clk 0.500ns  $sr_data_inset_multicycle_path -from $sdram_clk -to $sdram_out_clk \    -start -setup 2set_multicycle_path -from $sdram_clk -to $sdram_out_clk \    -start -hold 0# -------- SPI ROM multicycle paths --------# the load of the spi_data_ctr register happens no less than 2 target# clocks after datalen is loaded by the CPUset_multicycle_path -from [get_registers {spirom:*|datalen[*]}] \    -to [get_registers {spirom:*|spi_data_ctr[*]}] -end -setup 2set_multicycle_path -from [get_registers {spirom:*|datalen[*]}] \    -to [get_registers {spirom:*|spi_data_ctr[*]}] -end -hold 1# A load of romstart does not affect spi_cmd for a minimum of 3 target# clock cycles (in reality much more, since the CPU needs to# write datalen in order to start the transfer)set_multicycle_path -from [get_registers {spirom:*|romstart[*]}] \    -to [get_registers {spirom:*|spi_cmd[*]}] -end -setup 3set_multicycle_path -from [get_registers {spirom:*|romstart[*]}] \    -to [get_registers {spirom:*|spi_cmd[*]}] -end -hold 2# CS# going low to spi_clk_en is a minimum of one clock cycle, which allows# an extra clock cycle before spi_cmd needs to stop resettingset_multicycle_path -from [get_registers {spirom:*|spi_cs_n}] \    -to [get_registers {spirom:*|spi_cmd[*]}] -end -setup 2set_multicycle_path -from [get_registers {spirom:*|spi_cs_n}] \    -to [get_registers {spirom:*|spi_cmd[*]}] -end -hold 1# -------- CPU/fastmem multicycle paths --------# We never read and write in the same clock cycle, thus there is a multicycle# path from the write enable register to anything in the CPU itselfset_multicycle_path -from [get_keepers {fast_mem:fast_mem|*porta_we_reg*}] \    -to [get_keepers {picorv32:cpu|*}] -start -setup 2set_multicycle_path -from [get_keepers {fast_mem:fast_mem|*porta_we_reg*}] \    -to [get_keepers {picorv32:cpu|*}] -start -hold 1
 |