esp.sv 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287
  1. //
  2. // Communication interface with ESP32-S2
  3. //
  4. // This is a DIO (2-bit, including command) SPI slave interface which
  5. // allows direct access to content in SDRAM. Additionally, each
  6. // direction has three interrupt flags (3-1); the FPGA CPU additionally
  7. // has a fourth interrupt condition (0) which indicates DRAM timing
  8. // overrun/underrun.
  9. //
  10. // The SPI command byte is:
  11. // Bit [7:5] - reserved, must be 0
  12. // Bit 4 - read/write#
  13. // Bit [3:2] - clear upstream (FPGA->ESP) interrupt flag if nonzero
  14. // Bit [1:0] - set downstream (ESP->FPGA) interrupt flag if nonzero
  15. //
  16. // CPU downstream interrupts are set after the transaction completes
  17. // (CS# goes high.)
  18. //
  19. // A 32-bit address follows; for a read, the following 16 cycles
  20. // contains dummy/status data:
  21. //
  22. // Bit [31:16] = adjusted memory address
  23. // Bit [15:14] = 2'b10
  24. // Bit [13: 8] = 0 reserved
  25. // Bit [ 7: 5] = upstream interrupt status
  26. // Bit 4 = 0 reserved
  27. // Bit [ 3: 1] = downstream interrupt status
  28. // Bit 0 = underrun error
  29. //
  30. module esp #(
  31. parameter dram_bits = 25,
  32. parameter [31:0] dram_base = 32'h40000000
  33. ) (
  34. input rst_n,
  35. input sys_clk,
  36. input sdram_clk,
  37. input cpu_valid,
  38. input [4:0] cpu_addr,
  39. input [3:0] cpu_wstrb,
  40. input [31:0] cpu_wdata,
  41. output [31:0] cpu_rdata,
  42. output reg irq,
  43. dram_bus.dstr dram,
  44. output reg esp_int,
  45. input spi_clk,
  46. inout [1:0] spi_io,
  47. input spi_cs_n
  48. );
  49. reg [31:0] mem_addr = 'b0;
  50. wire [31:0] mem_addr_mask = (1'b1 << dram_bits) - 3'd4;
  51. wire [31:0] mem_addr_out = (mem_addr & mem_addr_mask)
  52. | dram_base;
  53. reg mem_valid;
  54. reg [31:0] mem_wdata;
  55. wire mem_write;
  56. reg [ 3:0] mem_wstrb;
  57. wire mem_ready;
  58. wire [31:0] mem_rdata;
  59. dram_port #(32) mem
  60. (
  61. .bus ( dram ),
  62. .prio ( 2'd2 ),
  63. .addr ( mem_addr[dram_bits-1:0] ),
  64. .valid ( mem_valid ),
  65. .wd ( mem_wdata ),
  66. .wstrb ( mem_wstrb ),
  67. .ready ( mem_ready ),
  68. .rd ( mem_rdata )
  69. );
  70. reg [1:0] spi_clk_q;
  71. reg spi_cs_n_q;
  72. reg [1:0] spi_io_q;
  73. always @(posedge sdram_clk)
  74. begin
  75. spi_clk_q <= { spi_clk_q[0], spi_clk };
  76. spi_cs_n_q <= spi_cs_n;
  77. spi_io_q <= spi_io;
  78. end
  79. typedef enum logic [1:0] {
  80. st_cmd, // Reading command
  81. st_addr, // Reading address
  82. st_io // I/O (including read dummy bits)
  83. } state_t;
  84. state_t spi_state;
  85. reg [ 4:0] spi_cmd;
  86. reg [31:0] spi_shr;
  87. reg [ 3:0] spi_ctr;
  88. reg [ 3:0] cpu_irq;
  89. reg [ 3:1] spi_irq;
  90. reg [ 3:1] latched_spi_irq;
  91. reg [ 1:0] spi_out;
  92. reg spi_oe;
  93. reg [ 2:0] spi_wbe; // Partial word write byte enables
  94. reg [23:0] spi_wdata; // Partial word write data
  95. assign spi_io = spi_oe ? spi_out : 2'bzz;
  96. assign mem_write = ~spi_cmd[4];
  97. wire [31:0] spi_indata = { spi_shr[29:0], spi_io_q };
  98. reg cpu_valid_q;
  99. always @(negedge rst_n or posedge sdram_clk)
  100. if (~rst_n)
  101. begin
  102. spi_state <= st_cmd;
  103. spi_cmd <= 'b0;
  104. spi_ctr <= 4'd3; // 8 bits needed for this state
  105. cpu_irq <= 'b0;
  106. spi_irq <= 'b0;
  107. spi_oe <= 1'b0;
  108. spi_wbe <= 3'b0;
  109. mem_addr <= 'b0;
  110. mem_wstrb <= 4'b0;
  111. mem_valid <= 1'b0;
  112. end
  113. else
  114. begin
  115. esp_int <= ~|spi_irq;
  116. if (spi_cs_n_q)
  117. begin
  118. spi_state <= st_cmd;
  119. spi_ctr <= 4'd3;
  120. spi_oe <= 1'b0;
  121. if (~mem_valid)
  122. begin
  123. spi_cmd <= 'b0;
  124. for (int i = 1; i < 4; i++)
  125. if (spi_cmd[1:0] == i)
  126. cpu_irq[i] <= 1'b1;
  127. end
  128. end
  129. else if (spi_clk_q == 2'b01)
  130. begin
  131. spi_ctr <= spi_ctr - 1'b1;
  132. spi_shr <= spi_indata;
  133. case (spi_ctr)
  134. 4'b1100:
  135. if (spi_state == st_io && mem_write)
  136. begin
  137. spi_wbe[0] <= 1'b1;
  138. spi_wdata[7:0] <= spi_indata[7:0];
  139. end
  140. 4'b1000:
  141. if (spi_state == st_io && mem_write)
  142. begin
  143. spi_wbe[1] <= 1'b1;
  144. spi_wdata[15:8] <= spi_indata[7:0];
  145. end
  146. 4'b0100:
  147. if (spi_state == st_io && mem_write)
  148. begin
  149. spi_wbe[2] <= 1'b1;
  150. spi_wdata[23:16] <= spi_indata[7:0];
  151. end
  152. 4'b0000: begin
  153. // Transfer data to/from memory controller, but
  154. // we have to shuffle endianness...
  155. if (spi_state == st_io)
  156. begin
  157. // Memory output
  158. spi_shr[31:24] <= mem_rdata[ 7: 0];
  159. spi_shr[23:16] <= mem_rdata[15: 8];
  160. spi_shr[15: 8] <= mem_rdata[23:16];
  161. spi_shr[ 7: 0] <= mem_rdata[31:24];
  162. end
  163. else
  164. begin
  165. // Status output
  166. spi_shr[31:16] <= mem_addr_out[31:16];
  167. spi_shr[15: 8] <= 8'h80;
  168. spi_shr[ 7: 4] <= { latched_spi_irq, 1'b0 };
  169. spi_shr[ 3: 0] <= cpu_irq;
  170. end // else: !if(spi_state == st_io)
  171. if (mem_valid && spi_state != st_cmd)
  172. cpu_irq[0] <= 1'b1; // Overrun/underrun
  173. case (spi_state)
  174. st_cmd: begin
  175. spi_cmd <= spi_indata[5:0];
  176. spi_state <= st_addr;
  177. latched_spi_irq <= spi_irq;
  178. for (int i = 1; i < 4; i++)
  179. if (spi_indata[3:2] == i)
  180. spi_irq[i] <= 1'b0;
  181. end
  182. st_addr: begin
  183. mem_addr <= spi_indata & mem_addr_mask;
  184. spi_state <= st_io;
  185. mem_valid <= ~mem_write;
  186. mem_wstrb <= 4'b0;
  187. spi_wbe <= 3'b000;
  188. // If the first word is partial, skip ahead
  189. if (mem_write)
  190. spi_ctr[3:2] <= ~spi_indata[1:0];
  191. end
  192. st_io: begin
  193. if (mem_write)
  194. begin
  195. mem_wdata[23: 0] <= spi_wdata[23:0];
  196. mem_wdata[31:24] <= spi_indata[7:0];
  197. mem_wstrb <= { 1'b1, spi_wbe };
  198. end
  199. else
  200. begin
  201. mem_wstrb <= 4'b0000;
  202. end // else: !if(mem_write)
  203. mem_valid <= 1'b1;
  204. spi_wbe <= 3'b000;
  205. end
  206. endcase
  207. end // case: 4'b0000
  208. default:
  209. ; // Nothing
  210. endcase // case (spi_ctr)
  211. end // if (spi_clk_q == 2'b01)
  212. else if (spi_clk_q == 2'b10)
  213. begin
  214. spi_out <= spi_shr[31:30];
  215. spi_oe <= (spi_state == st_io) & ~mem_write;
  216. end
  217. if (mem_valid & mem_ready)
  218. begin
  219. mem_addr <= mem_addr + 3'd4;
  220. mem_valid <= 1'b0;
  221. end
  222. if (spi_state != st_io & ~mem_valid & |spi_wbe)
  223. begin
  224. // Complete a partial write terminated by CS#
  225. mem_valid <= 1'b1;
  226. mem_wstrb <= { 1'b0, spi_wbe };
  227. mem_wdata[23:0] <= spi_wdata[23:0];
  228. mem_wdata[31:24] <= 8'hxx;
  229. spi_wbe <= 3'b000;
  230. end
  231. cpu_valid_q <= cpu_valid;
  232. if (cpu_valid & ~cpu_valid_q & cpu_wstrb[0])
  233. case (cpu_addr[1:0])
  234. 2'b00:
  235. cpu_irq <= cpu_wdata[3:0];
  236. 2'b01:
  237. for (int i = 0; i < 4; i++)
  238. if (cpu_wdata[i])
  239. cpu_irq[i] <= 1'b0;
  240. 2'b10:
  241. spi_irq <= cpu_wdata[3:1];
  242. 2'b11:
  243. for (int i = 1; i < 4; i++)
  244. if (cpu_wdata[i])
  245. spi_irq[i] <= 1'b1;
  246. endcase // case (cpu_addr[1:0])
  247. end // else: !if(~rst_n)
  248. always @(posedge sys_clk)
  249. irq <= |cpu_irq;
  250. always @(*)
  251. casez (cpu_addr[1:0])
  252. 2'b0?:
  253. cpu_rdata = { 28'b0, cpu_irq };
  254. 2'b1?:
  255. cpu_rdata = { 28'b0, spi_irq, 1'b0 };
  256. endcase // casez (cpu_addr[1:0])
  257. endmodule // esp