
— 

10-0000011-3 

MONROE OPERATING SYSTEM 

PROGRAMMER'S REFERENCE MANUAL 

September 1981 

MONROE SYSTEMS FOR BUSINESS 

The American Road 

Morris Plains, N.J. 07950 

©Copyright 1981, Litton Business Systems, Inc., All Rights Reserved 

2109-S 



The material contained herein is supplied without 

representation
 or warranty of any kind by Monroe 

Systems For Business. 
Monroe assumes no 

responsibility 
relative for the use of this material 

and shall have 10 liability, 
consequential

 or 

otherwise arising from the use of this material or 

any part thereof. Further, Monroe reserves the 

right to revise this publication and to make changes 

from time to time in the content hereof without 

obligation to notify any person of such revision or 

changes. 

ii 

\



bi ad 

PURPOSE OF THIS DOCUMENT 

This document is a Programmer's Reference Manual. 

It is to be used by experienced programmers a8 a 

reference tool. It is not intended for use as a 

learning aid by non-programmers. 

iii 



RECORD OF CHANGES 

| Description of Changes Pages Affected 

a
o
e
 

a
d
i
c
 

<
<
 

—
_
=
e
O
r
—
_
—
—
 

e
r
 
a
a
a
 

c
a
s
e
 

e
e
 

a
e
 

e
S
 

.
 

e
 

_
_
d
 

(} 
“
 

m
f
 

aed 
co 

co 
« 

~
~
 

A 
Oo 

e 

° 
Z (7) 

Nn 
-
 

bo 
' 

4 
ra] 

o
 

i) 
xo] 
Oo 

iv



Section 

1 

TABLE OF CONTENTS 

PART 1 - OPERATING SYSTEM MANAGEMENT 

Title 

INTRODUCTION 

1.1 Overview 

1.2 Document Contents 

Part 1 ~- Operating System 

Management 

Part 2 - Input/Output Management 

Appendices and Glossary 

1.3 How to Use This Manual 

1.4 Related Manuals 

SYSTEM OVERVIEW 

2.1 Introduction 

2.2 System Function Blocks 

2.3 Monroe Operating System Features 

System Kernel 

Input/Output Operations 

Task Establishment 

File Management 

2.4 System Start Up 

2.5 System Shut Down and Restart 

2.6 System Crashes 

SYSTEM STRUCTURE 

3.1 Introduction 

3.2 System Hierarchy 

3.3 System Levels 

Hardware Drivers, Levels 0-7 

Software Drivers, Level 8 

Queue Handling, Level 9 

Real-Time Service, Level 10 

System Queue-Service, Level 11 

Ready Queue-Service, Level 12 

Tasks, Level 13 

Idle Loop, Stop Mode, Level 15 

3.4 System Interrupts 

2-3 



Section 

TABLE OF CONTENTS (Cont.) 

Title 

3.5 System Status 

3.6 System States 

SYSTEM CONVENTIONS 

4.1 Introduction 

4.2 User Mode-UM 

4.3 System Mode User-SMU 

4.4 System Mode System-SMS 

4.5 Interrupt Mode-IM 

4.6 Further Conventions 

Register Use 

Subroutine Conventions 

SvC Function Conventions 

Interrupt Conventions 

EXECUTIVE DESCRIPTION 

5.1 Introduction 

5.2 Executive Modules 

5-3 System Initialization 

5.4 System Resources 

Shared Resources 

Exclusive Resources 

- 5.5 Resource Type 

Volumes 

Devices 

Tasks 

5.6 Resource Control Block (RCB) 

5.7 SVC Handler 

5.8 SVC Functions 

SVC 8 

Svc 2.1 

Svc 2.10 

SvC 2.11 

5.9 File Manager 

5.10 Resource Control Block Handlers 

vi 

5-7



Beerion 

TABLE OF CONTENTS (Cont. ) 

TASK 

6.1 

6.2 

6.3 

Title 

Connection Handler 

Disconnection Handler 

Termination Handler 

Non-Maskable Interrupt Handler 

Clock Interrupt Handler 

Crash Handler 

Interrupt Handler 

Real Time Handler 

Device Drivers 

Ready Queue Handler 

System Queue Handler 

System Pointer Table 

ESTABLISHMENT 

Introduction 

Preparation 

Status 

* Current. 

6.4 

6.5 

6.6 

6.7 

6.8 

6.9 

Ready 

Waiting 

Paused 

Dormant 

Task Termination Status 

Priority and Scheduling 

Task Priority 

Dispatch Priority 

Task Scheduling 

Strict Priority Scheduling 

Time Slice Scheduling 

Supervisor Calls (SVC's) 

Event Queue 

Task Devices 

SUPERVISOR CALLS 

7-1 

7.2 

Introduction 

SVC Calling Convention 

vii 

Page 
5-7 

5-7 

5-7 

5-8 

5-8 

5-8 

5-8 

5-9 

5-9 

5-10 

5-10 

5-11 



Section 

TABLE OF CONTENTS (Cont.) 

Title 

7.5 

7.6 

Assembly Language SVC Calling 

Convention 

BASIC SVC Calling Convention 

PASCAL SVC Calling Convention 

The Parameter Block 

Function Code Format 

Wait/Proceed, SOF.NW 

Unconditional Proceed, SOF.PRO 

Result Code Format 

SVC Conventions 

SVC 1 INPUT/OUTPUT REQUEST 

8.1 

8.2 

8.3 

Introduction 

Parameter Block 

Parameters 

1) SO.FC, Function Code 

A) Read/Write Operation 

(For SVC 1 type Field = 0.) 

SOF. .Wait, Wait for Completion 

SIF.IASC, Image ASCII 

SIF.FASC, Format ASCII 

SIF.IBIN, Image Binary 

S1F.SPEC, Special 

B) Special Operations 

SOF.TST, Test Request 

SOF.CAN, Cancel Request 

Svc 1 Type 

Wait-Proceed 

Unconditional Proceed 

2) SO.RS, Return Status 

3) S1.LU, Logical Unit 

4) S1.TS, Termination Status 

5) S1.BAD, Buffer Address 

6) S1.BSZ, Buffer Size 

7) S1.BCNT, Byte Count 

8) S1.RND, Random Address 

viii



TABLE OF CONTENTS (Cont.) 

Section Title 

8.4 Access Modes 

1) Physical Access - 

Read/Write 

Data Type 

Access Type 

9 svc 

9.1 

9.2 

9.3 

9.4 

9.5 

Special Operations 

S1F.WRIT, Write 

2) Logical Access 

3) Byte Access 

2 SUBFUNCTIONS 

Introduction 

Parameters 

1) SO.FC, Function Code 

2) SO.RS, Return Status 

3) SO.SNR, Subfunction 

4) $2.PAR, Other Data 

SVC 2.1 Memory Handling 

Parameter Block 

1) SO.FC, Function Code 

2) SO.RS, Return Status 

5) $2.1ADR, Memory Address 

6) $2.ISIZ, Memory Size 

SVC 2.2 Log Message 

Parameter Block 

Parameters 

1) SO.FC, Function Code 

2) SO.RS, Return Status 

3) Reserved 

4) $2.2BAD, Buffer Address 

6) $2.2BSZ, Buffer Size 

SVC 2.3 Pack File Descriptor 

Parameter Block 

Parameters 

1) $SO.FC, Function Code 

ix 



Section 

TABLE OF CONTENTS (Cont.) 

9.6 

9.7 

9.8 

Title 

2) SO.RS, Return Status 

4) $2.3TS, Termination Status 

5) $2.3ADR, String Address 

6) S2.3BUF, Receiving Area 

7) $2.3PNT, Terminating String 

Address 

8) S2.3CNT, String Size 

SVC 2.4 Pack Numeric Data 

Parameter Block 

Parameters 

1) SO.FC, Function Code 

2) SO.RS, Return Status 

3) S2.4SIZE, Size 

5) $2.4ADR, String Address 

6) S2.4RES, Result 

7) S2.4PNT, Updated String 

Address 

SvC 2.5 Unpack Binary Number 

Parameter Block 

Parameters 

1) SO.FC, Function Code 

2) S9.RS, Return Status 

3) $S2.5SIZE, Size 

5) $2.5ADR, Destination Address 

6) S2.5PNT, Updated Destination 

Address 

7) $S2.5VAL, Source 

SVC 2.7 Fetch/Set Date/Time 

Parameter Block 

Parameters 

1) SO.FC, Function Code 

2) SO.RS, Return Status 

5) SO.7BUF, Buffer Address 

9-10 

9-10 

9-11 

9-11 

9-11 

9-11 

9-12 

9-12 

9-12 

9-13 

9-13 

9-14 

9-14 

9-14 

9-14 

9-15 

9-15 

9-15 

9-16 

9-16 

9-17 

9-17 

9-17 

9-17



TABLE OF CONTENTS (Cont.) 

Section Title 

9.9 svC 2.8 Scan Mnemonic Table 

Parameter Block 

9.10 

Parameters 

1) 

2) 

4) 

5) 

6) 

7) 

SO.FC, Function Code 

SO.RS, Return Status 

$2.8INX, Index 

$2.8ADR, String Address 

$2.8LIST, Mnemonic Table 

Address 

$2.8PNT, Updated String 

Address 

Illegal Characters 

SVC 2.12 Open/Close Device 

Parameter Block 

Parameters 

1) 
2) 
5) 
6) 

S$0.FC, Function Code 

SO.RS, Return Status 

S2.12FD, Name Pointer 

$2.12AD, SVC-Handler Address 

S2F.120P, Function Open 

S2F.12AL, Fetch Auto Start Line 

10 SVC 3 TIMER REQUESTS 

10.1 Introduction 

10.2 Parameter Block 

Parameters 

1) 

2) 

3) 

SO.FC, Function Code 

SO.RS, Return Status 

S2.3TIME, Interval 

11 SVC 4 TASK DEVICE 

11.1 Introduction 

11.2 Parameter Block 

11.3 Parameters 

xi 

Page 
9-19 

9-19 

9-19 

9-19 

9-20 

9-20 

9-20 

9-20 

9-20 

9-20 

9-22 

9-22 

9-23 

9-23 

9-23 

9-24 

9-24 

9-24 

9-24 

10-1 

10-1 

10-1 

10-1 

10-1 

10-2 

10-2 

li-l 

11-1 

11-1 

11-2 



Section 

12 

13 

TABLE OF CONTENTS (Cont.) 

Title 

1) 

2) 

3) 

SO.FC, Function Code 

SO.RS, Return Status 

S4.LU, Logical Unit 

SVC 5 LOADER HANDLING 

12.1 Introduction 

12.2 Parameter Block 

12.3 Parameters 

1) 

2) 

5) 

6) 

7) 

8) 

9) 

SO.FC, Function Code 

SO.RS, Return Status 

S5F.TID, Task Identifier 

SSF.LOAD, Load Overlay 

SSF.STRT, Start Overlay 

S5.FD, File Descriptor 

$2.SIZE, Additional Size 

SVC 6 TASK REQUEST 

13.1 Introduction 

13.2 Parameter Block 

13.3 Parameters 

1) 

2) 

3) 

4) 

5) 

6) 

7) 
8) 

9) 

SO.FC, Function Code 

SO.RS, Return Status 

S6.PRIO, Task Priority 

S6.O0PT, Task Options 

S6.TID, Task Identifier 

S6.PAR, Parameter 

S6.ADDRESS 

S6.FD 

S6.SIZE 

13.4 Function Code Description 

2) S6F.LOAD, Function Load Task 

S6F.STRT, Function Start Task 

xii



TABLE OF CONTENTS (Cont.) 

Section Title Page 

A) Absolute Start 13-5 

B) Relative Start 13-5 

C) Register Usage 13-5 

S6F.QTST, Function Test 13-6 

Event Queue 

S6F.QWAL, Function Wait for Event 13-6 

S6F.QTRM, Function Terminate 13-7 

Event 

S6F.QDIS, Function Disable Event 13-7 

Queue 

a S6F.QENI, Function Enable Event 13-7 

Queue 

S6F.SUSP, Function Suspend Self 13-7 

S6F.TST, Function Test Task 13-7 

S6F.CAN, Function Cancel Task 13-8 

S6F.PAUS, Function Pause Event 13-8 

S6F.CONT, Function Continue Event 13-8 

S6F.PRIO, Function Charge Priority 13-8 

S6F.OPT, Function Charge Options 13-9 

S6F.TSKW, Function Wait for Task 13-9 

Termination 

S6F.ADDQ, Function Add Event to 13-9 

Queue 

S6F.TSTW, Function Wait for Task 13-9 

Status Change 

S6F.TYPE, Function Change Task 13-9 

Type 

13.5 Event Queue Handling 13-10 

14 SVC 7 FILE REQUEST 14-1 

14.1 Introduction 14-1 

14.2 Parameter Block 14-1 

14.3 Parameters 14-2 

1) SO.FC, Function Code 14-2 

2) SO.RS, Return Status 14-3 

xiii 



Section 

15 

TABLE 

Title 

3) 

4) 

5) 

6) 

7) 

8) 

OF CONTENTS (Cont.) 

S7.LU, Logical Unit 

S7.MOD, Modifier 

S7.FD, Name Pointer 

S7.CLAS, Class 

S7.RECL, Record Length 

S7.SIZE, Size 

14.4 Function Code Descriptions 

S7F.ALLO, Allocate 

S7F.ASGN, Assign 

S7F.DELC, 

S7F.CLOS, Function Code 

S7F.CHKP, Function Checkpoint 

S7F.RNAM, Function Rename 

S7F.FAT, Function Fetch Attributes 

S7.TAM, Access Mode 

14.5 File formatting 

SVC 8 RESOURCE HANDLING 

15.1 Introduction 

15.2 Parameter Block 

15.3 Parameters 

1) 

2) 

3) 

4) 

5) 

6) 

7) 

8) 

9) 

S8.FC, Function Code 

SO.RS, Return Status 

S8.RNR, Resource Number 

S8.PRIO, Priority of Number 

S8.ID, Name Pointer 

S8.CLAS, Class 

S8.TYPE, Type 

S8.ADR, Entry/RDT 

S8.SIZE, Size 

$8.CS, Channel Select Code 

S8.IL, Interrupt Level . 

xiv 

Function Delete at Close 

Page 
14-3 

14-3 

14-3 

14-5 

14-5 

14-5 

14-5 

14-5 

14-5 

14-6 

14-6 

14-7 

14-7 

14-8 

14-9 

14-10 

15-1 

15-1 

15-1 

15-2 

15-2 

15-2 

15-2 

15-2 

15-3 

15-3 

15-3 

15-4 

15-4 

15-4 

15-4



TABLE OF CONTENTS (Cont.) 

Section Title 

15.4 

15.5 

15.6 

15.7 

15.8 

Resource Descriptor Table (RDT) 

Parameters 

1) RDT.TYPE, Type 

2) RDT.EXT, Extension 

3) RDT.INIT, Initiator/Handler 

Address 

4) RDT.TERM, Terminator Handler 

Address 

Task Descriptor Table (TDT) 

1) TDTI.TYPE, Type 

2) TDI.OPT, Options 

3) TDT.SADR, Standard Start 

Address 

4) TDI.TLIM, Individual Slice 

Limit 

5) TDI.NNOD, Number of Nodes 

6) TDT.NFCB, Number of FCB 

7) TDI.STK, Required Stack Size 

Device Descriptor Table (DDT) 

1) DDT.ATTR, Attributes on the 

Device 

2) DDT.RECL, Record Length on the 

Device 

3) DDT.CODE, Device Code 

4) DDT.TYPE, Device type 

5) DDT.QPAR, Size of SVC-BLK 

Interrupt Descriptor Table (IDT) 

1) IDT.TYPE, Interrupt Type 

2) IDT.CONT, Optional Continuator 

Address 

Channel Descriptor Table (CDT) 

1) CDT.TLIM, Time-out Limit in 

Chosen Interval 

2) CDT.THND, Optional Time-out 

Handler Address 

XV 

Page 
15-4 

15-5 

15=5 

15-5 

15-5 

15-6 

15-6 

15-7 

15-7 

15-7 

15-7 

15-7 

15-8 

15-8 

15-8 

15-8 

15-8 

15-9 

15-9 

15-9 

15-10 

15-10 

15-10 

15-11 

15-11 

15-11 



Section 

16 

17 

18 

19 

TABLE OF CONTENTS (Cont.) 

Title 
15.9 Extended Descriptor Table (EDT) 

1) RDE.NBYT, Number of Bytes 

2) RDE.ADR, Signed Offset — 

3) RDE.DATA, Initialization Data 

PART 11 -— INPUT/OUTPUT MANAGEMENT 

CONSOLE MANAGEMENT 

16.1 Introduction 

16.2 Prompting 

16.3 Control Characters 

16.4 Command Handling 

Unknown Commands 

Error Response 

DEVICE DRIVER DESCRIPTION 

17.1 Introduction 

17.2 Driver Initiator 

17.3 Driver Continuator 

17.4 Driver Time-Out and Cancel 

17.5 Driver Terminator 

INTERRUPT STRUCTURES 

18.1 Stack for System Routines 

18.2 Locating Tasks in Memory 

DATA STRUCTURES 

19.1 Introduction 

19.2 Memory Management 

Physical Memory 

Logical Memory 

Memory Mapping 

19.3 Two Segment Code Files and 

Programs Over 40K 

Memory Partitions 

xvi 

16-1 

16-1 

16-1 

16-1 

16-2 

16-6 

16-6 

17-1 

17-1 

17-1 

17-2 

17-3 

17-4 

18-1 

18-1 

18-4 

19-1 

19-1 

19-1 

19-3 

19-3 

19-5 

19-7 

19-7



Section 

TABLE OF CONTENTS (Cont.) 

Title 

19.4 

19.5 

19.6 

19.7 

19.8 

19.9 

19.10 

19.11 

19.12 

19.13 

19.14 

19.15 

Code File Format 

Checksum Computation 

Special Loader Information 

for Pure Segments 

Memory Allocation Procedure 

Program Transfer Procedure 

System Pointer Table 

Resource Attributes Word 

Resource Mnemonic Table and 

Resource Reference Table 

3) RRI.TYPE, Type 

Buffer Control Node 

Resource Control Block 

5) RCB.TYPE, Type 

6) RCB.STAT, Status 

Device Control Block 

19) DCB.TYPE, Device Type 

20) DCB.STAT, Device Status 

Interrupt Control Block 

4) ICB.TYPE, Type 

5) ICB.STAT, Status 

Channel Control Block 

Task Control Block 

14) TCB.TYPE, Type 

15) TCB.STATUS, Status 

16) TCB.OPTION, Option 

17) TCB.MODE, Mode 

Resource Descriptor Table 

3) ROT.STATUS, Status 

File Control Block 

20) FCB.STATUS, FCB Status 

44) FCB.FLAG, File Flag 

Volume Descriptor Sector 

10) VDS.FLAG, Volume Flag 

11) Volume Flag (High) 

xvil 



Section 

20 

TABLE OF CONTENTS (Cont. ) 

Title 

19.16 Volume Control Block 

FILE 

20.1 

20.2 

20.3 

20) VCB Flags 

STRUCTURES 

Introduction 

Logical Layout of Disk 

Directory Strucutre 

Directory Entry 

Extended File Descriptor 

Subsequent Index Sectors 

8) XFD.FLAG, File Flag 

Isam File Structure 

Key Formats 

1) Binary 

2) ASCII 

3) Integer 

4) Floating Pointer 

5) Double Precision Floating 

Point 

ISAM File Format 

Isam File Header Format 

File Header 

Index Descriptor 

Multi-Task ISAM 

Assembly Language Interface 

to ISAM 

Assign Function 

I/O Functions 

ISAM Read 

ISAM Read Next/Previous/First/ 

Last 

ISAM Write 

ISAM Delete 

ISAM Update 

xviii



Section 

TABLE OF CONTENTS (Cont.) 

Title 

APPENDICES 

SYSTEM MNEMONICS AND ABBREVIATIONS 

ERROR CODES 

Common Errors 

SvC-1 I/O Error Codes 

Svc-2 Subfunction Errors 

SVC-2.1 Memory Handling Errors 

SVC-2.3 Pack File Descriptor Errors 

SvC-2.4 Pack Numeric Data Errors 

SVC-2.7 Fetch/Set Date/Time Errors 

SvC-2.8 Scan Mnemonic Table Errors 

SVC-2.12 Open/Close Device Errors 

SVC-3 Time Errors 

SvC-4 Task Device Errors 

SVC-5 Loader Errors 

SVC-6 Task Errors 

SvC-7 File Errors 

SVC-8 Resource Errors 

SVC FUNCTIONS AND BIT PATTERNS 

SVCl: Memory Handler 

SVC2.1: Input/Output 

SVC2.2: Log Message 

SvC2.3: Pack File Descriptor 

SVC2.4: Pack Numeric Data 

SvC2.5: Unpack Numeric Data 

S§VC2.7: Fetch or Set Date and Time 

S$vC2.8: Scan Mnemonic Table 

SVC2.12: Open/Close Device 

xix 



Section 

TABLE OF CONTENTS (Cont.) 

Title 

SVC3: Timer Coordination 

SVC4: Task Device Handling 

SVC5: Overlay Loader 

SVC6: Task Control 

SVC7: File Handling 

S7.TAM, Access Mode 

SVC8: Resource Handling 

S8.CLAS, Class 

S8.TYPE, Type 

RDT.TYPE, Type 

TDT.TYPE, Task Type 

TDT.OPT, Task Options 

DDT.ATTR, Attributes on the Device 

DDT.TYPE, Device type 

GLOSSARY OF TERMS 

INDEX 

C-10 

C-10 

C-11 

C-11 

C-12



Figure 

19-2 

19-3 

20-1 

20-2 

TABLE 

9-4 

LIST OF ILLUSTRATIONS 

Title 

Monroe Operating Systen, 

System Block Diagram 

Monroe Operating System, 

Functional Block Diagram 

Monroe Operating System, 

Software and Hardward Modules 

Physical Memory 

Task Addressing Space 

Memory Mapping 

(Logical to Physical) 

Logical Disk Layout 

ISAM File Structure 

LIST OF TABLES 

SVC 2.7 Parameter Block Field 

SVC 2.12 Parameter Block Field 

SVC 5 Parameter Block Field 

2-6 

20-2 

20-7 

9-18 

9-24 

12-3 



LIST OF TABLE (Cont.) 

Table Title Page 

13-1 SVC 6 Parameter Block Field 13-11 

14-1 SVC 7 Parameter Block Field 14-11 

19-2 System Pointer Table 19-16 

(Base Address: 3CH to 3DH) 

19-3 Resource Attribute Word 19-20 

19-4 Resource Mnemonic Table 19-21 

19-5 Resource Reference Table 19-21 

19-6 Resource Control Block Table 19-23 

19-7 . Device Control Block Table 19-25 

19~8 ICB Table 19-26 

19-9 Channel Control Block Table 19-27 

19-10 Task Control Block Table 19-28 

19-11 RDT Tania 19-31 

19-12 File Control Block Table 19-32 

19-13 VDS Table 19-35 

19-14 File Control Block Table 19-36 

xxii



SECTION 1 

INTRODUCTION 





SECTION 1 

INTRODUCTION 

1.1 OVERVIEW 

This manual is a description of the Monroe Operating System. It can 

be broken down into two major components: a software component, and a 

hardware component. The software component consists of the various 

Supervisor Calls (SVC's) which are assembly Language Programs that 

perform Operating System Services. The hardware component consists 

of the various operating system devices together with their related 

handlers and device drivers. These two components are then 

integrated through the System Executive into the Monroe Operating 

System Proper. 

1.2 DOCUMENT CONTENTS 

This manual is divided into an Introduction, Part I Operating System 

Management, Part II Input/Output Management, a series of appendices, 

an index, and a glossary. The two part division of the manual 

reflects the separation of the operating system into software and 

hardware modules. 

Part 1 ~- Operating System Management 

Operating System Management is concerned with the Monroe Operating 

System as it pertains to the preparation, management, and execution 

of tasks. The basic function performed by the Monroe Operating 

System Management is to integrate software and hardware modules 

through the System Executive and execute Supervisor Calls which allow 

the user to access the Operating System directly. 

Part 2 - Input/Output Management 

Input/Output Management is concerned with the Monroe Operating System 

as it pertains to the interaction of tasks with the various 

Input/Output devices. At the heart of the Monroe Input/Output 

Management is the console manager. 

Appendices and Glossary 

Abbreviations for the various device tables and control blocks are 

given in Appendix A. Appendix B contains the SVC error codes. 

Appendix C contains a listing of all of the SVC'stogether with 

1-1 Sept. '81 



SECTION 1 - INTRODUCTION 

their functions, subfunctions, the bit patterns for their functions, 

and their use. The glossary is a quick reference for new or unfam- 

unfamiliar concepts. 

1.3 HOW TO USE THIS MANUAL 

The two parts of this manual can be grouped together into self 

contained sections which emphasize different aspects of the Monroe 

Operating System. 

The first four sections (Sections 2 through 6) of Part I give a 

detailed overview of the operating system and is the logical place 

for the systems programmer to start. These sections outline the 

System Structure and Conventions, review the System Executive, 

indicate how Task Files are established, and show how the different 

parts of the operating system are integrated into a single 

functioning unit. 

Sections 7 through 15 describe the various SVC's in numerical order. 

Each SVC is described in terms of its parameter block, parameter 

block functions, and a table which lists each SVC function together 

with all of the required fields necessary to implement that 

particular function. 

Section 16 in Part II describes the Console Manager which allows the 

user to interface with the operating system directly. Since in many 

respects the Console Manager is independent of the Operating System 

Proper this material can be read without first consulting other 

sections in the manual. 

Sections 17 and 18 describe the overall structure of the device 

drivers and the interrupt structures. 

Sections 19 and 20 deal with the Data Structure and File Structures. 

Like the material on the SVC's these topics will be of particular 

interest to those programming at the Systems Programming Level. 

Sept. ‘81 1-2



SECTION 1 — INTRODUCTION 

1.4 RELATED MANUALS 

Every attempt has been made to make this manual as self contained as 

possible. Nevertheless, there are many sections where an 

understanding of the material from other reference manuals would be 

helpful. 

The material on Task Establishment can be read in conjunction with 

the TASK and ESTAB utilities in the MONROE UTILITY PROGRAMS 

PROGRAMMER'S REFERENCE MANUAL and the MONROE ASSEMBLY LANGUAGE 

PROGRAMMER'S REFERENCE MANUAL. 

The material on the SVC's can be read in conjunction with both the 

MONROE ASSEMBLY LANGUAGE PROGRAMMER'S REFERENCE MANUAL and the 

Advanced Programming Section of the MONROE BASIC PROGRAMMER'S 

REFERENCE MANUAL. 

Lastly, the material on the Console Manager can be read in 

conjunction with the Sections on the TASK and DEVICES utilities in 

the MONROE UTILITY PROGRAMS PROGRAMMER'S REFERENCE MANUAL. 

1-3 Sept. ‘81 





PART I 

OPERATING SYSTEM MANAGEMENT 





SECTION 2 

SYSTEM OVERVIEW 





SECTION 2 

SYSTEM OVERVIEW 

2.1 INTRODUCTION 

The Monroe Operating System is a Multi-Tasking Operating System. As 

such, it increases programming and operating efficiency yet requires 

a minimum of storage and computing time. 

The Monroe Operating System is a disk-based operating system 

supporting 128KB of main memory. Up to 64KB is accessible by any one 

task. This 64KB space is called the logical address space which is 

divided into a 16KB system segment, a BLB pure code segment, and a 

40KB data/code segment. These segments are mapped into the 128KB 

physical memory. (See Section 19.) 

Facilities are provided for supporting up to 255 tasks running 

concurrently. Programs can reside permanently in memory or on a mass 

storage device, such as a disk, and be brought into memory for 

execution. Programs are executed on priority either through a 

hardware interrupt or via a programmed request. When a task of 

higher priority is finished, the operation of the lower task is 

resumed. 

The operating system has a modular design, and is composed of two 

main module groupings corresponding to the hardware and software 

entrances to the Monroe Operating System proper. The hardware 

modules consist of all the device drivers, driver handlers, and 

driver interrupt handlers. The software modules consist of the 

various SVC functions and handlers. 

The programmer communicates with the system through standardized. 

requests and via commands from the system console. Input and output 

functions are carried out by driver programs, one for each type of 

device. 

Since the operator plays an important role in the successful 

operation, it is necessary to understand the facilities available. 

These facilities and the operating procedures necessary to run the 

Operating System are described in this manual. 

2-1 Sept. ‘'81 



SECTION 2 - SYSTEM OVERVIEW 

2.2 SYSTEM FUNCTION BLOCKS 

The global function blocks of the Monroe Operating System are 

illustrated in Figure 2-1. 

TASK p——— SVC — 

Monroe 
Operating 
System 

<O 
a 

ZY TASK pee SVC 

Figure 2-1. Monroe Operating System, System Block Diagram 

The fundamental unit of work in the Monroe Operating System is called 

a “task”. Tasks are described more thoroughly in Section 6 of this 

manual. For the time being, a task may be thought of as either a 

single program or as a main program together with a number of 

subroutines and overlays. The task interface to the Monroe Operating 

System proper is accomplished through SVC (supervisor call) 

instructions. Briefly, SVC instructions are assembly language 

programs which are executed by tasks which require operating system 

services. Most of the services provided by the Console Manager, for 

example, are performed by SVC instructions. These services then 

become available to user tasks. The parameters associated with each 

request are passed to an operating system parameter block. 

Sept. '8l 2-2



SECTION 2 - SYSTEM OVERVIEW 

The individual SVC instructions, together with their associated 

parameter blocks are described in Section 7 of this manual. 

2.3 MONROE OPERATING SYSTEM FEATURES 

The Monroe Operating System has the following features: 

System Kernel 

Priority allocation of the whole computer system, including 

devices, execution time, memory allocation, etc. — 

Dynamic memory handling that supports up to 128KB of main 

memory. 

Calendar and time-of-day are normally maintained by the system, 

and interval timing is available to user tasks. 

The number of tasks in memory at any time may be as great as 16, 

limited only by the amount of memory available and by system 

generation considerations. 

Tasks are scheduled by priority with 255 distinct levels. An 

optional time slice scheduler allows tasks of equal priority to 

share processor time.- 

Low overhead. A minimum of searching is required to find the 

highest priority task. 

There are 16 system priority levels, 8 for hardware and 8 for 

software services. The system will support up to 255 interrupt 

driver devices. Response time for higher level interrupts is less 

than 200 us. 

Input/Output Operations 

Input and output operations are device independent, allowing 

re-assignment without having to alter existing software. 

Devices and drivers can easily be added and deleted on line 

which allows the user to dynamically add new devices without 

a system generation. 

2-30 Sept. '81 



SECTION 2 -— SYSTEM OVERVIEW 

Task Establishment 

Tasks and overlays .are loaded into any free memory area up to 40KB 

in length by a relocating loader. 

Multiple applications programs can operate concurrently through 

the use of interleaving techniques. 

Tasks need not to be totally memory resident, but may be segmented 

and overlaid from any mass storage device under task control. 

Event-related information is maintained for each task within its 

own task queue. 

Tasks may request the activation and execution of other tasks, and 

may pass parameters to one another. 

Tasks may take traps on the reception of these parameters and upon 

completion of all types of requests. 

File Management 

Comprehensive file management facilities are provided on 

direct-access devices; contiguous and indexed file structures are 

provided for safe and efficient use of all disks. 

Disk addresses are 32 bits. 

Hashed directory structures for faster directory searches. 

User readable directories. 

Twelve character file names plus file type designators. 

Cache memory type of sector buffering, to keep down the number of 

disk accesses. 

User File capabilities, keeps down the number of entries in the 

Master File Directory. User Directories speed up directory 

searching. 

User Files used for example in source module collection. The 

Module name is then expressed as a PROJECT.MODULE. Backup of User 

File Directory will backup all elements in the directory which 

simplifies bookkeeping of source modules since only one name is 

required. 

Byte random access, so a file may be treated as a stream of bytes. 

Sept. ‘81 2-4



SECTION 2 —- SYSTEM OVERVIEW 

« Variable or fixed length files. 

- File access lockout in a multi user environment. 

- Files can be accessed logical (byte access) or physical (256 bytes 

blocks). 

« Files can be assigned by more than one program at a time unless 

the access attributes are violated. 

2.4 SYSTEM START UP 

The Monroe Operating System is normally loaded by a ROM storage 

device, the bootstrap loader. On completion of the load, control is 

normally transferred to the Console Manager Task which prints "“MS8 

Rx.yz" on the system console, where "x" is the release number and 

“yz" is the update number. The Console Manager then issues the 

command prompt "~". The system is now ready to accept commands. If 

the Monroe Operating System is generated without the Console Manager 

Task, control is transferred to a task specified by the user. 

2.5 SYSTEM SHUT DOWN AND RESTART 

In a disk-based system it is necessary that the system should be shut 

down or restarted in an orderly fashion, to assure the integrity of 

the disks in use. Before shutting down or restarting the system, the 

operator should cancel all non-system tasks, and .close all disks. 

The system may now be restarted. If the system crashes, it should 

NOT be restarted. It must be reloaded. 

2.6 SYSTEM CRASHES 

When the system determines that further execution may cause system or 

user data to be destroyed, the operating system crashes in a 

controlled way. The operating system MUST be reloaded after a crash. 

2-5 Sept. ‘81 



SECTION 2 - SYSTEM OVERVIEW 

Figure 2-2 shows the principal interactions between the major 

groupings of the Operating System. For clarity, many minor 

interactions between these module groupings are not shown. 

Interaction between the different module groupings will be explained 

in subsequent sections. 

Task 

L 
| LL L i L | 

Svc2 SVC7 Svcs WJ svc6 SVC4 svcs8 

Subfne File Load Task Symb Res 

| 

Scheduler 

Realtime=- 

File LJ SVC1 [ou Reloc system Lj SVC3 

angr Lj I/0 Loader Crash- Time 

handler 
Interrupt- 

handler 

Utility 

Rout 
Device System —— 

drivers tables 

L 

Figure 2-2 Monroe Operating System, Functional Block Diagram 

Sept. ‘81 2-6



SECTION 3 

SYSTEM STRUCTURE 





SECTION 3 

SYSTEM STRUCTURE 

3.1 INTRODUCTION 

An outline of the system level structure of the Monroe Operating 

System is presented in this section. The Processor States, Interrupt 

System, and System Levels are described as well as how transitions 

between system levels are accomplished. 

3.2 SYSTEM HIERARCHY 

The Monroe operating system can execute programs in any of 16 system 

levels. That is, at any given instant a program will occupy one of 

these levels in the operating system. These levels are indicated by 

the following table: 

Level Description 

0-7 (highest) Hardware Drivers. 

8 Software Drivers. 

9 . Queue Handling. 

10 Real-Time Service. 

ll System Queue Service. 

12 Ready Queue Service. 

13 . Tasks (with 255 task priorities) 

14 Reserved. 

15 (lowest) Idle Loop (Stop Mode) 

3-1 Sept. ‘81 



SECTION 3 - SYSTEM STRUCTURE 

Each of these levels is described in Section 3.6. Level 0 is the 

highest level and is reserved for one of the hardware drives (which 

occupy levels 0 through 7). Level 15 is the lowest level and is 

reserved for the Idle Loop (Stop Mode) of the operating system. Each 

of the 16 levels are currently used with the exception of level 14 

which is reserved. 

3.3 SYSTEM LEVELS 

The levels indicated in Section 3.2 can be described as follows: 

«Hardware Drivers, Level 0-7 

These levels are reserved for the service of interrupt driven 

devices. The drivers can be triggered by either an external 

interrupt or a driver time out. 

~Software Drivers, Level 8 

This level is reserved for non-interrupt driven devices. The driver 

cannot be triggered by an external interrupt since it is not 

connected to an interrupt handler. Hence, it can be enabled only by 

a time out function. 

-Queue Handling, Level 9 

This level is entered when queues are scanned and modified by the 

system. For example, during real time processing events waiting to 

be executed must be held in queue before they are processed. 

«Real-Time Service, Level 10 

This level is reserved for update of all real-time dependent 

functions like the System Clock, etc. 

Sept. '8l 3-2



SECTION 3 ~ SYSTEM STRUCTURE 

-System Queue-Service, Level 11 

This level is used to coordinate events controlled by the Resource 

control Block (RCB). Briefly, the Resource Control Block oversees 

the allocation of system resources. For example, to write to the 

printer you must coordinate the direct memory access processor, the 

printer controller, and the printer device. This is done for the 

RCB. 

-Ready Queue~Service, Level 12 

The Ready-Queue-Service handles all task dispatching and scheduling. 

It is also known as the Task Master. In particular, it schedules 

which programs should be run first. 

»Tasks, Level 13 

This is the system level where all tasks execute code. This level 

is divided into 256 priorities which are controlled by the 

Ready~Queue-Handler. 

-Idle Loop (Stop Mode), Level 15 

When no more code is to be executed, the system enters this level. 

The processor enters STOP MODE and all interrupts are enabled. 

3.4 SYSTEM INTERRUPTS 

As indicated above, the only way the system can go from a higher to a 

lower level is to execute an interrupt. This means there must be two 

types of devices supported by the operating system. Interrupt Driven 

Devices, and Non-interrupt Driven Devices. , 

An Interrupt Driven Device has an interrupt handler associated with 

it. A Non-interrupt Driven Device does not. Each interrupt driven 

device has an interrupt handler which can either enable or disable 

3-3 Sept. ‘81 



SECTION 3 -— SYSTEM STRUCTURE 

the device during program execution. These are part of the interrupt 

system of the processor. In general, the interrupt system provides 

rapid responses to external or internal events that require service 

by special software routines. This is accomplished by means of an 

Interrupt Response Procedure. During the interrupt Response 

Procedure, the central processor preserves its current state while 

transferring control to the required interrupt handler. 

3.5 SYSTEM STATUS 

It was pointed out that the processor can preserve its current state 

while transferring control to some external device. This is done by 

means of the Program Status Word, PSW. Briefly, the PSW indicates 

the status of the current program running on the operating system. 

The low nibble of the PSW contains the current system level (which as 

indicated can be any value from 0 to 15). For example, if the 

operating system crashes you can tell from the first four bits of the 

PSW.what level (0 up to 15) the operating system was in at the time 

of the crash. . 

The high nibble contains some control flags such as the 

User-System-Stack Flag. Note changes in transition can occur at 

various times during processing and for various reasons. When an 

external event at a higher level then the one currently in operation 

causes a transition, the current PSW is incremented to a level above 

the previous one. When an external event at a lower level then the 

one currently in operation causes a transition the current PSW is 

decremented to a level below the previous one. 

3.6 SYSTEM STATES 

At any given instant the Central Processor can be in either Stop Mode 

or Run Mode. The transition from stop to run requires the occurrence 

of an interrupt. Since the current value of the PSW controls the 

operation of the system, as the contents of the PSW are changed, this 

enables the interrupt handlers for the various device drivers which 

Sept. '8l 3-4



SECTION 3 - SYSTEM STRUCTURE 

in turn enable the drivers themselves. 

During the cold start a number of system tables must be initialized. 

In particular, initial values must be supplied to the Initial Value 

Table (IVT) which lsts the number of devices and drivers supported by 

the operating system. Also, various program modes must be 

established. This information is supplied by the operating system 

when it is loaded. 

3-5 Sept. ‘81 





SECTION 4 

SYSTEM CONVENTIONS 





SECTION 4 

SYSTEM CONVENTIONS 

4.1 INTRODUCTION 

The Monroe Operating System allows the user to run programs, tasks, 

or routines in any one of four well defined modes. They are, in 

increasing order of priority and privilege: 

~User Mode (UM) 

-System Mode User (SMU) 

-System Mode System (SMS) 

eInterrupt Mode (IM) 

These modes are differentiated by a combination of PSW bits and 

status bits in either the Resource Control Block (RCB), Device 

Control Block (DCB), or Task Control Block (TCB) (c.f. the section on 

Data Structures Part II). These are the only modes of operation 

permissible on the Monroe Operating System. At any given instant the 

central processor will be executing code in one of these four modes. 

In addition each mode is defined by the following characteristics: 

The system level at which the mode is operating. 

-The stack pointer and registers used by the program, task, 

or routine being executed in that mode. 

-The type of code being executed. . 

~The task-ID and priority used by the operating system in 

executing the code. 

4.2 USER MODE - UM 

User Mode (UM) is the mode in which all user tasks run. Internal and 

external interrupts are enabled during execution. The only way in 

which you can exit from this mode is either by means of an interrupt 

or by executing a supervisor call (SVC). The system level for the 

user mode is the task level and the type of code it executes is user 

code. 

4.3 SYSTEM MODE USER - SMU 

System Mode User (SMU) is the mode in which system code is executed 

on behalf of a task. The code is organized, scheduled, and 

dispatched as though it were a routine of the task. The SMU mode 

4-1 Sept. ‘81 



SECTION 4 - SYSTEM CONVENTIONS 

is entered at a supervisor call, therefore all higher system levels 

are enabled. The system level for the SMU mode is the task level and 

it only executes system code. 

4.4 SYSTEM MODE SYSTEM - SMS 

This mode occurs when the system changes critical information such as 

queues. It is non-reentrant, and the Ready Queue Service Interrupts 

are disabled at the time of entry. While the system is in this mode 

no new task can be dispatched, hence any routines which run in this 

mode should be short and quickly executed. This mode is exited via 

an external interrupt. 

The primary difference between the SMS and SMU modes of operation is 

in the system level for SMS. SMS executes system code at a higher 

level then the task level. Ideally, this should seldom occur. For 

example, when you are using an SVC-8 function to add an item to a 

linked list, you are in SMS, even though it is a task being executed. 

In this case the operating system would be executing on a queue level 

which is higher than the task level. 

4.5 INTERRUPT MODE — IM 

This mode is used only for interrupt service routines within the 

Device Drivers, Real-Time Update, System Queue Service, Ready Queue 

Service, and Idle Loop. All higher system levels are enabled. The 

system level for the IM mode is the task level and it only executes 

System code. 

4.6 FURTHER CONVENTIONS 

With regard to the above system modes. The following conventions are 

in effect: 

-REGISTER USE 

For definition, the Primary Register Set includes both registers AF, 

BC, DE, HL, Y, X and CS, IL. The Secondary Register Set includes 

AF', BC', DE’ and HL’. 

Sept. '81 4-2



SECTION 4 - SYSTEM CONVENTIONS 

The operating system never uses the secondary register set without 

first saving them temporarily on the stack and then restoring them 

when it is finished. Both register sets are stored on the task's 

stack when the task is not running. 

»SUBROUTINE CONVENTIONS 

Parameters are passed in registers or in memory such as the System 

Pointer Table (SPT), Task Control Block (TCB), etc. Register 

modification within a subroutine is normally done according to the 

function of the subroutine. All other registers are normally 

preserved. Exits to unlabeled addresses are not permitted. 

~SVC FUNCTION CONVENTIONS 

All SVC instructions cause the system to enter SMU state. The 

address of the parameter block is passed in register Y on entry to 

the SVC handler. It is the responsibility of the SVC handler to 

check the validity of any parameters passed in the parameter block. 

«INTERRUPT CONVENTIONS 

Interrupts cause control to be passed to the individual interrupt 

handler in the IM state. The address of the control block is passed 

in register X to the interrupt handler. 

4-3 Sept. ‘8l 





SECTION 5 

EXECUTIVE DESCRIPTION 





5.1 INTRODUCTION 

There are two ways to enter the Monroe Operating System: 

software service request (SVC) or through a hardware interrupt. 

SECTION 5 

EXECUTIVE DESCRIPTION 

through a 

This 

section contains a description of the request modules that accomplish 

these functions. 

5.2 EXECUTIVE MODULES 

The Monroe Operating System can respond to a software or hardware 

request. 

interconnection are illustrated in Figure 5-l. 

Software Service Requests 

| 
| SVC HANOLER 

Vv 

— CONNECTION HANOLER 

; OTHER i 
————P svc FUNCTIONS hs | 

f } 
———>_oisk vanover #8 

+<— ——> ren NAL HANOLER 

—_—— 

PRINTER HANOLER @——— 

FILE MANAGER P| 

CLOCK MANAGER .— 
| 

| 

fore DEVICE HANOLERS —4 

eetorememer 

Figure 5-l. 

Hardware Interrupt Requests 

INTERRUPT 

ny. 
t 

| | NTERRUPT HANOLER 

| + ORIVER CONTINUATOR q—— 

=i 

| 
CRASH HANOLER Sam 

th. 

REAL TIME HANOLER |~- 

laeaay QUEUE HANOLE 

SYSTEM QUEUE HANOLERT 
l hal 

Sept. 

The modules associated with each type of request and their 

Monroe Operating System, Software and Hardware Modules 

"81 



SECTION 5 - EXECUTIVE DESCRIPTION 

All executive routines act as a subroutine of the calling task and 

work in the state refer to Section 4.3. The register usage by the 

software modules are indicated below: 

Register Use 

xX Control Block 

A Return Status 

Carry (Flags) O-Function not complete 

1-Function complete 

Executive routines cannot issue SVC calls. 

Sept. ‘81 5-2



SECTION 5 - EXECUTIVE DESCRIPTION 

5.3 SYSTEM INITIALIZATION 

The Monroe Operating System is initialized at the system start up. On 

entry into the operating system the PSW (Program Status Word) is not 

known. Therefore the first operation that is performed is to put the 

processor into a privileged uninterruptable state. This is done 

through the following sequence of steps: 

1. The System Pointer Table (SPT) is cleared. 

2. The SPT is given initial values from data in the Initial 

Value Table (IVT). 

3. The dynamic data structures (Part II) are then created using 

an SVC8. . 

4. The rest of memory is scanned to build a dynamic memory 

pool. 

5. The first task is then started through the SVC-Handler and 

the operating system tries to enter an Idle Loop. 

5.4 SYSTEM RESOURCES 

A resource (as used through this manual), is a task or an area of 

memory that can be used by a task. Since tasks (for example 

programs) can use other tasks (for example utility commands) every 

task can be treated as a resource. There are two types of 

resources: 

1. Shared Resources 

2. Exclusive Resources 

These resources are coordinated through the use of resource control 

blocks. 

1) Shared Resources 

A shared resource is any resource that can be used by several tasks 

at the same time. For example, a common area of memory, or any 

reentrant task is a shared resource. 

5-3 Sept. '81 



SECTION 5 -— EXECUTIVE DESCRIPTION 

2) Exclusive Resources 

-An exclusive resource is one which can be used by only one task at 

a time. Any task which wants to access an exclusive resource must 

wait in a queue. The resource is given to the first task in a queue 

when the resource is free. For example, device drivers, memory 

allocaters, non-reentrant code are all examples of exclusive 

resources. 

5.5 RESOURCE TYPE 

Most requests to a resource have to wait in a queue before they are 

processed. All queuing is done on a priority basis. Within a given 

priority resources are allocated on the basis of first come, first 

serve. Obviously operating system resources must be controlled and 

coordinated somehow. This is the purpose of the Resource Control 

Block (RCB). 

The MONROE Operating System contains three major types of resources: 

1. Volumes 

2. Devices 

3. Tasks 

Each of the above groups has two reference roots; one for symbolic 

handling and one for numeric handling. 

1) Volumes 

A volume is a directory oriented mass storage device. Volumes 

can be used by tasks to copy from, to write to, and in general to 

store data on. 

2) Devices 

A device can be a real physical device (like a disk drive, tape 

drive, or controller). Or it can be an imaginary device (like 

the NULL device which will accept any input and do nothing with 

it). 

3) Tasks 

A task is any program which can be executed. 

5.6 RESOURCE CONTROL BLOCK (RCB) 

Coordination of operating system resources is accomplished by the 

Resource Control Block. The Resource Control Block in turn is 

Sept. ‘81 5-4



SECTION 5 — EXECUTIVE DESCRIPTION 

managed by the connection and disconnection handler through a series 

of subroutines. The Resource Control Block can be thought of as a 

list structure. This list structure is generated by the 

SVC8—-Handler. 

For example, suppose you want to control access to the disk. Since 

the disk can be used by a task it is a resource. However, in order 

to control the disk you must first gain access to the direct memory 

access processor, the disk controller, and the disk device. These 

three resources must therefore be coordinated by the RCB as if they 

were a single resource. 

This is accomplished by subroutines which connect to, queue to, 

disconnect from, and release entries in the RCB list. In general, a 

task will not be connected to any particular RCB until such time as 

it can be connected to all required RCB's needed for its execution to 

prevent deadlock conditions. 

5.7 SVC HANDLER 

In order to enter the operating system through the software door an 

SVC instruction must be executed. All SVC instructions cause entry 

into the SVC handler. The function of the SVC Handler is to perform 

preprocessing which includes saving the primary register set of the 

indicated instruction, verifying the rest size of the stack, and so 

one 

The SVC Handler also looks for the specific SVC number of the 

instruction being executed. If it finds it, it calls the Connection 

Handler to connect to the system resource or service the svc 

instruction it is requesting. Some SVC's such as SVC2 have second 

level handlers that perform similar preprocessing. 

5.8 SVC FUNCTIONS 

There are a number of SVC functions within the operating system that 

are initiated by SVC instructions. These functions then become 

available to tasks. Each SVC has a handler which is normally a fully 

reentrant resource. In addition, any new SVC Handler may be added to 

the operating system either at cold start or during run time. 

5-5 Sept. ‘81 



SECTION 5 — EXECUTIVE DESCRIPTION 

The following SVC handlers are all exclusive resources within the 

operating system itself: 

-SVC8 

-SVC2.1 

-SVC2.10 

-SVC2.11 

svc 8 

Is used for resource manipulation, for example, to add resources 

to the operating system or remove resources from the operating 

system. 

Svc2.1 

Is used to allocate memory or deallocate memory. For example, 

allocating memory to the terminal monitor. 

$VC2.10 

Is used as a Bit Map Manager within a Volume. For example, this 

SVC can be used by the file management system. 

svc2.11 

Is used as a Directory Manager within a volume. This SVC can 

also be used by the file management system. 

5.9 FILE MANAGER 

The File Manager includes all the logic necessary to support the 

Monroe File Management System. The File Manager is called from 

either the SVC1l or SVC7 Executor. It then decodes each function 

specified by the parameter block and invokes the necessary executors. 

At completion each Executor determines if any other request is still 

outstanding. Control is returned with an appropriate status report 

when all functions have been processed or if the Executor encounters 

an error. Each Executor makes use of the following subroutines 

contained within the File Manager: 

-Directory Management Subroutines 

-Bit Map Management Subroutines 

Sept. ‘81 5-6



SECTION 5 - EXECUTIVE DESCRIPTION 

Directory Management Subroutines maintain information on all 

currently allocated files. Bit Map Management subroutines provide a 

method for allocating and deleting files on direct-access-volumes. 

The File Manager also contains SVCl intercept routines which 

intercept all I/O calls into a file. 

5.10 RESOURCE CONTROL BLOCK HANDLERS 

The Resource Control block Handler controls the allocation of 

resources by the Operating System. Each handler is described below. 

Connection Handler 

The connection handler either enters a shared resource, or queues the 

request to an exclusive resource. When connected, the connection 

handler initiates the resource control block and calls the resource 

handler specified in the resource control block. Upon completion the 

connection handler calls the disconnection handler. If not 

completed, the connection handler either puts the task in completion 

wait, or returns to the SVC handler, depending on the function code 

in the parameter block. 

Disconnection Handler 

The disconnection handler is called to release a task from a RCB and 

its tree. When released, the next request for any path in the tree 

is propagated, and that task is removed from the connection wait 

state. 

Termination Handler 

When a task is disconnected from a RCB, an optional terminator 

handler is called. This terminator is called in the SMS/SMU modes, 

and performs some post-processing for that resource. This function 

is normally used by device drivers to do work that should not be done 

within the interrupt handler. 

5-7 Sept. ‘81 



SECTION 5 - EXECUTIVE DESCRIPTION 

Non-maskable Interrupt Handler 

This is a user defined handler, normally to handle power down and 

power up sequences. If not needed, a dummy should be included at 

system generation time. 

Clock Interrupt Handler 

This is a dedicated interrupt service handler, and is entered at a 

frequency defined by the hardware, normally 100 HZ (10 ms). This 

routine decrements the head of the interval queve, which is sorted by 

the time value. If the item elapses, the Real-Time Handler is 

triggered and an overflow counter will be started. All the following 

interrupts are now being counted in the overflow counter until the 

real-time service is done. Upon carry from the overflow counter and 

system overload, the Crash Handler is called. 

Crash Handler 

Checks are made for normally impossible states of the operating 

system. When such a condition is found the system brings itself to a 

halt before further destroying the conditions that led up to the 

impossible situation. This is done by the Crash Handler. 

The Crash Handler saves all the CPU-registers in a crash diagnostic 

area. Then a programmed reset of the I/O system is initiated and a 

PSW is loaded that puts the system in an uninterruptable state. 

Interrupt Handler 

Interrupts are normally handled ina standard way. The program 

counter is stored on the current memory stack by the hardware. The 

primary register set is also stored on the stack. The system stack 

is then selected, if not already present, and the previous pointer is 

stored on this stack. The new system level is then selected. 

Sept. '81 5-8



SECTION 5 -— EXECUTIVE DESCRIPTION 

The Interrupt Service Tables, corresponding to this new level are 

scanned to find the device from which the interrupt was generated. 

When it is found, a call is done to the specified interrupt service 

handler. The interrupt service handler then processes the interrupt. 

If the request is completed, the RCB will be added to the System 

Queue and the System Queue Handler is triggered. 

The rest of the interrupt linkage is scanned to look for another 

interrupt from a device. If so, that continuator will be called. 

The next active device with a higher level is found and the 

interrupted process is restored. 

If no device was found, the Illegal Interrupt Counter is decremented, 

and if it becomes zero the Crash Handler is called. 

Real Time Handler 

The Real Time Handler is triggered by the clock interrupt handler 

after the first item in the internal queue elapses. When the Real 

Time Handler is entered the first item in the internal queue is then 

removed. This item is examined to find out the reason for the 

handler's being triggered. Depending upon the reason one of the 

following actions will be updated: 

Interval and time of day request 

Time of day clock 

Day and year calendar including leap year. 

Driver timeout. 

Device Drivers 

Each type of peripheral or task device has a control program driver. 

These are normally fully reentrant, with the exception of the 

interrupt handling phase on dedicated drivers. New devices with 

drivers may be added to the system in the same way as SVC functions. 

5-9 Sept. ‘81 



SECTION 5 - EXECUTIVE DESCRIPTION 

The initiation phase of a driver runs as a subroutine of the task in 

SMU state. The interrupt handling phase normally runs with all 

higher levels enabled in the IM state. The termination phase of a 

driver runs in a reentrant state although no task may be executing 

more than one termination phase subroutine at a time. Each device is 

controlled by a Device Control Block (DCB). 

Ready Queue Handler 

All tasks which are currently in ready state are in a queue called 

the Ready Queue, which is a linked list of the TCB. A task is 

dispatched for execution when it is at the head of the ready queue. 

If time slicing is disabled, the task currently executing remains in 

this state until it voluntarily relinquishes control or until a 

higher priority task is ready. If time slicing is enabled, the task 

relinquishes control when its time expires or if an equal priority 

task is ready. Therefore, if no equal priority task is ready, the 

task continues to execute for another time slice. 

The Ready Queue Handler is triggered by: 

~The Real-Time Handler when a task becomes ready to execute 

after a real-time request, or when a task has exceeded 

its limit. 

-The System Queue Handler when a task is scheduled to execute 

the initiation or termination phase of an exclusive resource. 

.A task which lowers its priority below another ready task. 

System Queue Handler 

The system contains a System Queue which is a linked list of the 

RCB's. Whenever an item is added to this queue, an internal 

interrupt is initiated to schedule events coordinated by the RCB. 

The handler removes each item in the queue, and calls the 

Disconnection Handler. 

The System Queue Handler is triggered by the System Interrupt Handler 

when a request to an interrupt driver device is complete. 

Sept. ‘81 5-10



SECTION 5 - EXECUTIVE DESCRIPTION 

System Pointer Table 

The SPT contains necessary information for proper operation, and is 

used by the system with direct address instructions. Most the data 

in the SPT are pointers and roots. The System Stack, Interrupt 

Vectors and Interrupt Service Tables are also allocated in the SPT. 

5-11 Sept. '81 





SECTION 6 

TASK ESTABLISHMENT 





SECTION 6 

TASK ESTABLISHMENT 

6.1 INTRODUCTION 

The fundamental unit of work in the Monroe Operating System is the 

task. A task can be a single program or it may consist of a main 

program together with a number of subroutines and overlays. Tasks 

can either permanently reside in memory or they can be loaded into 

memory as required. 

Every task is given a task identification which is four letters long 

when loaded. The number of tasks that can be loaded into memory at 

any given instant is specified at system generation. 

Each task is controlled by the operating system through a task 

control block (TCB). 

6.2 PREPARATION 

Only task files can be executed. Object modules are prepared using 

the Task Establisher program ESTAB. The result is a relocatable load 

module of the task file. Once a task has been established it can be 

loaded into memory by the resident loader via the LOAD command (c.f 

UTILITY PROGRAM PROGRAMMER'S REFERENCE MANUAL) or by executing an SVC 

6. 

6.3 STATUS 

Once a task has been loaded into memory it can be in any of five 

States. These are: 

State Abbreviation 

1. Current = 

2. Ready R 

3. Waiting W 

4. Paused P - 

5. Dormant Dorm 

6-1 Sept. ‘81 



SECTION 6 ~- TASK ESTABLISMENT 

1) Current 

Is the state of the task that is currently executing instructions. 

Only one task can be in this state at any given time. All other 

tasks in memory are in one of the four other states and may become 

the current task depending upon circumstances. 

2) Ready (R) 

Is the state of any task that is ready to become the current task. It 

is eligible to be dispatched (i.e., become Current) whenever it has 

the status of the highest priority Ready Task. 

3) Waiting (W) 

Is the state of any task waiting for an event. A task is in the Wait 

State if it cannot become Ready until some specific circumstance has 

occurred. These are: 

-Connection Wait - Waiting for I/O to start. 

I/O Wait - Waiting for I/O completion. 

-Time-Wait - Waiting for an interval or time of day. 

-Trap Wait - Waiting for a task-handled event. 

-Task Wait - Waiting to be released by another task. 

4) Paused (P) 

Is the state of any task that has been paused during execution. A 

paused task cannot continue to execute unless it is continued by 

either the console operator or by another task. 

5) Dormant (DORM) 

Is the state of any task that has not been started. A Dormant task 

is one which may not execute until it has been explicitly started, 

either by the console operator or by another task. When a resident 

task goes to EOT it enters the Dormant state. When any task is 

loaded, it enters the Dormant state after load-complete, and remains 

in this state until started. In addition, tasks can be of two types: 

Resident, Nonresident. 

Sept. '8l 6-2



SECTION 6 - TASK ESTABLISMENT 

6.4 TASK TERMINATION STATUS 

The termination status of a task can be any of the following: 

Description Abbreviation 

1. Resident R 

2. Non-resident (blank) 

1. Resident 

Any task which is not deleted from the system after it 

completes execution. 

2. Nonresident 

Any task which is deleted from the system after it completes 

execution. 

Note: Task termination status is set at task establishment and can 

be changed until it terminates. 

6.5 PRIORITY AND SCHEDULING 

The Monroe Operating System recognizes 255 priority levels from a 

high of 1 to a low of 255. Of these levels, 1-255 are available to 

user tasks while 0 is reserved for system's use. Each task has two 

priorities associated with it: 

1. Task Priority 

2. Dispatch Priority 

1) Task Priority 

Task priority is the priority currently assigned to the task. It is 

set at task establishment time and may be modified by an operator 

command or an SVC-6. . 

6-3 Sept. ‘81 | 



SECTION 6 — TASK ESTABLISMENT 

2) Dispatch Priority 

Dispatch priority is the priority set up by the system to determine 

the order in which ready tasks are serviced. Normally, a task's 

dispatch priority is the same as its task priority, but may be raised 

temporarily if the task is using a system resource required by a 

higher priority task. 

6.6 TASK SCHEDULING 

Two types of scheduling algorithms are available: 

1. Tasks may be scheduled in strict priority. 

2. Tasks may be time sliced with either a global slice limit or 

an internal slice limit relative to a given priority. 

1) Strict Priority Scheduling 

In the case of strict priority scheduling, if two tasks of equal 

priority are started, a task remains active until it relinquishes 

control of the processor. Care should be taken in assigning 

priorities so that tasks which do not frequently relinquish control 

of the processor do not inadvertently lock out other'tasks. A task 

may relinquish control in one of the following ways: 

1) It is Paused or Cancelled by the operator or by another 

task. 

2) A higher priority task becomes ready because of some 

external event. 

3) It executes an SVC that places it in a Wait, Pause or 

Dormant state. 

2) Time Slice Scheduling 

Rather than scheduling on a strict priority basis, tasks may be 

time~sliced within a given priority. This option allows the user to 

ensure that tasks of equal priority receive equal shares of processor 

time. The time-slicing option may be enabled and disabled by an 

operator command (c.f. MONROE UTILITY PROGRAMS PROGRAMMER'S REFERENCE 

MANUAL). When a task becomes ready, it is queued on a round-robin 

basis behind all ready tasks of equal priority. 

Sept. ‘81 6-4



SECTION 6 - TASK ESTABLISMENT 

6.7 SUPERVISOR CALLS (SVC's) 

The program interface to the operating system is provided through 

Supervisor Call (SVC) instructions. SvC instructions are executed by 

programs in order to request operating system services. The 

PARAMETERS associated with the request are passed to the Monroe 

Operating System in a parameter block. For example, most of the 

services provided by the Console Manager are performed with SVC 

instructions, thus making these services available to user tasks. 

Section 7 gives a description of the individual SVC instructions and 

their associated parameter blocks. 

6.8 EVENT QUEUE 

The Monroe Operating System provides a facility at the task level 

known as the task-trap facility. This allows a task to handle 

asynchronous events. Event related information is maintained for 

each task within its own event queue, where an event queue is just a 

linked list of nodes. 

A trap service occurs whenever the task is in a Trap-Wait state. If 

a task is in any Wait state other than Trap Wait, the trap does not 

actually occur until the task has left that Wait state. Several 

trap-causing conditions may occur before the first trap is handled by 

a task. Therefore, the event queue facility allows for queuing of 

event information during periods when the task is unable to service a 

trap. 

The following trap-causing conditions cause an item to be added to 

the event queue: 

1. Addition of a parameter to the event queue. 

2. Completion of any queued no-wait request. 

3. Requests to your own task-device. 

4. SVC 1 requests to your own TCB. 

6.9 TASK DEVICES 

The Monroe Operating System recognizes special “imaginary” devices, 

Task Devices, that may be added to the operating system. These 

6-5 Sept. ‘81 



SECTION 6 — TASK ESTABLISMENT 

devices have all the characteristics of a real interrupt driven 

device, since they can be assigned to any task and can have I/0 

requests queued for them. Whenever requests are queved another task 

is “activated” instead of a device driver (the normal procedure). 

The task “initiates” the operation and handles the completion of the 

request just as a device driver would do. Normally, the task device 

operates at a task priority level higher than any task that may call 

it. 

A task device has more freedom than a device driver since it can 

execute SVC instructions. The task device simulates a real device 

driver and it can be written in such a way that it processes requests 

of a single task device, or of several similar or umrelated devices. 

Task devices may be used to simulate devices, to spool devices 

(impose intermediate disk buffering), or to impose special 

formatting, communication protocols, or data conversions on existing 

interrupt driven devices. These techniques can be implemented in 

such a way that they are “transparent” to the task which uses them. 

Sept. ‘81 6-6



SECTION 7 

SUPERVISOR CALLS 





SECTION 7 

SUPERVISOR CALLS 

7.1 INTRODUCTION 

Supervisor Calls (SVC's) are used in programs to request the Monroe 

Operating System to perform operating system services. These 

services include operations such as data transfer, file handling, 

task manipulation, timer coordination, device control, and 

“ gubfunctions like text processing. 

All SVC's are connected to a parameter block where each parameter is 

specified to perform some aspect of the requested function. The 

parameter block must reside in a writable segment of memory. 

SVC's are written in assembly language and they always consist of a 

restart 7 instruction OFF HEX followed by the SVC request number (1 

byte) and the SVC parameter (2 bytes). The argument specifies the 

request type. The SVC parameter is normally an address to a 

parameter block in a tasks B-segment (upper logical 40KB area). 

However, parameter values lower than 256 mean that one of the values 

in the CPU-register pair should be used (HL, BC, DR, DE). 

All CPU-registers are saved on the task's stack when an SVC 

instruction is executed. During an SVC the system operates as a 

subroutine of the calling task, mostly within the callers priority. 

All CPU-registers, except the A-register and the Flags, are restored 

from the stack. The A-register contains the return status. An 

“error” is indicated by a true zero flag and a false carry flag while 

“no error" is indicated by a false zero flag and a true carry flag. 

When an illegal SVC is entered, a message is logged on the system 

console and the task is paused. The task can then be cancelled or 

resumed: (if a correction is made). 

7-1 Sept. ‘81 



SECTION 7 -— SUPERVISOR CALLS 

If the task has specified system recovery, a message is logged and 

the task is paused for each abnormal return status. When the task is 

told to continue, the SVC that produced the error is repeated. When 

system recovery has been specified, all error handling is done by a 

system dependent routine inside the operating system. 

7.2 SVC CALLING CONVENTIONS 

SVC's can be executed from MONROE BASIC, PASCAL, or Assembly Language 

programs. In all cases, the programmer supplies a parameter bock and 

the SVC types to the appropriate procedure within the language. The 

format of the parameter block is covered in the next section. The 

calling coinventions from Monroe Assembly Language, BASIC and PASCAL 

are described in subsequent paragraphs. 

Assembly Language SVC Calling Conventions 

There are two forms of SVC calls for assembly language programs: one 

which uses a register pointer (BC, DE, or HL) to the parameter block 

and another with a fixed pointer. The forms are: 

1. SVC <type>, <register pointer> 

2. SVC <type>, <address> 

The <type> must be a constant byte value which indicates the SVC 

type. This type also indicates the format of the parameter block. 

The parameter block is indexed by an absolute address, <address>, or 

via a <register pointer> of BC, DE, or HL. 

Note that register A and F have the result code. 

Examples: Ex. l SVC 2,LOGGIN 

EX. 2 SVC 7, S7DEVASG 

Ex. 3 LA HL, S7DEVASG 

SVC 7,(HL) 

Sept. ‘81 7-2



SECTION 7 - SUPERVISOR CALLS 

NOTE: Examples 2 and 3 perform the same function but do not result 

in the same object code. 

Monroe BASIC SVC Calling Conventions 

BASIC has a single built in procedure of the form: 

SVC <type>, <parameter> 

where <type> is an integer expression which is the SVC type and the 

<parameter> is the name of a Monroe BASIC array which contains the 

parameter block. The procedure returns if no errors occur with the 

result code in the parameter block. 

Example: 

DIM SvC2(10) ! Parameter Block Allocation 

SVCNUMBER = 2 ! SVC Type 

<BASIC CODE> ; ! Set Up Parameter Block 

SVC SVCNUMBER, SVC2 ! Call Svc 

Monroe PASCAL SVC Calling Conventions 

Monroe PASCAL has a single built in Boolean function of the form: 

FUNCTION SVC (SVCTYPE: INTEGER 

;SVC PARAMETER BLOCK: PACKEDRECORD ) 

: BOOLEAN: 

where SVCTYPE is the type of SVC being called and the SVC parameter 

block is a packed record whose size is a function of the SVC type. 

No type check is done between the record size and the SVC type. A 

sample record description would be: 

BYTE = 0 ..255; 

PARAMETER BLOCK = 

PACKED RECORD 

FUNC : BYTE ; 

RESULT : BYTE 3; 

ETC : INTEGER; 

END 

7-3 Sept. "81 



SECTION 7 - SUPERVISOR CALLS 

The function returns a true value if the SVC was executed and a false 

value otherwise. The program will be paused if an illegal SVC error 

occurs. 

7.3 THE PARAMETER BLOCK 

The Parameter Block of an SVC contains all of the detailed 

information necessary to perform the function that is requested. All 

Parameter Blocks, irrespective of the SVC in question, must contain 

the function code field and the return status field. These fields 

are common to all Parameter Blocks. The contents and size of any 

remaining fields depend upon the service that is being requested. 

Parameter Blocks are divided into subblocks which describe the 

different parameters of the SVC. A description of this portion of 

the parameter block is covered in Section 8. 

The function code field (SO.FC) is one byte and is the first byte in 

the parameter block. The resultant code SO.RS is also one byte and 

immediately follows the function code. All other bytes in the 

parameter block follow these two. 

The description here and in Section 8 uses the assembly language 

naming convention to describe indexes and values. This convention 

uses two part names separated by a period (ex. FIRST.SECOND). The 

first part refers to a common item and the second refers to a 

particular index or value. 

The SVC's extend this convention such that all svc parameter block 

indices have the form S<n>.<field> (ex., SO.FC) where <n> is the SVC 

type and <field> is a field within the parameter block. Values within 

a field are designated by S<n>. F<name> where <name> is a descriptive 

mnemonic for the value. 

This convention is recommended for assembly language programming and 

the names can be supplied from system files. Note that this 

convention is only applicable to assembly language programs. 

Sept. ‘81 7~4 

R
t



SECTION 7 - SUPERVISOR CALLS 

7.4 FUNCTION CODE FORMAT 

The function code byte (SO.FC) consists of three fields: 

Bits Description 

0-5 SVC function (is type dependent) 

6 Wait/Proceed 

7 Unconditional Proceed 

NOTE: 0 is the least significant bit. 

The function type is a value from 0 to 63 and is a function of the 

SVC type. 

The Wait/Proceed bit determines if the SVC is to be executed in an 

asyncronous manner. It can have the following values: 

Value Name Description 

0 Task will wait until SVC is complete 

1 SOF.NW SVC is initiated and the task continues. The 

task can determine that the SVC is done by 

checking the result code. 

Wait/Proceed, SOF.NW 

A wait call requests the operating system to suspend the calling task 

until completion of the requested operation. 

Once a request has been initiated (that is, the specified resource is 

free), any proceed request causes control to be returned to the task 

so that the task may execute concurrently with the transfer. The 

return status is not set until completion of the request, except for 

an illegal function, and illegal resource which are rejected before 

initiation. Every no-wait request to a queued resource will be added 

to the event queue of the task, if enabled. The return status of the 

request may be checked by: 

7-5 Sept. '81 



SECTION 7 - SUPERVISOR CALLS 

-Monitoring the return status field in the parameter block. 

-Issuing a wait for completion request to the same resource. 

«Taking a task handled trap on completion. 

-No/Wait SVC calls must assign FF HEX to the result field if the 

result is to be polled by a program. 

The uncondition proceed is used to determine if a resource is free. 

The bit can have the following values: 

Value Name Description 

0 Wait until the resource is free and then perform 

svc. 

1 SOF.PRO Perform SVC if the resource is free, otherwise, 

return. 

Unconditional Proceed, SOF.PRO 

Unconditional proceed is used when a task does not wish to wait for 

the requested operation. Requests are coordinated by the system so 

that only one request may access an exclusive resource at a time. [If 

an unconditional proceed is not requested and the specified resource 

is in use at the time of the request, the calling task is suspended 

by the operating system until the resource is free. At that time, 

the request is initiated. 

7.5 RESULT CODE FORMAT 

The result code consists of one byte that indicates the return status 

of an SVC. The list of error codes appears in Appendix B. The 

following is a list of some common codes from Appendix B. 

Return Status Status Code Meaning 

SOS.OK 0 No Error 

SOS.EON l End of node in the task 

SOS.IFC 2 Invalid function 

SOS.PRO 3 Can't connect to the resource 

SOS.OFFL 4 Resource off line 
SOS.PRES 5 Not yet present in this system 

SOS.NYET 6 Function not yet implemented 

S0S.CAN 7 Request is cancelled 

SOS.SVC 8 Invalid SVC function 

9 (Reserved ) 

Sept. '81 7-6



SECTION 7 - SUPERVISOR CALLS 

If an unconditional proceed is specified and the resource is in use, 

the request is rejected. Return status is set to "3" and the 

condition code is set to nonzero. The calling task may then retry 

the request at a later time. If the specified resource is not in 

use, the setting of an unconditional proceed has no effect on the 

request. 

7.6 SVC CONVENTIONS 

Each SVC is discussed in terms of its Parameter Block and the 

Operation, Type, and particular functions defined by the arrangement 

of bits in its function code. Exercise to reconstruct what the 

bit-patterns are for each SVC from the tables. For the sake of 

completeness, the bit patterns for the Function Code, Return Status, 

and all other relevant parameters are given in Appendix C for each 

SVC. 

7=7 Sept. '81 





SECTION 8 

SVC 1 INPUT/OUTPUT REQUEST 





SECTION 8 

SVC 1 INPUT/OUTPUT REQUEST 

8.1 INTRODUCTION 

SVC 1 is used by a task to perform all general purpose I/O requests. 

8.2 PARAMETER BLOCK 

The contents of the parameter block for SVC 1 is shown below. 

|(0) SO.FC | (1) SO.RS |(2) S1.LU {(3) sl.Ts | 

| Function code | Return status| Logical unit | Term. status | 

| (4) $1.BAD | (6) $1.BSZ | 

| Buffer start address | Buffer size in bytes | 

| (8) $1.BCNT |(10) S1.RND | 

Byte count at completion | Random address —- | 

The parameter block for SVC 1 has the following structure: 

Offset Bytes Type Mnemonic Name 

1) 0 1 Byte $O.FC Function Code 

2) 1 1 Byte SO.RS Return Status 

3) 2 1 ‘Byte S1.LU Logical Unit- 

4) 3 1 Byte $1.TS Termination Status 

5) 4 2 Address S1.BAD Buffer Address 

6) 6 2 Integer S$1.BSZ Buffer Size (Bytes) 

7) 8 2 Integer S1.BCNI Byte Count 

8) 10 2 Address S1.RND Random Address 

Total 12 

8-1 Sept. ‘'8l 



SECTION 8 — SVC 1 INPUT/OUTPUT REQUEST 

8.3 PARAMETERS 

The parameter that appear in the parameter block are discussed below. 

1) SO.FC, Function Code 

The function code byte allocation is as follows: 

Bit Description 

0-4 Operation 

5 SVC 1 type: 

A) Read/Write Operation 

B) Special Operation 

6 Wait-Proceed 

7 Unconditional-Proceed 

As seen above, bit 5 specifies the type of operation. Each is 

described below. 

A) Read/Write Operation (For SVC 1 type Field = 0.) 
The various functions in the operations field are determined by the 

decimal values of the contents of bits O-4. These are summarized 

below. 

Bit Value Name Description 

0-1 Read/Write 

0 SOF.WAIT Wait for SVC Completion 

1 S1F.READ Read 

2 S1F.WRIT Write 

3 SIF.WRD Write with read check 

2-3 Data Type 

0 SIF.IASC Image ASCII 

1 S1F.FASC Format ASCII 

2 S1F.IBIN Image Binary 

3 SIF.SPEC Special 
4 Access Type 

0 Sequential Record Access 

1 S1F.RND Random Record Access via the 

random address field. 

Sept. '81 “ 8-2



SECTION 8 - SVC 1 INPUT/OUTPUT REQUEST 

SOF.WAIT, Wait For Completion: A wait for completion request 

(Function Code 0) causes the task to be placed into a wait state 

until the completion of a previous request to the specified resource. 

If no such outstanding request exists, control is returned to the 
task immediately. For an explanation of READ, WRIT, and WRD see 

section 8.4. 

S1F.IASC, Image ASCII: This is ASCII data without Space compress and 

no termination character in the buffer. 

S1F.FASC, Format ASCII: This is ASCII data with Space compress. The 
most significant bit in the byte is set together with a seven bit 
Space counter. The termination byte in the buffer is zero. 

SIF.IBIN, Image Binary: This specifies the transfer of eight-bit 

data bytes without any formatting. 

SIF.SPEC, Special: This parameter depends upon the drivers. 

B) Special Operations 

For SVCl Type Field = 1 The various functions in the operationg 

field are determined by the decimal values of the contents of bits 

0-4. These are summarized below. 

Bit Value Name Description 

0-4 - - Special Operation 

0 SOF.TST Test Request (see below) 

1 SOF .CAN - Cancel Request (see below) 

2 S1F.FR Forward Record 

3 S1F.FF Forward File 

4 S1F.WF Write File Mark 
5 SIF.BR Back Record 

6 S1F.BF Back File 

7 SIF .RW Rewind 

8 S1F.ATTN Attention 

9 S1F.FEOF Fetch EOF Position 

8-3 Sept. ‘81 



SECTION 8 - SVC 1 INPUT/OUTPUT REQUEST 

SOF.TST, Test Request: A test request (Function Code 20H) returns 

with a return status of 0 if there is no outstanding proceed request 

to the specified resource by the task. If there is an outstanding 

proceed request, the call-returns a status of FF. 

SOF.CAN, Cancel Request: A cancel command request (Function Code 

21H) is used to terminate a request which has previously been issued. 

This is especially useful on an interactive device. If the cancel 

request is not initiated; then any outstanding requests must first be 

completed before others can be started on the resource. 

When a cancel command is issued, the operating system schedules the 

previous request for termination. The actual termination is 

asynchronous to the cancel request. When the request is terminated, 

if the task is enabled, it receives a trap. The parameter added to 

the trap queue is the address of the original parameter block, not 

the address of the cancel parameter block. Alternatively, the task 

may sense the completion of the request with test request or wait for 

completion request. 

It is possible that a previous proceed request has gone to 

completion, at the time the cancel call is done, without being 

serviced, i.e. it has been added to the event queue. In that case, 

the return status in the proceed request will not contain the cancel 

return code. 

Two parameter blocks are involved in the cancel processing. The 

first is the original parameter block specified by the user when the 

request was initiated. The second is the command function parameter 

block which is requesting the cancel. These should not be the same 

parameter block. At the completion of the cancel command, status is 

returned to both of these parameter blocks as indicated below: 

1) Cancel parameter block: 

000 The requested termination has been scheduled. 

007 No request on-going for the task on this resource. 

O11 Resource not assigned. 

Sept. ‘81 8-4



SECTION 8 - SVC 1 INPUT/OUTPUT REQUEST 

2) Original parameter block: 

007 Request is canceled. 

SVC 1 Type: The SVC 1 type is bit 5 in the function code. Its 

value, 0 or 1, defines the type of operation executed by the SVC. 

Wait~Proceed: Wait-Proceed is a common SVC attribute and is 

invariant with respect to SVC type. Wait-Proceed has the same 

bit-pattern structure for each SVC parameter block which is described 

in detail in Section 7. 

Unconditional Proceed: Unconditional proceed is a common SVC 

attribute and is invariant with respect to SVC type. Unconditional 

proceed has the same bit-pattern structure for each SVC parameter 

block which is described in detail in Section 7. 

8-5 “Sept. '81 



SECTION 8 - SVC 1 INPUT/OUTPUT REQUEST 

2) SO.RS, Return Status 

The Return Status codes will take on a value from 0 to 19 where 0-9 

are standard error codes and 11-19 are the SVC 1 error codes listed 

below. 

Function Code Meaning 

0~9 Common codes. 

$1S.LU 10 Illegal or unassigned LU. 

$1S.AM 11 Access mode missmatch. 

$1S.TOUT 12 Time-out. 

S1S.DWN 13 Device off line. 

$1S.EOF 14 End of file. 

$1S.EOM 15 End of media. 

S1S.RER 16 Recoverable or parity error. 

S1S.UNR 17 Unrecoverable, read-write failed. 

S1S.RND 18 Invalid random address. 

S1S.NRND 19 Non-existent random address. 

3) S1.LU, Logical Unit 

In order to provide device independent I/0, all I/O requests are 

directed to a logical unit. The logical unit in the parameter block 

is a user defined integer from 0 to 200 (decimal) which is assigned . 

to one logical file or device. Logical units greater than 200 are 

used by the Operating System (SVC) and support programs like the 

debugger. The particular resource desired must be assigned to a 

specific logical unit prior to executing an SVC 1 call. If an 

invalid or unassigned LU is specified, the call is rejected unless 

reference to the system device numbers is allowed. If no operation 

is desired, the specified LU should be assigned to the NULL device. 

4) $1.TS, Termination Status 

This status byte may contain information unique to the specific type 

of device. 



SECTION 8 - SVC l INPUT/OUTPUT REQUEST 

5) $1.BAD, Buffer Address 

The buffer is specified by the buffer start address, and points to 

the first byte in the buffer. All buffers must be fully contained in 

the same logical segment of the task address space. Buffers used in 

read requests must be in a writable segment, since the memory 

locations are changed by the read operation. 

6) S1.BSZ, Buffer Size 

The buffer size specifies the number of bytes to be written, and the 

maximum number of bytes to receive. 

7) S1.BCNT, Byte Count 

This field is used to return the actual number of bytes transferred 

during a request. It is most useful when dealing with variable 

length record devices, such as magnetic tape. Byte count has an 

undefined error status. 

8) S1.RND, Random Address 

Random Address is used when the function code specifies random 

(SIF.RND). It is interpreted in two different ways depending on the 

format specified in function code. 

On Image ASCII/Binary, it specifies the logical record number 

(starting at 0) to be accessed during data transfer. 

On Formatted ASCII, it is divided into two 16-bit fields which 

contain positioning information at data transfer. These fields are 

input in the read-function and output in the write-function. The 

first field (most significant part) contains vertical tabulation and 

the second horizontal. - Positioning is absolute, when the most 

significant bit is set, the remaining 15-bits specify an absolute 

position. Positioning is relative. When the most significant bit is 

off, the remaining 15-bits form a signed integer for relative 

positioning. For example, if we want the data to start on the first 

position of the next line, then contents of S1.RND in hex is 

00018000. 

8-7 Sept. "Bl 



SECTION 8 - SVC 1 INPUT/OUTPUT REQUEST 

Ex. 1 

‘Implement a Read in ASCII format. 

SLINDATA DB SI1F.READ + SIF.FASC + SIF.RND 

DB O 

DB LU 

DB O 

DA INBUFF 

DA 256 

DA O 

DA il 

DA 0 

Svc 1,SI1INDATA 

Ex. 2 
Implement a Write. 

NEWF DB S1F.WRITE 

DB (OO 

DB 2 

DB O 

DA NEWFTXT 

DA NEWFTXTL 

NEWFTXT DB 'NEWFILE.' ,7 

NEWFTXTL EQU *-NEWFTXT 

SVC 1, NEWF 

8.4 ACCESS MODES 

All input/output requests are made through SVC 1. All devices and 

files support binary transfer, proceed I/O, wait for completion, 

sequential access, and conditional proceed unless specified otherwise 

in the individual driver of file handler descriptions. The supported 

attributes that are listed in each description should be added to the 

previous list. The device code, which is a number between QO and 255, 

defines all supported devices. Files, both contiguous and indexed, 

are available on each direct-access device supported by a given 

driver. 

Sept. '8l 8-8



SECTION 8 - SVC 1 INPUT/OUTPUT REQUEST 

Indexed and Contiguous Files are handled in exactly the same way 

when performing both input and output. The main difference between 

them is that a contiguous file cannot be expanded while an indexed 

file can. Every file can be accessed in any of three different ways; 

namely as a: 

1) Physical File - In 256 byte sectors. 

2) Logical File - With fixed or variable record lengths. 

3) Byte - As a stream of bytes. 

The way in which the file is described is specified in SVC 7 when. you 

open it. Note SVC 7 allows for an Access Mode (see S7.TAM in SVC 7) 

in the high nibble. This high byte allows for either physical 

access, logical access, or byte access. 

1) Physical Access 

When data is transferred as physical records no buffering or 

formatting is needed because the data is transferred in 256 byte 

blocks. When data is transferred as logical records an additional 

buffer (1 to 65,535 bytes) is used. Note that in this case the File 

Manager can handle partial sectors that belong to the same logical 

record but to different physical disk sectors (see Logical Access). 

Read/Write 

0) SOF.WAIT Standard. 

1) S1F.READ Data is read from the current sector for “N" 

sectors. 

2) SIF.WRIT Data is written into the current sector for “N” 

sectors. 

3) SIF.WRD. Data is written as SIF.WRIT and then verified. The 

sector index prints to the next sector when the 

operation is complete. 

8-9 Sept. ‘81 



SECTION 8 - SVC 1 INPUT/OUTPUT REQUEST 

Data Type 

2) SI1F.IBIN Image binary. All others not supported. 

Access Type 

0) Sequential. Sector index updated after each 

access. (No parameter needed) 

1) SI1F.RND Random access. Sector index updated to random 

address before access and updated after each 

access. 

Special Operations 

0) SOF.TST Standard 

1) SOF.CAN Standard 

2) SIF.FR Forward Record 

4) SI1F.WF Write File Mark. Updates EOF marker. Space 

allocated past this marker at this time is 

returned to the system. 

5) SI1F.BR Backward record if not a sector 0. 

7) SI1F.RW Sector index set to 0 

9) SIF.FEOF Fetch EOF marker (last sector) into random address 

All others are undefined. 

SIF.WRIT, WRITE - Variable Record Length: Data is written on the 

disk from the current file pointer. 

Sept. ‘81 8-10



SECTION 8 — SVC 1 INPUT/OUTPUT REQUEST 

2) Logical Access 

This mode is used to provide device independent I/0. It uses sytem 

buffering which means that a system buffer is allocated for each 

file. The system bufer is the size of a device sector (typically 256 

bytes). Although the device is accessed on physical sector 

boundaries the program can access data as logical records. Data is 

read/written from the users buffer to the system buffer and then to 

the device with the system performing all additional manipulation to 

map logical records into physical sectors. 

The logical records can be either of fixed length or variable length. 

A fixed length record is mapped contiguously into the physical 

sectors one record after another. For example, two 384 byte logical 

records map into three 256 byte physical sectors. Varioable record 

length files have the record length specified whenever a read or 

write operation is performed. The record size being the buffer size. 

Positioning is done on byte boundaries except for the special 

operations where the record size is 256 bytes. 

Logical access can be used with all read/write operations and with: 

0) SI1F.IASC Image ASCII 

1) S1F.FASC Formatted ASCII 

2) S1F.IBIN Image Binary 

ASCII transfers use space compression (bit 7 = 1 and bits 0 to 6 

equal to the number of blanks). Records are terminated by 0. 

When performing input operations where the buffer size is greater 

than the record size there are no fill characters and larger records 

are truncated. Output operations with a buffer size greater than the 

record length are truncated while a smaller buffer size is padded 

with zeroes for Binary and spaces for ASCII. 

Operations are the same as for physical access with the appropriate 

modifications mentioned above. 

8-11 Sept. ‘81 



SECTION 8 - SVC 1 INPUT/OUTPUT REQUEST 

3) Byte Access 

Byte access is the same as logical access with variable length 

records. 

Sept. ‘81 8-12



SECTION 9 

SVC 2 SUBFUNCTIONS 





SECTION 9 

SVC 2 SUBFUNCTIONS 

9.1 INTRODUCTION 

There are a number of service functions called subfunctions which are 

provided to the user. These are implemented by SVC 2.1 through SVC 

2.12. These subfunctions are related to the tasks communication with 

the console operator, to memory allocation, to text processing, and 

to command processing. 

The purpose of the function code for the subfunctions is generally to 

modify the conditions of the SVC call. The content of the function 

code is ignored by those subfunctions for which no function code has 

been defined. This means that no wait for completion and no 

unconditional proceed are supported. All subfunction requests 

require a Parameter Block accompanying the request. 

The Parameter Blocks for the various SVC 2 subfunctions have the 

general form: 

|(0) SO.FC | (1) SO.RS | 

| Function code | Return status | 

| (2) S2.SNR | (3) S$2.PAR | 

Subfunction | | | 
| (4) | 
| | See SVC 2 subfunctions 

The parameter block for the SVC 2 subfunctions has the following 

structure: 

Offset Bytes Type Mnemonic Name 

1) 0 1 Byte SO.FC Function Code 

2) 1 1 Byte SO.RS Return Status 

3) 2 1 Byte S$2.SNR Subfunction 

4) 3 i Byte S2.PAR Parameter 

Total 4 

9-1 Sept. ‘81 



SECTION 9 - SVC 2 SUBFUNCTIONS 

9.2 PARAMETERS 

Descriptions of the parameters in the parameter block are given 

below: 

1) SO.FC, Function Code 

This parameter is determined by each subfunction. 

2) SO.RS, Return Status 

The Return Status is also determined by each subfunction. There is 

one common value, S2S.ISB, whose status code is 20 and which 

corresponds to an invalid subfunction number. S2S.ISB part of the 

Return Status Parameter of all SVC's. If a subfunction is used 

illegally, it is this status that will be returned. 

3) $2.SNR, Subfunction 

There are eight subfunctions available whose characteristics are as 

follows: 

Status 

Subfunction Code Meaning 

EV2.1MEM 1 Memory allocating. 

EV2.2MSG 2 Log message. 

EV2.3PFD 3 Pack file descriptor. 

EV2.4PNU 4 Pack numeric data. 

EV2.5UNP 5 Unpack binary number. 

EV2.7DAT 7 Fetch or set date and time. 

EV2.8CMD 8 Scan mnemonic table. 

EV2.120C 12 Open/close device. 

4) S2.PAR, Other Data 

The content of this field depends on each subfunction and is 

different for each one. 

Sept. ‘81 9-2



SECTION 9 - SVC 2 SUBFUNCTIONS 

9.3 SVC 2.1 MEMORY HANDLING 

SVC 2.1 is used to allocate and deallocate memory. The storage is 

allocated in system memory. Free space is allocated from the system 

table area (first 16K) and is very limited. Allocation is done on a 

first fit basis and the Operating System keeps a record of the size 

of the space that is actually allocated. 

When releasing memory, only the location of the block to be released 

is required. Blocks of memory are released in the same fashion as 

they are accessed. For example, you cannot allocate a 2K byte block 

of memory and then release it in two 1K byte blocks. You must 

release it as a 2K byte block. Furthermore, deallocation must be 

done explicitly. The Operating System does support compaction. 

Parameter Block 

The Parameter Block for SVC2.1 is shown below. 

|(0) SO.FC | (1) SO.RS | 

| Function code | Return status| 

|(2) $2.SNR = 1] (3) S2.PAR | 

| | Reserved | 

|(4) S2.1ADR | 
| Memory address | 

| (6) $2.1S1Z | 

| | Memory size 

The Parameter block for SVC2.1 has the following structure: | 

Offset Bytes Type Mnemonic Name 

1) 0 1 Byte SO.FC Function Code 

2) 1 1 Byte SO.RS Return Status 

3) 2 1 Byte $2.SNR Subfunction = 1 

4) 3 1 Byte S2.PAR Reserved (not used) = 0 

5) 4 2 Address $2.1ADR Memory Address 

6) 6 _ 2) Integer $2.1SIZ Memory Size 

Total 8 

9-3 Sept. ‘8l 



SECTION 9 - SVC 2 SUBFUNCTIONS 

Parameter 

Descriptions of the parameter in the parameter block are given below. 

1) SO.FC, Function Code 

Memory Handling: The Memory Handling field is dependent upon the 

values of bits 0-2 as follows: 

Bit Value Name Description 

0-2 Memory Handling Field 

1 S2F.1ALO Allocate Memory 

2 S2F.1MAX Reserved 

3 S2F.1REL Release Memory 

4 S2F.1TCB Allocated a Task Control Block 

(TCB). Only for internal use. 

5 S2F.1CAN Remove a callers Task Control 

Block (TCB). Only for internal 

use. 

2) SO.RS, Return Status: The Return Status Codes for SVC2.1 take on 

the values 21 and 22 as given below. 

Function Code Meaning 

S2S.1PAR 21 Illegal parameter. 

S2S.1EOM 22 End of memory. 

5) S2.1ADR, Memory Address: Contains the memory address at 

deallocation and returns the memory address at allocation. 

6) S1.ISIZ, Memory Size: Specifies the memory size to be allocated 

in bytes. 

Sept. '81 9-4



SECTION 9 - SVC 2 SUBFUNCTIONS 

9.4 SVC 2.2 LOG MESSAGE 

SVC 2.2 is used to log a message on the terminal device or system log 

device irrespective of the logical unit assignments in force at the 

time of the request. 

Parameter Block 

The Parameter Block for SVC 2.2 is shown below. 

|(0) SO.FC |(1) SO.RS | 

| Function code | Return status | 

{(2) $2.SNR }(3) S2.2Ts | 

| Subfunction 2 | Term. status | 

. | (4) $2.2BAD | 

| Buffer address | 

| (6) $2.2BSZ | 

| | Buffer size 

The Parameter Block for SVC 2.2 has the following structure: 

Offset Bytes Type Mnemonic Name 

1) 0 1 Byte SO.FC Function Code 

2) 1 1 Byte SO.RS Return Status 

3) 2 1 Byte S2.SNR Subfunction = 2 

4) 3 1 Byte $2.2TS Reserved = 0 

5) 4 2 Address S2.2BAD Buffer Address 

6) 6 2 Integer S2.2BSZ Buffer Size 

Total 8 

Parameters 

Descriptions of the parameters in the parameters block are given 

below. 

1) SO.FC, Function Code: Refer to the SVC 1 Function Code parameters 

regarding data formatting. 

2) SO.RS, Return Status: There is no return status. 

9-5 Sept. ‘81 



SECTION 9 - SVC 2 SUBFUNCTIONS 

3) Reserved. 

4) $2.2BAD, Buffer Address: The address of the buffer to write on 

the system console. 

6) $2.2BSZ, Buffer Size: This parameter specifies the number of 

bytes to write. 

Example 

Log the message 'Records Copied’ onto the console. 

S22ANTR DB 0 
* DB 0 

DB EV2.2MSG 
DB 0 
DA ANTRTXT 
DA ANTRSIZ 

* 

ANTRTXT DB ’ Records Copied. 

ANTRSIZ EQU- *-ANTRTXT 
svc 2,S22ANTR 

Sept. '81 9-6



SECTION 9 ~ SVC 2 SUBFUNCTIONS 

9.5 SVC 2.3 PACK FILE DESCRIPTOR 

SvC 2.3 allows the user to process a File Description in standard 

Monroe syntax. The scan proceeds until it has satisfactorily 

processed each field in the File Descriptors syntax. Headings and 

Spaces are ignored. If the scan finds illegal characters, a syntax 

error is returned and the scan terminates. Note that some kind of 

termination character must exist if the string size is not specified. 

Parameter Block 

The Parameter Block for SVC 2.3 is shown below. 

|(0) S0O.FC |(1) SO.RS |(2) S2.SNR=3 |(3) $2.3TS | 

| Function code | Return status | | Term. status | 

| (4) $2.3ADR | (6) $2.3BUF | 

ASCII-string address | Address of receiving area | 

1(8) $2.3PNT |(10) $2.3CNT | 
Terminating string address | String size | 

The Parameter Block for SVC 2.3 has the following structure: 

Offset Bytes Type Mnemonic Name 

1) 0 1 Byte SO.FC Function Code 

2) 1 1 Byte SO.RS Return Status 

3) 2. 1 Byte  S2.SNR Subfunction = 3 
4) 3 1 Byte $2.3TS Termination Status 

5) 4 2 Address S2.3ADR ASCII-String Address 

6) 6 2 Address S2.3BUF Address of Receiving Area 

7) 8 2 Address S2.3PNT Terminating String Address 

8) 10 _ 2) Integer S2.3CNT String Size 

Total 12 

9-7 Sept. ‘81 



SECTION 9 — SVC 2 SUBFUNCTIONS 

Parameters 

Descriptions of the parameter in the parameter block are given below. 

1) SO.FC, Function Code: The function code byte allocation is given as 

follows: 

Bit Value Name Description 

0 1 S2F.3FN Unpack as filename if 

not specified. 

S2F .3KEP Keep non-modified fields. 

2 4 S2F.3CNT String size specified. 

3 8 S2F.3PMO Pack modifier. 

2) SO.RS, Return Status: The Return Status parameters are as follows: 

Function Code Meaning 

$28.3IFD 21 Invalid file descriptor, 

syntax error. 

4) $2.3TS, Termination Status: The termination status byte allocation 

is given in the following table: 

Bit Value Name Description 

0 1 S$2T. 3NEL Element name not found. 

1 2 S2T.3NFN Filename not found. 

2 4 S2T.3NVO Volume name not found. 

3 8 S2T.3NMO Modifier not found. This status 

is only set if the pack modifier 

field S2F.3PMO is requested. 

5) S2.3ADR, String Address: Is a pointer to a string that contains the 

file descriptor to be packed. 

Sept. '81



SECTION 9 - SVC 2 SUBFUNCTIONS 

6) S2.3BUF, Receiving Area: This is a pointer to a 29-byte area. 

Note that the modifier field is on the negative side of the area, and 

must only be present if the function S2F.3PMO is requested. The 

following parameters are then included in the Parameter Block: 

| (-1) FD.MOD| 

| File modifier| 

| Element name 

| (0) FD.VOL| 

| Volume name | 

| (4) FD.FILE | 

| File name | 

| (16) FD.ELMT | 

| 

The modifier field has the following structure: 

Offset Bytes Type Mnemonic Name 

-1 1 Byte FD.MOD File Modifier 

1 Byte FD.VOL Volume Name 

4 2 Address FD.FILE File Name 

16 2 Byte FD.ELMT Element Name 

7) S2.3PNT, Terminating String Address: This field is returned 

pointing to the first byte that is not part of the file descriptor. 

8) S2.3CNT, String Size: This is an optional field, specifying the 

string length. The lenght of this string can be limited by setting 

the S2F.3CNT-bit in SO.FC field, and give the size in S2.3CNT-field. 

A string length of zero means that the source string is terminated 

with 0. 
. 

9-9 Sept. ‘81 



SECTION 9 -— SVC 2 SUBFUNCTIONS 

9.6 SVC 2.4 PACK NUMERIC DATA 

SVC 2.4 translates ASCII hexadecimal, decimal, or octal character 

strings into binary 8, 16, 24, or 32 bit numbers. Leading spaces are 

ignored and the conversion continues until a character not conforming 

to the base is found. 

Parameter Block 

The parameter block for SVC2.4 is shown below. 

(0) S0.FC | (1) 

Function code | 

SO.RS 

Return status | 

|(2) $2.SNR = 4 |(3) S$2.4S1ZE| 

(4) S2.4ADR 

String address 

(8) 

| Size 

| (6) S2.4PNT 
| Updated string address 

$2.4RES 

Result 

The parameter block for SVC 2.4 has the following structure: 

1) 

2) 

3) 

4) 

5) 

6) 

7) 

Sept. 

Function Code 

Return Status 

Subfunction = 4 

String Address 

Updated String Address 

Offset Bytes Type Mnemonic Name 

0 1 Byte SO.FC 

1 1 Byte SO.RS 

2 1 Byte $2.SNR 

3 1 Integer S2.4SIZE Size 

4 2 Address S2.4ADR 

6 2 Address S2.4PNT 

8 4 ~—s- Byte S2.4RES Result 

Total 8 

"81 9-10



SECTION 9 - SVC 2 SUBFUNCTIONS 

Parameters 

Descriptions of the parameters found in the parameter block are given 

below: 

1) SO.FC, Function Code: The function code byte allocation is as 

follows: 

Bit Value Name Description 

0-2 ~ - Conversion Base. 

0 S2F.4DEC Decimal. 

1 S2F.40CT Octal. 

2 S2F.4HEX Hexadecimal. 

3 Sign Handling. 

0 S2F.4SGN No sign input allowed. 

1 S2F.4SGN Input may be signed. 

4 Destination. 

0 ‘2SF.4IND In parameter block. 

1 2SF.4IND Address Specified. 

2) $SO.RS, Return Status: The Return Status codes can take on the 

values of 21 and 22 as shown below. 

Function Code Meaning 

$2S.40FL 21 Overflow. 

$2S.4NCV 22 Nothing converted. 

3) $2.4SIZE, Size: This parameter describes the size of the binary 

result. The user can auto-increment the result pointer using this 

parameter. The bit contents is: 

Bit Value Name Description 

4-6 - = Size of result field. 

$2Z.4BIN Contains the number of bytes in 

the result field. 

7 = = Result poitner field. 

0 $2Z.SINC Do not auto increment the 

result pointer. 

1 $2Z.4INC Auto increment the result pointer. 

9-11 Sept. '81 



SECTION 9 - SVC 2 SUBFUNCTIONS 

Note that the size of the buffer through which the translation is 

invoked must be specified in advance. 5$2Z.4BIN then indicates the 

size of the binary result. If for example, you have characters in an 

array, that must be translated into binary S2Z.4BIN can be used to 

position the buffer into segments of some fixed memory length. 

Hence, if S2Z.4BIN is set at K bytes then a 1 in bit 7 for $2Z.4INC 

means that each time the result pointer is incremented it will do so 

in K byte segments of memory. During the actual data translation 

phase this removes an extra program step since you do not have the 

extra statement incrementing the result pointer after the previous 

array element has been buffered. 

5) S2.4ADR, String Address: This is a poninter to the first 

character of the ASCII string to be converted. 

6) S2.4RES, Result: The result is placed either in this field, or 

at the address specified by this field. 

7) __S2.4PNT, Updated String Address: This is the updated string 

pointer at return, and it is pointing at the first byte in the string 

that was not convereted. 

Ex. 1 

This example converts ASCII decimal to a binary number. 

SVC24 DB S2F.4DEC 

STAT DB 0 

SUB DB EV2.4PNU . 

SIZE DB STRLEN 

STRAD DA STRDATA 

STRRS DA 0 

RESBIN DMA 2,0 

STRDATA DB "1234567" 

STRLEN EQU *-STRADATA 

SVC 2,SVC2.4 

Sept. ‘81 9~12



SECTION 9 - SVC 2 SUBFUNCTIONS 

9.7 SVC 2.5 UNPACK BINARY NUMBER 

SVC 2.5 translates an 8, 16, 24 or 32 bit number into ASCII, 

hexadecimal, decimal, or octal format. 

Parameter Block 

The parameter block for SVC2.5 is shown below. 

|(0)  SO.FC }(1) SO.RS |(2) $2.SNR = 5|(3) S2.5SIZE| 

| Function code | Return status | | Size 

|(4) $2.5ADR | (6) $2.5PNT 

| Destination address | Updated string address 

|(8) $2.5VAL 

| Source 

The Paramter Block for SVC 2.5 has the following structure: 

1) 

2) 

3) 

4) 

5) 

6) 

7) 

Offset Bytes Type Mnemonic Name 

0 1 Byte SO.FC Function Code 

1 1 Byte SO.RS = Return STatus 

2 1 Byte $2.SNR Subfunction = 5 

3 1 Integer $2.5SIZE Size 

4 2 Address S2.5ADR Destination Address 

6 2 Address S2.5PNT Updated String Address 

8 4 Byte S2.5VAL Source 

Total 12 

9-13 Sept. "81 



SECTION 9 - SVC 2 SUBFUNCTIONS 

Parameters 

Descriptions of the parameters are given below. 

1) SO.FC, Function Code: The function code byte allocation is as 

follows: 

Bit Value Name Description 

0-1 Base field. 

0 S2F. 5DEC Decimal. 

S2F.50CT Octal. 

2 S2F. 5HEX Hexadecimal 

2 Sign field. 

0 S2F.5SGN Unsigned conversion. 

S2F.5SGN Signed conversion 

3 Source description 

0 S2F.5IND Number in parameter block. 

1 S2F.5IND Address specified. 

4 Space flag. 

0 S2F.5SP Leading zeros. 

1 S2F.5SP Leading spaces. 

5 Field Justification. 

0 S2F.5LFT Right Justify. 

1 S2F.5LFT Left Justify. 

Note that when converting a number to hexadecimal, decimal, or octal 

the base must be specified. 

2) SO.RS, Return Status: There is no return status. 

3) S2.5SIZE, Size: Describes the size of both the binary and ASCII 

fields, and allows you the possibility of auto-incrementing the binary 

pointer. If the number to be converted exceeds the buffer length, most 

of the significant bytes are lost. If suppression of leading zeros is 

requested, the number is stored in the buffer, and the remaining 

characters, if any, are filled with spaces. If the number is to be left 

justified, only the number of bytes required for the number will be used, 

Sept. ‘81 9-14



SECTION 9 — SVC 2 SUBFUNCTIONS 

and S2.5PNT will point at the next position after the number. The 

byte allocation size is as follows: 

Bit Value Name Descripton 

0-3 Bytes in ASCII. 

- $2Z.5ASC Contains the number of bytes 

in an ASCII character 

string. 

4-6 - $2Z.5BIN Contains the number of bytes 

in a binary number. 

7 Auto increment. 

0 $2Z.5INC Do not auto increment binary 

pointer. 

1 $2Z.5INC Auto increment binary 

pointer. 

5) $2.5ADR, Destination Address: This is a pointer to the first 

location of a buffer in memory where the converted number is to be 

stored. This buffer must be in a writable logical segment. 

6) S2.5PNT, Updated Destination Address: This is the updated buffer 

address pointer at return, and it is pointing at the first byte in 

the buffer after the converted number. ; 

7) $S2.5VAL, Source: The binary number is placed either in this 

field, or at the address specified by this field. 

Ex. 

S25INERR DB  S2F.5DEC + S2F.5SP 
DB OO 
DB —sC-EV2.SUNP 
DBs 10H4+3 
DA __INERR 

DA 0 
DAO 
DAO 

SVC 2,S25INERR 

9-15 Sept. ‘81 



SECTION 9 - SVC 2 SUBFUNCTIONS 

9.8 SVC 2.7 FETCH/SET OR DATE/TIME 

SVC2.7 is used either to interrogate the time-slice value or to fetch 

and set the current time of day in the operating system. 

Parameter Block 

The parameter block for SVC2.7 is shown below. 

|(0)  SO.FC | (1) so.RS_ | 

| Function code | Return status| 

|(2) S2.sNR=7 | (3) S2.PAR | 

| | Reserved | 

| (4) $2.7BUF | * 

| Buffer address | 

The Parameter Block for SVC2.7 has the following structure: 

Offset Bytes Type Mnemonic Name 

1) Oo 1 Byte SO.FC Function Code 

2) 1 1 Byte SO.RS Return Status 

3) 2 1 Byte S2.SNR Subfunction = 7 

4) 3 1 Byte S2.PAR Reserved 

5) 4 2 Address S2.7BUF Byte for address or 

or time slice value 

__ Integer 

Total 6 

Sept. ‘81 9-16



SECTION 9 — SVC 2 SUBFUNCTIONS 

Parameters 

The parameters found in the parameter block are described below: 

1) SO.FC, Function Code: the byte allocation for the function code 

is as follows (S2.PAR is not used). 

Bit Value Name Description 

0-1 Fetch 1 set field 

0 Tllegal = 

1 S2F.7GET Fetch function 

2 - S2F.7SET Set function 

3 Illegal - 

2-3 Slice/date/time field 

0 S2F.7SLC Slice handling 

1 S2F.7DAT Date handling 

2 S2F.7TIM Time handling 

3 (S2F.7DAT Date and time handling. 

+ S2F.7TIM) The buffer has the date 

followed by the time. 

bens Data field 
0 S2F.7ASC ASCII data; slice handling 

only. 

1 S2F.7BIN Binary data, time and/or 

date handling only. 

Note in all of the above fields there is a 0 in bit 5. 

2) SO.RS, Return Status: The following return status codes are in 

effect. 

Function Code Meaning 

S2S.7DAT 21 Invalid date. 

$2S.7TIM 22 Invalid time. 

5) S$2.7BUF, Buffer Address: This field 1) holds the value at slice 

handling. 2) Contains the address to a buffer within the user's 

program that either receives or sends the values at date and/or time 

handling. 

9-17 Sept. '81 



SECTION 9 - SVC 2 SUBFUNCTIONS 

If ASCII format is selected, the buffer must be ten bytes long for 

date handling, eight bytes long for time handling, and nineteen bytes 

long for both date and time handling. On setting the date and time 

the buffer must be terminated by a binary zero. The format is: 

Date: “YYYY-MM-DD”" (10 Bytes) 

Time: “HH.MM.SS" (8 Bytes) 

Date and time: “YYYY-MM-DD HH.MM.SS”, 0 (19 Bytes) 

Additional information regarding the parameter block fields are 

summarized in Table 9-2. 

Table 9-2. SVC 2.7 Parameter Block Field 

[S2.SNR |S2.PAR |S2F.7BUF| 

S2F.7SET + S2F.7TIM + S2F.7DAT |set time | | | | 

|& date | vu | [| u | 
S2F.7GET + S2F.7TIM + S2F.7DAT |get time | | | | 

|& date | U | {vu | 
S2F.7SET + S2F.7SLC [set | | | | 

| slice | vu | | ou | 

S2F.7GET + S2F.7SLC lget | | | | 
| slice | ou | | Ss | 

U - Should be initiated by user 

before SVC instruction. 

S - Returned by system after SVC 

instruction. 

Sept. ‘81 9-18



SECTION 9 - SVC 2 SUBFUNCTIONS 

9.9 SVC 2.8 SCAN MNEMONIC TABLE 

SVC 2.8 permits the user to decode command memonics. 

Parameter Block 

The parameter block for SVC 2.8 is shown below. 

|(0)  SO.FC | (1)  SO.RS | 

| Function code | Return status | 

|(2) S2.SNR = 8 | (3) S2.8INX | 

| | Index | 

| (4) $2.8ADR | ; 

| String address | 

| (6) $2.8LIST | 

| Mnemonic table address __| 

| (8) $2.8PNT | 

| | Updated string address 

The parameter block for SVC 2.8 has the following structure: 

Offset Bytes Type Mnemonic Name 

1) O l Byte SO.FC Function Code 

2) 1 1 Byte SO.RS Return Status 

3) 2 1 Byte $2.SNR Subfunction = 8 

4) 3 1 Integer $2.8INX Index 

5) 4 2 Address S2.8ADR String Address 

6) 6 2 Address $2.8LIST Mnemonic Table Address 

7) 8 2 Address S$2.8PNT Updated String Address 

Total 10 

Parameters 

The parameters for SVC 2.8 are described below. 

1) SO.FC, Function Code: There is no function code for SVC 2.8. 

9-19 Sept. "81 



SECTION 9 ~ SVC 2 SUBFUNCTIONS 

2) SO.RS, Return Status: The following return status code is in 

effect. 

Function Code Meaning 

S2S.8CMD 21 ; Undefined command mnemonic. 

4) §2.8INX, Index: This field returns the number in the table of 

the matched mnemonic, starting with zero. Thus, if a match is found 

on the third item in the table, the index returned is 2. 

5) $S2.8ADR, String Address: This field shall contain the address to 

the source string, within the user's program space, to be scanned. 

6) S2.8LIST, Mnemonic Table Address: This field shall contain the 

address of a mnemonic table within the user's program space. A 

mnemonic table is composed of a string of memonics, separated from 

each other by a byte containing a binary zero. The end of the table 

is signified by the occurrence of two consecutive bytes of binary 

zeros. 

The first byte of a mnemonic specifies the abbreviation size. The 

abbreviation must begin with the first character in the memonic, and 

must also be contiguous. 

7) $2.8PNT, Updated String Address: This field returns the updated 

string address, and it is pointed to the first character that is not 

matched. -This is normally a separator following the memonic in the 

string being scanned. 

Illegal Characters 

Characters not allowed in table words (terminal characters) are: 

delete (7¥FH) 

space (20H) 

"“#' C)+,./:2:35<2>7 

Sept. ‘81 9-20



SECTION 9 - SVC 2 SUBFUNCTIONS 

Examples: 

Ex. 1 

Code the mnemonic “two words.” 

Note the letters TW and W are required. These are coded as: 

CMDTABLE DB 2 Abbreviation size. 

DB 'ONEWORD' Command in ASCII. 

DB O End of command. 

DB 2,'TWO',1,'WORDS',O 

DB -1l Flag to indicate that 

DA NEXTABLE table continues at this 

address. 

NEXTABLE DB 2,'TREE',1,'WORDS',1 'COMMAND',O 

DB O End of table ! 

Ex. 2 

This example shows how to decode command mnemonics. 

SV2.8 DA 0,8 

DA STRADR 

DA TABADR 

UPDTADR DA 0 

Svc 2,5V2.8 

9-21 Sept. ‘81 



SECTION 9 -— SVC 2 SUBFUNCTIONS 

9.10 SVC 2.12 OPEN/CLOSE DEVICE 

SVC 2.12 is used to take a device off-line or bring on-line a device 

that was previously off-line. 

Parameter Block 

The parameter block for SVC2.12 is shown below. 

|(0) so.Fc | (1) S$O.RS |(2) S2.SNR = 12 |(3) S2.PAR | 
| Function code | Return status | | Reserved | 

14) $2.12FD | (6) S2.12ADR | 

| Name pointer, or device number | Optional SVC~-handler address | 

The parameter block for SVC2.12 has the following structure: 

Offset Bytes Type Mnemonic Name 

1) 0 1 Byte SO.FC Function Code 

2) 1 I Byte SO.RS Return Status 

3) 2 1 Byte S2.SNR Subfunction = 12 

4) 3 1 Byte $2.PAR Reserved = 0 

5) 4 2 Integer $2.12FD Name point, or 

device number 

6) 6 = Address $2.12ADR Optional SVC - 

Total 8 handler address 

Sept. ‘81 9~22



SECTION 9 — SVC 2 SUBFUNCTIONS 

Parameters 

The parameters for SVC 2.12 are described below: 

1) SO.FC, Function Code: The function code byte allocation is as 

follows: ; 

Bit Name Description 

“0. S2F.12CL Close device 

1 S2F.120P Open device 

2 S2F.12PR Write protected 

3 S2F .NF Nonfile structured 

4 S2F.12AD SVC handler address 

specified for 

directory oriented 

devices 

5 S2F.12AL Fetch auto start 

line. This is only 

valid when opening 

file structured files. 

2) SO.RS, Return Status 

The following return status codes are in effect: 

Function Code Meaning 

$28.12AS 21 Device is assigned, can't 

be closed. 

S2S8.12DE 22 Device not found. 

$28.121S 23 New volume already present. 

$2S.120N 24 Directory device not in close 

state. 

9-23 Sept. "81 



SECTION 9 -— SVC 2 SUBFUNCTIONS 

5) §2.12FD, Name Pointer: This field either contains a pointer to 

a symbolic device name, or a numeric value less than 255 that is the 

numeric identity of the device. 

6) $2.12AD, SVC-Handler Address: This optional field contains the 

address to a user written file handler. 

$2F.120P, Function Open: If a directory device is opened 

file-structured by a symbolic name, the volume name will be returned 

in the file-name field of the file-descriptor. 

S2F.12AL, Fetch Auto Start Line: Data contained in the auto start 

line area on the disk is returned to name pointer + 8. Eighty 

characters are moved. 

Additional information regarding the parameter block fields are 

summarized in Table 9-3. 

-Table 9-3. SVC 2.12 Parameter Block Field 

| | | | | 
|S2.SNR |S2.PAR| $2.12FD|S2.12ADR| 

S2F.120P | OPEN | vu | | u/s | | 

| | | | | | 
S2F.12CL | CLOSE | vu | | wu | | 

[OPEN WRITE | | | | | 

S2F.120P + S2F.12PR | PROTECTED | vu | | u/s | | 

|OPEN NON-FILE| | | | | 

S2F.120P + S2F.12NF |STRUCTURED | JU | | vu | | 

U - Should be initiated by user before SVC 

instruction. 

S - Returned by system after SVC instruction. 

Sept. '81 9-24



SECTION 10 

SVC 3 TIMER REQUESTS 





SECTION 10 

Svc 3 TIMER REQUESTS 

10.1 INTRODUCTION 

SVC 3 is used to coordinate tasks with the real time handler and 

supports both internal and time of day requests. 

10.2 PARAMETER BLOCK 

The parameter block for SVC 3 is shown below. 

1(0)  S0.FC |(1) SO.RS | 

| Function code | Return status | 

| (2) S3.TIME | 

| 
| 
| 

| Interval in milli/seconds 

| or 

| Hour | Minute 

The parameter block for SVC 3 has the following structure: 

Offset Bytes Type Mnemonic Name 

1) 0 1 Byte SO.FC Function Code 

2) 1 1 Byte SO.RS Return Status 

3) 2 _ 2 Byte S3.TIME Time Interval 

Total 4 

Parameters 

The parameters for SVC 3 are described below. 

1) SO.FC, Function Code: The byte allocation for the function code 

1s as follows: 

Bit Value Name Description 

O-1 Time Specification 

S3F.MIL Milliseconds 

2 S3F.SEC Seconds 

3 S3F.TOD Time of Day 

0-2 Command Field 

0 SOF.TST Test Request 

1 SOF .CAN Reserved 

2 S3F.CMIL Reserved 

3 S3F.CSEC Reserved 

4 S3F.CTOD Reserved 

6 - Wait Proceed bit 

10-1 Sept. '81 



SECTION 10 - SVC 3 TIMER REQUESTS 

Note that in setting the time specification bits 2-5 are padded with 

zeros. In setting the command field bits 3-5 are set at OOl. 

2) SO.RS, Return Status: The following return status code is in 

effect. , 

Function Code Meaning 

S3S.PAR 30 Invalid interval/time-of-day. 

3) S$2.3TIME, Interval: This field contains either an unsigned 

interval value, or an absolute time of day value. 

Sept. ‘81 10-2



SECTION 11 

SVC 4 TASK DEVICE 





SECTION 11 

SVC 4 TASK DEVICE 

11.1 INTRODUCTION 

It is sometimes necessary for a symbiont task to retrigger one of its 

task devices in which case an item will be added to the event queue 

of the task. There are also times when it is necessary to ask the 

symbiont handler to cancel the request in progress. SVC 4 performs 

both of these functions and it is only used by the task that owns the 

task device. 

11.2 PARAMETER BLOCK 

The parameter block for SVC 4 is shown below. 

|(0)  SO.FC | (1) SO.RS | 

| Function code | Return status| 

[(2)  $4.LU | (3) | 
| Logical unit Reserved | 

The parameter block for SVC 4 has the following structure: 

Offset Bytes Type Mnemonic Name 

1) 0 1 _—siByte SO.FC Function Code 
2) 1 1 Byte SO.RS Return Status 

3) 2 1 Integer S4.LU Logical Unit 

4) 3 a Byte Reserved 

Total 4 

ll-1 Sept. '81l 



SECTION 11 - SVC 4 TASK DEVICE 

11.3 PARAMETERS 

The parameters for SVC 4 are described below. 

1) SO.FC, Function Code 

The byte allocation for the function code is as follows: 

Bit Value Name Description 

0 Trigger field 

0 illegal 

1 S4F.TRIG Initial trigger 

1 Cancel field 

0 illegal 

1 S4F.CAN Set cancel pending 

0-1. Trigger + cancel field 

3 S4F.TRIG + Initiate trigger and 

S4F.CAN set cancel pending 

2) SO.RS, Return Status 

The following return status codes are in effect: 

Function Code Meaning 

S4S.ASGN 40 Not assigned. 

S4S.TYPE 41 Invalid device type. 

3) S4.LU, Logical Unit 

This field holds the logical unit that should be accessed. 

Sept. '81 11-2



SECTION 12 

SVC 5 LOADER HANDLING 





SECTION 12 

SVC 5 LOADER HANDLING 

12.1 INTRODUCTION 

SVC 5 is normally used to load an overlay. It can alos be used to 

load a task although tasks are usually loaded through SVC6. An 

overlay is loaded into the requesting tasks segment at a relative 

address specified in the SVC 5 Parameter Block. An overlay can also 

be started at the same time as a task by changing the program 

execution to a new program segment. If the program which is loaded 

has an absolute code designation in the Loader Information Block 

(LIB) then it will be placed at the absolute location specified in 

the LIB and not at the buffer address in the SVC 5 Parameter Block. 

However, if the program is relative relocatable code then it will be 

relocated and loaded into the buffer specified in the SVC 5 Parameter 

Block. 

12.2 PARAMETER BLOCK 

The parameter block for SVC 5 is shown below. 

|(0) S0O.FC |(1) SO.RS | (2) 1(3) | 
| Function code| Return status | Reserved | Reserved | 
| (4) $5.TID | (6) S5.LAD | 
| Name pointer or task number | Load address for overlay | 

| (8) S5.SAD |€10) S5.FD | 
| Start address | | File descriptor 
| (12) S5.SIZE | 

| Additional size 

The parameter block for SVC 5 has the following structure: 

Offset Bytes. Type Mnemonic Name. 

1) 0 1 Byte SO.FC Function Code 

2) 1 1 Byte SO.RS Return Status 

3) 2 1 Reserved 

4) 3 1 Reserved 

5) 4 2 Integer S5.TID Name pointer or task number 

6) 6 2 Address S5.LAD Load address for overlay 

7) 8 2 Address S5.SAD Start Address 

8) 10 2 Address S$5.FD File Descriptor 

9) 12 _2_ Integer S5.SIZE Additional Size 

Total 14 

12-1 Sept. ‘81 



SECTION 12 - SVC 5 LOADER HANDLING 

12.3 PARAMETERS 

The parameters for SVC 5 are described below. 

1) SO.FC, Function Code 

Bit Value Name Description 

0 1 S5F.LOAD Load 

1 1 SSF.STRT Start Overlay 

2 1 S5SF.ABS Absolute start 

3 1 SSF.OVL Overlay field ; 

Overlay handling or else task 

handling 

Note that in each of the above fields bits 4 and 5 are padded with 

zeros. Each of the load, start, absolute start, and overlay fields 

is determined by a 1 in the indicated bit position. The remaining 

bits can take on either the value 0 or 1 depending upon the 

particular function or combination of functions desired. 

2) SO.RS, Return Status 

Function Code Meaning 

S5S.TID 50 Illegal task name/number. 

$5S.CODE 54 Illegal code/item at load. 

S$5S.SIZE 55 Overlay don't fit. 

5) SSF.TID, Task Identifier 

Values less than 256 are task numbers. Values over 255 print to a 4 

byte area with the task name. 

6) $5.LOAD, Load Overlay 

The overlay is loaded from the device specified by the file 

descriptor, into the requesting tasks segment at a relativ address 

specified by S5.LAD. The calling program is placed in Load Wait 

until the overlay is loaded. If the overlay is successfully loaded, 

the root program may call it as a subroutine. Overlays can call 

other overlays directly; the calling code is overlaid with the new 

Sept. ‘81 12-2



SECTION 12 - SVC 5 LOADER HANDLING 

overlay, but the task is aborted if the overlay load fails. Note 

that the overlay must fit within the root segments size. 

7) S5.STRT, Start Overlay 

This call starts the named overlay. If an absolute start is 

requested, the SSF.ABS-bit is set, and the overlay is started at the 

address specified by the S5.SAD field. If relative start is 

requested, the S6F.ABS-bit is cleared, and the overlay is started at 

its established transfer address plus the value in the S5.SAD-field. 

Additional information regarding the parameter block fields is 

summarized in Table 9-4. 

Table 9-4. SVC 5 Parameter Block Fields 

| | | | | | 
|$5.TID|S5.LAD|S5.SAD|S5.FD|S5.SIZE| 

| | | | | | | 

| | 
| | 

SSF .LOAD | LOAD | vu | vf | uv | | 

|START | | | | | | 
S5F.STRT | OVERLAY | | vu | vu! ui| | 

|START + | | | | | | 
S5F.STRT + S5F.ABS |ABSOLUTE| | | u| ou | | 

| | | | | 
| | | | | 

U - Should be initiated instruction. 

8) S5.FD, File Descriptor 

Prints to a 29 byte area with the file name (see SVC 7). 

9) $2.SIZE, Additional Size 

Additional area to be allocated to the: task. 

12-3 Sept. '81 





SECTION 13 
SVC 6 TASK REQUEST 





SECTION 13 

SVC 6 TASK REQUEST 

13.1 INTRODUCTION 

SVC 6 is used to load tasks and control the interaction of a given 

task with other tasks. When using the event queue, any no wait SVC 

call will place the address of the no wait SVC parameter block on the 

event queue of the requesting task after the SVC is executed. A 

program therefore can suspend execution until all requests are 

completed. , 

The event queue for servicing of task devices can be implemented 

executing an SVC call. The SVC parameter block pointers are then 

added to the task's parameter event queue. 

13.2 PARAMETER BLOCK 

The parameter block for SVC 6 is shown below. 

|(0) sO.FC |(1) SO.RS |(2) $6.PRIO|(3) $6.0PT| 
| Function code| Return status | Priority | Option | 

|(4) $6.TID |(6) S6.PAR | 

| Name pointer or task number | Parameter | 

| (8) S6.SAD |(10) S6.FD | 

| Address | File descriptor | 

| (12) S6.SIZE | 

| Additional size | 

The parameter block for SVC 6 has the following structure: 

Offset Byte Type Mnemonic Name 

1) 0 1 Byte SO.FC Function Code 

2) 1 l Byte SO.RS Return Status 

3) 2 1 Byte SO.PRIO Priority 

4) 3 1 Byte S6.0PT Option 

5) 4 2 Integer S6.TID Name Pointer or task number 

6) 6 2 Byte S6.PAR Parameter 

7) 8 2 Address S6.SAD Address 

8) 10 2 Address S6.FD File descriptor 

9) 12 2. Integer S6.SIZE Additional size 

Total 14 

13-1 Sept. ‘81 



SECTION 13 - SVC 6 TASK REQUEST 

13.3 PARAMETERS 

The parameters for SVC 6 are described below: 

1) SO.FC, Function Code 

The upper two most significant bits are used for the wait function 

and the unconditional proceed function. The remaining biits are 

encoded into the reamining six bits. Any combination not listed 

below is illegal. 

Bit 0-5 

Value (Hex) Name Note Description 

Ol S6F.LOAD 1 Load Task 

02 S6F.STRT 1 Start Task 

04 S6F.ABS 1 Absolute Start Address 

08 S6F.QTST Test Event Queue 

09 S6F.QWAL 2 Wait on Event Queue 

OA S6F .QTRM 2 Terminate Event 

Oc S6F.QDIS Disable Event Queue 

OD S6F.QENI Enable Event Queue 

OE S6F.SUSP Suspend Myself 

20 S6F.TST Test Task 

21 S6F.CAN Cancel Task 

22 S6F.PAUS Pause Task 

23 S6F.CONT Continue Task 

25 S6F.PRIO 3 Set Task Priority 

26 S6F.OPT 3 Set Task Options 

28 ; S6F.TSKW Wait for TASK termination 

29 S6F .ADDQ . Add event to queue 

2A S6F .STSW _ Wait for task status change 

2B S6F.TYPE Set TASK type 

NOTE 1: These can be or'ed together as one function. 

NOTE 2: These can be or'ed together as one function. 

NOTE 3: These can be or'ed together as one function. 

A more complete descrition can be found in Section 13.4. 

Sept. '8l 13-2



SECTION 13 - SVC 6 TASK REQUEST 

2) SO.RS, Return Status 

Function Code Meaning 

S6S.TID 60 Illegal task name/number. 

S6S.PRES 61 Task already present. 

S6S.PRI 62 Illegal priority. 

S6S.OPT 63 Illegal option. 

56S. EQUE 64 Event queue disabled. 

S6S.STAT 65 Invalid task status. 

S6S.QPAR 66 Invalid termination parameter. 

S6S.QI™ 67 More items present in event queue. 

S6S.TYPE 68 Invalid task type. 

3) S6.PRIO, Task Priority 

This field is used with function S6F.STRT of the function code. The 

value zero means that the priority defined at the time of 

task-establishment should be used. 

4) S6.OPT, Task Option 

The S6.OPT-field is used at functions S6F.OPT and S6F.TYPE of the 

function code and contains the options of the task. 

Options at S6F.OPT 

Bit Name Description 

0 S60. DASG Default assign allowed. 

S60.NSTK No stack check. 

S6F.OPT: Options field for S6F.TYPE Function 

Bit Name Description 

0 S6T.RES Set the task to be resident in memory. 

1 S6T.NAB Set the task to be non-addable from 

other tasks. 

13-3 Sept. '81 



SECTION 13 - SVC 6 TASK REQUEST 

5) S$6.TID, Task Identifier 

Values less than 256 indicate a task number while values greater 

than 255 are pointers to four byte task name areas. 

6) S6.PAR, Parameter 

Function dependent. 

7) S6.Address 

Function dependent. 

8) S6.FD 

Prints to a 29 byte area containing a packed site name. (See SVC 

7.) 

9) S6.SIZE 

Additional number of bytes to be allocated when a task is loaded. 

13.4 FUNCTION CODE DESCRIPTION 

The following functions can be input for the function code in SVC 6. 

Each function requires specific fields which are indicated under the 

function. 

2) S6F.LOAD, Function Load Task (01 Hex) 

The required fields are: S6.PRIO, S6.OPT, S6.TID, S6.FD and S6.SIZE. 

The specified task is loaded from the device specified by S6.FD. If 

a task is already present in the system with the given S6.TID or if 

S6.TID is invalid, then the call is rejected. A memory area, 

expanded with S6.SIZE is allocated and the task is given the name 

found by the S6.TID field. If there is not memory enough, the Load 

Task call is rejected. 

S6F.STRT, Function Start Task (02 Hex) 

The required fields are: S6.PRIO, S6.TID, S6.PAR and S6.SAD. 

This call, which can either be an absolute start or a relative start, 

begins the indicated task. 

Sept. '8l 13-4



SECTION 13 ~ SVC 6 TASK REQUEST 

A) 

B) 

C) 

Absolute Start (S6F.STRT OR'ED WITH S6F.ABS) 

-S6.SAD contains the address at which the task is started. 

.S6.PRIO, if not zero, is the priority of the task. 

-S6.PAR, if not zero, can be interpreted as the address to a 

vector whose first two bytes are the number of bytes that should 

be transferred to the task. These are stored on the task's 

stack. For an odd number of bytes, a last byte of zero is 

added. 

Relative Start (S6F.STRT without S6F.ABS) 

.The task is started at its established transfer address plus the 

value in the S6.SAD field. 

-S6.PRIO, if not zero, is the priority of the task. 

.S6.PAR, if not zero, can be interpreted as the address to a 

vector whose first two bytes are the number of bytes that should 

be transferred to the task. These are stored on the task's 

stack. For an odd number of bytes a last byte of zero is 

added. 

Register Usage 

For both absolute and relative start operations. The following 

register usage is indicated: 

Register Use 

A Transferred from the starting task. 

B,C,D,E 32 bit switch pattern 

(A=bit 0 of register B) 

H Transferred from the starting task. 

L Transferred from the starting task. 

Y Points to the first byte after the 

program. 

x Points to the lowest possible value, -l, 

for the system pointer (SP). 

SP Top-of-stack 

13-5 Sept. ‘81 



SECTION 13 - SVC 6 TASK REQUEST 

On the top of the stack is a 16-bit unsigned integer that holds the 

number of parameters bytes present in the stack. If no parameters 

are transferred, the value is zero. The size of the additional 

memory added to a task is calculated by subtracting register Y from 

register X. 

S6F.QTST, Function Test Event Queue (08 Hex) 

The required fields are: S6F.PRIO, S6F.TID and S6.PAR. 

This request is used to test if there is anything in the event queue. 

If empty, the request returns with a return status of zero, 

otherwise, it returns with a return status of S6S.QITM where the 

contents of the fields are valid. This call will not remove the event 

from the event queue. 

S6F.QWAL, Function Wait for Event (09 Hex) 

The required fields are: S6.PRIO, S6.TID and S6.PAR. 

This request is used when no more actions can be taken by the task. 

The task will enter the trap wait state. As soon as any item is 

added to the event queue, or if the event queue isn't empty, the task 

returns with a return status of zero, where all fields are valid. If 

the item belongs to an external task, S6.TID is non-zero and the item 

is saved in a slough queue within the task. The item will remain in 

the slough queue until it is terminated by the task. If the item is 

self-directed, S6.TID is zero, and it is not saved in the slough 

queue. The field S6.PAR holds the address of the SVC-parameter block 

that initiated the event. This field contains the node-address at an 

external event, and the item is not saved in the slough queue. 

If the item added to the event queve refers to a task-device, then 

the symbiont initiator for that task-device will be entered, and the 

call will not return to the task. The symbiont handler works in the 

Same way as a real device driver with the same conditions. The 

user's urged to consult the Section on Device Drivers in this manual 

for a more detailed account of the above. 

Sept. ‘81 13-6



SECTION 13 - SVC 6 TASK REQUEST 

S6F.QTRM, Function Terminate Event (0A Hex) 

The required fields are: S6.PRIO and S6.PAR. 

This function is used to remove an external request from the slough 

queue and to terminate it. S6.PRIO contains the final return status 

for that request, and S6.PAR contains the parameter received at 

S6F.QWAI. It is also possible to combine S6F.QTRM and S6F.QWAL. 

S6F.QDIS, Function Disable Event Queue (0C Hex) 

This function is used to close the event queue, and every present or 

queued request will be terminated with a return status of SOF.OFFL. 

S6F.QENI, Function Enable Event Queue (0D Hex) 

The event queue of a task must be opened prior to using the event 

queue. Any addition to a non-enabled event queue will fail, and. 

those requests will have a return status of SOS.OFFL. 

S6F.SUSP, Function Suspend Self (OE Hex) 

The required field is: S6.PRIO. 

This request is used to relinquish control of the processor and is 

added to the Ready-Queue. The priority to be used is specified in 

the field S6.PRIO. If the value is zero, the current priority will 

be used. 

S6F.TST, Function Test Task (20 Hex) 

The required fields are: S6F.PRIO, S6.0PT, S6.TID and S6.PAR. 

This function is useful when you want to test for the presence of a 

task. In this case the TCB-address is returned in S6.PAR. 

13-7 Sept. ‘81 



SECTION 13 - SVC 6 TASK REQUEST 

S6F.CAN, Function Cancel Task (21 Hex) 

This call permits a task to terminate itself, or another task, in an 

orderly fashion. The Return Code of the task S6.PRIO, may be treated 

as required by some other task waiting for the termination of the 

initial. task. Normally the return code 0 represents normal 

termination. If the task has I/O in progress at the time the call is 

made, the I/O must be completed before the task goes to the end of 

job. At this point all of its files and devices are closed. If the 

task is non-resident in memory, it is cancelled by deleting all 

control information pertaining to the task. The task will never 

return from the call if it is self-directed. The required fields 

are: S6.PRIO and S6.TID. 

S6F.PAUS, Function Pause Task (22 Hex) 

This function causes the specified task to enter the Pause state. 

The task does not continue to execute until it is released by an 

S6F.CONT call. A task may also suspend itself. In that case, 

another task must be available to subsequently release it. The 

required field is: S6.TID. 

S6F.CONT, Function Continue Task (23 Hex) 

This function continues a task, by taking’ a paused task out of its 

Pause state. The task will continue to execute as it did before it 

was paused, provided it is not in any other Wait state. The required 

field is: S6.TID. 

S6F.PRIO, Function Change Priority (25 Hex) 

The required fields are: S6.PRIO and S6.TID. 

This function changes the priority of the specified task to that 

specified in the S6.PRIO field of the parameter block. The call is 

rejected if the priority is outside the valid range of 1-255. 

Sept. ‘81 13-8



SECTION 13 - SVC 6 TASK REQUEST 

S6F.OPT, Function Change Options (26 Hex) 

This call will change the options on a task according to the bit 

pattern in S6.0PT. It is possible to combine S6F.PRIO with S6F.OPT. 

The required fields are: S6.OPT and S6.TID. 

S6F.TSKW, Function Wait for Task Termination (28 Hex) 

This call is used when a task wants to wait for another task and its 

termination. At return from the call, S6.PRIO holds the new status 

of task, S6.PRIO contains the return code from the task. The 

required fields are: S6.PRIO, S6.OPT and S6.TID. 

S6F.ADDQ, Function Add Event to Queue (29 Hex) 

The parameter in the S6.PAR field of the parameter block is added to 

the specified task's Event Queue if the queue is enabled. Otherwise, 

the call is rejected with appropriate error status. The required 

fields are: S6.TID and S6.PAR. 

S6F.TSTW, Function Wait for Task Status Change (2A Hex) 

This call is used by a task, when the task wants information about 

any status change on another task. At return from the call, the 

fields contents are the same as on S6F.TSKW. The status changes 

are: 

-Transition to/from Dormant state. 

Transition to/from Pause state. 

The required fields are: S6.PRIO, S6.OPT and S6.TID. 

S6F .TYPE, Function Change Task Type (2B Hex) 

This call will change the type of a task according to the bit pattern 

in S6.OPT. The required fields are: S6.OPT and S6.TID. 

13-9 Sept. ‘81 



SECTION 13 - SVC 6 TASK REQUEST 

13.5 EVENT QUEUE HANDLING 

The following functions describe how to handle the event queue. In 

general, every no-wait request will be added to the event queue if 

it is enabled. The required fields are almost always: S6.PRIO, 

S6.TID and S6.PAR. The contents of the fields, if valid are: 

Valid Content 

$6.PRIO Contains 

S6F .QTRM 

S6.TID Contains 

the task 

S6.PAR Contains 

block. 

either the termination status on 

or else the SVC type. 

the task number which is zero if 

is self directed. 

the address of the invoked parameter 

Sept. '81 13-10



SECTION 13- SVC 6 TASK REQUEST 

All of the information regarding the Parameter Block fields are 

summarized in Table 13-1. 

Table 13-1. - SVC 6 Parameter Block Field 

S6.PRIO $6.TID |S6.PAR |S6.SAD {S6.FD [|S6.SIZE 

S6F.LOAD U U U U 

S6F.STRT U U U U 

S6F.QTST |S=SVCNR S=TNR |S=PBLK 

S6F.QWAL |S=SVCNR S=TNR | S=PBLK 

S6F.QTRM |U=SO.RS U=PBLK 

S6F.SUSP U 

SOF.TST S Ss U S=TCB S 

SOF.CAN | U=RCOD U 

S6F.PAUS U 

S6F.CONT U 

S6F.PRIO U U 

S6F.OPT U U 

S6F.TSKW |S=STAT |S=RCOD U 

S6F.ADDQ U U=PBLK 

S6F.STSW |S=STAT |S=RCOD U 

S6F.TYPE U U 

U - Should be initiated by user before SVC instruction. 

S - Returned by system after SVC instruction. 

PBLK - Address of invoked parameter block. 

RCOD - Return code at task termination. 

SO.RS - Final return status for the request. 

STAT - New task status. 

SVCNR - Type of SVC. 

TCB - Address of Task Control Block. 

TNR - Task number, zero if self directed. 

13-11 Sept. ‘'8l 





SECTION 14 

SVC 7 FILE REQUEST 





SECTION 14 

SVC 7 FILE REQUEST 

14.1 INTRODUCTION 

SVC 7 is used to create and assign files, devices, and tasks to a 

logical unit. It can also be used to modify already existing file, 

device, and task assignments. The meaning and use of each field in 

the Parameter Block is described by the function requiring that 

field. When dealing with nonrandom access devices you do not need to 

specify the record length or size fields. 

14.2 PARAMETER BLOCK 

The parameter block for SVC 7 is show below. 

|(0) sO.Fc |(1) SO.RS |(2) S7.LU |(3) $7.MOD| 

| Function code| Return status | Logical Unit| Modifier | 

|(4) S7.FD |(6) $7.CLAS|(7) S7.TAM| 

| Name pointer or device number| Class |Access mode| 

| (8) S$7.RECL |(10) S7.UBUF | 
| Record length | Reserved | 
| (12) S7.SIZE | 

| (LSW) Size (MSW) | 

| 

The parameter block for SVC 7 has the following structure: 

Offset Bytes Type Mnemonic Name 

1) 0 1 Byte SO.FC Function Code 

“2) 1 1 Byte SO.RS Return Status 

3) 2 1 Intéger S7.LU Logical Unit 

4) 3 1 Byte = S7.MOD Modifier 

5) 4 2 Address S7.FD New pointer on device number 

6) 6 1 Integer S7.CLAS Class 

7) 7 1 Byte S7.TAM Access mode 

8) 8 2 Integer S$7.RECL Record Length 

9) 10 2 Address S7.UBUF Reserved 

10) 12 4 Long Int. S7.SIZE Size 

Total 16 

14-1 Sept. ‘8l 



SECTION 14 ~ SVC 7 FILE REQUEST 

14.3 PARAMETERS 

The parameters for SVC 7 are described below: 

1) SO.FC, Function Code 

Bit 

F
W
 

Nw
 

F&
F 

CO
 

Value Hex Name 

S7F.ALLO 

Reserved 

S7F.ASGN 

S7F.DELL 

S7F.CLOS 

20 SOF.TSTS 

21 SOF .CAN 

22 Reserved 

23 S7F .CHKP 

24 Reserved 

25 Reserved 

26 S7F.RNAM 

27 S7F.FAT 

Description 

Open/Close Field (Bits 5 = 0) 

Allocate 

Reserved 

Assign (Open) 

Delete at close 

Close 

Test/check field 

Test request 

Cancel all previous requests 

Reserved 

Check point 

Reserved 

Reserved 

Rename 

Fetch attributes 

Note that the test/check field is dependent upon the values of the 

bits 0-2. Bits 3-5 are padded with 001. In the Allocate Reserved, 

Assign, Delete, and Close fields bit 5 is set to zero. 

Sept. "81 14-2



SECTION 14 - SVC 7 FILE REQUEST 

2) SO.RS, Return Status 

The following return status codes are in effect: 

FUNCTION CODE MEANING 

S7S.ASGN 70 Assignment error. 

S7S.AM 71 Illegal access mode. 

S7S.SIZE 72 Size error, size field invalid or 

specifies non existing space. 

S7S.TYPE 73 Type error, LU is not a direct- 

access device. 

$7S.FD 74 File descriptor error, file 

descriptor of invalid format. 

S7S.NAME 75 Name error, matching name not found. = 

S7S.KEY 76 Invalid key. 

S7S.FEX 77 File already exist. 

lx I/O error, SVCl code given. 

3) S7.LU, Logical Unit 

The Logical unit number is assigned by the user. 

4) S7.MOD, Modifier 

The modifier specifies the type of a file at allocation and 

assignment time. The data formats are described in the section 

titled FILEFORMAT. The file type is divided into two 4-bit groups 

(nibbles): 

5) S7.FD, Name Pointer 

This address byte points to the file name. (See file descriptor 

formats.) Values lower than 256 mean that the reference is made to a 

system device with the same number. 

14-3 Sept. ‘81 



SECTION 14 - SVC 7 FILE REQUEST 

The most significant nibble specifies the type of data in the file: 

Sept. 

ASCII data readable without any 

special handling. 

List file, ASCII data together with 

positioning information. 

Object code, readable by the ESTAB. 

Binary data, which is unspecified. 

Task file, either relocatable or 

ISAM index file. 

Modifier (Bits 4-7) Code File Type 

FCM.ASC 1 

FCM.LIST Z 

FCM. OBJ 3 

FCM. BIN 4 

FCM. TSK 

absolute. 

FCM. ISM 6 

FCM. DIR Directories. 

The least significant nibble, if specified, defines a set of 

languages and directory types: 

Modifier (Bits 0-3) Code FIle Type 

FCM. ASM 1 ASEMBLER source code. 

FCM.BAS 2 Monroe BASIC source code, or data 

produced by Monroe BASIC 

FCM. COB 3 Reserved. 

FCM.FIN 4 Reserved. 

FCM. PAS 5 Monroe PASCAL source code, or data 

produced by Monroe PASCAL. 

Some special modifiers are specified below: 

Modifier 

FCM. UNDF 

FCM. EFD 

FCM.MFD 

"81 

Code File Type 

00 Undefined data, verifies to any 

other type. 

FD User File Directory. 

FF Master File Directory. 

14-4



SECTION 14 - SVC 7 FILE REQUEST 

6) $S7.CLAS, Class 

This field specifies the resource class to be accessed. 

Resource Code Meaning 

$7C.ALL eeee e000 Scan all resources. 

7) __S7.RECL, Record Length 

This address field on the Allocate File, contains the logical record 

length for an Indexed File. If the field is zero, variable record 

length is assumed. 

8) S7.SIZE, Size 

This field is defined for the Allocate Call. It depends upon the 

type of file being allocated. When the high order bit in the field 

is set, the remaining bits express the size of a single data block 

or continuous file. When an indexed file is allocated, the Size 

field is divided into two 16-bit fields; the first field (LSW) 

contains the segment size in sectors, the second field (MSW) contains 

the number of segments to be preallocated. If the size field is set 

to zero in the case of an indexed file, default sizes are taken from 

the volume information. (See disk initialization.) Size is not used 
for Non~Direct-Access devices. 

14.4 FUNCTION CODE DESCRIPTIONS 

The following functions specified below can be used for the function 

code in SVC 7. Each function requires particular fields as described 

in Section 14.3. 

S7F.ALLO, Allocate 

This function allocates space for files. 

SF7.ASGN, Assign 

This function assigns a logical unit to a device or file. 

14-5 Sept. ‘81 



SECTION 14 - SVC 7 FILE REQUEST 

S7F.DELC, Function Delete at Close 

This function allows the user to delete a file on a direct~-access 

device. When the call is completed the file is not deleted, only a 

flag in the FCB is set. The actual delete is performed when the file 

is closed. This feature allows for very simple Temporary File 

handling. The only parameter required is an LU. 

Applicable error codes are: 

Function Code Meaning 

S7S.ASGN 70 LU Error. 

S7S.AM 71 Protect Error, file not ERW 

assigned. 

S7S.TYPE 73 Type Error, LU is non direct access 

device. 

lx I/O Error, as returned by SVCl. 

S7F.CLOS, Function Code 

This function discontinues an assigned logical connection between a 

task and a file or a task and a device. The logical unit LU is the 

only required parameter. When entered the specified LU is then 

de-assigned. Logical units which have been assigned for Write access 

to files or buffered terminals will have any partially filled buffers 

written to the file by a CLOSE call. Direct access devices with the 

Delete-At-Close flag set will be deleted. 

Applicable error codes are: 

Error Code Meaning 

S7S.ASGN 70 LU Error. 

1x I/O Error, as returned by SVC l. 

Sept. ‘81 14-6



SECTION 14 — SVC 7 FILE REQUEST 

S7F.CHKP, Function Checkpoint 

The checkpoint function flushes the Operating System Management 

buffers and updates the File Information Block. LU is the only 

required parameter. 

The user may wish to employ Checkpointing after sensitive data is 

added to a buffered file. Since logical blocking of data in the 

system buffers leaves the file vulnerable, the integrity of the data 

can be preserved on the direct-access device by Checkpointing. In 

case of a system failure, all data on Indexed files up to the latest 

Close or Checkpoint operation is recoverable. Data appended after 

the most recent Checkpoint is lost. Checkpoint differs from a 

Close/Assign sequence in that no repositioning is performed. File 

name, access privileges, and keys need not be specified. 

Applicable error codes: 

Function Code Meaning 

S7S.ASGN 70 LU Error. 

lx I/O Error, as returned by SVC l. 

S7F.RNAM, Function Rename 

This function changes the name of an assigned file. The file must 

currently be assigned to ERW. The required parameters are LU and the 

File-descriptor. the LU must be assigned to a direct-access file 

(unless the caller is an Executive Task which may rename a non 

direct-access device). The Volume field of the file descriptor is 

ignored. The specified File descriptor replaces the previous file 

descriptor in the directory if the rename function is successful. If 

the modifier field is 0, then either the modifier will not be 

changed, or it will be assigned the value in the parameter block. 

14-7 Sept. ‘81 



SECTION 14 - SVC 7 FILE REQUEST 

Applicable error codes are: 

Function Code Meaning 

S7S.ASGN 70 LU Error. 

S7S.AM 71 Access Mode Error. 

S7S.TYPE 73 Type Error, LU is non direct-access. 

S7S.FD 74 File Descriptor Error, file 

descriptor of invalid format. 

S7S.NAME 75 Name Error, new name already exists. 

lx I/O Error, as returned by SVC l. 

S7F.FAT, Function Fetch Attributes 

Certain programs may require, for proper operation, knowledge of the 

physical attributes of the device or file associated with a given LU. 

The only required parameter is the Logical Unit. The system returns 

information in the field Modifier, Name pointer, Record length, User 

supplied buffer address, and Size. 

The Modifier byte is set to indicate the file or device type. 

The Name pointer must be an address to a buffer where the system 

returns the name or the mnemonic of the assigned resource. If the 

pointer value is less than 256, the device number is returned in this 

field, rather than the name. 

The Record length field is set equal to the physical record length 

‘associatd with the resource. 

For this call the reserved field S7.UBUF is redefined to receive the 

indicated attributes. 

The current size of a direct-access file is returned in the Size 

field. 

Sept. ‘81 14-8



SECTION 14 - SVC 7 FILE REQUEST 

Applicable error codes are: 

Function 

$7S.ASGN 

S7.TAM, Access Mode 

Code Meaning 

70 LU error, illegal LU or LU not 

assigned. 

The low nibble of this byte specifies the Access Priviliges. If the 

access mode for a direct access file is 'SW', it will be changed to 

'EW' Note $7.TAM is used in conjunction with SVC 1 to define the 

access (hysical, logical, or byte) of a file. The available types of 

file access and their associated attributes are listed below: 

Bit Value Name 

0-2 

S7A.SRO 

S7A.ERO 

S7A.SWO 

S7A.EWO 

S7A.SRW 

S7A.SREW 

S7A.ERSW 

S7A.ERW N
 
W
U
 

F&
F 
W
N
 

HY
 

OC
 

6-7 - - 
0 S7A.SBUF 

S7A.UBUF 

2 S7A. PHYA 

3 S7A. BYTE 

Description 

Access mode field 

Sharable read only 

Exclusive read only 

Sharable write only 

Exclusive write only 

Will position to EOF 

Sharable read write 

Sharable read, exclusive write 

Exclusive read-write 

Command modifier fields 

System buffering required, device 

dependent I/0 

Reserved 

Physical access, access on disk 

sector level 

Byte addressing I/0, file treated 

as a file of bytes 

14-9 Sept. ‘81 



SECTION 14 - SVC 7 FILE REQUEST 

14.5 FILE FORMATTING 

Much of the data formatting within a file is standardized. The 

formatting is described below. 

ASCII Files, Compressed Variable Length Records: 

«Spaces are compressed to 80H + the number of spaces. 

Records are separated by a NULL-byte. 

-Records are stored after each other without any padding, 

to minimize the storage required. 

ASCII Files, Fixed Record Length: 

«Not separated by a null byte. 

Binary Files, Fixed Record Length: 

-Records are stored continuously after each other. 

~The data bytes are not specified. 

«Both random and sequential access can be done. 

Load Modules: 

«The data formatting is defined by the code-type. 

Sept. ‘81 14-10



SECTION 14- SVC 7 FILE REQUEST 

Additional information regarding the parameter block fields is 

summarized in Table 14-1. 

| 

Table 14-1. SVC 7 Parameter Block Fields 

| | | | | | | | 

|s7.Lu |s7.Mop_|S7.FD_|S7.CLAS|S7.TAM |S7.RECL |S7.UBUF|S7.SIZE| 

| | | | | | | | | 

|S7F.ALLO | U | vu | vu |u=0 gen| U loptional|gen 0 |gen 0 

| | | | | | | | | 

|s7F.ascn | u|_U | u _|u=0 gen| U_ | | | 

| | | | | | | | | 

|s7F.cLos | _U | | |u=0 gen| | | | 

|S7F.cLos | | | | | | | | 

|S7F.DELC | U | [U=0 gen| | | | 

| | | | | | | | | 
|S7F.cHK | | vu | | | | | | 

| | [If O,chg| . | | | | | 
|S7F.RNAM | U |modifier| JU | |S7A.ERW| | | 

| | | | | | | | | 

| | | | | | | | | 

| | | | | | | | 

|s7F.raT | u | S | s | | | | [| s 

~ Should be initiated by user before SVC instruction. 

Returned by system after SVC instruction. 

14-11 Sept. 8) 





SECTION 15 

SVC 8 RESOURCE HANDLING 





SECTION 15 

SVC 8 RESOURCE HANDLING 

15.1 INTRODUCTION 

SVC 8 is used to both establish and remove resources within the 

Operating System. It is normally used by system programers, because 

it requires a very good knowledge of the structure and functions of 

the Operating System. 

The SVC 8 function creates a new resource from the free space located 

in the system table area (first 16KB) and added to the appropriate 

system list as designated by the class. The resource is initialized 

by the buffer area pointed at by S8.ADR. The class indicates the 

format of this buffer area. Note that items such as tasks have many 

fields described in the buffer area (RDT, TDT, and EDT for a task). 

These are concatenated in the buffer area to form a contiguous space. 

Note that the buffer does not always physically map one to one into 

the resource. 

15.2 PARAMETER BLOCK 

The parameter block for SVC 8 is shown below. 

|(0) SO.FC |(1)  SO.RS [(2) S8.RNR |(3) S8.PRIO | 

Function code | Return status | Resource no. |Resource prio| 

|(4) $8.1ID |(6) S8.CLAS|(7) S8.TYPE | 

| Name pointer or resource no. | Class | Type | 

|(8) S8.ADR [(10) S8.cA |(11) S8.IL | 

| Entry or 'RDT'-list address | S8.SIZE | 

The parameter block for SVC 8 has the following structure: 

Offset Bytes Type Name Description 

1) O 1 Byte SO.FC Function Code 

2) 1 1 Byte SO.RS Return Status 

3) 2 1 Byte S8.RNR Resource Number 

4) 3 1 Byte $8.PRIO Resource Priority 

5) 4 2 Address S8.ID Name pointer or 
resource number 

6) 6 1 Byte S8.CLAS Class 

7) #7 1 Byte S8.TYPE Type 

8) 8 2 Address S8.ADR Entry or 'RDT' 
list address 

9) 10 1 Integer S8.CA Size 

10) ll 1 Integer S$8.IL Size 

15-1 Sept. ‘81 



SECTION 15 — SVC 8 RESOURCE HANDLING 

15.3 PARAMETERS 

The parameters for SVC 8 are described below: 

1) S8.FC, Function Code 

Bit Value 

0-1 - 

0 

1 

2 

3 

2 - 

2) SO.RS, Return Status 

Name 

illegal 

S8F .EST 

S8F.RMOV 

S8F.TEST 

S58.NRCB 

Description 

Resource Field 

Establish resource 

Remove resource, only 

available to the owner 

Test the presence of 

a resource 

RCB status field 

RCB already present 

The following return status codes are in effect: 

FUNCTION 

$8S.ID 

S8S.CLAS 

S8S. PRES 

S8S.PRNT 

S8S.DUAL 

S8S.RCB 

S8S.EOM 

CODE 

80 
81 
82 
83 
84 
85 
86 

3) $8.RNR, Resource Number 

MEANING 

Illegal name/number. 

Illegal class. 

Already present. 

Parent not present. 

Dual not present. 

Invalid 'RCB'-type. 

End of memory. 

This field is used to specify the numeric identity of a resource. If 

the number zero is chosen, the system will select the first free 

number and the numeric identity will be returned in this field. 

4) S8.PRIO, Priority of Number 

This field contains either the task/device priority, or the 

parent/dual resource number. 

Sept. ‘81 15-2



SECTION 15 - SVC 8 RESOURCE HANDLING 

5) S8.ID, Name Pointer 

This field contains either a pointer to a 4 character symbolic name, 

or a numeric value less than 255, that is the identity of the 

resource. 

6) S8.CLAS, Class 

This field contains the resource class. 

The byte allocation for the class field is as follows: 

Bit Value Name Description S8.ADR Buffer Contents 

0-2 - - Class field 

0 illegal 

1 S8C.DEV Devices (RDT,DDT, IDT.CDT) 

2 S8C.TSK Tasks (RDT, TDT) 

3 S8C.COM Common (RDT) 

4 S8C.VOL Volumes (RDT) 

5 S8C.SVC SvC-functions (RDT) 

6 §8C.SVC2 SVC-subfunctions (RDT) 

Note: All classes are terminated with an EDT. 

7) S8.TYPE, Type 

The field contains the resource type. The byte allocation for the 

resource type is as follows: 

Bit Value Name Description 

Q-1 <i = Resource type field 

0 RTT. PURE Shared resource field 

1 RTT.RCB Exclusive resource 

2 RIT.RRT Dummy resource S8.ADR 

points to a new resource 

3 RTT.AREA Area, no entry 

2 RTT.DIR Directory oriented 

3 RTT.SVC Entries at all SVC-calls 

4 RTT.OFFL Offline, not accessible 

5 RTT. PROT Protected ,write not allowed 

6 RTT.NFST Non file structured, only for 

systems use 

7 RIT.NRMV Resident, non removable 

15-3 Sept. ‘81



SECTION 15 - SVC 8 RESOURCE HANDLING 

8) S8.ADR, Entry/RDT 

This is either the entry address of a shared resource, or the address 

to a Resource Descriptor Table (RDT) for an exclusive resource. 

9) S8.SIZE, Size 

Contains the additional memory size which should be allocated at the 

time of task establishment. 

S8.CA, Channel Select code: 

interface. 

Contains the card identity for the 

S8.IL, Interrupt Level: Contains the interrupt level for a physical 

device. 

15.4 RESOURCE DESCRIPTOR TABLE (RDT) 

A RDT describes an exclusive resource, such as a Device Control Block 

(DCB), or a Task Control Block (TCB). This table is used by the SVC 

8-handler to create the control blocks necessary to handle the 

resource. Each exclusive resource has at least an RDT. The 

parameter block for the RDT is shown below. 

[(0) - RDT. TYPE | (1) RDT.EXT. | 
| Type if Extension | 

| (2) RDT. INIT 

|_Initiator/handler address | 

1(4) RDT. TERM | 

| Terminator handler address | 

The parameter block for the RDT has the following structure: 

Offset Byte Type Name Description 

1) O 1 Byte RDT. TYPE Type 

2) #1 1 Byte RDT.EXT Extension 

3) 2 2 Address RDT. INIT Initiator/handler 

address 

4) 4 2 Address RDT. TERM Terminator handler 

address 

Sept. '81 15-4



SECTION 15 - SVC 8 RESOURCE HANDLING 

Parameters 

The parameters for the RDT are described below: 

1) RDT.TYPE, Type: 

Bit Value Name 

0-2 

0 RCT.RCB 

1 RCT.DCB 

2 RCT.TCB 

3 RCT.FCB 

RCT.VCB 

5 RCT.ART 

3 1 RCT. PRNT 

4 1 RCT.DESC 

5 1 RCT.NW 

6 1 RCT.PRO 

7 1 RCT.NAB 

2) RDT.EXT, Extension: 

block, i.e. 

driver. 

3) RDT.INIT, Initiator/Handler Address: 

The byte allocation for the type is as follows: 

Description 

Table field 

No special type 

DCB, device descriptor table 

present 

TCB, task descriptor table 

present 

Only for systems use 

VCB, volume descriptor table 

present 

Area, no entry 

Coordination parent specified 

Only for system's use 

Don't support “no-wait” function 

Don't support unconditional 

proceed 

Non-abortable, can't be cancelled 

Makes it possible to expand any control 

expand a DCB, where the expansion is used by the device 

Refer to the section entitled Extended Descriptor Table. 

for the resource, i.e. 

15-5 Sept. 

Points at the handler entry 

the initiator for a device driver. 

"81 



SECTION 15 - SVC 8 RESOURCE HANDLING 

4) RDT.TERM, Terminator Handler Address: Points at an optional 

terminator, i.e. to do code conversions or CRC calculation in a 

device driver. 

15.5 TASK DESCRIPTOR TABLE (TDT) 

This table is a continuation of the RDT. It is used by the system to 

create a Task Control Block (TCB), which is then used to control a 

task. The information in the TDT is a short description of the 

characteristics of a task: 

|(6) TDT. TYPE | (7) TDT.OPT | 

| Task type | Task options | 

[¢8) TDT. SADR | 
| Standard start address | 

| (10) TDT.TLIM | 

| Individual slice limit | 

(12) TDT.NNOD | (13) TDT.NFCB | 

| Number of nodes | Number of FCB | 

| (14) TDT.STK | 

| | Required stack size 

Offset Bytes Type Name Description 

1) 6 1 Byte TDT.TYPE Task type 

2) 7 1 Byte TDT.OPT Task options 

3) 8 2 Address TDT.TLIM Standard start address 

4) 10 2 Integer TDT.TLIM Individual slice limit 

5) 12 1 Byte TDT.NNOD Number of nodes 

6) 13 1 Byte TDT.NFCB Number of FCB 

7) 14 2 Integer TDT.STK Required stack size 

Parameters 

The parameters for the TDT are described in subsequent paragraphs. 

Sept. '81 15-6



SECTION 15 -— SVC 8 RESOURCE HANDLING 

1) TDI.TYPE, TYPE: This parameter describes the type of tasks as 

follows: 

Bit Value Name Description 

0-1 - - Task status field 

0 1 TCT.RES Resident in memory 

1 1 TCT.NAB Non~abortable from 

other tasks 

2) TDT.OPT, Options: The options parameter holds the task options. 

Bit Value Name Description 

0-3 - - Task options field 

0 1 TCO. DASG Default assign allowed 

1 1 TCO.NSTK No stack check 

2 1 TCO.EMSG Error message print out 

by the system 

3 1 TCO.RCOV System recovery 

3) TDT.SADR, Standard Start Address: This parameter contains the 

normal start address of the task. 

4) TDT.TLIM, Individual Slice Limit: A task is given a time limit 

that it can use by this parameter if the time slice function is 

enabled. Zero means that the global time-slice limit should be used. 

5) TDT.NNOD, Number of Nodes: This parameter specifies the number 

of nodes that should be allocated to the task. In general, the 

number of nodes required by a task is calculated from: 

-The number of outstanding queued no-wait requests. 

-The number of task devices owned by the task. 

-The number of assignments to physical devices, not files. 

"81 



SECTION 15 - SVC 8 RESOURCE HANDLING 

6) TDI.NFCB, Number of FCB: The number of File Control Blocks (FCB) 

that should be allocated to a task is specified by this parameter. 

One FCB is used for each assigned file while one extra FCB is assigned 

to an element within a file. 

7) TDT.STK, Required STack Size: This parameter specifies the 

required stack for the task. The byte allocation for the TDT is as 

follows: 

15.6 DEVICE DESCRIPTOR TABLE (DDT) 

Both real and task devices are specified by this table. The DDT is a 

continuation of RDT. 

1(6) DDT.ATTR 

| Attributes on the device 

| Record length on the device 

|(10) DDT.CODE |(11) DDT.TYPE 

| Device code | Device type 

|(12) DDT.QpaR | 
| Size of SVC-blk| 

| 
| 

| (8) DDT.RECL | 

| 
| 
| 

Offset Bytes Type Name Description 

1) 6 2 Byte DDT.ATTR Attributes on the device 

2) 8 2 Integer DDT.RECL Record length on the device 

3) 10 1 Byte DDT.CODE Device code 

4) 11 1 Byte DDT.TYPE Device type 

5) 12 1 Byte DDT.QPAR Size of SVC-blk 

Parameters 

The parameters for the DDT are described below: 

1) DDT.ATTR, Attributes on the Device: This is a bit pattern which 

describes the attributes on the device. 

Sept. '81 15-8



SECTION 15 - SVC 8 RESOURCE HANDLING 

It is a l6-bits long, and has a byte allocation defined as follows: 

Bit Name Description 

0 ATT.READ Read 

1 ATT.WRIT Write 

2 ATT.FASC Formatted ASCII 

3 ATT.STEC Special formatting 

4 ATR.RND Random access 

5 ATR. IACT Interactive device echo of 

input 

Bit Name Description 

6-8 Reserved 

9 ATR.FR Forward record 

10 ATR.FF Forward file 

ll ATR.WF Write file mark 

12 ATR.BR Backspace record 

13 ATR. BF Backspace file 

14 ATR.RW Rewind 

15 ATR.ATIN Attention 

2) DDT.RECL, Record Length on the Device: This parameter specifies 

a record length. . Zero means variable record length. 

3) DDT.CODE, Device Code: The device code identifies a device among 

several having nearly the same type specification. 

4) DDI.TYPE, Type: The type field gives the type of device. The 

a byte allocation for the device type is as follows: 

Bit Name Description 

0 DCT.CCB Interrupt control block (ICB) 

present 

1 DCT.DEDI Dedicated interrupt service 

2 Reserved 

3 Reserved 

4 DCT. TASK Indicated a task device 

5 DCT. DUAL Dual DCB information 

5) DDT.QPAR, Size of SVC-BLK: DDT.QPAR, specifies the number of bytes 

that should be copies from the parameter block to the DCB. 

15-9 Sept. ‘81 



SECTION 15 -— SVC 8 RESOURCE HANDLING 

15.7 INTERRUPT DESCRIPTOR TABLE (IDT) 

This table, which is a continuation of the DDT, holds a short 

description of the interrupt side of a device. The table is only 

necessary if specified by the function DCT.ICB, and is used to create 

an Interrupt Control Block (ICB). The parameter block for the IDT is 

shown below. 

|(13) IDT.TYPE | 
| Interrupt type | 

| (14) IDT.CONT | 
|_ Optional continuator address | 

The parameter block for the IDT has the following structure: 

Offset Bytes Type Name Description 

1) 13 1 Byte IDT. TYPE Interrupt type 

2) 14 2 Address IDT.CONT Optional continuator 

address 

Parameters 

The parameters for the IDT are described below: 

1) ID.TYPE, Interrupt Type: The type of interrupt is indicated as 

follows: 

Bit Value Name Description 

0 1 ICT.CCB Channel Control 

Block (CCB) present 

1 1 ICT.NOIQ Makes the ICB resident 

on the interrupt and time 

out chain 

2) IDT.CONT, Optional Continuator Address: This parameter is used 

by the interrupt system as an address to the device driver 

continuator. This address is normally initiated or changed by the 

driver. 

Sept. '8l 15-10



SECTION 15 - SVC 8 RESOURCE HANDLING 

15.8 CHANNEL DESCRIPTOR TABLE (CDT) 

This table, which is a continuation of the IDT, is used to create the 

Channel Control Block (CCB) for a device. This table is only 

required if specified by the function ICT.CCB in the IDT: 

The parameter block for the CDT is as follows: 

| (16) CDT. TLIM | 

| Time-out limit in chosen interval | 

| (18) CDT. THND | 

| Optional time-out handler address 

The parameter block for the CDT has the following structure: 

Offset Bytes Type Name Description 

1) 16 2 Byte CDT.TLIM Time out limit in| 

chosen interval 

2) 18 2 Address CDT.THND Optional time out 

handler address 

Parameters 

The parameter for the CDT are described below: 

1) CDT.TLIM, Time-out Limit in Chosen Interval: This is the 

time-out limit of the device. The value is defined by the device 

time-out scan frequency, which is a system generation constant. 

Normally resolution is 100 ms. 

2) CDTI.THND, Optional Time-out Handler Address: This parameter 

holds the time-out handler address for the device. If not specified, 

the time-out situation is handled by the system. 

15-11 Sept. ‘81 



SECTION 15 — SVC 8 RESOURCE HANDLING 

15.9 EXTENDED DESCRIPTOR TABLE (EDT) 

If an extension is specified in the RDT, the EDT must be added after 

the last descriptor table. This allows the programmer to both expand 

the control block, and initiate it with some data. If no initial- 

ization is required, the shortest EDT possible (one binary zero) must 

be added. Any number of EDT's may be concatenated to allow for 

initialization of arbitrary portions of the control block. The EDT 

is shown below: 

RDE.NBYT 

Number of bytes 

RDE.ADR 

Signed offset 

RDE. DATA 

Initialization data 

Additional 

Extended 

Descriptor 

Tables 

The parameters for the CDT are listed and described below. 

Offset Bytes Type Name Description 

1) +0 1 Integer RDE.NBYT Number 

2) Nl 1 Integer RDE.ADR Location of Initialization 

3) N+2 RDE.NBYT Bytes RDE. DATA Initialization Data 

1) RDE.NBYT, Number of Bytes: This parameter specifies the number 

of bytes that should be copied into the control block. A binary zero 

indicates that this is the last EDT and it will not contain RDE.ADR 

or RDE.DATA. 

2) RDE.ADR, Signed Offset: This is a relative signed offset in the 

control block where to start to copy the data. 

3) RDE.DATA, Initialization Data: This parameter contains the data 

to be copied to the control block. It must contain exactly RDE.NBYT 

bytes! 

Sept. '81 15-12



PART [I 

INPUT/OUTPUT MANAGEMENT 





SECTION 16 

CONSOLE MANAGEMENT 





SECTION 16 

CONSOLE MANAGEMENT 

16.1 INTRODUCTION 

The Console Management System is controlled by the user through a 

terminal device. The name of the logical terminal device is always 

CON for every user, and may be assigned to a task for ordinary I/0 

operations, just as any other device. 

16.2. PROMPTING 

When the terminal operator is expected to enter data at the terminal, 

a prompt is output. This prompt takes one of the following forms: 

- Command Request 

(no prompt) Data Request 

The command request prompt is output whenever the system is ready to 

accept another command. 

The data request prompt is output whenever a task is attempting to 

perform a read request to the terminal device. This request should 

be satisfied as soon as possible, since messages are held in abeyance 

until the data request is satisfied. 

16.3 CONTROL CHARACTERS 

Control characters are generated by holding down the control (CTRL) 

key and depressing the other key in the control sequence. For 

example, CTRL-X is entered with the Control key and the X key. 

16-1 Sept. ‘81 



SECTION 16 - CONSOLE MANAGEMENT 

The control character conventions in effect for terminal devices are 

described below: 

Keys Function: 

CTRL~X 

CTRL-H 

CRTL-= 

CTRL-A 

CTRL-C 

Deletes a Line 

Deletes a Character 

(Backspace can also be used) 

End-Of-File Function 

Pauses Task 

(CTRL-A is enterd when the user wishes 

to communicate with the operating 

system rather than a task. Any input 

or output is suspended and the system 

responds with the command request 

prompt. It is then ready to accept 

another command. ) 

Stops Task 

(Some commands and programs recognize 

a stop which aborts the terminal 

transfer and cancels the task 

execution.) Operating system commands 

such as CANCEL or TASK can be entered. 

The pause task is continued by 

entering a return key only. Any 

suspended I/O is resumed. 

16.4 COMMAND HANDLING 

The command is the basic unit of conversation between a terminal user 

and the system. A command directs the Command Management System to 

take a specific action. In general, a single command results in a 

single action being taken by the system. 

Sept. ‘'8l 16-2



SECTION 16 — CONSOLE MANAGEMENT 

A command consists of a memonic which normally describes the action 

the user wishes to take place, and arguments which provide the 

details necessary to perform the action. 

Commands are accepted one line at a time with one command per line. 

A command may not spread over two or more lines. A command line is 

terminated by a carriage return. 

Unknown commands 

If an unknown command is entered, the system tries to load a program 

with the same name. If found, it will be started as a primary task, 

and the rest of the command line will be transferred as parameters to 

that task, otherwise the system responds with a load error. 

Error Response 

The Command Management system responds to a command error by typing 

out a message to the user indicating the type of error. In response 

to the error message the user must retype the entire command, 

correcting the error as necessary. The error messages are: 

Error Message Description 

Load Error Comamnd or program not found. Memory space not 

‘enough, or checksum error on a command or program 

file. 

Size Error Additional memory size improperly specified. 

Seq Err This message is given if the particular command 

cannot be accepted due to the state of the system. 

This occurs either when a command is executing and. 

another command is entered, or when a primary task 

is executing and execution of a new program with 

the same name is requested. 

Fd Err Syntax error in a File Descriptor, or the type of 

the file is missing. It usually refers to the 

format of file names entered as parameters. 

16-3 Sept. '81 



SECTION 16 - CONSOLE MANAGEMENT 

Error message Meaning 

Dev Err 

Id Err 

Par Err 

Sept. ‘81 

Device not in syntax or not accessbile. 

Syntax error in a task name, or the task is not 

found. 

Parameter error, invalid or missing parameter. 

16-4 

a
.



SECTION 17 

DEVICE DRIVER DESCRIPTION 





SECTION 17 

DEVICE DRIVER DESCRIPTION 

17.1 INTRODUCTION 

Each type of peripheral or task device has a control program called a 

device driver program. The driver handles all input and output for 
the device. It checks when transfer errors occur and reports these 

to the requestor. 

Each driver has at least one point of entry, called an Initiator, and 

one exit point called a Terminator. Actual physical devices may also 

have a Continuator and/or a Time-Out/Cancel Handler. The driver is 

NOT allowed to use the secondary register set without saving it 
before it is used and restoring it after it is done. 

Drivers that transfer data on a byte by byte basis normally use the 

Data Formatter to load and store the bytes. 

17.2 DRIVER INITIATOR 

The Driver Initiator is called from the Connection Handler and runs 

as a reentrant subroutine for the task issuing the I/0 request. In 

general, the Initiator uses the information which has been stored in 

the DCB (by the Connection Handler) to prepare the information 
required to perform the requested function. This is often done 

through the Data Formatter. 

After all processing has been completed, the Initiator starts the 

physical I/0 process by causing an interrupt of the device requested. 

The Initiator then triggers the Connection Handler which returns 

control to the calling task on an I/0 proceed call, or puts the 

calling task into I/O wait on an I/O wait call. 

The following conditions are in effect when the driver is called. 

- Executes in SMU mode. 

+ The SVC-block is copied into the DCB if specified. 

- The initiator address of the Data Formatter is stored in DCB.FMTE. 

- The ICB is linked into time-out and interrupt chain. 

17-1 Sept. ‘81 



SECTION 17 - DEVICE DRIVER DESCRIPTION 

. The time-out counter CCB.TCNT is initialized from CCB.TLIM if 

the flag DCS.INT is cleared. 

. Channel selected on physical device. 

. Register X -> DCB. 

. Register Y -> SVC-block. 

. Register A := the function code without SIF.NW and S1F.PRO. 

The following conditions are expected when the routing returns: 

. Register X -> DCB. 

. Register Y -> SVC-block. 

- Register A := return status on completion. 

. Carry flag. 

. Reset means not complete. 

« Set means complete. 

. The flag DCS.INT in DCB.STAT must be set to enable interrupt 

polling and time-out checking if not complete. 

- Carry flag set means complete. 

17.3. DRIVER CONTINUATOR 

When an interrupt is detected from a device the operating system 

causes control to pass to the Continuator. The Continuator is 

executed with all highter interrupt levels enabled. The actual 1/0 

to the device is controlled by I/O instructions. On completion of 

all I/O requests the Continuator disables the interrupts from the 

device and returns to the System Interrupt Handler which adds the DCB 

to the system queue. The System Interrupt Handler always 

re-initializes the time out counter. 

The following conditions are in effect when the continuator is 

called: 

. Executes in IM. 

. The time-out counter CCB.TCNT is initialized from CCB.TLIM. 

. Channel selected on physical device. 

. Register X -—> DCB. 

. On dedicated disabled interrupt, the driver is NOT allowed to 

enable the CPU, or use Register Y and Register pair BC! 

Sept. '81 17-2



SECTION 17 — DEVICE DRIVER DESCRIPTION 

The following conditions are expected when the routine returns: 

- Register X -—> DCB. 

- Register A := return status on completion. 

« Carry flag 

« Reset, not complete. 

« Set, complete. 

- The flag DCS.INT cleared if no more interrupts are expected. 

17.4 DRIVER TIME-OUT AND CANCEL 

A hang-up error occurs when a device fails to generate an interrupt 

on an operation that was initiated. The time limit for this 

interrupt is computed by the Driver and stored in the DCB.TLIM, or is 

initiated at system generation time. 

The error is detected by the Device Time-Out Manager, which 

decrements the time counter in the DCB. When the counter becomes 

zero and when no time-out is allowed (controlled by the flag 

DCS.TIME), the Time-Out Handler address, if specified, is scheduled. 

If a time-out is allowed, the continuator is called in the normal 

way. 

The Time-Out Handler is also called when a request is canceled, and 

is responsible for the cancel checking! 

If further more I/O must be initiated, the Time-Out Handler causes an 

interrupt on the device, often by re-entering the Initiator. 

The following conditions are in effect when the routine is called: 

- Executes in IM. 

« Channel selected on physical device. 

- Register X -—> DCB. 

- The flag DCS.INT in DCB.STAT is cleared. 

« The flag DCS.TOUT in DCB.STAT is set. 

- The flag RCS.CAN in RCB.STAT is set at cancel. 

17-3 Sept. "81 



SECTION 17 - DEVICE DRIVER DESCRIPTION 

The following conditions are expected when the routine returns: 

17.5 

Register X -—> DCB. 

Register A := return status on completion. 

Carry flag 

Reset, not complete. 

Set, complete. 

The flag DCS.INT in DCB.STAT must be set to enable the 

checking. 

DRIVER TERMINATOR 

The Terminator is called from the Disconnection Handler as a result 

of a System Queue interrupt. The Terminator performs post-processing 

on any I/O request being terminated, such as code converting or CRC 

calculations. If additional 1/0 must be initiated, the Terminator 

causes an interrupt of the device, often by reentering the 

Initiator. 

_The following conditions are in effect when the routine is called: 

Executes in SMU if the calling task is in an I/0 wait state, or 

in IM if no task is waiting. 

Channel selected on physical device. 

Register X -—> DCB. 

Register Y -> SVC-block. 

The following conditions are expected when the routine returns. 

Sept. 

Register XK -> DCB. 

Register Y -> SVC-block. 

Register A := return status on completion. 

Carry flag 

sc 

Set, not complete. 

Set, complete. 

The flag ICT.NOIQ must be set if the ICB shall remain on the 

time-out and interrupt chain. 

"81 17-4



SECTION 17 -— DEVICE DRIVER DESCRIPTION 

Example: 

This is a simple example of an output driver that uses the Data 

Formatter. Note the critical instruction sequence when enabling the 

interface. 

DRIVER INITIATOR 

+ 
+ 

+ 
+ 

& 

ON CALL: X -—> DCB 

Y -> SVC-BLOCK 

A := FUNCTION CODE MASKED 

ON RETURN: -> DCB 

-> SVC-BLOCK 

0, NOT COMPLETE 

:= 1, COMPLETE 

:=* RETURN STATUS 

+ 
+ 

+ 
+ 

& 
+ 

F 
& 

r 

DRV.INIT EQU * 

CALL DATA.FMT THE DATA FORMATTER DOES THE CHECKING 

JTCS WRONGFC CAN'T HANDLE UNKNOWN FUNCTIONS ! 

DECR E EXAMINE FUNCTION REQUESTED. 

JTZS WRONGFC I DON'T SUPPORT READ. 

DECR E 

JFZS DONE STANDARD FUNCTIONS, ACCEPT THEM. 

CALL CHEK.PNT WRITE, CHECKPOINT HERE... 

* DRIVER CONTINUATOR 

*+
 

ON CALL: X -> DCB 

* 

* ON RETURN: X -—> DCB 

17-5 Sept. ‘81 



SECTION 17 -— DEVICE DRIVER DESCRIPTION 

CY := 0, NOT COMPLETE 

CY := 1, COMPLETE 

A := RETURN STATUS 

+ 
+ 

+ 
& 

DRV.CONT EQU #* 

OR A CLEAR CARRY BEFORE... 

CALL DATA.FMT eeeLOAD THE NEXT BYTE... 

JTCS COMPLETE 

OUT DATA «+eTHEN GIVE IT TO THE DEVICE. 

RET 

* 

* 

* REQUEST COMPLETE 

* 

COMPLETE EQU * 
CALL DATA.FMT POSTPROCESS THROUGH DATA FORMATTER 

* 

DONE EQU. * 

XR A RETURN STATUS 0... 

OUT C4 «+eDISABLE INTERFACE INTERRUPT... 

RBI DCS.INT,DCB.STAT(X) ...DISABLE INTERRUPT POLLING... 

STC - «MARK COMPLETE... 

RET «BACK TO SYSTEM. 

* 

* 

* CALL THE DATA FORMATTER 

* 

DATA.FMT EQU * 

L L, DCB. FMTE(X) PICK UP THE ADDRESS TO THE CHECK- 

L H,DCB.FMTE+1(X) -POINTED DATA FORMATTER... 

JDR HL »+eAND ENTER. 

* 

* 

* CHECKPOINT AND WAIT FOR INTERRUPT 

* 

CHECK.PNT EQU * 

POP HL 

ST —_—L, ICB. CON(X) SET UP INTERRUPT CONTINUATOR... 

Sept. '8l 17-6



SECTION 17 - DEVICE DRIVER DESCRIPTION 

ST H, ICB.CON+1(X) 

MVI 80H, CCB. ITM(X) «AND STATUS TEST MASK. 

LI A, 80H LOAD INTERFACE CONTROL... 

DIS «-eDISABLE CPU BEFORE MARKING... 

SBT  DCS.INT,DCB.STAT(X) ...INTERRUPT POLLING ALLOWED... 

ouT C4 «AND ENABLE THE INTERFACE... 

ENI «+eTHEN ENABLE THE CPU. 

XR 4 MARK NOT COMPLETE. 

RET BACK TO SYSTEM. 

* 

* 

* WRONG FUNCTION CODE 

& 

WRONGFC EQU) * 

LI A,SOS.IFC SET UP RETURN STATUS. 

STC MARK REQUEST COMPLETE. 

RET BACK TO SYSTEM. 

17-7 Sept. '8l 





SECTION 9 

SVC 2 SUBFUNCTIONS 





SECTION 9 

SVC 2 SUBFUNCTIONS 

9.1 INTRODUCTION 

There are a number of service functions called subfunctions which are 

provided to the user. These are implemented by SVC 2.1 through SVC 

2.12. These subfunctions are related to the tasks communication with 

the console operator, to memory allocation, to text processing, and 

to command processing. 

The purpose of the function code for the subfunctions is generally to 

modify the conditions of the SVC call. The content of the function 

code is ignored by those subfunctions for which no function code has 

been defined. This means that no wait for completion and no 

unconditional proceed are supported. All subfunction requests 

require a Parameter Block accompanying the request. 

The Parameter Blocks for the various SVC 2 subfunctions have the 

general form: 

|(0) SO.FC | (1) SO.RS | 

| Function code | Return status| 

| (2) S2.SNR | (3) S2.PAR | 

Subfunction | | | 
| (4) | 
| | See SVC 2 subfunctions 

The parameter block for the SVC 2 subfunctions has the following 

structure: 

Offset Bytes Type Mnemonic Name 

1) 0 1 Byte SO.FC Function Code 

2) 1 1 Byte SO.RS Return Status 

3) 2 1 Byte S$2.SNR Subfunction 

4) 3 1 Byte $2.PAR Parameter 

Total 4 



SECTION 9 - SVC 2 SUBFUNCTIONS 

9.2 PARAMETERS 

Descriptions of the parameters in the parameter block are given 

below: 

1) SO.FC, Function Code 

This parameter is determined by each subfunction. 

2) SO.RS, Return Status 

The Return Status is also determined by each subfunction. There is 

one common value, S2S.ISB, whose status code is 20 and which 

corresponds to an invalid subfunction number. S$2S.ISB part of the 

Return Status Parameter of all SVC's. If a subfunction is used 

illegally, it is this status that will be returned. 

3) S2.SNR, Subfunction 

There are eight subfunctions available whose characteristics are as 

follows: 

Status 

Subfunction Code Meaning 

EV2. 1MEM 1 Memory allocating. 

EV2.2MSG 2 Log message. 

EV2.3PFD 3 Pack file descriptor. 

EV2.4PNU 4 Pack numeric data. 

EV2.5UNP 5 Unpack binary number. 

EV2.7DAT 7 Fetch or set date and time. 

EV2.8CMD 8 Scan mnemonic table. 

EV2.120C 12 Open/close device. 

4) S2.PAR, Other Data 

The content of this field depends on each subfunction and is 

different for each one. 

Sept. '81 9-2



SECTION 9 - SVC 2 SUBFUNCTIONS 

9.3 SVC 2.1 MEMORY HANDLING 

SVC 2.1 is used to allocate and deallocate memory. The storage is 

allocated in system memory. Free space is allocated from the system 

table area (first 16K) and is very limited. Allocation is done on a 

first fit basis and the Operating System keeps a record of the size 

of the space that is actually allocated. 

When releasing memory, only the location of the block to be released 

is required. Blocks of memory are released in the same fashion as 

they are accessed. For example, you cannot allocate a 2K byte block 

of memory and then release it in two 1K byte blocks. You must 

release it as a 2K byte block. Furthermore, deallocation must be 

done explicitly. The Operating System does support compaction. 

Parameter Block 

The Parameter Block for SVC2.1 is shown below. 

|(0) SO.FC | (1) SO.RS | 

| Function code | Return status| 

|(2) $2.SNR = 1] (3) S2.PAR | 

| | Reserved | 

| (4) $2. 1ADR | 
| Memory address | 

| (6) $2.1SIZ | 

| | Memory size 

The Parameter block for SVC2.1 has the following structure: 

Offset Bytes Type Mnemonic Name 

1) 0 1 Byte SO.FC Function Code 

2) 1 1 Byte SO.RS Return Status 

3) 2 1 Byte S2.SNR Subfunction = 1 

4) 3 1 Byte $2.PAR Reserved (not used) = 0 

5) 4 2 Address S2.1ADR Memory Address 

6) 6 _ 2. Integer $2.1SIZ Memory Size 

Total 8 

9-3 Sept. ‘81 



SECTION 9 - Svc 2 SUBFUNCTIONS 

Parameter 

Descriptions of the parameter in the parameter block are given below. 

1) SO.FC, Function Code 

Memory Handling: The Memory Handling field is dependent upon the 

values of bits 0-2 as follows: 

Bit Value Name 

0-2 

1 S2F. 1ALO 

2 S2F. 1MAX 

3 S2F. 1REL 

4 S2F.1TCB 

5 S2F.1CAN 

2) SO.RS, Return Status: The 

Description 

Memory Handling Field 

Allocate Memory 

Reserved 

Release Memory 

Allocated a Task Control Block 

(TCB). Only for internal use. 

Remove a callers Task Control 

Block (TCB). Only for internal 

use. 

Return Status Codes for SVC2.1 take on 

the values 21 and 22 as given below. 

Function Code 

$2S.1PAR 21 

$2S.1E0OM 22 

5) S2.1ADR, Memory Address: 

Meaning 

Illegal parameter. 

End of memory. 

Contains the memory address at 

deallocation and returns the memory address at allocation. 

6) S1.ISIZ, Memory Size: Specifies the memory size to be allocated 

in bytes. 

Sept. '8l



SECTION 9 - SVC 2 SUBFUNCTIONS 

9.4 SVC 2.2 LOG MESSAGE 

SVC 2.2 is used to log a message on the terminal device or system log 

device irrespective of the logical unit assignments in force at the 

time of the request. 

Parameter Block 

The Parameter Block for SVC 2.2 is shown below. 

1(0) SO.FC |(1) SO.RS | 

| Function code | Return status | 

|(2) $2.SNR |(3) s2.2Ts | 

| Subfunction 2 | Term. status | 

, | (4) $2.2BAD | 

| Buffer address | 

| (6) S2.2BSZ | 

| | Buffer size 

The Parameter Block for SVC 2.2 has the following structure: 

Offset Bytes Type Mnemonic Name 

1) 0 1 Byte SO.FC Function Code 

2) 1 1 Byte SO.RS Return Status 

3) 2 1 Byte S2.SNR Subfunction = 2 

4) 3 1 Byte $2.2TS Reserved = 0 

5) 4 2 Address S2.2BAD Buffer Address 

6) 6 =. Integer S2.2BSZ Buffer Size 

Total 8 

Parameters 

Descriptions of the parameters in the parameters block are given 

below. 

1) SO.FC, Function Code: Refer to the SVC 1 Function Code parameters 

regarding data formatting. 

2) SO.RS, Return Status: There is no return status. 

9-5 Sept. ‘81 



SECTION 9 -— SVC 2 SUBFUNCTIONS 

3) Reserved. 

4) $2.2BAD, Buffer Address: The address of the buffer to write on 

the system console. 

6) $2.2BSZ, Buffer Size: This parameter specifies the number of 

bytes to write. 

Example 

Log the message ‘Records Copied' onto the console. 

S22ANTR DB 0 

* DB 0 

DB EV2.2MSG 

DB 0 

DA ANTRTXT 

DA ANTRSIZ 

ke 

ANTRTXT DB Records Copied. 

ANTRSIZ EQU *—-ANTRTXT 

SVC 2,S22ANTR 

Sept. '81 9-6



SECTION 9 - SVC 2 SUBFUNCTIONS 

9.5 SVC 2.3 PACK FILE DESCRIPTOR 

SVC 2.3 allows the user to process a File Description in standard 

Monroe syntax. The scan proceeds until it has satisfactorily 

processed each field in the File Descriptors syntax. Headings and 

spaces are ignored. If the scan finds illegal characters, a syntax 

error is returned and the scan terminates. Note that some kind of 

termination character must exist if the string size is not specified. 

Parameter Block 

The Parameter Block for SVC 2.3 is shown below. 

|(0) SO.FC 1(1) SO.RS |(2) S2.SNR=3 |(3) $2.3TS_ | 

| Function code| Return status | , | Term. status | 

| (4) $2.3ADR | (6) S2.3BUF | 

| ASCII-string address | Address of receiving area | 

| (8) $2.3PNT |(10) $2.3CNT | 

| Terminating string address | String size | 

The Parameter Block for SVC 2.3 has the following structure: 

Offset Bytes Type Mnemonic Name 

1) 0 1 Byte SO.FC Function Code 

2) 1 1 Byte SO.RS Return Status 

3) 2 1 Byte S2.SNR Subfunction = 3 

4) 3 1 Byte $2.3TS Termination Status 

5) 4 2 Address S$2.3ADR ASCII-String Address 

6) 6 2 Address S2.3BUF Address of Receiving Area 

7) 8 2 Address $2.3PNT Terminating String Address 

8) 10 20 Integer S2.3CNT String Size 

Total 12 

9-7 Sept. '8l 



SECTION 9 - SVC 2 SUBFUNCTIONS 

Parameters 

Descriptions of the parameter in the parameter block are given below. 

1) SO.FC, Function Code: The function code byte allocation is given as 

follows: 

Bit Value Name Description 

0 1 S2F.3FN Unpack as filename if 

not specified. 

2 S2F.3KEP Keep non-modified fields. 

2 4 S2F.3CNT String size specified. 

3 8 S2F.3PMO Pack modifier. 

2) SO.RS, Return Status: The Return Status parameters are as follows: 

Function Code 

S2S.3IFD 21 

Meaning 

Invalid file descriptor, 

syntax error. 

4) $2.3TS, Termination Status: 

is given in the following table: 

The termination status .byte allocation 

Bit Value Name Description 

0 1 S$2T.3NEL Element name not found. 

1 2 S2T.3NFN Filename not found. 

2 4 S2T.3NVO Volume name not found. 

3 8 $2T.3NMO Modifier not found. This status 

>) $2.3ADR, String Address: 

file descriptor to be packed. 

Sept. ‘81 

is only set if the pack modifier 

field S2F.3PMO is requested. 

Is a pointer to a string that contains the



SECTION 9 -— SVC 2 SUBFUNCTIONS 

6) $2.3BUF, Receiving Area: This is a pointer to a 29—-byte area. 

Note that the modifier field is on the negative side of the area, and 

must only be present if the function S2F.3PMO is requested. The 

following parameters are then included in the Parameter Block: 

|(=1) FD.MOD| 
| File modifier| 

| (0) FD. VOL| 
Volume name | 

| (4) FD. FILE | 

| File name | 

|(16) FD.ELMT | 

| Element name 

The modifier field has the following structure: 

Offset Bytes Type Mnemonic Name 

-1 1 Byte FD.MOD File Modifier 

0 1 Byte FD.VOL Volume Name 

4 2 Address FD.FILE File Name 

16 2 Byte FD.ELMT Element Name 

7) S2.3PNT, Terminating String Address: This field is returned 

pointing to the first byte that is not part of the file descriptor. 

8) S2.3CNT, String Size: This is an optional field, specifying the 

string length. The lenght of this string can be limited by setting 

the S2F.3CNT-bit in SO.FC field, and give the size in S2.3CNT-field. 

A string length of zero means that the source string is terminated 

with 0. 

9-9 Sept. '81 



SECTION 9 - SVC 2 SUBFUNCTIONS 

9.6 SVC 2.4 PACK NUMERIC DATA 

SVC 2.4 translates ASCII hexadecimal, decimal, 

strings into binary 8, 16, 24, or 32 bit numbers. 

or octal character 

Leading spaces are 

ignored and the conversion continues until a character not conforming 

to the base is found. 

Parameter Block 

The parameter block for SVC2.4 is shown below. 

(0) SO.FC | (2) 

Function code | 

SO.RS 

Return status | 

|(2) S2.SNR = 4 |(3) S2.4SIZE| 

(4) $2.4ADR 

String address 

(8) 

| Size 

| (6) $2.4PNT 

| Updated string address 

$2.4RES 

Result 

The parameter block for SVC 2.4 has the following structure: 

1) 

2) 

3) 

4) 

5) 

6) 

7) 

Sept. 

Function Code 

Return Status 

Subfunction = 4 

String Address 

Updated String Address 

Offset Bytes Type Mnemonic Name 

0 1 Byte SO.FC 

1 1 Byte SO.RS 

2 1 Byte $2.SNR 

3 1 Integer S2.4SIZE Size 

4 2 Address S2.4ADR 

6 2 Address S2.4PNT 

8 _4 ~—s Byte $2.4RES Result 

Total 8 

"81 9-10 

| 
| 
| 
| 
|



SECTION 9 -— SVC 2 SUBFUNCTIONS 

Parameters 

Descriptions of the parameters found in the parameter block are given 

below: 

1) SO.FC, Function Code: The function code byte allocation is as 

follows: 

Bit Value Name Description 

0-2 - - Conversion Base. 

0 S2F.4DEC Decimal. 

1 S2F.40CT Octal. 

2 S2F.4HEX Hexadecimal. 

3 Sign Handling. 

0 S2F.4SGN No sign input allowed. 

1 S2F.4SGN Input may be signed. 

4 Destination. 

0 2SF.4IND In parameter block. 

1 2SF.4IND Address Specified. 

2) SQ.RS, Return Status: The Return Status codes can take on the 

values of 21 and 22 as shown below. 

Function Code Meaning 

S2S.40FL 21 Overflow. 

$2S.4NCV 22 Nothing converted. 

3) S2.4SIZE, Size: This parameter describes the size of the binary 

result. The user can auto-increment the result pointer using this 

parameter. The bit contents is: 

Bit Value Name Description 

4-6 ~ = Size of result field. 

$2Z.4BIN Contains the number of bytes in 

the result field. 

7 - - Result poitner field. 

0 $2Z.SINC Do not auto increment the 

result pointer. 

1 $2Z.4INC Auto increment the result pointer. 

9-11 Sept. ‘81 



SECTION 9 - SVC 2 SUBFUNCTIONS 

Note that the size of the buffer through which the translation is 

invoked must be specified in advance. S$2Z.4BIN then indicates the 

size of the binary result. If for example, you have characters in an 

array, that must be translated into binary S2Z.4BIN can be used to 

position the buffer into segments of some fixed memory length. 

Hence, if S2Z.4BIN is set at K bytes then a 1 in bit 7 for S2Z.4INC 

means that each time the result pointer is incremented it will do so 

in K byte segments of memory. During the actual data translation 

phase this removes an extra program step since you do not have the 

extra statement incrementing the result pointer after the previous 

array element has been buffered. 

5) $2.4ADR, String Address: This is a poninter to the first 

character of the ASCII string to be converted. 

6) $2.4RES, Result: The result is placed either in this field, or 

at the address specified by this field. 

7) S2.4PNT, Updated String Address: This is the updated string 

pointer at return, and it is pointing at the first byte in the string 

that was not convereted. 

Ex. 1 

This example converts ASCII decimal to a binary number. 

SVC24 DB S2F.4DEC 

STAT DB 0 

SUB DB EV2.4PNU 

SIZE DB STRLEN 

STRAD DA STRDATA 

STRRS DA 0 : 

RESBIN DMA 2,0 

STRDATA DB "1234567! 

STRLEN EQU *-STRADATA 

SVC 2,SVC2.4 

Sept. '81l 9~12



SECTION 9 -— SVC 2 SUBFUNCTIONS 

9.7 SVC 2.5 UNPACK BINARY NUMBER 

SVC 2.5 translates an 8, 16, 24 or 32 bit number into ASCII, 

hexadecimal, decimal, or octal format. 

Parameter Block 

The parameter block for SVC2.5 is shown below. 

|(0)  SO.FC | (1) SO.RS |(2) $2.SNR = 5|/(3) S2.5SIZE| 

| Function code | Return status | | Size 

|(4) $2.5ADR | (6) $2.5PNT 

| Destination address | Updated string address 

| (8) 

| 

$2.5VAL 

Source 

| a 

| 
| 
| 
| 

The Paramter Block for SVC 2.5 has the following structure: 

1) 
2) 

3) 

4) 

5) 

6) 

7) 

Function Code 

Return STatus 

Subfunction = 5 

Destination Address 

Updated String Address 

Offset Bytes Type Mnemonic Name 

0 l Byte SO.FC 

1 1 Byte SO.RS 

2 1 Byte $2.SNR 

3 1 Integer S2.5SIZE Size 

4 2 Address S2.5ADR 

6 2 Address S2.5PNT 

8 4 Byte S$2.5VAL Source 

Total 12 

9-13 Sept. "81 



SECTION 9 - SVC 2 SUBFUNCTIONS 

Parameters 

Descriptions of the parameters are given below. 

1) SO.FC, Function Code: The function code byte allocation is as 

follows: 

Bit Value Name Description 

0-1 Base field. 

0 S2F.5DEC Decimal. 

S2F.50CT Octal. 

2 S2F. 5HEX Hexadecimal 

2 Sign field. 

0 S2F.5SGN Unsigned conversion. 

1 S2F.5SGN Signed conversion 

3 Source description 

0 S2F.5IND Number in parameter block. 

1 S2F.5IND Address specified. 

4 Space flag. 

O° | S2F.5SP Leading zeros. 

1 S2F.5SP ; Leading spaces. 

5 Field Justification. 

0 S2F.5LFT Right Justify. 

1 S2F.5LFT Left Justify. 

Note that when converting a number to hexadecimal, decimal, or octal 

the base must be specified. 

2) SO.RS, Return Status: There is no return status. 

3) S2.5SIZE, Size: Describes the size of both the binary and ASCII 

fields, and allows you the possibility of auto-incrementing the binary 

pointer. If the number to be converted exceeds the buffer length, most 

of the significant bytes are lost. If suppression of leading zeros is 

requested, the number is stored in the buffer, and the remaining 

characters, if any, are filled with spaces. If the number is to be left 

justified, only the number of bytes required for the number will be used, 

Sept. ‘81 9-14



SECTION 9 - SVC 2 SUBFUNCTIONS 

and $2.5PNT will point at the next position after the number. The 

byte allocation size is as follows: 

Bit Value Name Descripton 

0-3 Bytes in ASCII. 

- $2Z.5ASC Contains the number of bytes 

in an ASCII character 

string. 

4-6 - $2Z.5BIN Contains the number of bytes 

in a binary number. 

7 Auto increment. 

0 $2Z.5INC Do not auto increment binary 

pointer. 

1 $2Z.5INC Auto increment binary 

pointer. 

5) $2.5ADR, Destination Address: This is a pointer to the first 

location of a buffer in memory where the converted number is to be 

stored. This buffer must be in a writable logical segment. 

6) $2.5PNT, Updated Destination Address: This is the updated buffer 

address pointer at return, and it is pointing at the first byte in 

the buffer after the converted number. ; 

7) $2.5VAL, Source: The binary number is placed either in this 

field, or at the address specified by this field. 

Ex. 

S25INERR DB S2F.5DEC + S2F.5SP 

DB 0 

DB EV2.5UNP 

DB 10H+3 

DA INERR 

DA 0 

DA 0 

DA 0 

SVC 2,S25INERR 

9-15 Sept. ‘81 



SECTION 9 - SVC 2 SUBFUNCTIONS 

9.8 SVC 2.7 FETCH/SET OR DATE/TIME 

SVC2.7 is used either to interrogate the time-slice value or to fetch 

and set the current time of day in the operating system. 

Parameter Block 

The parameter block for SVC2.7 is shown below. 

|(0) sSo.FC | (1) so.RS_ | 

| Function code Return status| 

[(2) S2.sNR=7 | (3) S2.PAR | 
| | Reserved | 

[¢4) $2.7BUF | 
| Buffer address | 

The Parameter Block for SVC2.7 has the following structure: 

Offset Bytes Type Mnemonic Name 

1) 0 1 Byte SO.FC Function Code 

2) 1 1 Byte SO.RS Return Status 

3) 2 1 Byte S2.SNR Subfunction = 7 

4) 3 1 Byte S2.PAR Reserved 

5) 4 2 Address S2.7BUF Byte for address or 
or time slice value 

__ Integer 

Total 6 

Sept. '81 9-16



SECTION 9 - SVC 2 SUBFUNCTIONS 

Parameters 

The parameters found in the parameter block are described below: 

1) SO.FC, Function Code: the byte allocation for the function code 

is as follows (S2.PAR is not used). 

Bit Value Name Description 

0-1 Fetch 1 set field 

0 Illegal = 

1 S2F.7GET Fetch function 

2 S2F.7SET Set function 

3 Illegal - 

2-3 Slice/date/time field 

0 S2F.7SLC Slice handling 

1 S2F.7DAT Date handling 

2 S2F.7TIM Time handling 

3 (S2F.7DAT Date and time handling. 

+ S2F.7TIM) The buffer has the date 

followed by the time. 

4-5 Data field 
0 S2F.7ASC ASCII data; slice handling 

only. 

1 S2F.7BIN Binary data, time and/or 

date handling only. 

Note in all of the above fields there is a 0 in bit 5. 

2) SO.RS, Return Status: The following return status codes are in 

effect. 

Function Code Meaning 

$2S.7DAT 21 Invalid date. 

$2S.7TIM 22 Invalid time. 

5) $2.7BUF, Buffer Address: This field 1) holds the value at slice 

handling. 2) Contains the address to a buffer within the user's 

program that either receives or sends the values at date and/or time 

handling. 

9-17 Sept. ‘81 





SECTION 18 

INTERRUPT STRUCTURES 





SECTION 18 

INTERRUPT STRUCTURES 

18.1 STACK FOR SYSTEM ROUTINES 

The System Pointer, System Stacks, and Task Stacks have the following 

structure. 

SPT. STK SYS-STK TSK-STK 

| | | | | | 
| |-------->|__ sp |—----->| Ics | 

| | iF = 
| sP__| | «ry | 

| | = -| 
| Ics | | mx | 

I=. =| |- =| 

| «ww | | aF | 

|= “| - | 

| m= | | Be | 
|- =| |- -| 
| AF | | DE | 
[> -| |- =| 
| Be | | = | 
|= | [- -| 
| DE | | Pc | 

[= “| | | 
| mam | | | | 

SPT.STK 

Contains the address to the system stack that should be used during 

an interrupt. It is located in the system area. 

SYS-STK 

Is the structure of the system stack when the system is executing in 

Interrupt Mode. It is located in the system area (lower 16KB). 

TSK-STK 

The structure of a task stack when a task has been interrupted. It 

is located in a tasks impure (B-segment) area. 

18-1 Sept. '81 



SECTION 18 -— INTERRUPT STRUCTURES 

Stack Table for System Routines (In the system stack area) 

Offset Size Type 

1) 0 2 Word 

2) 2. 2 Word 

3) 4 2 Word 

Total 6 

Stack Table for Interrupt 

Offset Size Type 

1) Oo 2 Word 

2) 2 1 Byte 

3) 3 1 Byte 

4) 4 2 Word 

5) 6 2 Word 

6) 8 2 Word 

7) 10 2 Word 

8) 12 2 Word 

9) 14 2 Word 

10) 16 2 Word 

11) 18 _- Word 

Total 20 

Stack Table for Suspension 

Offset Size 

1) 0 2 

2) 2 2 

3) 4 2 

4) 6 2 

5) 8 20 

Total 29 

Sept. ‘81 

(On the User stack) 

Name 

SSP.RET 

SSP.BSEG 

SSP.SP 

Name 

USP. ILRS 

USP.MLIM 

USP ..ASEG 

USP.IY 

USP.IX 

USP.AF 

USP.BC 

USP.DE 

USP.HL 

USP.PC 

USP.SP 

Description 

Interrupt Handler Address 

Task BSEG Base 

Task SP 

Description 

Previous level & channel 

User mode and limit 

User a segment 

CPU register IY 

(On the user stack) 

Type. 
Word 

Name 

TSP.AF1 

TSP.BCl 

TSP.DE1 

TSP.HL1 

Same as for interrupt stack 

above 

18-2



. SECTION 18 - INTERRUPT STRUCTURES 

Stack Table for Kernel Mode 

Offset Size Type Name 

1) 0 2 Word KSP.HL 

2) 2 2 Word KSP.PC 

3) 4 _20_ - Same as for interrupt stack 

Total 24 

Stack Table for Queue 

Offset Size Type Name Description 

1) Oo 2 Address QUE. LNK* Next item in the list 

2) 2 1 Byte QUE. PRI* Priority (seating item) 

3) 3 1 Byte QUE. NR* Data 

Total 4 

Stack Table for Node 

Offset Size Type Name Description 

1) Oo. 2 Address NOD.LNK Next node in list 

2) 2 1 Byte NOD.CPRI* Priority 

3) 3 1 Byte NOD.CTCB* TCB number 

4) 4 1 Byte NOD.QFC* Request function 

5) 5 1 Byte NOD.SEG* SVC segment value 

6) 6 2 Address NOD.SVC* SVC parameter address 

7) 8 l Byte NOD.RNR* Resource number 

8) 9 1 Byte NOD.EVNIT* Event number 

9) 10 2 Add/integer NOD.RCB* RCB add or timer value 

(.TIME*) 

10) 12 2 Address NOD.AQLK* Assign link 

11) 14 Integer NOD.OWN* Reserved 

Bytes 16 

18-3 Sept. '8l 



SECTION 18 ~ INTERRUPT STRUCTURES 

18.2 LOCATING TASKS IN MEMORY 

To locate tasks within operating system memory, load the task you 

wish to locate and get its task number via the TASK command which 

lists the tasks, their ID and numbers. (c.f. MONROE UTILITY PROGRAMS 

PROGRAMMERS REFERENCE MANUAL). Second, load the BIAS register with 0 

(BIAS 0). The EXAMINE and MODIFY can now look at the operating 

system in the first 16K bytes of memory. 

Initially you should look at the free space table used by the 

operating system. The table is located at 3F80 (hex). It contains 

one byte for each 1K bytes of memory (i.e. 128 bytes in the table for 

the 128K bytes of Monty memory). Each byte contains the task number 

for which the corresponding 1K byte of memory is allocated. The 

operating system's task number is FF hex and free space is 0. 

The next step is to calculate the base address of the program which 

is 1024 (decimal) times the offset of the first byte in the space 

table which contains the task number in question. The result can 

then be placed into the BIAS register via the BIAS command (remember 

that BIAS requires a hex value). The program can then be Examined or 

Modified. 

One helpful trick is to subtract the corresponding program offset 

from the value given to the BIAS command so that addresses used with 
the Examine and Modify commands and the program will be the same. For 

example, programs usually start at E000 hex. If the memory 

allocation begins at 1E000 hex then a BIAS 10000 command would ‘set up 

the access such that Examine E000 would list the first byte of the 

program located at logical address E000 hex and physical address 

1EQ00 hex. Note that the lower 16K allocated to the operating system 

is not accessible with low addresses like 0 because the program 

memory mapping scheme is not in effect. 

Sept. '81 18-4



SECTION 19 

DATA STRUCTURES 





SECTION 19 

DATA STRUCTURES 

19.1 INTRODUCTION 

This section contains detailed descriptions of memory management, 

segmented code files, various formats for the system control blocks 

and formats for all table entries. 

The central resource of the operating system is the System Pointer 

Table (SPT). This table contains general operating system 

information and pointers to the lists of resources in the system. 

The elements of these lists are described after the SPT. Every 

public resource must be defined at a numeric level and optionally 

defined at a symbolic level. This is done by a Resource Reference 

Table (RRT) at the numeric level and a Resource Mnemonic Table (RMT) 

at the symbolic level. These tables are then linked together. In 

addition, an exclusive resource must also have a Resource Control 

Block (RCB) which controls both the access to and establishes the 

queue into that resource. 

19.2 MEMORY MANAGEMENT 

In order to gain an understanding of the various System Control 

Blocks and Table Entries it is necessary to review how memory is 

managed by the Monroe Operating System. This is summarized by the 

diagram in Figure 19-1. 

19~1 Sept. '81 



SECTION 19 - DATA STRUCTURES 

High Memory 16KB 

High Resolution 

Graphics 

72KB 

Work Space 

128KB Total 

24KB 

Monroe 

Operating 

System 

16KB 

System Tables 

e
e
 

e
e
 

e
e
 

e
e
 

e
e
 
e
e
 

e
e
 

e
e
 

e
e
 

e
e
 

e
e
 
e
e
e
 

e
e
 

Q
e
 

ee
 

Low Memory . 

Figure 19-1. Physical Memory 

Sept. ‘81 19-2



SECTION 19 - DATA STRUCTURES 

Physical Memory 

The first 16K bytes of physical memory are reserved for the System 

Tables. The next 24K bytes are reserved for the Monroe Operating 

System. At the top (located in High Memory) there are 16K bytes 

allocated for High Resolution Graphics. The middle segment, 72K 

bytes long, is Work Space which can be partitioned in any way 

depending upon the program configuration being executed. This work 

space can be further subdivided into pure and impure code. there is 

a segment, which can be at most 49K bytes, called impure memory and 

another segment, which can be at most 40K bytes, called pure memory. 

These two 40K blocks are essentially two contiguous segments located 

in a 72K work space. 

Logical Memory 

When a program starts up it needs a certain amount of physical memory 

Space to execute. This space may be 0 bytes; nevertheless, normally 

a@ program will need a certain fixed number of bytes of pure and 

impure memory in order to run. This space is allocated by the 

Operating System out of the work space consisting of 72K bytes. In 

addition, the Operating System keeps a free spare table indicating 

what can be used and what cannot be used. 

When the user loads and executes a program all of the operating 

system tables set their pointers to the Z-80 Logical Memory Space. 

The bottom 16K bytes of this Logical Memory Space is reserved for the 

System Tables. The remaining 48K bytes are used to access both the 

pure and impure memory space in physical memory. Normally this is 

done in segments of 40K and 8K bytes, however this space can be 

partitioned in any way so long as the total number of bytes is 48. 

This is done by two registers; an A-segment register, and a B-segment 

register-both of which point to the work space. A limit register, in 

logical memory, indicates where the break point occurs (See Figure 

19-2). This configuration, is called a Task Space, or Task 

Addressing Space. 

19-3 Sept. '81 



SECTION 19 - DATA STRUCTURES 

A - Segment A ~ Segment 

Impure Memory Impure Memory 

40KB xKB 

where x<¢ 48KB 

B - Segment 

B - Segment (48-x) KB 

Pure Memory 

8 KB 

| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 

Limit Register | 

System Tables | 

16KB | 

Limit Register 

System Tables 

16KB 

| | | 
| | | 
| | | 
| | | 
| | | 
| | | 
| | | 
| | | 
| | | 
| | | 
| | | 
| | | 
| | | 
| | | 

| Pure Memory | 

| | | 
| | | 
| | | 
| | | 
| | | 
| | | 
| | | 
| | | 
| | | 
| | | 
| | | 
| | 
| | | 

(a) Normal Segmentation (b) Optional Segmentation 

Figure 19-2. Task Addressing Space 

Sept. ‘81 19-4



SECTION 19 — DATA STRUCTURES 

Memory Mapping 

Within each system table there is an address which is associated with 

a segment value that is one byte long. This pair, consisting of the 

address and the segment value, is what accesses the actual physical 

memory space of the operating system. The segment value is loaded 

into the appropriate segment register (usually the B register 

segment) and then the address accesses the actual data. 

Therefore, if you were to map this Logical Memory Space or Task Space 

onto physical memory you might do it in the manner suggested by 

Figure 19-3. In this figure 40K bytes are allocated for impure code, 

8K bytes for pure code, and 16K bytes for the system tables. Note 

that the 40K and 8K bytes are mapped onto different areas of the 72K 

physical work space while the 16K bytes for the system tables are 

mapped onto the 16K bytes at the low end of physical memory. Note 

also that the logical memory space of the Z-80 is constructed so that 

even though it is only 64K bytes long it can freely access 128K bytes 

of physical memory; that is, it occupies a physical memory space of 

64K bytes and a logical memory space of 128K bytes. 

19-5 Sept. '81l 



SECTION 19 ~ DATA STRUCTURES 

f | | 
| 16KB | 

| | 
| | 
| | | | 
| | | 40KB | 
| | | Impure | 

| 40KB | | Memory | | | +———_ l 64K 
128KB | | | | 

| | | | 
|—— | | 
| sKB | | 8KB | 
|--------—— | pe | Pure Memory | 

| sxe | | 16KB | 
|------- | |__ System Tables | | 

| | 
| 4oKB | b) Task Space 
| | Z80 Logical Memory 

| | . 
| Tables | 

|_| 
| | 
| | 
| 16KB | 

| | 
| | 

a) Physical Memory 

Figure 19-3 Memory Mapping (Logical to Physical) 

Sept. '8l 19-6



SECTION 19 ~— DATA STRUCTURES 

19.3 TWO SEGMENT CODE FILES AND PROGRAMS OVER 40K 

Executable code resides in a Monroe Operating System task file. An 

example of a task file is the operation system. A task file is 

placed into memory by the Monroe OPERATING SYTEM loader which is 

capable of loading either absolute code or elocatable code. Loading 

of relocatable code requires the additional step of converting the 

code to an absolute format before loading it into memory. 

Memory Partitions 

The memory space for a task is divided into three segments: the 

system area, the A segment (pure segment), and the B segment (impure 

segment). The system area is always 16K and is mapped into the 

lowest 16K of physical memory (128K). The A segment and B segment 

are of variable size (granularity is 8K) and must total 48K. The A 

segment always begins at 4000 hex and the B segment always ends at 

FFFF hex. The boundary is programmable however, by convention, the A 

segment is 8K and the B segment is 40K. 

The A and B segments can be mapped into any place in memory (on 8K 

boundaries) with the logical space overlapping the physical space. A 

and B can even map the same space. 

The system area contains operating system code and tables and should 

not be used to load any program but the operating system. 

The A segment contains pure code which means that only program code 

is contained in the segment. It also means that the code can be 

shared if two programs can use the same code as with Monroe BASIC. 

The A segment can logically address 8K (by system convention), 

however, the loader can put up to a 40K segment into memory. This 

means that up to 32K could not be accessed, but, by good design, the 

entire 40K can be accessed in 8K segments by an operating system 

overlay method discussed later. Therefore, a program can have up to 

40K of program code and 40K of additional code and data. Note: to 

use the A segment requires a special procedure also described later. 

19-7 Sept. '81 





SECTION 19 - DATA STRUCTURES 

Table 19-1. Loader Information Block (LIB) 

Note: All integers are MSB (low offset) to LSB (high offset) 

Offset Bytes Type Description 

1) 0 2 Word LIB Designation, must be 200 Hex 

2) 2 4 String Date created (packed BCD) (optional) 

3) 6 4 String Time created (packed BCD) (optional) 

4) 10 2 Integer Version number (optional) 

5) 12 4 Long Int. Execution start address (absolute 

) code only) 

6) 16 4 Long Int. Stack size in bytes 

7) 20 2 Word Code type (see below) 

8) 22 1 Byte Task type (see SVC8) 

9) 23 1 Byte Task Options (see SVC8) 

10) 24 2 - ; Reserved 

11) 26 1 Byte Task priority (128=Default) 

12) 27 1 - Reserved 

13) 28 4 String Task name (for pure code only) 

14) 32 96 - Reserved 

15) 128 1 Byte Code checksum (absolute code only) 

16) 129 1 - Reserved 

17) 130 2 Address Load address (absolute code only) 

18) 132 2 Integer Code size in bytes 

19) 134 21 - Reserved 

20) 255 ! Byte LIB checksum 

256 Bytes 

7) Code Type Word: This byte contains the following: 

Bit Size Description 

0 1 Absolute code (0=Relocatable) 

1 1 Reserved 

2 1 Segment A-Pure Code (0=Segment B) 

3 13 Reserved 

19-9 Sept. '81 



SECTION 19 ~ DATA STRUCTURES 

The optional items should be zero if not included. The execution 

start address should be under 10000 hex and it is applicable to 

absolute code only. Relocatable code includes the start address. 

The stack size should also be under 10000 hex and it indicates the 

amount additional memory required by the program in addition to code 

space. The total amount of allocated space is the code size plus the 

stack size. Note that the code size is the amount to allocate. It 

also specifies the amount in the file if it is in absolute format 

only. 

The task priority and options are mentioned in the system 

documentation under SVC8. 

The task name is used only with the pure segment. The impure segment 

derives its name from the initializing program, such as the operating 

system. 

Note: If a pure segment is to be loaded and one copy already exists 

in memory (i.e. their task names are the same), then the second copy 

will not be loaded and the memory copy will be used. 

Note: If a pure and impure segment is loaded, there will be two 

tasks created but only one will be executed. This is due to the 

allocation scheme. 

Sept. ‘81 19-10



SECTION 19 -— DATA STRUCTURES 

Checksum Computation: All data bytes plus the checksum, when added 

with carry, must result in an 8 bit zero value. The initial state of 

the carry is zero. The addition should be modul0 256 and carry 

should be the result of the add divided (integer) by 256 (i.e., the 

overflow). 

File Format: The format of a task file is: 

Sectors 

1) 1 Impure LIB (segment B) 

2) N Impure code 

3) 1 Pure LIB (Segment A) 

4) N Pure code 

The impure code section is omitted if it is not required. (i.e. it 

is only a non-initialized data area). The pure segment and pure code 

are also optional, however, if you have only an impure segment the 

impure code section should contain executable code. 

Also, if the impure segment is omitted then the impure LIB should 

indicate a relocatable format. 

Special Loader Information for Pure Segments 

Impure LIB 

Execution start address must point to the absolute start address 

of the program which may be segment A or B. The impure LIB also 

specifies the task priority, type, and options. 

Pure LIB 

Execution start address and stack size should be zero. 

19-11 Sept. ‘81 



SECTION 19 - DATA STRUCTURES 

Memory Allocation Procedure 

The impure segment is allocated in logical memory from FFFF hex down 

to FFFF hex minus the size (code plus stack) of the impure segment. 

Unallocated memory should not be used. 

The pure segment is always located at 4000 hex to 5FFF hex in the 

logical space. If the segment is physically larger, then the first 

8K portion is made immediately accessible. The remaining portion 

will be adjacent in physical memory but must be accessed during 

procedures described later. 

Program Transfer Procedure 

The A segment (pure code) is 8K in the logical space but up to 40K in 

the physical space. This means that only one 8K section of the 

segment is accessible to a program at any one time. 

Since it is assumed that only code will reside in the A segment and 

it will be executed, the routine available from the operating system 

will jump from one logical A segment to another. The location of the 

system routine is 052 hex and it will be called TRANSFER in the | 

examples. 

TRANSFER takes a segment value and an absolute branch address as 

parameters with control being passed to the new location. The 

segment value is passed in the A register and is eight (8) times the 

logical block index where the first block is zero and the last is 

five (for 40K). Therefore, 0,8, and 16 correspond to blocks 0, 1, 

and 2 (note that the partition boundaries are OK, 8K and 16K). 

Sept. ‘81 19-12



SECTION 19 — DATA STRUCTURES 

The routine address in the new segment is placed on top of the stack, 
and a branch to the TRANSFER routine is made. The routine swaps the 
current segment number with the new segment number in the A register 
and then branches to the new routine. The DE and HL registers in the 
Z80 are lost. A table of the state change is: 

Before After 

Register A New Segment Old Segment 

Register DE Data Garbage 
Register HL Data Garbage 

Top of Stack Branch Address (Previous value) 

Segment Register Old Segment New Segment 

Flags ‘Data Garbage 

Program Counter TRANSFER Branch Address 

For branches, the old segment index can be ignored, however, for 

Procedure calls it must be saved along with the return PC value, but 

note that this must be explicitly by your program. This can be done 

as a two step process: (1) call a local routine that branches to 
' TRANSFER and (2) have the routine called in the new segment save the 

A register (old segment value) and restore it when it is done. The 
routine terminates by branching to TRANSFER. (Note: this requires 
an additional routine in the calling segment.) 

The second method of doing a long call involves additional routines 

in both the calling segment and routine segment. However, the called 

routine is the same as a normal routine (i.e. it ends with a return 

not a jump to TRANSFER). This method'costs a few additional bytes: of 

memory for only one usage, but it can save memory if there are a 

number of routines. 

19-13 Sept. '8l 



SECTION 19 - DATA STRUCTURES 

Note: The stack cannot be in segment A. 

Examples: 

1) Jump only: Jump to routine in segment 1. 

In Old Segment: 

LI A,8 New segment 1 

LA HL, ROUTINE PUSH routine address 

PUSH HL 

JMP TRANSFER TRANSFER to new segment 

In New Segment : 

ROUTINE = * Normal Routine 

2) CALL Method 1: Call Routine in Segment 2 

In Old Segment: 

LI A, 16 New segment 

LA HL, ROUTINE Routine in new segment 

CALL LONG CALL 

LONGCALL = * 

PUSH HL Return address and 

JMP TRANSFER Call address on the stack 

In New Segment 

ROUTINE = * 

PUSH A Save Old segment 

= Routine code here 

POP A Restore old segment 

JMP TRANSFER Return address is on top of 

stack 

Sept. ‘81 19-14



SECTION 19 - DATA STRUCTURES 

3) Call Method 2: 

In both segments at the same spot 

LONGCALL = 

PUSH 

LA 

PUSH 

LONGLINK = 

LONGRET = 

In Old Segment 

LI 

LA 

CALL 

In New Segment 

ROUTINE = 

RET 

x 

HL Save routine address 

DE, LONGLINK 

DE Push Longlink address 

TRANSFER GOTO Longlink in the new 

segment 
* 

HL Get routine address 

A Save old segment 

DE, LONGRET 

DE Make a psuedo call 

HL Jump to routine 

* 

A Restore old segment 

TRANSFER 

A,16 New segment 

HL, ROUTINE 

LONGCALL 

x 

Routine code here 

Return to caller (Longret or Local) 

19-15 Sept. '81 



SECTION 19 — DATA STRUCTURES 

19.4 SYSTEM POINTER TABLE 

The System Pointer Table (SPT) (refer to Table 19-2) is based in the 

first 16K of memory just as all of the items which are directly 

pointed to by the SPT. 

the SPT is located at 3CH (LSB) to 3DH. 

A 16-bit pointer to the starting address of 

Note there are positive offsets and negative offsets for the SPT. To 

index the offsets you add the offset to the SPT starting address. 

System Pointer Table (Base Address:3CH to 3DH) Table 19-2. 

Offset Size Type 

1) -338 198 Bytes 

2) -140 1 Byte 

3) -139 7*8 Vector 

4) -83 2 Address 

5) -81 1 Byte 

6) -80 16*1 Byte 

7) -64 16*2 Address 

8) -32 16*2 Address 

9) ) 1 Byte 

10) 1 l Byte 

11) 2 1 Byte 

12) 3 1 Byte 

13) 4 2 Address 

14) 6 1 Byte 

15) 7 1 Byte 

16) 8 1 Byte 

17) 9 1 Byte 

18) 10 1 Byte 

19) 11 1 Byte 

20) 12 1 Byte 

21) 13 1 Byte 

22) 14 1 Byte 

23) 15 1 Byte 

Sept. ‘81 

Name 

SYT. IVEC* 

SYT.STK* 

SYT. IVO-6* 
-SYT.IV7* 
SYT. IQPP* 

SYT.IQFT* 

SYT. ITAB* 

SYT. IQUE* 

SYP. VERS* 

SYP. REL* 

SYP .UPD* 

SYP.APPL* 

SYP. INTT* 

SYP.OPT* 

SYP. STAT* 

SYP. BSEL* 

SYP.BCS* 

SYP. YEAR* 

SYP .MONTH* 

SYP. DAY* 

SYP .HOUR* 

SYP .MIN* 

SYP.SEC* 

19-16 

Description 

Vector table 

System stack 

Interrupt Vectors 0-6 

Interrupt Vector 7 

Propagated System Priority 

Interrupt Queue Flag Table 

Interrupt Table 

Interrupt Link Table 

Version 

Release 

Update 

Application 

Start-up address 

Options 

Status 

Boot sub-channel 

Boot CS 

Current year 

Current month 

Current day 

Current hour 

Current minute 

Current Second



SECTION 19 - DATA STRUCTURES 

Table 19-2 System Pointer Table (Base Address:3CH to 3DH (Cont.) 

Offset Size Type 

24) 16 2 Integer 

25) 18 2 Address 

26) 20 2 Integer 

27) 22 2 Integer 

28) 24 2 

29) 26 2 Address 

30) 28 l Byte 

31) 29 1 Byte 

32) 30 1 Byte 

33) 31 1 Byte 

34) 32 1 Byte 

35) 33 1 Byte 

36) 34 2 Address 

37) 36 2 Address 

38) 38 2 Address 

39) 40 2 Address 

40) 42 2 Address 

41) 44 2 Address 

42) 46 2 Address 

43) 48 2 Address 

44) 50 2 Address 

45) 52 2 Address 

46) 54 2 Address 

47) 56 2 Address 

48) 58 2 Address 

49) 60 2 Address 

50) 62 2 Address 

51) 64 2 Address 

52) 66 2 Address 

53) 68 2 Address 

54) 70 2 Address 

55) 72 2 Address 

56) 74 2 Address 

57) 76 2 - 
58) 78 2 Address 

Name 

SYP. CCNT* 

SYP .CLNK* 

SYP. TLIM* 

SYP. RESL* 

SYP. CBUF* 

SYP.IIC* 

SYP .CCODE* 

SYP.IL* 

SYP.CS* 

SYP.TPRI* 

SYP. TNR* 

SYP .TCB* 

SYP. STK* 

SYP .SQUE* 

SYP .SQND* 

SYP.RQUE* 

SYP. ILNK* 

SYP . SLNK* 

SYP. TLNK* 

SYP .NODE* 

SYP.FCB* 

SYP. SRTQ* 

SYP .SZTQ* 

SYP. VMTQ* 

SYP. VRTQ* 

SYP. DMTQ* 

SYP. DRTQ* 

SYP. TMTQ* 

SYP. TATQ* 

SYP.GMTO* 

SYP.GRTQ* 

SYP. TCBT* 

SYP. VOLN* 

19-17 

Description 

Clock overflow count 

Clock queue link 

Time slice (milliseconds) 

Clock resolution (MS) 

Not used 

Crash dump area 

Illegal interrupt count 

Crash code 

Interrupt Level 

Channel Select 

Current task priority 

Current task number 

Current task TCB 

Current system stack 

Head system RCB queue 

Tail system RCB queue 

Head ready TCB list 

Clock interval queue 

Time (HMS) Queue 

Time of day queue 

Node pool list 

FCB pool list 

SVC call reference table 

SVC2 call reference table 

Volume mnemonic queue 

Volume reference queue 

Device mnemonic queue 

Device reference queue 

Task Mnemonic queue 

Task reference queue 

General mnemonic queue 

General reference queue 

TCB table 

Reserved 

Volume Name List 

Sept. ‘81 



SECTION 19 — DATA STRUCTURES 

Pointer Table (Base Address:3CH to 3DH (Cont.) Table 19-2. System 

Offset Size Type 

59) 80 2 Address 

60) 82 2 Integer 

61) 84 2 Address 

62) 86 2 Address 

63) 88 2 Address 

64) 90 2 Address 

65) 92 2 Address 

66) 94 2 Address 

67) 96 2 Address 

68) 98 2 Address 

69) 100 4 String 

70) 104 4 String 

71) 108 4 String 

72) 112 2 = 

73) 114 2 Address 

74) 116 2 Address 

75) 118 20. Data 

76) 138 1 Byte 

77) 139 1 Byte 

78) 140 1 Byte 

79) 141 1 Byte 

Total 480 

Sept. "81 

Name 

SYP. FMGB* 

SYP. BUFX* 

SYP .MEMQ* 

SYP.UTOP* 

SYP .MBOT* 

SYP .MTOP* 

SYP. TBOT* 

SYP. TTOP* 

SYP. SBOT* 

SYP.STOP* 

SYP.SVOL* 

SYP. SPVL* 

SYP.RVCL* 

SYP.CCAL* 

SYP .CADR* 

SYP .CSTK* 

SYP .CREG* 

SYP.SYS* 
SYP.PBA* 
SYP. PBB* 
SYP.HCOL* 

19-18 

Description 

File manager buffers link 

Number of free file buffers 

Free memory queue 

Top of memory after SYSINIT 

Memory base 

Memory limit 

System table base 

System table limit 

System code base 

System code limit 

System volume name 

Spool volume name (not used) 

Roll volume name (not used) 

Crash PC 

Crash SP 

Crash registers 

AF, BC, DE, HL, Y, X 

AF1, BC1, DE1, HL1 
System port copy 

Program MAP A copy 

Program MAP B copy 

Display control copy



SECTION 19 — DATA STRUCTURES 

In 

1) 

2) 

a) 

4) 

5) 

6) 

7) 

8) 

9) 

examining the SPT the following points should be kept in mind: 

The NIL pointer values is zero. 

that designates a non-existant value. 

linked list. 

Nil is assigned to a pointer 

It is used at the end of a 

Assign and request queues in various control blocks are not 

used. 

The RCAD count in an FCB indicates the number of tasks using it. 

The write count is not used. 

The TCB logical unit queue (.LUQ*) contains the head pointer to 

the list of FCB's and nodes allocated to a task. 

FCB read/write count values: 

-l exclusive access 

1 no active access 

1-127 shared access 

The SVC and SVC2 in the SPT list formats for SPT.SVC* and 

SPT.SVC2* have either RRT's for re-entrant resources or RCB's and 

RRT's for non-reentrant, queued resources. There are no 

associated RMT's. 

GMT* and GRT* in the SPT are not used. 

TCB table (in SPT format: 

16-2 byte entries, one for each task (0-15) which print to 

The table is located at 3EFO (Hex). the TCB for a task. 

All non-system interrupt drivers must reside in a programs 

A-segment. 

19-19 Sept. 

The nodes are 

in turn linked to RCB's of the associated, allocated resource. 

"81



SECTION 19 - DATA STRUCTURES 

19.5 RESOURCE ATTRIBUTES WORD 

The resource attribute word (refer to Table 19-2) is used in various 

structures pointed to by the SPT. If a bit is 1 n the word then, the 

resource can perform the indicated function. 

Table 19-3. Resource Attribute Word 

es 

Bit Name Description 

0 ATR. READ* Read 

1 ATR.WRIT* Write 

2 ATR. FASC* Formatted ASCII 

3 ATR. SPEC* Special Formatting 

4 ATR. RND* Random Access 

5 ATR. LACT* Interactive Device 

6 Reserved 

7 Reserved 

8 Reserved 

9 ATR. FR* Forward record 

10 ATR. FF* Forward File 

11 ATR. WF* Write File Mark 

12 ATR. BR* Backward Record 

13 ATR. BF* Backward File 

14 ATR. RW* Rewind 7 

15 ATR.ATIN* Attention 

16 Reserved 

19.6 RESOURCE MNEMONIC TABLE (RMT) AND RESOURCE REFERENCE TABLE (RRT 

The Resource Mnemonic Table (RMT) (refer to Table 19-4) lists 

symbolic definitions of the resources that are to be used. It is. 

used in the DMT, TMT, VMT, and GMT. The REsource Reference Table 

(RRT) (refer to Table 19-5) gives numeric definitions of a resource; 

in particular, it contains the number and type of the resource. It 

is used in the DCT, TRY, VET, and GRT. It also holds the assign 

linkage and entry to the handler on shared resources, or the address 

of the Resource Control Block (RCB) or exclusive resources. The name 

of the relevant resource and address of the RRT is contained in the 

Sept. ‘81 19-20



SECTION 19 -— DATA STRUCTURES 

Name 

RMT .MQLK* 

RMT. NAME* 

RMT.RRT* 

Reference Table 

Name 

RRT.ROQLK* 
RRT. RNR* 
RRT.TYPE* 

RRT. SEG* 
RRT.ADR* 

RRT.RCNT* 
RRT.WCNT* 
RRT. RMT 
RRT.AQUE 
RRT.RQUE 

Table 19-4. Resource Mnemonic Table 

Offset Size Type 

1) 0 2 Address 

2) 1 4 String 

3) 6 2 Address 

Total 8 

Table 19-5. Resource 

Offset Size Type 

1) 0 2 Address 

2) 2 1 Byte 

3) 3 1 Byte 

4) 4 1 Byte 

5) 5 1 Byte 

6) 6 2 Address 

7) 8 2 =~ 

8) 10 1 Byte 

9) 11 1 Byte 

10) 12 2 Address 

11) 14 2 Address 

12) 16 20 Address 

Total 18 

19-21 

Description 

Next RMT in list 

Name (4 char) 

Associated RRT 

Description 

Next RRT in list 

Resource number 

Type (see below) 

Not used 

RCB segment 

RCB address 

Not used 

Read count 

Write count 

RMT address 

Assign queue 

Request queue 

. Sept. "81 



SECTION 19 - DATA STRUCTURES 

3) RRTI.TYPE, Type 

This byte specifies the type of resource as follows: 

Bits Size Name 

0-1 

N
 
D
U
 

&
 

Ww
W 

b
d
 

2 

O
e
 

e
e
 

ee
 

RRT.TYPE* 

RRT.PURE* 

RRT.RCB* 

RRT.RRT* 

RRT.AREA* 

RRT.DIR* 

RRT.SVC* 

RRT.OFFL* 

RRT.PROT* 

RRT.NFST* 

RRT.NAB* 

19.7 BUFFER CONTROL NODE 

Description 

Type 

Pure resource 

Impure resource (.ADDR) 

Dummy resource (.ADDR) 

Area (.ADDR) 

Directory device 

Enter on SVC call 

Offline 

Protected resource 

Non-file structured 

Non-abortable 

Buffers are useful for free space allocation. The table for the 

buffer control node has the following structure: 

Offset Bytes Type 

1) 0 2 Address 

2) 2 1 Byte 

3) 3 1 Byte 

4) 4 4 

The byte allocation for 

1) 

2) 

3) 

4) 

5) 

Sept. "81 

Name Description 

BUF.BLNK* Buffer link (in list) 

BUF.FLAG* Buffer flag 

BUF.UCNT* Buffer Usage Count or 

Long Integer BUF.DADR* Associated device or sect 

Name 

BFL. FREE* 

the Buffer Flag is as follows: 

Description 

Buffer is free 

Reserved 

BFL.INTR* Buffer in transfer to disk 

BFL.UPD* 

BFL. LRU* 

Buffer is updated & must be 

saved 

Buffer is the last used 

19-22



SECTION 19 - DATA STRUCTURES 

19.8 RESOURCE CONTROL BLOCK (RCB) 

This RCB holds all of the information pertaining to an exclusive 

resource such as the status of the resource, the request queue into 

the resource and entry into the resource. The RCB is normally at the 

head of all control blocks in the operating system. The Resource Control 

Block Table (refer to Table 19-6) is used in the DCB, TCB, FCB, and VCB. 

@ 

Table 19-6. Resource Control Block Table 

Offset Size Type Name Description 

1) -20 2 Address RCB.SQLK* System queue link 

2) -18 2 Address RCB.CREQ* Current request 

3) -16 1 Byte RCB.CPRI* Current priority 

4) 15 1 Byte RCB.CTCB* Current TCB number 

5) <-14 1 Byte RCB.TYPE* Resource type (See below) 

6) ~-13 1 Byte RCB.STATE* Resource status (See below) 

7) -12 2 Address RCB.RQUE* Request queue 

8) -10 2 Address RCB.RRT* Numeric reference 

9) -8 2 Address RCB.PRNT* Coordination address 

10) -6 1 Byte - 

ll) =-5 l= Byte RCB.SEG* Resource segment 

12) <-4 2 Address RCB.INIT* Resource initiator address 

13) -2 _2 Address RCB.TERM* Resource terminator address . 

Bytes 20 

19-23 Sept. ‘81 



SECTION 19 - DATA STRUCTURES 

5) RCB.TYPE, Type 

The byte allocation for the resource type is as follows: 

Bit 

0-2 

6) RCB.STAT, Status 

N
 
D
O
W
 

&
 

W
 

U
F
 

W
N
 

&
 

O
 

Name 

RCT.TYPE* 

RCT.RCB* 

RCT .DCB* 

RCT. TCB* 

RCT. FCB* 

RCT. VCB* 

RCT. AREA* 

RCT.PRNT* 

RCT. DESC* 

RCT. NEW* 

RCT. PRO* 

RCT. NAB* 

Description 

"RCB' identifier 

Parent present 

Descendent present 

Don't support no wait 

Don't support protect 

Don't support abort 

The byte alloation for the Resource status is as follows: 

od 
F
w
 

N
r
 

O
r
 

Sept. "81 

Name 

RCS. BUSY* 
RCS.OFFL* 
RCS.CAN* 

RCS.NW* 
RCS. ONSQ* 

19-24 

Description 

Resource 

Resource 

Resource 

Resource 

busy 

offline 

cancelled 

no wait in program 

present on system queue



SECTION 19 - DATA STRUCTURES 

19.9 DEVICE CONTROL BLOCK (DCB) 

The DCB is used by the Connection, Disconnection, and System 

Interrupt Handlers to specify the characteristics of each device in 

the operating system and to serve as work space for device drivers 

during an I/O request. 

The DCB Table consists of the minus offsets in the RMT, RRT, CCB, 

ICB, RCB, DMT, and DRT (refer to Table 19-7). 

Table 19-7. 

RMT 

RRT 

CCB 
ICB 
RDB 

Device Control Block Table 

Offset Size Type Name 

-42 2 Address DMT.MQLK* 

-40 4 String DMT.NAME* 
-36 2 Address DMT.RRT* 

-34 2 Address DRT.RQLK* 

-32 1 Byte DRT.RNR 
-31 1 Byte DRT. TYPE 
-30 2 Address DRT.ADR 
-28 1 Byte DRT.RCNT 
-27 1 Byte DRT.WCNT 
-26 2 Address DRT..RMT 
-24 2 Address DRT.AQUE 
-22 2 Address DRT.RQUE 

-20 12 7 - 
8 8 - - 
0 . 2 Word DCB. ATTR* 
2 2 Integer DCB.RECL* 

4 1 Byte DCB. CODE* 
5 1 Byte DCB. SNR* 
6 1 Byte DCB. TYPE* 
7 1 Byte DCB.STAT* 

8 2 Address DCB.FMTE* 
10 1 Byte DCB. QPAR* 
11 1 Byte DCB. QSEG* 
12 2 Address DCB.QSVC* 

14 1 Byte DCB. QFC* 

15 1 Byte DCB. QLU* 
16 1 Byte DCB.QTS* 

17 il Byte DCB.QTS* 
18 2 Address DCB.QBAD* 
20 2 Integer DCB.QBSZ* 

22 2 Integer DCB.QBCN* 

24 4 Long Int.DCB.QRND* 

26 = - DCB.OPT* 

Total 68 

19-25 

Description 

Next DCBPMT 

Name 

RRT Link 

DRT Link 

Resource Number 

Resource Type 

Entry RCB Address 

Read Count 

Write Count 

RMT Address 

Assign Queue 

Request Queue 

CCB 

ICB 

Attributes 

Rec. Length 

Resource code 

Sys. Num. d/task# ) 
Res. type (see belowow) 

Res. status (see bel 
Data format routine 

Number of parameters 

SVC B seg. . 

SVC param. block add 

SVC function 

SVC status 
Svc LU 

Req. term. status 

Req. buffer address 
Req. buffer size 

Req. byte count 

Req. Rec. Address 
Device, Option Data 

Sept. ‘81 



SECTION 19 -— DATA STRUCTURES 

19) DCB.TYPE, Device Type 

is as follows: 

ie]
 

pe
 

20) 

u
r
u
e
n
r
o
|
 

: The byte allocation for the Device Type 

Runs with interrupts enabled 

t Name Description 

DCT.TCB* TCB present 

DCT.DEDI* Dedicated service 

DCT. ENI* 

DCT.NOIG* No interrupt link 

DCT. TASK* Task device 

DCT. DUAL* Dual DCB? 

DCB.STAT, Device Status: 

status is as follows: 

Bit Size 

0 1 

1 

1 

Name 
DCS. INT* 

DCS.TIME* 

DCS.TOUT* 

19.10 INTERRUPT CONTROL BLOCK (ICB) 

The byte allocation for the Device 

Description 

Init. on device 

Treat T.ONT as interrupt 

Resource has gone to Timeout 

This table (See Table 19-8) is used by the interrupt system and by 

the real time handler. 

Table 19-8. ICB Table 

Offset Size Type 

1) 

2) 

3) 

4) 

5) 

6) 

Sept. 

-28 2 Address 

-26 1 Byte 

-25 l Byte 

-24 1 Byte 

-23 1 Byte 

-22 2 Address 

Total 8 

81 

Name 

ICB. IQLK* 

ICB.PRIO* 

ICcB.IL* 

ICB.TYPE* 

ICB.STAT* 

ICB.CON* 

19-26 

It is an addition to the RCB. 

Description 

Next ICB 

ICB priority 

Interrupt level 

Type (below) 

Status (below) 

Continuator address



SECTION 19 ~ DATA STRUCTURES 

4) ICB.TYPE, Type: This byte specifies the ICB as follows: 

Bit Name Description 

0 ICT.CCB* “CCB” present 

ICT.NOIQ* No interrupt queue 

5) ICB.STAT, Status: This byte specifies the current status as 

follows: 

Bit Name Description 

0 ICS .ONIQ* Present on Int. queue 

_  ICS.SINT* Software int. generated 

2 ICS. TOUT* Time-out generated 

19.11 CHANNEL CONTROL BLOCK (CCB) 

The Channel Control Block is used by the interrupt system to scan the 

interfaces (refer to Table 19-9). 

Table 19-9. Channel Control Block Table 

Offset Size Type Name Description 

1) -40 1 Byte CCB.CS* Device channel Add.) 

2) -39 1 (not used) CCB.TM* Interrupt Mask 

3) -38 1 Byte CCB. FLG* Flags 

4) -37 1 Byte CCB. XOR* XOR Mask 

5) ~36 2 Integer CCB.TLIM* Time-out time limit 

6) ~-34 2 Integer CCB.TCNT Time-out counter 

7) -32 2 Integer CCB.TMND Time-out handler 

8) -30 2 Address CCB.SUBC Continuation handler 

Total 12 

19-27 Sept. '81 



SECTION 19 — DATA STRUCTURES 

19.12 TASK CONTROL BLOCK (TCB) 

The TCB is used to identify the name, location and type of tasks. 

The structure of the TCB is shown in Table 19-10. 

Table 19-10. 

1) 

2) 
3) 

4) 

5) 

6) 

7) 

8) 
9) 

10) 

11) 

12) 

13) 

14) 

15) 

16) 

17) 

18) 

19) 

20) 

21) 

22) 

23) 

24) 

25) 

Sept. 

Task Control Block Table 

Offset Byte Type 

-40 2 Address 

~-38 4 String 

-34 2 Address 

-32 2 Address 

-30 1 Byte 

-29 3 - 

-26 2 Address 

-24 1 Byte 

-23 1 Byte 

-22 2 Address 

-20 2 Address 

-18 2 Address 

-16 16 Block 

0 1 Byte 

1 1 Byte 

2 1 Byte 

3 1 Byte 
4 1 Byte 

5 1 Byte 

6 1 Byte 

7 1 Byte 

8 1 Byte 

9 1 Byte 

10 2 Address 

12 2 Address 

"81 

Name 

19-28 

TMT .MQLK 
TMT. NAME 
TMT.RRT 

TRT.RQLK 
TRT.RNR 

TRT. ADDR 
TRT.RCNT 
TRT.WCNT 

TRI. RMT 
TRT.AQUE 
TRI. RQUE 

TCB. TYPE* 
TCB. STAT* 
TCB.OPT* 
TCB.PEND* 
TCB.TPRT* 
TCB.RCOD* 
TCB.MODE* 
TCB. KNLV* 
TCB.EVC* 

TCB. TCOD* 
TCB. TADR* 

TCB. PURE* 

Description 

Mnemonic linked list 

Task name 

Pointer to RRT 

Next task link 

Resource number 

Not used 

RCB address 

Read assign count 

Write assign count 

RMT pointer 

Assign queue 

Request queue 

RCB 

Task 

Task 

Task 

Task 

Task 

Task 

Task 

Kernal level cntr. 

type 

status 

options 

pending status 

priority 

return code 

mode 

Task event cntr. 

Traced code 

Traced address 

Ptr. TCB of pure code



SECTION 19 - DATA STRUCTURES 

Table 19-10. 

Offset Byte Type 

26) 14 2 Address 

27) 16 2 Address 

28) 18 2 Address 

29) 20 2 Address 

30) 22 2 Address 

31) 24 2 Address 

32) 26 1 Byte 

33) 27 1 Byte 

34) 28 1 Byte 

35) 29 1 Byte 

36) 30 1 Byte 

37) 31 1 Byte 

38) 32 2 Address 

39) 34 2 Address 

40) 36 l Byte 

41) 37 1 Byte 

42) 38 2 Address 

43) 40 2 Address 

44) 42 2 Address 

45) 44 2 Address 

46) 46 2 Address 

47) 48 2 Integer 

48) 50 2 Integer 

49) 52 2 Address 

50) 54 1 Byte 

51) 56 1 Byte 

52) 57 1 Byte 

53) 58 li Byte 

Total 98 

19-29 

Task Control Block Table (Cont.) 

Name Description 

TCB.MBOT* 
TCB.UBOT* 
TCB.UTOP* 

TCB. SBOT* 

TCB.MTOP* 
TCB.MEMQ* 
TCB.ASEG* 
TCB.BSEG* 
TCB.MLIM* 
TCB.ASIZ* 
TCB.BSIZ* 

TCB.PTSK* 
TCB. SADR* 

TCB.RQLK* 
TCB. DPRI* 
TCB. TNR* 
TCB. STK* 
TCB. TRMQ* 
TCB. STSQ* 
TCB.WQUE* 

TCB. LUQ* 
TCB. TLIM* 
TCB.TCNT* 
TCB.UDA* 

TCB.NNOD* 
TCB.UNOD* 
TCB.NFCB* 
TCB.UFCB* 

Low memory limit 

First free byte allocated 

Top of code 

Bottom of stack 

High memory limit 

Allocated memory pod 

Task A seq. loc. 

Task B seq. loc. 

Task Mode & limit 

Task A seq Size (4K) 

Task B seq size 

Parent task # 

Task start address 

Ready queue link 

Dispatch priority 

Task number 

Current stack 

Task 

Task 

Task 

Task 

Time 

Time 

User 

wait a 

status change Q 

wait a 

LU Q 

slice limit 

slice count 

dedicated area 

Number of reg. nodes 

of nodes left 

of FCB's 

of FCB's left 

Number 

Number 

Number 

Sept. ‘81 



SECTION 19 - DATA STRUCTURES 

14) TCB.TYPE, Type: The byte allocation for type is: 

Bit Name Description 

TCT.RES* Resident 

TCT.NAB* Non~abortable 

TCT.ROLL* Rollable 

TCT.PURE* Pure code 

TCT.ETSK* E-task 

TCT.NTRC* Not tracable wm
 

& 
Ww
W 

NY
 

F 
O
 

15) TCB.STATUS, Status: The byte allocation for status 

is: 

Bit Name Description 

TCS.ACT* Task active 

TCS.ONRQ* Task on ready queue 

TCS.WAIT* Task waiting 

TCS.WDON* Task waiting for complete 

TCS.PAUS* Task paused 

TCS.CAN* Task cancelled 

TCS.TOUT* Task time sliced elapsed a
A
 
u
F
 

W
N
 

KF
 

CO
 

16) TCB.OPTION, Option: The byte allocation for option is: 

Bit Name Description 

0 TCO.DASG* Default assign allowed 

1 TCO.NSTK* No stack check 

2 TCO.EMSG* System error message 

3 

4 

TCO.RCOV* System recovery 

TCO.DMP* Dump on abort 

17) TCB.MODE, Mode: The byte allocation for mode is: 

Bit Name Description 

0 TCM.FMGR* In file manager 

1 TCM.PEND* In pending status 

2 TCM.WAIT* In connect/disconnect 

3 TCM.STKV* Stack violation 

4 TCM.TRAC* Trace on 

Sept. '81 19-30



SECTION 19 -— DATA STRUCTURES 

19.13 RESOURCE DESCRIPTOR TABLE (RDT) 

Table 19-11 shows the contents of the RDT Table. 

Table 19-11. RDT Table 

Offset Bytes Type Name Description 

1) 1-16 16 Block RCB 

2) 0 16 Block RDT.RRT* RRT 

3) 16 1 Byte RDT.STAT* Status 

4) 17 1 Byte RDT.FLGS* Flags 

5) 18 4 String RDT.VOLN* Volume name 

6) 22 12 String RDT.NAME* File/directory name 

7) 34 _ 8_ String RDT.ELMT* Element name 

Total 58 

3) ROT.STATUS, Status: This byte of the RDT contains the following: 

Bit Name Description 

0 RDS. PRES* Present 

l RDS. INTR* In transfer 

2 - Reserved 

19-31 Sept. '81 



SECTION 19 -— DATA STRUCTURES 

19.14 FILE CONTROL BLOCK (FCB) 

The FCB is shown in Table 19-12. 

Table 19-12. 

(RMT) 

(RRT) 

(RCB) 

(FCB) 

Sept. "81 

1) 

2) 

3) 

4) 

3) 

6) 

7) 

8) 

9) 

10) 

11) 

12) 

13) 

14) 

15) 

16) 

17) 

18) 

19) 

20) 

21) 

22) 

23) 

24) 

25) 

26) 

27) 

28) 

File Control Block Table 

Offset Bytes Type Name 

2 

—
 

D
A
n
n
N
N
n
N
r
R
K
r
P
N
Y
E
 

N
R
E
 

N
N
 

FS
 

a
r
 

Or
 

OP
 

OP
O 

SC
 

=
 

Address 

String 

Address 

Address 

Byte 

Word 

Byte 

Address 

Byte 

Byte 

Address 

Address 

Address” 

Segment 

Word 

Integer 

Byte 

Byte 

Byte 

Byte 

Word 

Byte 

Byte 

Address 

Byte 

Byte 

Byte 

Byte 

19-32 

FMT. MQLK* 
FMT. NAME* 
FMT.RRT* 
FRT.RQLK* 

FRT.RNR* 
FRT.TYPE* 
FRT. SEQ* 
FRT.ADR* 

FRT.RCNT* 
FRT.WCNT* 

FRT.RMT* 
FRT.AQUE* 
FRT.RQUE* 
FCB. RCB* 
FCB. ATTR* 
FCB. RECL* 
FCB. CODE* 
FCB. SDNR* 
FCB.MOD* 
FCB. FSTA* 

FCB. QPAR* 
FCB. QSEG* 
FCB. QSVC* 
FCB. QFC* 
FCB. QRS* 
FCB. QLU* 
FCB. QMOD* 

Description 

Next mnemonic link 

Name 

Link to 

RRT list link 

Resource number 

Type 

Entry segment Add. 

RCB/Entry Address 

Read count 

Write Count 

RMT address 

Assign queue 

Request queue 

Connection block 

Attributes 

Record length (pevar) 

Code 

System device number 

Modifier 

Status 

Reserved 

Number of parameters 

SVC seg. add. 

SVC. param. add. 

SVC func. code 

SVC return status 

SVC logical unit 

svc modifier



SECTION 19 — DATA STRUCTURES 

Table 19-12. 

29) 
30) 
31) 
32) 

33) 

34) 
35) 

36) 
37) 
38) 
39) 
40) 

41) 
42) 

43) 

44) 
45) 
46) 

47) 

48) 

49) 
50) 

51) 

Offset Bytes Type 

18 

20 

22 

24 

28 

30 

31 

32 

36 

40 

44 

48 

52 

54 

58 

62 

64 

68 

70 

72 

76 

80 

82 

Total 

2 

_
 

s
e
 

oe
 

ae
 

R
N
 
F
N
 
F
E
N
 

F
F
F
 

SF
 
F
P
 

KP
 

N
 
F
N
 

DN
 

—
 

bt
 

>
 

Address 

Integer 

Integer 

Integer 

Address 

Byte 

Byte 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Word 

Integer 

Integer 

Address 

Integer 

Integer 

Integer 

Integer 

Name 

FCB. QBAD* 
FCB. QBCN* 
FCB. QRND* 
FCB.QSIZ* 
FCB. VCBP* 
FCB. RCM* 
FCB.WCM* 

FCB.MDIR* 
FCB. DTRA* 

FCB.MODE* 
FCB. CXAD* 
FCB. LXAD* 
FCB. LSEG* 

FCB.EOFP* 
FCB.WRND* 
FCB. FLAG* 
FCB. CDAD* 

FCB. XSEG* 

FCB. BUFR* 

FCB. BASE* 

FCB. HRND* 

FCB.CLUZ* 

FCB. BLK* 

19-33 

File Control Block Table (Cont.) 

Description 

SVC Buffer Address 

SVC byte count 

SVC random record address 

SVC file size 

Volume name (RMT) 

Read count mode 

Write count mode 

Master File Dir Index 

Own file directory index 

File mode 

Current index sector address 

Last index sector address 

Seq # of last index sec 

EOF random address 

Work random addresss 

File flag 

Current data sector address 

Sequence number if current 

sector 

Pointer to data buffer mode 

Base of current sector 

Highest random address 

File cluster size 

File block size 

(in clusters) 

Sept. ‘81 



SECTION 19 - DATA STRUCTURES 

20) FCB.STATUS, FCB Status (Byte): 

Bit Value 

wm
 

& 
Ww

W 
N
Y
 

&
 

©
 

44) 

W
w
N
 

re
 

Oo
 

FCB.FLAG*, File Flag (Word): 

Name 

FST. DBIU* 

FST. IBIU* 

FST. TEMP* 

FST.NSA* 

FST. EOF* 

FBM. UPD* 

FBM.MASK* 

FBM.SYSB* 

FBM. USER* 

FBM. NOB* 

FBM. BYTE* 

Sept. 

10 

"81 

Name 

FFL. POSN* 

FFL. ELMT* 

FFL. EXCL* 

FFL. CONT* 

FFL. INDX* 

FFL.CYC 

19-34 

This byte contains the following: 

Description 

Data buffer in use 

Index buffer in use 

Temp. file (delete at close) 

New space allocated 

E-0-file 

Data buffer updated 

FBM mask 

System buffering 

User buffering 

No buffering 

Byte access 

This byte contains the following: 

Description 

Positioning req'd before index 

Doing element flag 

In exclusive mode 

Contiguous file 

Indexed file 

Cyclical file



SECTION 19 - DATA STRUCTURES 

19.15 VOLUME DESCRIPTOR SECTOR (VDS) 

The VDS describes the first sector of a disk. 

contents. 

Table 19-13, shows its 

Bit 

0 

Name 

VSF.NOFP* 

19-35 

Table 19-13. VDS Table 

Offset Bytes Type Name Description 

1) 0 4 String VDS.VOLN* Volume name 

2) 4 1 Byte = Reserved 

3) 5 3 Med. Int. VDS.MFOP* Master dir. file index 

4) 8 4 - - Reserved 

5) 12 1 Byte VDS.ALOL* Length of allocation tab 

6) 13 3 Med. Int. VDS.ALOP* Allocation table index 

7) 16 2 Integer VDS.CLUZ* Def. cluster size (in shift cnt) 

8) 18 2 Integer VDS.BLKB* Def. block size in clusters 

19) 20 2 Integer VDS.MAXL* Def. maximum length in sect. 

10) 22 1 Byte VDS.FLAG* Volume flag (low) 

11) 23 1 Byte Volume Flag (high) 

12) 24 8 V. Lg. Int. VDS.OSPT* 0S File index 

_13) 32 4 Long Int. VDS.MXSA* Maximum sector add. 

14) 36 2 Integer VDS.MXSC* Sectors/cylinder 

5) 38 2 Integer VDS.MXTC* Tracks/cylinder 

40 Bytes 

10) VDS.FLAG*, Volume Flag (Low): ‘This byte contains: 

Bit Name Description 

0 VSF .OSPR* Operating System Present 

11) Volume Flag (High): This byte contains: 

Description 

Volume safe at mark on flag 

(delete marks ignored) 

Sept. ‘81 



SECTION 19 - DATA STRUCTURES 

19.16 VOLUME CONTROL BLOCK (VCB) 

The VCB (refer to Table 19-14) changes all names that being with F 
(i.e. FCB & FRT) to V (i.e. VCB & VRT). 

Table 19-14, 

(RMT) 1) 

(RRT) 4) 

10) 

11) 

12) 

13) 

(RCB) 14) 

. (FCB) 15) 

16) 

17) 

18) 

19) 

20) 

21) 

22) 

23) 

24) 

25) 

26) 

27) 

28) 

Sept. '81 

File Control Block Table 

Offset Bytes Type Name 

2 

—
y
 

D
N
 

N
Y
 

DR
O 

YF
 

KF
 

NY
 

KY
 
Y
K
 

|
 

HD
 

&
 

O
N
D
 

D
O
 
O
O
 

O
f
 

O
D
 

Address 

String 

Address 

Address 

Byte 

Word 

Byte 

Address 

Byte 

Byte 

Address 

Address 

Address 

Segment 

Word 

Integer 

Byte 

Byte 

Byte 

Byte 

Word 

Byte 

Byte 

Address 

Byte 

Byte 

Byte 

Byte 

19-36 

FMT.MQLK* 

FMT. NAME* 

FMT. RRT* 

FRT.RQLK* 

FRT.RNR* 

FRT.TYPE* 

FRT.SEQ* 

FRT.ADR* 

FRT.RCNT* 

FRT.WCNT* 

FRT.RMT* 

FRT.AQUE* 

FRT.RQUE* 

FCB.RCB* 

FCB.ATTR* 

FCB. RECL* 

FCB.CODE* 

FCB. SDNR* 

FCB.MOD* 

FCB. FSTA* 

FCB. QPAR* 

FCB. QSEG* 

FCB. QSVC* 

FCB. QFC* 

FCB. QRS* 

FCB. QLU* 

FCB. QMOD* 

It is identical to the FCB. 

Description 

Next mnemonic link 

Name 

Link to 

RRT list link 

Resource number 

Type 

Entry segment Add. 

RCB/Entry Address 

Read count 

Write Count 

RMT address 

Assign queue 

Request queue 

Connection block 

Attributes 

Record length (pcevar) 

Code 

System device number 

Modifier 

Status 

Reserved 

Number of parameters 

SVC seg. add. 

SVC. param. add. 

SVC func. code 

SvC return status 

SVC logical unit 

SVC modifier



SECTION 19 - DATA STRUCTURES 

Table 19-14. 

Offset Bytes Type 

29) 18 2 

30) 20 2 

31) 22 2 

32) 24 4 

33) 28 2 

34) 30 1 

35) 31 1 

36) 32 4 

37) 36 4 

38) 40 4 

39) 44 4 

40) 48 4 

41) 52 2 

42) 54 14 

43) 58 4 

44) 62 2 

45) 64 4 

46) 68 2 

47) 70 2 

48) 72. 4 
49) 76 4 

50) 80 2 

51) 82 2 

Total 124 

20) VCB Flags: 

Bit Name 
0 VCF.ABIU* 

1 VCF .AUPD* 

2 VCF .ALLO* 

3-7 - 

Address 

Integer 

Integer 

Integer 

Address 

Byte 

Byte 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Word 

Integer 

Integer 

Address 

Integer 

Integer 

Integer 

Integer 

Name 

FCB. QBAD* 

FCB. QBCN* 

FCB. QRND* 

FCB.QSIZ* 

FCB.VCP* 

FCB.RCM* 

FCB. WCM* 

FCB.MDIR* 

FCB.DTRA* 

FCB.MODE* 

FCB.CXAD* 

FCB. LXAD* 

FCB. LSEG* 

FCB.EOFP* 

FCB.WRND* 

FCB. FLAG* 

FCB.CDAD* 

FCB. XSEG* 

FCB. BUFR* 

FCB. BASE* 

FCB.HRND* 

FCB.CLUZ* 

FCB. BLK* 

Description 

File Control Block Table (Cont.) 

Description 

SVC Buffer Address 

SVC byte count 

SVC random record address 

SVC file size 

Volume name (RMT) 

Read count mode 

Write count mode 

Master File Dir Index 

Own file directory index 

File mode 

Current index sector address 

Last index sector address 

Seq # of last index sec 

EOF random address 

Work random addresss 

File flag 

Current data sector address 

Sequence number if current 

sector 

Pointer data buffer mode 

Base of current sector 

Highest random address 

File cluster size 

File block size 

(in clusters) 

This byte contains the following: 

Allocation buffer in use 

Allocation buffer updated 

Allocation in process 

Reserved 

19-37 Sept. '8l 





SECTION 20 

FILE STRUCTURES 





SECTION 20 

FILE STRUCTURES 

20.1 INTRODUCTION 

This section describes the logical layout of the disk, 

of the Master File Directory, and the structure of ISAM files. 

the structure 

201 Sept. '81 



SECTION 20 - FILE STRUCTURES 

20.2 LOGICAL LAYOUT OF DISK 

The logical layout of the disk is shown in Figure 20-1. 

2g | 
Sector 0 | | | EXTENDED FILE pesc. @ 

| o#—+ Pi os INDEX SECTOR 
| -—+— | | (CONTIGUOUS FILE) 
| | _ 
| | : | 

| 
MASTER | _ | pata | 
FILE a | 

DIRECTORY | | | 

| . | | | 

¥ : (2 EXTENDED FILE DESC. 
| (NON-CONTIGUOUS FILE) 

[| 14; 

| —__| | 

Figure 20-1. Logical Disk Layout 

20-2 Sept. ‘81



SECTION 20 - FILE STRUCTURES 

Directory Structure 

Offset Bytes Type 

1) 0 1 

2) 1 1 

3) 2 2 

4) 4 4 
5) 8 8 

6) 16 20 

7) 236 _20_ 
256 Byt 

12 

15 Sectors/d 

180 Entries/d 

Directory Entry 

Byte 

Byte 

Word 

Long Int. 

Block 

Block 

es 

irectory 

irectory 

Type Offset Bytes 

1) 0 2 Word 

2) 2 1 Byte 

3). 3 1 Byte 

4) 4 12 String 

5) 16 _4 ~~ long Int. 

20 Bytes 

Name 

DIRH.CNT* 

DIRS.HPT* 

Directory entries/sector 

Name 

GDE. VLNK 

GDE.RCNT 

GDE.WCNT 

GDE . NAME 

GDE.FXAD 

20-3 

Description 

Must be 0 for directory 

Entires in directory 

Reserved 

Hash Sector Index 

Reserved 

Directory entry - 

Directory entry 1-10 

Directory entry 1-11 

Description 

Version linkage 

Read count 

Write count 

Name , 

First index sector 

Sept. ‘81 



SECTION 20 — FILE STRUCTURES 

Extended File Descriptor (XFD) First Index Sector 

Description 
Forward link (next index) 

Backward link, must be 0 

Reserved 

Last Index Sector 

Record length (0=var) 

Check point 

Creation date & time 

last assign date & time 

Last update date & time 

Data record 0 sec index 

Data record 49 sector 

- Forward link (last one = 0) 

- Data record on sector index 

- Data record N+6l1 sector index 

Offset Bytes Type Name 

1) 0 4 Long Int. ~ 

2) 4 4 Long Int. - 

3) 8 8 Block - 

4) 16 4 Long Int. XFD.LXAD* 

5) 20 2 Integer XFD.CSEG* 

6) 22 4 Long Int. XFD.EOF* 

7) 26 4 Long Int. XFD.NREC* 

8) 30 2 Word XFD. FLAG* 

9) 32 2 Integer XFD.RECL* 

10) 34 4 Long Int. XFD.CHKP* 

11) 38 6 String XFD.CRDT* 

12) 44 6 String XFD.LADT* 

13) 50 6 String XFD. LUDT* 

14) 56 4 Long Int. - 

15) - 192 Long Int. - 

16) 252 4 Long Int. - 

256 Bytes 

Subsequent Index Sectors 

Offset Size Type Name Description 

1) O 4 Long Int. 

2) 4 4 Long Int. - Backward link 

3) 8 4 Long Int. 

4) 12 240 Long Int. - 

5) 252 4 Long Int. 

256 Bytes 

8) XFD.FLAG, File Flag 

Bit Name Description 

0 XFF.CONT* 1 = Contiguous File 

0 = Non~contiguous File 

Sept. ‘81 20-4



SECTION 20 ~ FILE STRUCTURES 

20.3 ISAM FILE STRUCTURE 

ISAM, Indexed Sequential Access Method, is a technique used for 

indexed access to large data files. It can be used for random access 

using a key string as the search argument, or sequential access using 

the index. 

The data is divided into RECORDS. The records have a fixed, user 

defineable length, and they are stored in a fixed record length file, 

the DATA-file. Each data-file has an ISAM-file associated with it. 

The ISAM-file may contain up to ten indices into the data file. Each 

index has a symbolic name. It contains one KEY for each data record. 

The key consists of a key string, which also is a part of a data 

record, and a pointer to that record. The keys are ordered within 

the index to form a B-tree structure. 

All record pointers are logical while file reference is symbolic. 

This means that the data and ISAM files may be copied and utilized on 

any random access device supported by the operating system. 

The ISAM file is initialized by a utility program. After initial- 

ization, the ISAM and data files are built by the user using ISAM 

write operations. Since the index trees are built in a well 

structured way, there is no need for time consuming reorganizations 

once the indices are established. The access times will always be at 

an optimum. 

Key Formats 

Five different formats are defined for the key strings. The formats 

are: 

1) Binary: This is a string of bytes of selectable length. The 

string is interpreted as an unsigned binary integer, with most 

significant byte first. 

20-5 Sept. ‘81 



SECTION 20 - FILE STRUCTURES 

2) ASCII: This is a string of bytes of selectable length. The 

bytes are interpreted as 7-bit ASCII characters. Upper and lower 

case characters have the same value. 

3) Integer: This is a string of two bytes, representing a signed 

integer, the least significant byte first. It is compatible with 

Monroe BASIC and PASCAL formats. 

4) Floating Point: This is a string of four bytes, representing a 

single precision floating point number. It is compatible with BASIC 

and PASCAL formats. 

5) Double Precision Floating Point: As above, but string length is 

eight bytes. it is compatible with the BASIC format. 

ISAM-File Format 

The ISAM file format is built on the B-tree concept. This concept 

makes it possible to maintain the search path through the tree at an 

optimum through insertions and deletions of key items. 

The first record of an ISAM-file is a header record (see Figure 20-2). 

It contains information about the ISAM-file and the data-file it 

indexes. 

An ISAM-file may contain up to ten separate indices with symbolic 

names. All information about the indices e.g. symbolic name, key 

type, key position, key length and the B-tree root pointer is stored 

in the ISAM-file header. The ISAM-file contains one B-tree for each 

index. 

Sept. ‘81 20-6



SECTION 20 - FILE STRUCTURES 

ISAM-file header 

Index root 

| | | | 

| 
Intermediate level | FP 

Lowest level 

FH eal = a |xH(3)| 0 
| | 

| | | | 

| 0 ) | cz) | KC3)| 0 

| | | —e 

bot od 
| sP | | 

“2 
a | | | 

| KCO) | KCL) | K(2) | K(3)] 0 

pad 

, ) 

| | | | | 
| FP | KCO) | KC(1) | K(2) | KC(3)| 0 

| | | x 

| | | 
| KP | | 
| | 

File header 

Index header 

Key 

Son pointer 

Key pointer (points out the data record) 

Key string 

Figure 20-2. ISAM File Structyre 

20-7 Sept. "81 



SECTION 20 - FILE STRUCTURES 

ISAM File Header Format 

The File Header format consisting of a FIle Header and Index 

descriptor is given as follows: 

File Header 

The byte allocation for the File Header is as follows: 

Byte Item 

0 Version number (-1) 

1-29 Data file descriptor 

30-33 Root pointer of deleted records chain (index file) 

34-37 Root pointer of deleted records chain (data file) 

38 First index descriptor 

Index Descriptor 

The byte allocation for the index descriptor is as follows: 

Byte Item 

0-11 Index name 

12-15 Index root pointer 

16 Index flags (bit 0 : duplicates allowed) 

17-18 Key string start post (LSB, MSB) 

19 Key string length 

20 Key type (0-4. Bit 7: Descending sequence) 

Multi-Task ISAM 

The Multi-Task ISAM facility makes it possible for several users to 

use the same data base. Each user may also use more than one data 

base. The facility is added to the multi-task operating system by 

loading and starting an ISAM-task. Each user may then assign to the 

ISAM task, and the ISAM<task will assign the selected ISAM/data files. 

All input/output operations will then take place through the ISAM-task 

which will co-ordinate the different users and their requests. 

Sept. ‘81 20-8



SECTION 20 — FILE STRUCTURES 

Assembly Language Interface to ISAM: A user program written in 

assembly language will interface to the ISAM-task using SVC 7 and SVC 

1 calls for assign and I/O functions. 

Assign Function: The SVC 7 assign function will assign a user to the 

ISAM task. The ISAM task will assign the ISAM and data files 

requested, and will maintain information about the files and the users 

internally. 

The SVC 7 block is a standard parameter block (See section. 14 

reference manual). The file descriptor pointer however, points at a 

special file descriptor which defines both the ISAM task (bytes 0-27) 

and a ISAM file (bytes 28-1). 

| 
| ISAM File Descriptor ISAM Task Name | 

| 
| 

| | | 
| 
| 

(S7.FD) 

The file modifier byte (S7.MOD) is used in a special way. If it is 

set to 255 (decimal) when as assign function is performed, the ISAM 

task will terminate when a subsequent close function has been 

performed. 

20-9 Sept. ‘81 



SECTION 20 -— FILE STRUCTURES 

I/O Functions: The I/O functions are performed using SVC 1 calls 

where the SVC 1 block is extended as follows: 

|  SO.FC SO.RS | Sl.LU | S1.Ts | 

| Function Code| Return Status | Logical Unit | Term Status | 

| $1.BAD | $1.BSZ | 

| Buffer address | Buffer size | 

| S1.BCNT | S1.RND | 

| Bytecount at completion | Data file random adr | 

| S1.RND+2 | $1.RAD | 

| Data file random adr | KEY/RECORD ADDRESS __| 

| $1.KSZ | $1. IAD | 

| KEY/RECORD SIZE | INDEX STRING ADDRESS | 

| $1.1SZ | 

| | INDEX STRING SIZE 

The function codes are (hex): 

01H ISAM-READ “NEXT™ 

02H ISAM-WRITE 

2BH ISAM-READ 

2CH ISAM-READ “PREVIOUS 

2DH ISAM-READ “LAST™ 

2EH ISAM-READ "FIRST" 

2FH ISAM-DELETE 

30H ISAM-UPDATE 

Format is always image binary (see section 8). 

Sept. ‘81 20-10



SECTION 20 -— FILE STRUCTURES 

The Return status codes are (decimal): 

Code Meaning 

120 key not found 

121 duplicate keys 

122 illegal key 

123. mismatch at check read 

124 index not found 

125 illegal data RECORD LENGTH 

126 end of memory in ISAM task 

127 incompatible ISAM file version 

In addition any operating system errors that occur during processing 

will produce a return status code. 

ISAM READ: This function uses the user defined key (S1.KAD/S2.KSZ) 

and index (S1.IAD/S1.ISZ) to do a search in the ISAM file. If no 

index is specified (S1.ISZ=0), the index last accessed is used. If it 

is the very first time (no access done) then the first index of the 

file is used. If no key is specified (S1.KSZ=0), the first key of the 

index is used. ON a successful read operation, the random address 

field points out the data record in the data file (used on delete and 

update), and the data record is read into the user buffer. 

ISAM READ NEXT/PREVIOUS/FIRST/LAST: The next/previous/first/last 

record (by key) is read into the user buffer. If no index is 

specified, the index last accessed is used. 

ISAM WRITE: The record specified by the user (S1.BAD/S1.BSZ) is 

written to the data file. All indices in the ISAM file are updated. 

ISAM DELETE: The record specified by the user (S1.BAD/S1.BSZ) is 

compared to the record last read by the user. The records must be 

equal, or an error will result. The keys referring to that record are 

removed from the ISAM file. 

20-11 Sept. ‘81 



SECTION 20 - FILE STRUCTURES 

ISAM UPDATE: The record specified by the user (S1.BAD/S1.BSZ) is 
compared to the record last read by the user. The records must be 
equal, or an error will result. The record specified by 
(S1.KAD/S1.KSZ) then replaces the old record in the data file. Each 
index is updated (if necessary) to reflect the new data record. 

Sept. '81 20-12



APPENDIX A 

SYSTEM MNEMONICS AND ABBREVIATIONS 





APPENDIX A 
SYSTEM MNEMONICS AND ABBREVIATIONS 

Meaning 

Channel Control Block 

Channel Description Table 

Device Control Block 

Device Description Table 

Device Mnemonic Table 

Device Reference Table 

Extended Descriptor Table 

File Control Block 

File Mnemonic Table 

File Reference Table 

Interrupt Control Block 

Interrupt Description Table 

Resource Control Block 

Resource Descriptor Table 

Resource Mnemonic Table 

Resource Reference Table 

System Pointer Table 

System Table 

Supervisor Call 

System Pointer Table Structure 

Task Control Block 

Task Description Table 

Task Mnemonic Table | 

Task Reference Table 

Volume Control Block 

Volume Description Table 

Volume Mnemonic Table 

Volume Reference Table 

A-1 Sept. "81 





APPENDIX B 

ERROR CODES 





COMMON ERRORS 

OCT HEX DEC SYMBOLIC 
000 ~=—00 0 $s0S.0K 
001 Ol 1  SOS.EON 
002 ~=— 02 2  sOS.IFC 
003 = 03 3. SO0S.PRO 
004 = 04 4  S0S.OFFL 
005 = 05 5 §S0S.PRES 

006 =: 06 6  SOS.NYET 
007. ~=—07 7 S0S.CAN 
010 08 8  s0S.SVC 

SVC-1 I/0 ERROR CODES 

OCT HEX DEC SYMBOLIC 
012 OA 10 SI1S.LU 
013 OB ll  S1S.AM 

014 Oc 12. SI1S.TOUT 
015 OD 13  # S1S.DWN 
016 Of 14° SIS.EOF 
017 OF 15  S1S.EOM 

020 10 16 SI1S.RER 
021 ll 17‘ $1S.UNR 
022. = 112 18 S1S.RND 

023 «13 19 S1S.NRND 

SVC-2 SUBFUNCTION ERRORS 

OCT 

024 

HEX 

14 

DEC 

20 

SYMBOLIC 

$2S.ISB 

APPENDIX B 

ERROR CODES 

ERROR TEXT 

No error. 

End of nodes. 

Invalid function code. 

Can't connect at unconditional 

Off line. 

Not present in this system. 

Not yet implemented function. 

Request is cancelled. 

Invalid SVC function. 

ERROR TEXT 

‘Illegal LU, LU not assigned. 

Invalid access modes. 

Time-out. 

Device down. 

End~-of-file. 

End-of-media. 

Recoverable error. 

Unrecoverable error. 

Invalid random address. 

Non-existent random address. 

ERROR TEXT 

Illegal subfunction number. 

proceed. 

Sept. "81 



APPENDIX B — ERROR CODES 

SVC-2.1 MEMORY HANDLING ERRORS 

OCT HEX DEC SYMBOLIC ERROR TEXT 

025 15 21 S2S.1PAR Illegal parameter. 

026 16 22 S2S.1EOM~ End of memory. 

SVC-2.3 PACK FILE DESCRIPTOR ERRORS 

OCT HEX DEC SYMBOLIC ERROR TEXT 

025 15 21 S2S.3IFD Invalid file descriptor, syntax error. 

SVC-2.4 PACK NUMERIC DATA ERRORS 

OCcT HEX DEC SYMBOLIC ERROR TEXT 

025 15 21 $2S.40FL Overflow. 

026 16 22 S2S.4NCV Nothing converted. 

SVC-2.7 FETCH/SET DATE/TIME ERRORS 

OCT HEX DEC SYMBOLIC ERROR TEXT 

025 15 21 S2S.7DAT Invalid date. 

026 = :16 22 #S2S.7TIM Invalid time. 

SVC-2.8 SCAN MNEMONIC TABLE ERRORS 

OCT HEX DEC SYMBOLIC ERROR TEXT 

025 15 21 $2S.8CMD Undefined command mnemonic. 

SVC-2.12 OPEN/CLOSE DEVICE ERRORS 

OcT HEX ‘DEC SYMBOLIC ERROR TEXT . 

025 15 21 S2S.12AS Device is assigned, can't be closed. 

026 16 22 S2S.12DE Device not found. 

027 17 23 $2S8.12IS New volume already present. 

030 18 24 $25.120N Directory device not in close state. 

Sept. '8l B-2



APPENDIX B - ERROR CODES 

SVC-3 TIMER ERRORS 

OCT HEX DEC SYMBOLIC 

036 1E 30 $3S.PAR 

SVC-4 TASK DEVICE ERRORS 

OCT HEX DEC SYMBOLIC 

050 28 40 S4S.ASGN 

051 29 41  S4S.TYPE 

SVC-5 LOADER ERRORS 

OCT HEX DEC SYMBOLIC 

062 32 50 S5S.TID 

063 33 51  $5S.PRES 

064 34 52 $5S.PRIO 

065 35 53 S$5S.OPT 

066 36 54 $5S.CODE 

067 37 55 S5S.SIZE 

-SVC-6 TASK ERRORS 

OCT HEX DEC SYMBOLIC 

074 3c 60  S6S.TID 

075 3D 61 S6S.PRES 

076 3E 62 S6S.PRIO 

077 3F 63 S6S.OPT 

100 40 64 S6S.EQUE 

101 41 65 S6S.STAT 

102 42 66 S6S.QPAR 

103 43 67 S6S.QIT™ 

104 = 44 68  S6S.TYPE 

ERROR TEXT 

Invalid timer parameter. 

ERROR TEXT 

Not assigned. 

Invalid device type. 

ERROR TEXT 

Illegal task-id. 

Task present. 

Illegal priority. 

Tllegal option. 

Illegal code/item at load. 

Overlay doesn't fit. 

ERROR TEXT 

Illegal task-id. 

Task present. 

Ulegal priority. 

DUlegal option. 

Event queue disabled. 

Invalid task status. 

Invalid termination parameter. 

More items present in event queue. 

Invalid task type. 

Sept. "81 



APPENDIX B - ERROR CODES 

SVC~7 FILE ERRORS 

OCT HEX 

106 46 

107 47 

110 48 

lll 49 

112 4A 

113 4B 

114 4c 

115 4D 

DEC 

70 

7) 

72 

73 

74 

75 

76 

77 

SYMBOLIC 

S7S.ASGN 

S7S.AM 

S$7S.SIZE 

S7S.TYPE 

S7S.FD 

S7S.NAME 

S7S.KEY 

S7S.FEX 

SVC-8 RESOURCE ERRORS 

OcT HEX 

120 50 

121 51 

122 52 

123 53 

124 54 

125 55 

126 56 

Sept. '81 

DEC 

80 

81 

82 

83 

84 

85 

86 

SYMBOLIC 
$8S.ID 
S$8S.CLAS 
S8S.PRES 
S8S.PRNT 
S8S.DUAL 
S8S.RCB 
S8S.EOM 

ERROR TEXT 

Assignment error, double 

Illegal access modes. 

Size error. 

Type error. 

Illegal file descriptor. 

Name error. 

Invalid key. 

File exist error. 

ERROR TEXT 

Illegal resource-id. 

Invalid resource class. 

Resource already present. 

Parent not present. 

Dual DCB not present. 

Invalid RCB-type. 

End-of-memory. 

assign.



APPENDIX C 

SVC FUNCTIONS AND BIT PATTERNS 





APPENDIX C 

SVC FUNCTIONS AND BIT PATTERNS 

SVCl: MEMORY HANDLER 

Function 

@ 

SOF .WAIT 

S1F.READ 

S1F.WRIT 

S1F.WRD 

S1F. IASC 

S1F.FASC 

S1F.IBIN 

S1F.SPEC 

S1F.RND 

Bit-Pattern 

200...Xx 

--0...00 

--0...01 

--0...10 

--0...11 

0 eOeXKee 

--0.00.. 

--0.01.. 

+-0.10.. 

20.11... 

o eOXeces 

oe DDecee 

osQleaess 

Use 

Read-write bits. 

Wait for completion. 

Read request. 

Write request. 

Write with read check (device 

dependent). 

Format bits. These bits indicate 

the type of data formatting 

requested. 

Image ASCII. 

Format. ASCII. 

Image binary. 

Special. 

Sequential-random bit. . 

Sequential. The next logical 

record is to be accessed. 

Random. The logical record 

specified by the random address 

field is to be accessed. 

C-1 Sept. '81 



APPENDIX C ~ SVC FUNCTIONS AND BIT PATTERNS 

Function Bit-Pattern Use 

oo LXXxXxx Command codes. Codes not 

specified are resource dependent. 

SOF.TST « «100000 Test request. 

SOF.CAN --100001 Cancel request. 

S1F.FR «100010 Forward record. 

S1F.FF «100011 Forward file. 

_ SIF.WF «100100 Write filemark. 

S1F.BR -- 100101 Back record. 

S1F.BF «100110 Back file. 

SIF.RW -e100111 Rewind. 

S1F.ATIN «101000 Attention. 

S1F.FEOF «101001 Fetch end-of-file position. 

SOF .NW > or Wait-proceed bit. 

SOF.PRO Xeoccccece Unconditional proceed bit. 

SVC2.1: INPUT/OUTPUT 

Function Bit-Pattern Use 

S2F.1ALO - -000001 Allocate memory. 

S2F.1MAX « «000010 Reserved. 

S2F.1REL - 000011 Release memory. 

S2¥F.1TCB - «000100 Allocate a TCB, only internal use. 

S2F.1CAN « 000101 Remove callers TCB, only internal 

use. 

$VC2.2: LOG MESSAGE 

Refer to the SVCl Function Code parameters regarding data formatting. 

Sept. ‘81 C=2



APPENDIX C - SVC FUNCTIONS AND BIT PATTERNS 

SvCc2.3: PACK FILE DESCRIPTOR 

Function 

S2F .3FN 

S2F . 3KEP 

S2F.3CNT 

S2F.3PMO 

Termination Function Bit-Pattern 

Bit-Pattern 

eeODee el 

~-00..1. 

~-O00.1.. 

«O01... 

Use 

Unpack as filename, if not 

specified. 

Keep non-modified fields. 

String size specified. 

Pack modifier. 

Meaning 

$2T.3NEL 

S2T.3NFN 

S2T.3NVO 

S$2T.3NMO 

0000...1 

o0o00..1. 

0000.1.. 

OOOOL... 

$VC2.4: PACK NUMERIC DATA 

Function 

S2F.4DEC 

S2F.40CT 

S2¥.4HEX 

S2¥F .4SGN 

S2F.4IND 

Bit-Pattern 

Element name not found. 

File name not found. 

Volume name not found. 

Modifier not found (only set if 

S2F.3PMO is requested, and no 

modifier found). 

Use 

2.00. .xx 

-.00..00 

~00..01 

-.00..10 

--00.x.. 

--00.0.. 

--00.1.. 

«00x... 

--000... 

«-O0l... 

Conversion base. 

Decimal. 

Octal. 

Hexadecimal. 

Sign handling. 

No signed input allowed. 

Input may be signed. 

Destination. 

In parameter block. 

Address specified. 

c-3 Sept. "81 



APPENDIX C — SVC FUNCTIONS AND BIT PATTERNS 

SvC2.5: 

Function 

S2F.5DEC 

S2F.50CT 

S2F. 5HEX 

S2F.5SGN 

S2F.5IND 

S2F.5SP 

S2F.5LFT 

Size 
$2Z.5ASC 

$2Z.5BIN 

$2Z.5INC 

SVC2.7: 

Function 

S2F.7GET 

S2F.7SET 

S2F.7SLC 

S2F./7DAT 

S2F.7TIM 

S2F./7BIN 

UNPACK NUMERIC DATA 

FETCH OR 

Sept. ‘81 

Bit-Pattern 

eeeee eXX 

eeeee 000 

eceee Al 

eeceeeld 

ecocoksas 

e.aree oO es 

ere evel «x 

eccokXeee 

owwwOe ee 

oe exer hie 6 « 

eeokeces 

weeOuses 

ewclaees 

eeXevecce 

ovleeess 

oe dyexve: «#0 

Function 

oe oXXXX 

oXXKeece 

lessees 

Use 

Converting base. 

Decimal. 

Octal. 

Hexadecimal. 

Sign handling. 

Unsigned conversion. 

Signed conversion. 

Source description. 

Number in parameter block. 

Address specified. 

Space flag. 

Leading zeros. 

Leading spaces. 

Field justifying. 

Right justify. 

Left justify. 

Meaning 

Number of bytes in ASCII-string. 

Number of bytes in binary number. 

Auto-increment of binary pointer. 

SET DATE AND TIME 

Bit-Pattern 

2-0...01 

220.2210 

--0.00.. 

oeOseles 

oeDeleee 

2 e00. eee 

oeOle.ee 

Use 

Fetch function. 

Set function. 

Slice handling. 

Date handling. 

Time handling. 

ASCII data, not at slice handling. 

Binary data, not at date and time. 

c-4



APPENDIX C - SVC FUNCTIONS AND BIT PATTERNS 

SVC2.8: SCAN MNEMONIC TABLE 

None. 

$VC2.12: OPEN/CLOSE DEVICE 

Function Bit-Pattern 

S2F.12CL . 000001 

S2F.120P weeeee lO 

S2F.12PR seweeles 

S2F.12NF covelece 

S2F.12AD veeile ses 

S2F.12AL ww Lice e008 

SVC.3: TIMER COORDINATION 

Use 

Close. 

Open. 

Write protected. 

Non-file structured. 

SvC-handler address specified, only 

directory oriented devices. 

Fetch auto start line. Only vaild 

at open file structured. 

Function Bit-Pattern Use 

« «0000xx Time specification: 

S3F.MIL . -000001 Milliseconds. 

$3F.SEC . «000010 Seconds. 

S3F.TOD .-000011 Time of day. 

- « LOOxxx Commands: 

SOF .TST - «100000 Test request. 

SOF .CAN -- 100001 Reserved. 

S3F.CMIL . -000010 - "my 

S3F.CSEC «000011 - —. 

S3F.CTOD «- 100100 - —. 

eKXeececeee 
Wait-proceed bit. 

c-5 Sept. '81 



APPENDIX C — SVC FUNCTIONS AND BIT PATTERNS 

SVC 4: TASK DEVICE HANDLING 

Function Bit-—Pattern Use 

S4F. TRIG --0000.1 Trigger initiator. 

S4F.CAN «00001. Set cancel pending. 

SVC 5: OVERLAY LOADER 

Function Bit~Pattern Use 

SSF.LOAD --00...1 Load. 

SSF .STRT --00..1. Start overlay. 

SSF.ABS -.-00.1.. Absolute start address at overlay 

start. 

SSF .OVL O01... Overlay handling, else task 

handling. 

SOF .NEW eXecerseos Wait-proceed bit e 

SOF. PRO Kis w rwveiei Unconditional proceed bit. 

SVC 6: -TASK CONTROL 

Function Bit-Pattern Use 

S6F .LOAD --000..1 Load task. 

S6F.STRT «000.1. Start task. 

S6F .ABS --0001.. Absolute start address. 

S6F .QTST « «001000 Test event queue. 

S6F.QWAL --0010.1 Wait for queue event. 

S6F .QTRM --OOL101. Terminate event. 

S6F.QDIS - «001100 Disable event queue. 

S6F.QENI --001101 Enable event queue. 

S6F.SUSP «001110 Suspend myself. 

»--Continued... 

Sept. '81 C~6



APPENDIX C - SVC FUNCTIONS AND BIT PATTERNS 

SVC 6: TASK CONTROL (Cont.) 

Function 

SOF.TST 

SOF .CAN 

S6F.PAUS 

S6F.CONT 

S6F.PRIO 

S6F.OPT 

S6F.TSKW 

S6F.ADDQ 

S6F.STSW 

S6F.TYPE 

SOF .NW 

SOF .PRO 

Option 

$60.DASG 

S60.NSTK 

Bit~-Pattern 

. . 100000 
100001 
. 100010 
..100011 

.. 1001.1 

.- 10011. 

. .101000 

..101001 

..101010 

.. 101011 

eXecoece 

Keeecsece 

Bit-Pattern 

0000...1 

0000..1. 

Use 

Test task. 

Cancel task. 

Pause task. 

Continue task. 

New task priority. 

New task option. 

Wait for task termination. 

Add to event queue. 

Wait for task status change. 

New task type. 

Wait-proceed bit. 

Unconditional proceed bit. 

Meaning 

Default assign allowed. 

No stack check. 

The option field is also used at function S6F.TYPE in which case: 

Option 

S6T.RES 

S6T.NAB 

Bit-Pattern 

0000..1 

0000.1. 

Meaning 

Set the task memory resident. 

Set the task non-abortable from 

other tasks. 

C~7 Sept. ‘81 



APPENDIX C - SVC FUNCTIONS AND BIT PATTERNS 

SVC 7: FILE HANDLING 

Function Bit-Pattern Use 

S7F.ALLO oeDeveel Allocate. 

, waOx sel Reserved. 
S7F.ASGN --0..1.. Assign. 

S7F.DELC eeDeleee Delete at close. 

S7F.CLOS oeOl..e. Close. 

SOF.TST - «100000 Test request. 

SOF .CAN -- 100001 Cancel all previous requests. 

«100010 Reserved. 

S7F.CHKP -- 100011 Checkpoint. 

« «100100 Reserved. 

«100101 - “=, 

S7F.RNAM «-100110 Rename. 

S7F.FAT ee 100111 Fetch attributes. 

oX's 00 ace Wait-proceed bit. 

Keccecee Unconditional proceed bit. 

S7.TAM, Access Mode . 

The low nibble of this byte specifies the Access Priviliges. If the 

access mode for a direct access file is 'SW', it will be changed to 
‘ew! 

Access Bit-Pattern Meaning 

S7A.SRO eeee 2000 Sharable Read Only. 

S7A.ERO oo00e001 Exclusive Read Only. 

S7A.SWO eeeeeAl0 Sharable Write Only. 

S7A.EWO eeee Ol] Exclusive Write Only, will 

position to end-of-file. 

Sept. ‘81 c-8



APPENDIX C - SVC FUNCTIONS AND BIT PATTERNS 

SVC 8: RESOURCE HANDLING 

Function 

S8F.EST 

S8F .RMOV 

S8F.TEST 

S8F .NRCB 

§8.CLAS, Class 

Bit~-Pattern 

000.01 

- -000010 

- 000011 

-.0001.. 

Use 

Establish resource. 

Remove resource, only available 

to the owner. 

Test the presence of a resource. 

RCB already present. 

This field contains the resource class 

S8C.DEV 

S8C.TSK 

S8C.COM 

S8C. VOL 

S8c.SVC 

S8C.SVC2 

S8.TYPE, Type 

Bit-Pattern 

eee e OO] 

eeeeeAlD 

- 4ee--01l 

eee 100 

eoeee lOl 

ewe oe L 1O 

Meaning 

Devices. 

Tasks. 

Common. 

Volumes. 

SvC-~functions. 

SVC2-subfunctions. 

This field contains the resource type. 

a7. 
RTT. PURE 
RTT.RCB 
RTT.RRT 

RTT.AREA 

RTT.DIR 

Bit-Pattern Meaning 

eecee «00 

eooe «O01 

eoee «1d 

eeeane well 

eoece ele. 

Shared resource. 

Exclusive resource. 

Dummy, S8.ADR points at a new 

resource. 

Area, no entry. 

Directory oriented. 

c-9 Sept. "81 



APPENDIX C - SVC FUNCTIONS AND BIT PATTERNS 

Type 

RTT.SVC 

RTT.OFFL 

RTT.PROT 

RTT.NFST 

RTT.NRMV 

RDT.TYPE, TYpe 

Bit-Pattern Meaning 

cose lees Entry at ALL SVC-calls. 

oowl sees Off line, not accessible. 

oole seve Protected, write not allowed. 

lee TERe Non-file structured, only for 

system's use. 

1 ooo eae Resident ry non-removable e 

Specifies the false of resource. 

Type 

RCT.RCB 

RCT.DCB 

RCT.TCB 

RCT.FCB 

RCT. VCB 

RCT.AREA 

RCT. PRNT 

RCT. DESC 

RCT.NW 

RCT. PRO 

RCT.NAB 

Bit-—Pattern Meaning 

eees 2000 No special type. 

esee 2001 DCB, Device Descriptor Table present. 
eoee 2010 TCB, Task Descriptor Table present. 

eeee Oll Only for system's use. 

eeee 2100 VCB, Volume Descriptor Table present. 
eoee 2101 Area, no entry. 

coe lee Coordination parent specified. 

eool cave : Ony for system's use. 

eale wie Don't support no-wait functions. 

oleae cece Don't support un-conditional proceed. 
lace cove Non—abortable, can't be cancelled. 

TDT.TYPE, Task Type 

Describes the type of task: 

Type 

TCT.RES 

TCT.NAB 

Sept. ‘81 

Bit-Pattern Meaning . 

eeee cool Set the task memory resident. 

eves cole Set the task non-abortable for 

other tasks. 

C-10



APPENDIX C - SVC FUNCTIONS AND BIT PATTERNS 

TDT.OPT, Task Options 

Hold the task options. 

Option Bit-—Pattern 

TCO.DASG soos cool 

TCO.NSTK eeee ora de 

TCO.EMSG eoee elec 

TCO.RCOV @eee Lass 

DDT.ATTR, Attributes on the Device 

This is a bit pattern which 

Attribute 

ATR. READ 

ATR.WRIT 

ATR. FASC 

ATR. SPEC 

ATR. RND 

ATR. TACT 

e@oee e008 20808 

eoeeoe e088 e088 

e@esnea es ee se08 

cool 

eel. 

el.. 

1... 

eeee e000 

weeee eeoee 

ee5ee eee 

eoel 

eel. 

el.. 

1... 

eeee eoee 

ATR.FR 

ATR.FF 

ATR.WF 

ATR.BR 

ATR. BF 

ATR. RW 

ATR.ATIN 

eeece eeee 

eoee 

cool 

eel. 

el.. 

1... 

eevee 

eeee 

eeoe e008 

Meaning 

Default assign allowed. 

No stack check. 

Error message print-out by the 

system. 

System recovery. 

describes the device attributes. 

Bit-Pattern 

cool 

eel. 

eles 

1... 

eoee 

e@ene 

eooen 

econ 

eoece 

eeee 

eee 

eevee 

eoe0e 

eao5e 

eeee 

C-11 

Meaning 

Read. 

Write. 

Formatted ASCII. 

Special formatting. 

Random access. 

Interactive device, echo of 

Reserved for future use. 

Reserved for future use. 

Reserved for future use. 

Forward record. 

Forward file. 

Write file-mark. 

Back space record. 

Back space file. 

Rewind. 

Attention. 

Sept. 

input. 

"81 



APPENDIX C — SVC FUNCTIONS AND BIT PATTERNS 

DDT.TYPE, Device Type 

Device Type 

DCT.ICB 

DCT.DEDI 

DCT. ENT 

DCT. TASK 

DCT. DUAL 

Sept. "81 

Bit-Pattern 

eool 

eel 

eeel 

eel. 

el.. 

lees 

Meaning 
Interrupt Control Block (ICB) present. 

Dedicated interrupt service. 

Reserved. 

Reserved. 

Indicates a task device. 

dual DCB information. 

Cc-12



GLOSSARY OF TERMS 





GLOSSARY OF TERMS 

ASCII Data Seven bit data with the most significant 

bit in the byte cleared. 

Binary Data Eight-bit data. 

Bit Management Subroutines Subroutines which allocate and delete 

files on direct-access—-volumes. 

Byte Access When data in a file is byte transferred 

irrespective of record length. Data 

transfer normally occurs in binary 

format. Any byte in the file can be 

accessed and I/O is performed in the 

game way as the logical transfer of 

files with variable record length. 

Byte Random Access Ability to retrieve any byte from any 

record in a file wihtout having to 

specify the record number. 

Cache Memory Sector A Disk Buffer Management method which 

Buffering reduces disk accesses. 

Channel Descriptor Table Table used by the operating system to 

(CDT) create a Channel Control Block (CCB) for 

a device. The CDT is a Continuation of 

the IDT. 

Command Basic unit of conversation between a 

terminal user and the operating system. 

Connection Handler Passes a Parameter Block request to the 

appropriate operating system handler. 

Glossary-1 Sept. ‘81 



GLOSSARY OF TERMS 

Console Manager Task 

Contiguous File 

Current Task 

Device Control Block (DCB) 

Device Descriptor Table 

(DDT) 

Device Driver 

Direct Access Device 

Directory Management 

Subroutines 

Disconnection Handler 

Dispatch Priority 

Dormant Task 

Sept. ‘81 

A program which runs the console. 

A file which is stored on contiguous 

sectors on a disk. 

Any task that is currently executing 

instuctions. 

Used by the operating system to specify 

the characteristics of each device. 

Used by the operating system to specify 

both real devices and task devices. 

The DDT is a continuation of the RDT. 

A program which controls a physical 

device. 

A disk. 

Subroutines which maintain information 

on all currently allocated files. 

Takes the Parameter Block from the 

system subroutine and returns it to the 

task which made the initial request. 

Priority set up by the Operating System 

which determines the order in which the 

task is to be serviced. 

Any task that has not been started. 

Glossary-2



GLOSSARY OF TERMS 

Driver Initiator A routine which is called whenever a 

request is sent to a driver. It must 

enable the various I/O parts and 

interrupts used by the driver. 

Driver Interrupt That portion of the Driver Code which 

responds to the interrupt as directed by 

the interrupt handler. 

Exclusive Resource Any resource that can be used by only 

one task at a given time. 

Executive The operating system. 

Executor A system subroutine. 

Extended Descriptor Table Used by a programmer to expand a control 

(EDT) block and initialize it with some data. 

The EDT is an extension of the RDT. 

. 

File Manager A software package that supports the 

File Management System. 

Fixed Record Length File A file, all of whose records have the 

same length. 

Hardware Driver A program which controls a piece of 

hardware. 

Idle Loop A procedure which is executed when the 

Operating System has no other task to 

Tune 

Glossary-3 Sept. ‘81 



GLOSSARY OF TERMS 

Indexed-File A file which is distributed over many 

non-contiguous sectors of a diskette. 

There is a pointer to each sector 

occupied by the file which indexes the 

file. 

Initial Value Table (IVT) Part of the Operating System 

Initializaiton Code which supplies 

configuation addresses. 

Input/Output Management The interaction of tasks with Input/ 

Output devices. 

Interrupt A control signal through which external 

logic can demand the attention of the 

operating system. 

Interrupt Control Block Is used for the interrupt porition of 

CICR) the operating system. 

Interrupt Descriptor Table Is used by the operating system to 

(IDT) describe the interrupt side of a device. 

The IDT is a continuation of the DDT. 

Interrupt Handler A common piece of code that responds to 

all interrupts and decides which driver 

is appropriate to activate. 

‘Logical Access When data in a file is transferred as 

logical records. System data buffering 

ts used. 

Sept. '81 Glossary-4



GLOSSARY OF TERMS 

Node Part of an operating system structure 

which is used to hold various pieces of 

information which are function 

dependent. It can be included in 

prioritized lists. 

Nonresident Task Any task which is removed from memory 

after execution. 

Operating System Mangement The preparation, management, and 

execution of task files. 

Parameter An element in a parameter block. 

Parameter Block A block of code which contains the 

parameter of an SVC.’ 

Paused Task Any task that has been paused during 

execution. 

Physical Access When data in a file is transferred as 

physical records. No buffering or 

formatting is needed, because the data 

is transferred in the byte blocks 

without using the File Manager. 

Program Status Word Indicates the status of the program 

currently running on the operating 

system. This is not the PSW Flag 

Register of the CPU chip. 

Glossary-5 Sept. ‘81 



GLOSSARY OF TERMS 

Ready Task Any task that is ready to become the 

current task. 

Relocatable Load Module A piece of object code that can be 

relocated anywhere in memory (normally 

by the Relocatable Loader). 

Resident Task Any task which is not removed from 

memory after completing execution. 

Resource A process or an area of memory that can 

be used by a task. 

Resource Control Block The portion of the operating system code 

(RCB) which coordinates operating system 

resources. 

Resource Descriptor Table Used by the SVC handler to create the 

(RDT)} control blocks necessary to handle 

exclusive resources. 

Resource Mnemonic Table Used by the operatng system to give 

(RMT) symbolic definitions of the resources 

that are to be used. The RMT contains 

pointers to the RRT. 

Resource Reference Table Used by the operating system to give a 

(RRT) numeric description of a resource. The 

RRT contains the number of the resource 

and the type of resourcey 

Sept. ‘81 Glossary-6



GLOSSARY OF TERMS 

Run Mode When the CPU is executing instructions. 

Shared Resource Any resource that can be used by several 

tasks at the same time. 

Software Driver A program which executes a subroutine. 

Stop Mode — The actual halt state of the CPU chip. 

Can only be exited by an external 

interrupt. 

Strict Priority Scheduling When a task remains active until it 

gains control of the processor. 

Subfunctions Parameters in the SVC 2 Parameter 

Block that allow the user to perform 

certain tasks like communicating with 

the console operator, allocating memory, 

‘and so on. 

Supervisor Calls (SVC's) Assembly Language programs which are 

used be the Monroe Operating System to 

perform Operating System Service. 

SVC-Functions ' Those functions which are performed by 

the SVC's. 

SVC~Handler A common piece of code that responds to 

all SVC requests and decides which SVC 

to execute. 

Symbiont A task device. It operates as a normal 

task and uses its event queue to accept 

requests from other tasks. 

Glossary-7 Sept. ‘81 



GLOSSARY OF TERMS 

System Pointer Table (SPT) 

System Queve Handler 

Task 

Task Control Block (TCB) 

Task Descriptor Table (TDT) 

Task Priority 

Termination Handler 

Time Slice Scheduling 

A set of pointers which index additional 

operating system structure located at 

arbitrary points in memory. 

To be supplied. 

The funcamental unit of work in the 

Monroe Operating System. It can consist 

of a single program or of a main program 

together with a number of subroutines 

and overlays. 

Any task within the system (active or 

dormant) requires at least one task 

Control Block. The TCB give information 

about the task such as stack size, 

starting address, open files, etc. 

Used by the operating system to create 

a Task Control Block (TCB) which is then 

used to Control a task. The TDT is a 

Continuation of the RDT. 

The priority currently assigned to a 

task. 

Used within a interrupt routine. Is 

called when the routine is completed. 

When task of equal priority receive 

shares of CPU time. 

Glossary-8 Sept. ‘81



GLOSSARY OF TERMS 

User-File 

User-File-Directory 

User Mode 

Variable Record Length 

File 

Volume 

Waiting Task 

An element or file in the User-File 

Directory. 

A subdirectory of the Master-File- 

Directory. 

The mode in which all user tasks run. 

Any file consisting of records whose 

lengths vary. 

A directory oriented mass storage 

device. 

Any task that is waiting for an event. 

Glossary-9 Sept. "81 





INDEX 





A 

ABSOLUTE START, 13-5 

ACCESS MODES, 8-8 

Access Type, 8-10 

Byte Access, 8-12 

Data Type, 8-10 

Logical Access, 8-11 

Physical Access, 8-9 

Read/Write, 8-9 
SIF.WRITE, Write, 8-10 
Special Operations, 8-10 

ACCESS TYPE, 8-10 

ASCII, 20-6 

ASSEMBLY LANGUAGE CALLING 

CONVENTION, 7-2 

ASSEMBLY LANGUAGE INTERFACE 

TO ISAM, 20-9 

ASSIGN FUNCTION, 20-9 

B 

BASIC SVC CALLING CONVENTION, 7-3 

BINARY, 20-5 

BUFFER CONTROL NODE, 

BYTE ACCESS, 8-12 

19-22 

Cc 

CDT. THND, OPTIONAL TIME-OUT 

HANDLER ADDRESS, 15-11 

CDT. TLIM,TIME-OUT LIMIT IN 

CHOSEN INTERVAL, 15-11 

CHANNEL CONTROL BLOCK, 19-27 

INDEX 

CHANNEL DESCRIPTOR TABLE (CDT), 15-11 

CDT.THND, Optional Time-out 

Handler Address, 15-11 

CDT.TLIM, Time-out Limit in 

Chosen Interval, 15-11 

CHECKSUM COMPUTATION, 19-11 

CODE FILE FORMAT, 19-8 

COMMAND HANDLING, 16-2 

Error Response, 16-3 

Unknown Commands, 16-3 

CONNECTION HANDLER, 5-7 

CONSOLE MANAGEMENT, 16-1 

Command Handling, 16-2 
Control Characters, 16-1 

Prompting, 16-1 

INDEX-1 

CONTROL CHARACTERS, 16-1 

CLOCK INTERRUPT HANDLER, 5-8 

CRASH HANDLER, 5-8 

D 

DATA STRUCTURES, 19-1 

Buffer Control Node, 19~22 

Channel Control Block, 19-20 

Device Control Block, 19-25 

File Control Block, 19-32 

Interrupt Control Block, 19-26 

Memory Management, 19-1 

Resource Attributes Word, 19-20 

Resource Control Block, 19-23 

Resource Descriptor Table, 19-31 

Resource Mnemonic Table and 

Resource Reference Table, 19-20 

System Pointer Table, 19-16 

Two Segment Code Files and 

Programs over 40K, 19-7 

Volume Control Block, 19-36 

Volume Descriptor Sector, 19-35 
DATA TYPE, 8-10 
DCB.STAT, DEVICE STATUS, 19-26 

DCB.TYPE, DEVICE TYPE, 19-26 

DDT.ATTR, ATTRIBUTES ON THE 

DEVICE, 15-8 
DDT.CODE, DEVICE CODE, 15-9 

DDT.QPAR, SIZE OF SVC-BLK, 15-9 

DDT.RECL, RECORD LENGTH ON 

THE DEVICE, 15-9 

DDT.TYPE, DEVICE TYPE, 15-9 

DEVICES, 5-4 

DEVICE CONTROL BLOCK, 19-25 

DCB.STAT, Device Status, 19-26 

DCB.TYPE, Device Type, 19-26 

DEVICE DESCRIPTOR TABLE 

(DDT), 15-8 

DDT.ATTR, Attributes on the 

Device, 15-8 

DDT.CODE, Device Code, 15-9 

DDT.QPAR, Size of SVC-BLK, 15-9 

DDT.RECL, Record Lenght on 

the Device, 15-9. 

DDT.TYPE, Device Type, 15-9 

DEVICE DRIVERS, 5-9 

Sept. ‘81 



INDEX (Cont.) 

DEVICE DRIVER DESCRIPTOR, 17-1 

Driver Continuator, 17-l 

Driver Initiator, 17-l 

Driver Terminator, 17-4 

Driver Time-Out and Cancel, 17-3 

DIRECTORY ENTRY, 20-3 

DIRECTORY STRUCTURE, 20-3 

DISCONNECTION HANDLER, 5-7 

DOCUMENT CONTENTS, 1-1 

DOUBLE PRECISION FLOATING 

POINT, 20-6 

DRIVER CONTINUATOR, 17-2 

DRIVER INITIATOR, 17-1 

DRIVER TERMINATOR, 17-4 

DRIVER TIME-OUT AND CANCEL, 17-3 

E 

ERROR RESPONSE, 16-3 

EVENT QUEUE, 6-5 
EVENT QUEUE HANDLING, 13-10 

EXCLUSIVE RESOURCES, 5-4 

EXECUTIVE DESCRIPTON, 5-1 

Executive Modules, 5-1 

File Manager, 5-6 

Resource Control Block 

Handlers, 5-7 

Resource Control Block (RCB), 5-4 

Resource Type, 5~4 

SVC Functions, 5-5 

SVC Handler, 5-5 

System Initialization, 5-3 
System Resources, 5-3 

EXECUTIVE MODULES, 5-1 

EXTENDED FILE DESCRIPTOR, 20-4 

EXTENDED DESCRIPTOR TABLE 

(EDT), 15-12 

RDE.ADR, Signed Offset, 15-12 

RDE.DATA, Initialization 

Data, 15-12 

RED.NBYT, Number of Bytes, 15-12 

F 

FCB.FLAG, FILE FLAG, 19-34 
FCB.STATUS, FCB STATUS, 19-34 
FILE CONTROL BLOCK, 19-32 

FCB.FLAG, File Flag, 19-34 
FCB.STATUS, FCB Status, 19-34 

Sept. '81 

FILE FORMATTING, 14-10 

FILE HEADER, 20-8 

FILE MANAGEMENT, 2-4 

FILE MANAGER, 5-6 

FILE STRUCTURES, 20-1 

ISAM Layout of Disk, 20-2 

Logical Layout of Disk, 20-5 

FLOATING POINT, 20-6 

FUNCTION CODE FORMAT, 7-5 

Unconditional Proceed, 
SOF.NW, 7-5 

Wait/Proceed, SOF.PRD, 7-5 

H 

HARDWARE DRIVERS LEVEL 0-7, 3-2 

HOW TO USE THIS MANUAL, 1-2 

I 

ICB.STAT, STATUS, 19-27 

ICB.TYPE, TYPE, 19-27 

IDLE LOOP STOP MODE, LEVEL 15, 3-3 

IDT.CONT. OPTIONAL CONTINUATOR 

ADDRESS, 15-10 

IDT.TYPE, INTERRUPT TYPE, 15-10 

INDEX DESCRIPTOR, 20-8 

INPUT/OUTPUT OPERATIONS, 2-3 

INTEGER, 20-6 

INTERRUPT MODE-IM, 4-2 

INTERRUPT CONTROL BLOCK, 19-26 

ICB.STAT, Status, 19-27 

ICB.TYPE, Type, 19-27 

INTERRUPT CONVENTIONS, 4-3 

INTERRUPT DESCRIPTOR TABLE 

(IDT), 15-9 

IDT.CONT, Optional Continuator 
Address, 15-10 

IDT.TYPE, Interest Type, 15-10 

INTERRUPT HANDLER, 5-8 

INTERRUPT STRUCTURES, 18-1 

Locating Tasks in Memory, 18-4 

Stack for System Routines, 18-1 

INTRODUCTION, 1-1 

I/O FUNCTIONS, 20-10 

ISAM DELETE, 20-11 

ISAM-FILE FORMAT, 20-6 

INDEX-2



INDEX (Cont.) 

ISAM FILE HEADER FORMAT, 20-8 

ISAM FILE STRUCTURE, 20-5 

ASCII, 20-6 
Assembly Language Interface 

to ISAM, 20-9 

Assign Function, 20-9 

Binary, 20-5 
Double Precision Floating 

Point, 20-6 

File Header, 20-8 

Floating Point, 20-6 
Index Descriptor, 20-8 

Integer, 20-6 

ISAM Delete, 20-11 

ISAM-File Format, 20-6 

ISAM File Header Format, 20-8 

ISAM Read, 20-11 

ISAM Read Next/Previous/First/ 
Last, 20-11 

ISAM UPDATE, 20712 

ISAM WRITE, 20-11 

I/O Function, 20-9 
Key Formats, 20-5 
Multi~-Task ISAM, 20-8 

ISAM READ, 20-11 

ISAM READ NEXT/PREVIOUS/ 
FIRST/LAST, 20-11 

ISAM UPDATE, 20-12 

ISAM WRITE, 20-11 

K 

KEY FORMATS, 20-5 

L 

LOCATING TASK IN MEMORY, 18-4 

LOGICAL ACCESS, 8-11 

LOGICAL LAYOUT OF DISK, 20-2 
Directory Entry, 20-3 

Directory Structure, 20-3 

Extended File Descriptor, 20-4 

Subsequent Index Sector, 20-4 

XFD.FLAG, File Flag, 20-4 

LOGICAL MEMORY, 19-3 

M 

MEMORY ALLOCATION PROCEDURE, 19-12 

MEMORY MANAGEMENT, 19-1 

Logical Memory, 19-3 

Memory Mapping, 19-5 

Physical Memory, 19-3 
MEMORY MAPPING, 19-5 

MEMORY PARTITIONS, 19-7 
MONROE OPERATING SYSTEM 

FEATURES, 2-3 
File Management, 2-4 
Input/Output Operations, 2-3 
System Kernel, 2-3 

Task Establishment, 2-4 

MULTI-TASK ISAM, 20-8 

N 

NON-MASKABLE INTERRUPT HANDLER, 5-8 
: . 

PARAMETER BLOCK, 8-1 
PART II - Input/Output, 

Management, 1-1, 16-1 to 20-12 

PART I -— Operating System 

Management, 1-1 to 15-12 

PASCAL SVC CALLING CONVENTION, 7-3 
PHYSICAL ACCESS, 8-9 
PHYSICAL MEMORY, 19-3 
PREPARATION, 6-1 
PRIORITY AND SCHEDULING, 6-3 
PROGRAM TRANSFER PROCEDURE, 19-12 
PROMPTING, 16-1 

Q 

QUEUE HANDLING, LEVEL 9, 3-2 

R 

RCB.STAT, STATUS, 19-24 
RCB.TYPE, TYPE, 19-24 
RDE.ADR, SIGNED OFFSET, 15-12 
RDE.DATA, INITIALIZATION 
DATA, 15-12 
RDE.NBYT, NUMBER OF BYTES, 15-12 
RDT.EXT, EXTENSION, 15-5 
RDT.INIT, INITIATOR/HANDLER 

ADDRESS, 15-5 

INDEX-3 Sept. ‘81 



INDEX (Cont.) 

RDT.TERM, TERMINATOR HANDLER 

ADDRESS, 15-6 

RDT.TYPE, TYPE, 15-5 
READY QUEUE HANDLER, 5-10 
READY QUEUE SERVICE LEVEL 12, 3-3 

READ/WRITE, 8-9 
READ/WRITE OPERATION (For SVC 1 

Type Field =0.), 8-2 

REAL-TIME HANDLER, 5-9 

REAL~TIME SERVICE, LEVEL 10, 3-2 

REGISTER USE, 4-2 

REGISTER USAGE, 13-5 

RELATED MANUALS, 1-3 

RELATIVE START, 13-5 

RESERVED, SVC 2.2, 9-6 

RESOURCE CONTROL BLOCK, 19-23 

RCB.STAT, Status, 19-24 

RCB.TYPE, Type, 19-24 

RESOURCE DESCRIPTOR TABLE, 19-3 

ROT.STATUS, Status, 19-31 

RESOURCE DESCRIPTOR TABLE 

(RDT), 15-4 

RESOURCE DESCRIPTOR TABLE 

PARAMETERS, 15-5 
RDI.EXT, Extension, 15-5 

RDI.INIT, Initiator/Handler 
Address, 15-5 

RDT.TERM, Terminator Handler 

Address, 15-6 

RDT.TYPE, Type, 15-5 

RESOURCE ATTRIBUTES WORD, 19-20 

RESOURCE CONTROL BLOCK (RCB), 5-4 

RESOURCE CONTROL BLOCK 

HANDLERS, 5-7 
Clock Interrupt Handler, 5-8 

Connection Handler, 5-7 

Crash Handler, 5-8 

Device Drivers, 5~9 

Disconnection Handler, 5-7 

Interrupt Handler, 5-8 

Non-Maskable Interrupt 

Handler, 5-8 

Ready Queue Handler, 5-10 

Real Time Handler, 5-9 

System Pointer Table, 5-11 

System Queue Handler, 5-10 

Termination Handler, 5-7 

Sept. ‘81 INDEX~4 

RESOURCE MNEMONIC TABLE AND 

RESOURCE REFERENCE TABLE, 

RRT.TYPE, Type, 19-22 

RESOURCE TYPE, 5-4 

Device, 5-4 

Tasks, 5-4 

Volumes, 5-4 

RESULT CODE FORMAT, 7-6 

ROT.STATUS, STATUS, 19-31 

19-20 

) 

SHARED RESOURCES, 5-3 

SVC CALLING CONVENTION, 7-2 

Assembly Language Calling 

Convention, 7-2 

BASIC SVC Calling 

Convention, 7-3. 

PASCAL SVC Calling 

Convention, 7-3. 

SVC CONVENTIONS, 7-7 

Svc FUNCTIONS, 5-5 

SVC2.1, 5-6 

SvVC2.10, 5-6 

SVC2.11, 5-6 

SvC8, 5-6 

SVC FUNCTION CONVENTIONS, 4-3 

SVC HANDLER, 5-5 

SYSTEM CONVENTIONS, 4-1 

Further Conventions, 4-2 

Interrupt Mode-IM, 4-2 
System Mode System-SMS, 4-2 
System Mode User~SMU, 4-1 

User Mode-UM, 4-1 

SYSTEM CRASHES, 2-5 

SYSTEM FUNCTION BLOCKS, 2-2 

SYSTEM HIERARCHY, 3-1 

SYSTEM INITIALIZATION, 5-3 

SYSTEM INTERRUPTS, 3-3 

SYSTEM KERNEL, 2-3 

SYSTEM LEVELS, 3-2 

Hardware Drivers, Levels 0-7, 

3-2 

Idle Loop, Stop Mode, Level 15, 

3-3 
Queue Handling, Level 9, 3-2 

Ready Queue-Service, Level 12, 

3-2 
Real-Time Service, Level 10, 3-2



INDEX (Cont.) 

Software Drivers, Level 8, 3-2 SO.FC, RETURN STATUS, 9-2 

System Queue-Service, Level 11, 3-3 SVC.1, 8-6 

Tasks, Level 13, 3-3 SVC2.1, 9-4 

SYSTEM MODE USER - SMU, 4-1 SVC2.2, 9-5 

SYSTEM MODE SYSTEM - SMS, 4-2 SVC2.3, 9-8 

SYSTEM OVERVIEW, 2-1 SVC2.4, 9-11 

Monroe Operating System SVC2.5, 9-14 

Features, 2-3 SVC2.7, 9-17 

System Crashes, 2-5 SVC2.8, 9-20 

System Function Blocks, 2-2 $VC2.12, 9-23 

System Shut Down and Restart, 2-5 svc 3, 10-2 

System Start Up, 2-5 Svc 4, 11-2 

SYSTEM POINTER TABLE, 5-11, 19-16 svc 5, 12-2 

SYSTEM QUEUE HANDLER, 5-10 Svc 6, 13-3 

SYSTEM QUEUE-SERVICE, LEVEL 11, 3-3 svc 7, 14-3 

SYSTEM RESOURCES, 5-3 Svc 8, 15-2 

Exclusive Resources, 5-4 SOF .WAIT, WAIT FOR COMPLETION, 

Shared Resources, 5-3 8-3 

SYSTEM SHUT DOWN AND RESTART, 2-5 SOFTWARE DRIVERS, LEVEL 8, 3-2 

SYSTEM START UP, 2-5 SO.RS, RETURN STATUS, 8-6 

SYSTEM STATES, 3-4 SO.RS, RETURN STATUS, 15-2 

SYSTEM STATUS, 3-4 SO.SNR, SUBFUNCTION, 9-2 

SYSTEM STRUCTURE, 3-1 S1.BAD, BUFFER ADDRESS, 8-7 

System Hierarchy, 3-1 S1.BCNT, BYTE COUNT, 8-7 

System Interrupts, 3-3 S$1.BSZ, BUFFER SIZE, 8-7 

System Levels, 3-2 S1.LU, LOGICAL UNIT, 8-6 

System States, 3-4 S1.RND, RANDOM ADDRESS, 8-7 

System Status, 3-4 S1.TS, TERMINATION STATUS, 8-6 

$0.7 BUF, BUFFER ADDRESS, 9-17 S1F.FASC, FORMAT ASCII, 8-3 
SOF.CAN, CANCEL REQUEST, 8-4 SIF.IASC, IMAGE ASCII, 8-3 

SOF.TST, TEST REQUEST, 8-4 SIF.IBIN, IMAGE BINARY, 8-3 

SO.FC, FUNCTION CODE, 8-2 SIF.SPEC, SPECIAL, 8-3 

svc 1, 8-2 SIF .WRIT, WRITE, 8-10 

SVC 2.1, 9-4 $2.12AD, SVC-HANDLER ADDRESS, 

SVC 2.2, 9-5 9-24 

SVC 2.3, 9-8 $2.12FD, NAME POINTER, 9-24 

svc 2.4, 9-11 S2F.12AL, FETCH AUTO START 

Svc 2.5, 9-14 LINE, 9-24 

SVC 2.7, 9-17 S2F.120P, FUNCTION OPEN, 9-24 

Svc 2.8, 9-19 S2F.2 BAD, BUFFER ADDRESS, 9-6 

SVC 2.12, 9-23 $2.2BSZ, BUFFER SIZE, 9-6 

svc 3, 10-1 $2.3ADR, STRING ADDRESS, 9-8 

Svc 4, 11-2 $2.3BUF, RECEIVING AREA, 9-9 

svc 5, 12-2 $2.3CNT, STRING SIZE, 9-9 

SVC 6, 13-2 $2.3PNT, TERMINATING STRING 

svc 7, 14-2 ADDRESS, 9-9 

sve 8, 15-2 

INDEX-5 Sept’ 8l 



INDEX (Cont.) 

$2.IADR, MEMORY ADDRESS, 9-4 
$2.ISIZ, MEMORY SIZE, 9-4 
S2.4ADR, STRING ADDRESS, 9-12 
$2.4PNT, UPDATED STRING 

ADDRESS, 9-12 
$2.4RES, RESULT, 9-12 
$2.4SIZE, SIZE, 9-11 
$2.5ADR, DESTINATION ADDRESS, 

9~15 
$2.5PNT, UPDATED DESTINATION 

ADDRESS, 9-15 
$2.5SIZE, SIZE, 9-14 
$2.5VAL, SOURCE, 9-15 
$2.8ADR, STRING ADDRESS, 9-20 
$2.8INX, INDEX, 9-20 
$2.8LIST, MNEMONIC TABLE 

ADDRESS, 9-20 
$2.8PNT, UPDATED STRING ADDRESS, 

9-20 j 
$2.SIZE, ADDTIONAL SIZE, 12-3. 
S4.LU, LOGICAL UNIT, 11-2 
S5F.FO, FILE DESCRIPTION, 12-3 
SSF.LOAD, LOAD OVERLAY, 12-2 
S5F.STRT, START OVERLAY, 12-3 
SSF.TID, TASK IDENTIFIER, 12-2 
S6.ADDRESS, 13-4 
S6.FD FILE DESCRIPTION, 13-4 
$6.O0PT, TASK OPTION, 13-3 
S6.PAR, PARAMETER, 13-4 
S6.PRIO, TASK PRIORITY, 13-3 
S6.SIZE, SIZE, 13-4 
S6.TID, TASK IDENTIFIER, 13-4 
S6F.ADDQ, FUNCTION ADD EVENT 

TO QUEUE, 13-9 
S6F.CAN, FUNCTION CANCEL TASK, 13-8 
S6F.CONT, FUNCTION CONTINUE 

TASK, 13-8 
S6F.LOAD, FUNCTION LOAD TASK, 13-4 
S6F.OPT, FUNCTION CHARGE OPTIONS, 

13-9 
S6F.PAUS, FUNCTION PAUSE TASK, 18-3 
S6F.PRIO, FUNCTION CHARGE PRIORITY, 

13-8 
S6F.QDIS, FUNCTION DISABLE EVENT 

QUEUE, 13-7 
S6F.QENI, FUNCTION ENABLE EVENT 

QUEUE, 13-7 

Sept. '81 

S6F.QTRM, FUNCTION TERMINATE 
EVENT, 13-7 

S6F.QYST, FUNCTION TEST EVENT 
QUEUE, 13-6 

S6F.QWAL, FUNCTION WAIT FOR 
EVENT, 13-6 

S6F.STRT, FUNCTION START 
TASK, 13-4 

S6F.SUSP, FUNCTION SUSPEND 
SELF, 13-7 

S6F.TSKW, FUNCTION WAIT FOR TASK 
TERMINATION, 13-9 

S6F.TST, FUNCTION TEST TASK, 13-7 
S6F.TSTW, WAIT FOR TASK STATUS 

CHANGE, 13-9 
S6F.TYPE, FUNCTION CHANGE TASK 

TYPE, 13-9 
S7.CLAS, CLASS, 14-5 
S7.FD, NAME POINTER, 14-3 
S7.LU, LOGICAL UNIT, 14-3 
S7.MOD, MODIFIER, 14-3 
S7.RECL, RECORD LENGTH, 14-5 
$7.SIZE, SIZE, 14-5 
S7.TAM, ACCESS MODE, 14-9 
S7F.ASGN, Assign, 14-5 
S7F .CHKP, FUNCTION CHECKPOINK, 14-7 
S7F.CLOS, FUNCTION CODE, 14-6 
S7F.FAT, FUNCTION FETCH 
ATTRIBUTES, 14-8 ; 

S7F.FUNCTION DELETE AT CLOSE, 14-6 
S7F .RNAM, FUNCTION RENAME, 14-7 
S8.ADR, ENTRY/RDT, 15-4 
$8.CS, CHANNEL SELECT CODE, 15-4 
S8.CLAS, CLASS, 15-3 
S8.ID, NAME POINTER, 15-3 
S8.IL, INTERRUPT LEVEL, 15-4 
$8.FC, FUNCTION CODE, 15-2 
S8.PRIO, PRIORITY OF NUMBER, 15-2 
S8.RNR, RESOURCE NUMBER, 15-2 
S8.TYPE, TYPE, 15-3 
S8.SIZE, SIZE, 15-4 
SPECIAL LOADER INFORMATION FOR’ 

PURE SEGMENTS, 19-11 
SPECIAL OPERATIONS, 8-3, 8-10 
STACK FOR SYSTEM ROUTINES, 18-1 
STATUS, 6-1 
SUBROUTINE CONVENTIONS, 4-3 
SUBSEQUENT INDEX SECTORS, 20-4 

INDEX-6



_ SURERVISG8 CALLS, 6-5, 7-1 

Function Code Format, 7-5 

Result Code Format, = -6 

Svc Calling Convention, 7-2 

SVC Conventions, 7-7 

The Parameter Block, 7-4 

Svc 1 INPUT/OUTPUT REQUEST, 8-1 

Access Modes, 8-8 

Parameters, 8-2 

Parameter Block, 8-l 

SVC 1 PARAMETERS, 8-2 

Read/Write Operation (For SVC 
1 Type Field =0.), 8-2 

Special Operations, 8-3 

Svc 1 Type, 8-5 

SOF.CAN, Cancel Request, 8-4 
SO.FC, Function Code, 8-2 

SOF.TST, Test Request, 8-4 

S$0.RS, Return Status, 8-6 
SOF WAIT, Wait for 

Completion, 8-3 

S$1.BAD, Buffer Address, 8-7 

S$1.BCNT, Byte Count, 8-7 

$1.BSZ, Buffer Size, 8-7 

SIF.FASC, Format ASCII, 8-3 

SIF.IBIN, Image Binary, 8-3 

SIF.IASC, Image ASCII, 8-3 

$1.LU, Logical Unit, 8-6 

S$1.RND, Random Address, 8-7 

SIF.SPEC, Special, 8-3 

S1.RND, Random Address, 8-7 

S$1.TS, Termination Status, 

8-6 

Unconditional Proceed, 8-5 

Wait~-Proceed, 8-5 

Svc 1 TYPE, 8-5 

SVC 2 PARAMETERS, 9-2 
9S .FC, Function Code, 9-2 

90 .RC, Return Status, 9-2 

SO.SNR, Subfunction, 9-2 

$2.PAR, Other Data, 9-2 

Svc 2 SUBFUNCTIONS, 9-1 

SVC2.1 Memory Handling, 9-3 

SVC2.2 Log Message, 9-5 

$vC2.3 Pack File Descriptor, 

9-7 

SvVC2.4 Pack Numeric Data, 

9-10 

SVC2.5 Unpack Binary Number, 

9-13 

INDEX (Cont.) 

INDEX-7 

SVC 2.7 Fetch/Set Date/Time, 
9-16 

SvC 2.8 Scan Mnemonic Table, 

9-19 

SVC 2.12 Open Close Device, 

9-22 

SVC 2.1 MEMORY HANDLING, 9-3 

9S .FC, Function Code, 9-4 

S.RS, Return Status, 9-4 

S2.IADR, Memory Address, 9-4 

$2.ISIZ, Memory Size, 9-4 

SVC 2.12 OPEN/CLOSE DEVICE, 

9-20 

9 .FC, Function Code, 9-23 

S0.RS, Return Status, 9~23 

S2F.12AL, Fetch Auto Start 

Line, 9-24 

S2F.120P, Function Open, 9-24 

S2.12AD, SVC - Handler 

Address, 9-24 

S$2.12FD, Name Pointer, 9-24 

SVC 2.2 LOG MESSAGE, 9-5 

Reserved, 9-6 

S.FC, Function Code, 9-5 

S0.RS, Return Status, 9-5 

$2.2Bad, Buffer Address, 9-6 

$2.2BSZ, Buffer Size, 9-6 

SVC 2.3 PACK FILE DESCRIPTOR, 

9-7 

S0.FC, Function Code, 9-8 

S.RS, Return Status, 9-8 

S2.3ADR, String Address, 9-8 
$2.3BUF, Receiving Area, 9-9 

$2.3CNT, String Size, 9-9 

S2.3PNT, Terminating String 

Address, 9-9 

SVC 2.4 PACK NUMERIC DATA, 9-10 

S.FC, Function Code, 9-11 

SO.RS, Return Status, 9-11 

S2.4ADR, String Address, 9-12 
S2.4PNT, Undated String 

Address, 9-12 

S2.4RES, Result, 9-12 
S$2.4SIZE, Size, 9-11 

SVC 2.5 UNPACK BINARY NUMBER, 

9.13 

SO .FC, Function Code, 9-14 

S%.RS, Return Status, 9-14 

S2.5ADR, Destination Address, 

9-15 

Sept. ‘81 



$2.5PNT, Updated Destination 

Address, 9-15 

$2.5SIZE, Size, 9-14 

S$2.5VAL, Source, 9-15 

SVC2.7 FETCH/SET DATE/TIME, 
9-16 

Parameters, 9-17 

SO.FC, Function Code, 9-17 

SO .RS, Return Status, 9-17 

S.7BUF, Buffer Address, 9-17 

svc 2.8 SCAN MNEMONIC TABLE, 

9-19 
Illegal Characters, 9~20 

Parameters, 9-19 

SO .FC, Function Code, 9-19 

SO.RS, Return Status, 9-20 

S2.8ADR, String Address, 9-20 

S$2.8INX, Index, 9-20 

$2.8LIST, Mnemonic Table 
Address, 9-20 

S2.8PNT, Updated String 

Address, 9-20 

SVC 3 TIMER REQUESTS, 10-1 
9 .FC, Function Code, 10-1 

SO.RS, Return Status, 10-2 
$2.3TIME, Interval, 10-2 

svc 4 TASK DEVICE, 11-1 

Parameters, 11-2 

SVC 5 LOADER HANDLING, 12-1 

Parameters, 12-2 

SVC 5 PARAMETERS, 12-2 

SO .FC, Function Code, 12-2 

SO.RS, Return Status, 12-2 

$2.SIZE, Additional Size, 

12-3 

SSF.FO, File Description, 

12-3 ° 

SSF.LOAD, Load Overlay, 12-2 

S5F.STRT, Start Overlay, 12-3 

SSF.TID, Task Identifier, 

12-2 

SVC 6 FUNCTION CODE 

DESCRIPTION, 13-4 
Absolute Start, 13-5 

Register Usage, 13-5 

Relative Start, 13-5 

S6F.ADDQ, Function Add Event 

to Queue, 13-9 

S6F.CAN, Function Cancel 

Task, 13-7 

Sept. ‘81 

INDEX (Cont.) 

S6F.CONT, Function Continue 

Task, 13-8 

S6F.LOAD, Function Load Task, 

13-4 

S6F.OPT, Function Charge 

Options, 13-9 

S6F.PAUS, Function Pause 

Task, 13-7 
S6F.PRIO, Function Charge 

Priority, 13-8 

S6F.QDIS, Function Disable 

Event Queue, 13-7 

S6F.QENL, Function Enable 

Event Queue, 13-7 

S6F.QrRM, Function Terminate 

Event, 13-7 

S6F.QTST, Function Test Event 

Queue, 13-6 

S6F.QWAL, Function Wait for 

Event, 13-6 

S6F.STRT, Function Start 

Task, 13-4 

S6F.SUSP, Suspend Self, 13-7 

S6F.TSKW, Function Wait for 

Task Termination, 13-9 
S6F.TST, Function Test Task, 

13-7 
S6F.TSTW, Wait for Task 

Status Change, 13-9 
S6F.TYPE, Function Change 

Task Type, 13-9 

SVC 6 PARAMETERS, 13-1 

9S .FC, Function Code, 13-2 

S0.RS, Return Status, 13-3 

S6.ADDRESS, 13-4 
S6.FD, 13-4 . 
S6.0PT, Task Option, 13-3 

S6.PAR, Parameter, 13-4 

S6.SIZE, 13-4 
S6.PRIO, Task Priority, 13-3 
S6.TID, Task Identifier, 13-4 

SVC 6 TASK REQUEST, 13-1 
Parameters, 13-1 

Svc 7 FILE REQUEST, 14-1 

File Formatting, 14-10 
Function Code Descriptions, 

14-5 
Parameters, 14-2 

INDEX-8



INDEX (Cont.) 

SVC 7 FUNCTION CODE Task Descriptor Table (TDT), 
DESCRIPTIONS, 14-5 15-6 

S7F.ASGN, Assign, 14-5 
S7F.CHKP, Function T. 

Checkpoint, 14-7 

S7F.CLOS, Function Code, 14-6 TASK CONTROL BLOCK, 19-28 

S7F.DELC, Function Delete at TCB.MODE, Mode, 19-30 
Close, 14-7 TCB.OPTION, Option, 19-30 

S7F.FAT, Function Fetch TCB.STATUS, Status, 19-30 

Attributes, 14-8 TCB.TYPE, Type, 19-30 

S7F.RNAM, Function Rename, TASK DESCRIPTOR TABLE, 15-6 

14-7 TDT.NFCB, Number of FCB, 15-8 

S7.TAM, Access Mode, 14-9 TDI.NNOD, Number of Nodes, 

SVC 7 PARAMETERS, 14-2 15-7 

SO.FC, Function Code, 14-2 TDT.OPT, Options, 15-7 

SO.RS, Return Status, 14-2 TDT.SADR, Standard Start 

§7.CLAS, Class, 14-5 Address, 15-7 

S7.FD, Name Pointer, 14-3 TDT.STK, Required Stack Size, 

$7.LU, Logical Unit, 14-3 15-8 

S7.MOD, Modifier, 14-3 TDT.TLIM, Individual Slice 

S7.RECL, Record Length, 14-5 Limit, 15-7 

S7.SIZE, Size, 14-5 TDT.TYPE, Type, 15-7 

SVC 8 PARAMETERS, 15-1 TASK DEVICES, 6-5 

S8.ADR, Entry/RDT, 15-4 TASK ESTABLISHMENT, 2-4, 6-l 

S8.CLAS, Class, 15-3 Event Queue, 6-5 

S8.FC, Function Code, 15-2 Preparation, 6-1 

$8.CS, Channel Select Code, Priority and Scheduling, 6-3 

15-4 Status, 6-1 

S8.ID, Name Pointer, 15-3 Supervisor Calls, 6-5 

$8.IL Interrupt Level, 15-4 Task Devices, 6-5 

S8.PRIO, Priority of Number, Task Scheduling, 6-4 

15-2 Task Termination Status, 6-3 

S8.RNR, Resource Number, 15-2 TASKS, 5-4 

S8.RS, Return Status, 15-2 TASKS, LEVEL 13, 3-3 
S8.SIZE, Size, 15-4 TASK SCHEDULING, 6-4 

S8.TYPE, Type, 15-3 TASK TERMINATION STATUS, 6-3 
svc 8 RESOURCE HANDLING, 15-1 TCB.MODE, MODE, 19-30 

Channel Descriptor Table, TCB.OPTION, OPTION, 19-30 

15-10 TCB.STATUS, STATUS, 19-30 

Device Descriptor Table TCB.TYPE, TYPE, 19-30 

(DDT), 15-8 TDT.NFCB, NUMBER OF FCB, 15-8 
Extended Descriptor Table TDT.NNOD, NUMBER OF NODES, 15-7 

(EDT), 15-12 TDT.OPT, OPTIONS, 15-7 

Interrupt Descriptor Table TDT.SADR, STANDARD START 

(IDT), 15-10 ADDRESS, 15-7 
Parameters, 15-1 TDT.STK, REQUIRED STACK SIZE, 
Resource Descriptor Table 15-8 

(RDT), 15-4 

INDEX-9 Sept. ‘81 



TDI.TLIM, INDIVIDUAL SLICE 

LIMIT, 15-7 

TDT.TYPE, TYPE, 15-7 

TERMINATION HANDLER, 5-7 

TWO SEGMENT CODE FILES AND 

PROGRAMS OVER 40K, 19-7 

Checksum Computation, 19-11 

Code File Format, 19-8 

Memory Allocation Procedure, 

19-12 

Memory Partitions, 19-7 
Program Transfer Procedure, 

19-12 
Special Loader Information 

for Pure Segments, 19-17 

U 

UNCONDITIONAL PROCEED, 8-5 
UNCONDITIONAL PROCEED, SOF.PRD, 

7-5 
UNKNOWN COMMANDS, 16-3 
USER MODE-UM, 4-1 

v 

VSD.FLAG, VOLUME FLAG, 19-35 

VOLUME CONTROL BLOCK, 19-36 
VCB Flags, 19-37 

VOLUME DESCRIPTOR SECTOR, 19-35 

VDS.FLAG, Volume Flag, 19-35 

Volume Flag (High), 19-35 
VOLUME FLAG (HIGH), 19-35 

VOLUMES, 5-4 

W 

WAIT-PROCEED, 8-5 
WAIT/PROCEED, SOF.NW, 7-5 

x 

XFD.FLAG, FILE FLAG, 20-4 

Sept. ‘81 

INDEX (Cont.) 

INDEX-10



READER COMMENT FORM DATE 

Your comments and suggestions help to improve this publication. 

Please complete the questionaire. Fold, staple, and mail it to Monroe. 

ham 
Title 

Organization 

Street State Zip 

Publication Title 

Publication No. Revision Letter Date 

CIRCLE YOUR RESPONSES TO THE STATEMENTS BELOW. IF YOU RESPOND "NO™ TO A STATEMENT, ENTER THE 

STATEMENT NUMBER AND THE PAGE ANO PARAGRAPH IN THE PUBLICATION THAT PROMPTED YOUR RESPONSE. 

1. The publication was used for 2. The user/reader was 

Learning Instal ting High-level Programmer 

Reference Maintaining Occastonal Programmer 

Sales Programming Student Programmer 

Data Entry Operator 

Other (speci fy) 

3, The material is accurate. YES NO 4. The material is clear. YES 

5, The material Is complete. YES NO 6. The material Is wel! organized. YES &é
 

ENTER DETAILED INFORMATION FOR STATEMENTS 3-6. 

Statement No. Page No. Paragraph No. Comments 

7. The overall! rating for this publication Is 

Very Good Good Fair Poor Very Poor 

Briefly explain your rating. 

8. Additional comments 



INIT 
O
N
O
W
 

I
N
D
 

Necessary 

if Mailed in the 

United States 

| Software Publications Dept. | | | No Postage 

| BUSINESS REPLY MAIL 
| FIRST CLASS PERMIT NO. 731 MORRISTOWN, N. J. ) ; 

| 
| 

POSTAGE WILL BE PAID BY ADDRESSEE 

MONROE division of 
Litton Business Systems, Inc. 
Box 9000R 
Morristown, N.J. 07960 

Wid Vis , TidVLS


