
10-0000001-5

_ MONROE BASIC

PROGRAMMER'S REFERENCE MANUAL

February 1982

MONROE SYSTEMS FOR BUSINESS

The American Road

Morris Plains, N.J. 07950

©Copyright 1982, Litton Business Systems, Inc., All Rights Reserved

2104-S (Rev.

Except as stated in the license agreement for this
software, Monroe does not warrant this software or its
documentation, either expressly, by implication or in
relation to merchantability or fitness for a particular

purpose.

Monroe shall not be liable for any incidental, indirect,
special, consequential, or punitive damages arising out of
or in any way connected. with the use, furnishing of or any
failure to furnish software or any related materials,
including, but not limited to, claims for lost profits,
increased expenses or costs, loss of good will, or damage
to property. This exclusion of liability shall apply
without regard to whether such damages were foreseeable or
foreseen or are claimed to arise by reason of breach of
contract, breach of warranty, misrepresentation,
negligence, strict liability, or other legal theory.

Monroe reserves the right to make changes in the content of
this software or its documentation without obligation to
notify customer of such changes.

ii

PURPOSE OF THIS DOCUMENT

This document is a Programmer's Reference Manual.

It is to he used by experienced programmers as 4

reference tool. It is not intended for use as a

learning aid by non-programmers.

iii

RECORD OF CHANGES

| Date

7/81

2/82

Change No.

iv

Section

1

TABLE OF CONTENTS

Title

INTRODUCTION

1.1 Overview

1.2 Text Symbols and Conventions

1.3 File-Volume-Device Naming

Conventions

1.4 Character Set

1.5 Organization of This Manual

Abbreviations

1.7 Related Manuals

WORKING WITH MONROE BASIC

2.1 Initiating and Terminating

Monroe BASIC

2.2 Modes of Operation

Program Mode

Direct Mode

Run Mode

2.3 Program Structure

Line Numbering

2.5 Statements

Multiple Statements on 4

Program Line

2.6 Line Entry

Procedure

Immediate Corrections

Deleting a Statement

Changing a Statement

2.7 Editing a Program

2.8 Executing a Program

2.9 Documenting a Program

2.10 File Usage

Opening a File

Data Transfer To/From a File

Closing a File

Feb. "82

Section

TABLE OF CONTENTS (Cont.)

Title

2.11 Logical Units

2.12 Error Handling

2.13 Function Keys

2.14 Changing the System Disk

FORMING EXPRESSIONS

3.1 Arithmetic Expressions

3.2 Relational Expressions

3.3 Logical Expressions

3.4 Data Types

Floating Point Values

Integer Values

String Values

3.5 Constants

3.6 Variables

3.7 Subscripted Variables (Array)

and the DIM Statement

ARITHMETIC OPERATIONS

4,1 Mathematical Operations

4.2 Integer Arithmetic

4.3 Input/Output with Integers and

Floating Point

4.4 User-Defined Functions

4.5 Use of Integers as Logical

Variables

4.6 Logical Operations on Integer

Data

CHARACTER STRINGS

String Constants

String Variables

Subscripted String Variables

String Size

String Functions

String Arithmetic

String Input

String Output

M
m
m

m
i
n
i
m

in

in

n
w

a

Oo

O
n
N

D
N

F&
F
W
Y

Ee

Relational Operators

vi

be

N

'
t —~

oO

vo

i
1
t
t
t

i S
e
 S
e

Sa

S
O
C

os

Om

P
e

e
e

ee

ce

i}
“
N

U
N

e
e

ee

ee

|

N

NR

Re

Ee

of

A
at

A
A

hp

! UW

&
w
w
w

Section

TABLE OF CONTENTS (Cont.)

Title

CONTROL COMMANDS

6.1 Introduction

6.2 AUTO Command

6.3 CLEAR Command

6.4 CONTINUE Command

6.5 EDIT Command

6.6 ERASE Command

6.7 LIST Command

6.8 LOAD Command

6.9 MERGE Command

6.10 NEW Command

6.11 RENUMBER Command

6.12 RUN Command

6.13 SAVE Command

6.14 SCR Command

6.15 UNSAVE Command

DATA STATEMENTS

7.1 Introduction

7.2 DATA Statement

7.3 DIM Statement

7.4 DOUBLE Statement

7.5 EXTEND Statement

7.6 FLOAT Statement

7.7 INTEGER Statement

7.8 LET Statement

7.9 NO EXTEND Statement

7.10 OPTION BASE Statement

7.11 RANDOMIZE Statement

7.12 READ Statement

7.13 RESTORE Statement

7.14 SET TIME Statement

7.15 SINGLE Statement

vii Feb.

6-10

6-11

6-13

6-15

6-17

6-18

6-20

6-22

6-23

6-24

82

Section

8

Feb. "82

TABLE OF CONTENTS (Cont.)

Title

INPUT/OUTPUT STATEMENTS

8.1 Introduction

2 CLOSE Statement

3. DIGITS Statement

~4 GET Statement

5 INPUT Statement

8.6 INPUT LINE Statement

8.7 KILL Statement

8.8 NAME Statement

8.9 OPEN Statement

8.10 OPTION EUROPE Statement
8.11 POSIT Statement

8.12 PREPARE Statement

8.13 PRINT Statement

8.14 PRINT USING Statement

8.15 PUT Statement

PROGRAM CONTROL STATEMENTS

9.1 Introduction

BYE Statement

CHAIN Statement

COMMON Statement

DEF Statement

END Statement

FNEND Statement

FOR Statement

GOSUB Statement

GOTO Statement

IF...THEN...ELSE Statement

9.12 NEXT Statement

9.13 NOTRACE Statement

9.14 ON ERROR GOTO Statement

9.15 ON...GOSUB... Statement

9.16 ON...GOTO Statement

9.17 ON...RESTORE Statement

9.18 ON...RESUME Statement

9.19 PAUSE Statement

9.20 RESUME Statement

e
e

e
o
o
w
o
w
o

o
o

0

YO

O

e

O
o
O
n
N

D
M
N

FF

W
N

Oo

e
a

p
e

-_
-

©

viil

Section

10

TABLE OF CONTENTS (Cont.)

Title

9.21 RETURN Statement

9.22 STOP Statement

9.23 TRACE Statement

9.24 WEND Statement

9.25 WHILE Statement

FUNCTIONS

10.1 Introduction

10.2 Mathematical Functions

Order of Execution

ABS Function

ATN Function

cOS Function

EXP Function

FIX Function

HEXS Function

INT Function

LOG Funetion

LOG1LO Function

MOD Function

OCTS Function

PL Function

RND Function

SGN Function

SIN Function

SQR Function

TAN Function

10.3 String Functions

ADDS Function

ASCII Function

CHRS Function

COMP% Function

DIVS Function

INSTR Function .

ix Feb.

Page
9-35

9-37

9-38

9-39

9-40

10-1

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

10-10

10-12

10-13

10-14

10-15

10-16

10-17

10-18

10-19

10-20

10-21

10-22

10-24

10-25

10-26

10-27

10-28

10-29

"82

Section

ll

12

Feb. ‘'82

TABLE OF CONTENTS (Cont.)

Title

LEFTS Function

LEN Function

MIDS Function

MULS Function

NUMS Function

RIGHTS Function

SPACES Function

STRINGS Function

SUBS. Function

VAL Function

19.4 Miscellaneous Functions

and Statements

CUR Function

ERRCODE Function

FN Function

PDL Function

REM Function

SLEEP Function

SOUND Function

TAB Function

“TIMES Function

CURREAD Function

FORMATTED PRINTING

11.1 Introduction

11.2 String Fields

11.3 Numeric Fields

11.4 Illustrated Example

LOW RESOLUTION COLOR GRAPHICS

12.1 Color Graphics Keywords

color

NWBG

geolor

Page
10-30

10-31

10-32

10-33

10-34

10-35

10-36

10-37

10-38

10-39

10-40

10-41

10-42

10-43

10-45

10-47

10-48

10-49

10~51

10~52

10-53

11-1

11-1

11-2

11-4

11-9

12-1

L2-1

12-3

12-5

12=7

Section

13

14

TABLE OF CONTENTS (Cont.)

Title

12.2

12.3

FLSH/ STDY

DBLE/NRML

GSEP/GCON

GHOL/GREL

HIDE

Color Graphics Statement

and Function

TXPOINT Function

TXPOINT Statement

String Manipulation of

Low Resolution Graphics

HIGH RESOLUTION COLOR GRAPHICS

13.1

13.2

13.3

13.4

13.5

13.6

13.7

13.8

13.9

13.10

13.11

13.12

13.13

13.14

13.15

Introduction

Animation Mode

FGCIRCLE Statement

FGGET Statement

FGCTL Statement

FGDRAW Statement

FGERASE Statement

FGFILL Statement

FGLINE Statement

FGPAINT Statement

FGPOINT Function

FGPOINT Statement

FGPUT Statement

FGROT Statement

FGSCALE Statement

ADVANCED PROGRAMMING

14.1

14.2

Introduction

Advanced Statements and

Functions

CALL Function

CVT Conversion Function

CVT4ZS Function

xi

Page
12-9

12-11

12-13

12-15

12-17

12-19

12-20

12-21

12-23

13-1

13-1

13-3

13-4

13-6

13-10

13-11

13-18

13-19

13-21

13-24

13-27 |

13-28

13-30

13-32

13-33

14-1

14-1

14-1

14-3

14-4

14-5

Feb. '82

TABLE OF CONTENTS (Cont.)

Section ities Page

CVTS%Z Function ; 14-7

CVTFS Function 14-9

CVTSF Function 14-10

INP Function 14-11

ISAM Create Procedure 14-12

ISAM DELETE Statement 14-16

ISAM OPEN Statement 14-17

ISAM READ Statement 14-19

ISAM UPDATE Statement 14-22

ISAM WRITE Statement 14-23

OPEN Statement 14~24

OUT Statement 14-27

PEEK Statement 14-29

PEEK2 Function 14-30

POKE Statement 14-31

POSIT Statement 14-32

PREPARE Statement ; 14-34

SVC Statement 14-37

SWAP Function 14-41

SYS(A) Function 14-42

VAROOT/VARPTR Statement 14-44

14.3 File Creation 14-51

Variable Length Records 14-51

Fixed Length Records 14-51

14.4 Access Methods 14-52

Variable Length Records 14-52

Fixed Length Records 14-53

15 LOW RESOLUTION BUSINESS GRAPHICS

15.1 Introduction 15-1

15.2 Graphics Characters 15-1

15.3 Graphics Modes 15-3

15.4 Graphics Attributes 15-4

15.5 Control Characters 15-5

15.6 Graphics Print Format 15-6

LDie if Illustrated Examples 15-7

Feb. '82 xii

“

Section

APPENDIX A:

APPENDIX B:

APPENDIX C:

APPENDIX Di

APPENDIX E:

APPENDIX F:

APPENDIX G:

INDEX

TABLE OF CONTENTS (Cont.)

Title

MONROE BASIC ASCII CHARACTER SET

ERROR MESSAGES

SAMPLE PROGRAMS

C.l1 Create File Containing

Fixed Length Records

C.2 Run Utility Program From

Monroe BASIC Program VIA SVC6

C.3. Multi-tasking

PORT NUMBER ASSIGNMENTS

LOW RESOLUTION COLOR GRAPHICS

CHARACTER SET

HIGH RESOLUTION COLOR SELECTION

CHART

QUICK REFERENCE SUMMARY

LIST OF TABLES

Function Key ASCII Values

Monroe BASIC Control Commands

Data Statements

Input/Output Statements

Program Control Statements

xiii

INDEX~-1

Feb. "82

Table

10-1

Figure

12-1

13-1

15-1

Feb. '82

LIST OF TABLES (Cont.)

Title

Mathematical Functions

String Functions

Low Resolution Color Graphics Keywords

High Resolution Graphics Statements

Advanced Programming Statements and

Functions

Error Messages

Low Resolution Color Graphics ©

Character Set

High Resolution Color Selection Table

LIST OF ILLUSTRATIONS

Title

Graphics Character Generation

Form to Create Shape Table

Block Graphics Character Images

Low Resolution Color Graphics Set

xiv

Page

10-2

10-22

12-1

13-1

Page

12-14

Vi 4

SECTION 1

INTRODUCTION

SECTION 1

INTRODUCTION

1.1 OVERVIEW

This manual describes Monroe's Extended BASIC hereafter referred to

as Monroe BASIC. Monroe BASIC is a comprehensive, semi-compiled

language which is available on the Monroe 8800 Computer Series. It

is an implementation of the BASIC language initially developed by

Dartmouth College and standardized by the American Standards

Institute (American National Standard for Minimal BASIC, ANSI

X.360-1978).

A newcomer to programming and computers should read Monroe's

introductory texts on the Monroe BASIC language and system and

peripheral operation. It must be emphasized that this is a

Programmer's Reference Manual and not a tutorial. Hence, it is

designed to be used primarily as a reference device by experienced

programmers.

BASIC is one of the simplest of all programming languages because of

its small number of powerful but easily understood statements,

functions and commands and its easy application to problem solving.

Nevertheless, the language is comprehensive enough to allow versatile

and efficient solutions to most problems. The wide use of BASIC in

scientific, business, and education installations attests to its

value and straightforward application.

Monroe BASIC is an interpreter program stored on disk and called into

memory by the user when required. An interpreter is a type of

compiler which checks or interprets your source program aS you enter

it line by line. The source program resides in memory along with the

interpreter for as long as the user requires and can be saved and run

whenever needed. This is in contrast to other compilers which save

the computer readable form (i.e. the object program) and then execute

the object program whenever needed. Because Monroe BASIC is an

interpretive language, a syntax error will result in an immediate

error message on the screen. You can also run the program at any

time to test portions that have been entered. This is called

interactive programming and is in many cases the most efficient way

of programming. However, interactive programming does not solve all

1-1 Feb. '82

SECTION 1 - INTRODUCTION

the problems. When formal errors have been eliminated from the

Program, logical errors may still remain. These can only be detected

when the program is executed with the proper data.

Monroe BASIC contains elementary statements to write simple programs.

Advanced programming features and statements are also provided to

produce more complex and efficient programs. The keyword here is

efficient. Almost any problem can be solved with the simple Monroe

BASIC statements. Later in the user's programming experience, the

advanced techniques can be added. Monroe BASIC also allows the use of

multi-character variable names and free use of comments and spaces,

which aid in creating programs that are self-documenting and

maintainable.

1.2 TEXT SYMBOLS AND CONVENTIONS

Throughout this manual specific documentation conventions are used to

describe formats for writing Monroe BASIC commands, statements, and

functions. The following conventions are in effect:

Symbol Description and Use

1. CAPITAL LETTERS Capital letters are used for all keywords,

commands, functions, and statements that are to

be explicitly typed.

Example: LIST

2. Lower case Lower case letters specify variables which are ‘to

be supplied by the user according to the rules

explained below and in this text.

Example: DATA <list>

3. < > Angle brackets enclose fields that are required

for valid Monroe BASIC syntax. They are never to

be typed unless “not equal to” is to be specified

by "<>".

Example: LET <variable> = <express>

LET A = 4

UU

SECTION 1 - INTRODUCTION

Symbol Description and Use

8.

C(),723 Parentheses enclose required elements or

keywords of a statement. Commas, dashes and

colons are separators. All must be typed as

shown.

Examples: COMP%(AS,B$): DIM C$(-3:6) = 200

LIST 100-400

{] Square brackets enclose optional elements of a

statement or indicate an optional choice of one

element among optional elements.

Example: GET <stringvar> [COUNT bytes]

oe 5 080 Ellipsis (three dots) indicate multiple

arguments are allowed.

Example: POKE <address>,<data>[,data,...,++6]

The symbol “{" indicates the depression of the

RETURN key.

Example: LIST

CTRL-H Control character. Depress and hold CTRL key

while striking another key (represented by H).

1.3. FILE-VOLUME-DEVICE NAMING CONVENTIONS

The Monroe Operating System file, volume, and device naming conven-

tions are defined as follows:

A)

B)

C)

A file is a program or a collection of data stored on a disk-type

storage medium. Once saved, files stay on the disk permanently

unless they are explicitly removed.

A volume name is a name given by the user to a disk. Filenames

must be preceded by their volume names unless they reside on the

system volume. The system volume is the volume from which the

operating system is booted. It can be changed by the user.

A device name is a name given to a physical device (e.g., CON:

for the console, PR: for the printer, FPYO: for drive 0 (lower

drive), FPY1: for drive 1 (upper drive)). These names cannot be

changed by the user.

1-3 Feb. '82

SECTION 1 - INTRODUCTION

D)

E)

Feb.

File descriptors, hereafter referred to as “fd” in this manual,

can be composed of up to four fields: vol, filename, directory,

and type, where vol can be either a volume or, when used alone, a

device name. Device descriptors are composed of the device

mnemonic only.

The format can be expressed in the following ways:

1. <device:>

2. [vol:][directory.]<filename>[/type]

where:

vol/ Vol is the name of the disk on which the file

device resides if the file descriptor refers to a file, or

the name of a device if the file descriptor refers

to a device. It may be from one to four characters.

The first character must be alphabetic and the

remaining alphanumeric. If the volume is not

specified, the default volume is the SYSTEM volume.

Note that a minus sign (-:) can be specified in
._ place of the actual volume name. Then, in searching

for an existing file, the system will automatically

search for all mounted volumes. In order to ensure

that a new file will reside on the correct volume, a

default or “-" volume name should not be used when

creating files.

filename Name of the file. It may be from one to twelve

characters, the first alphabetic and the remaining

alphanumeric.

directory Name of the user's file directory. It may be from

one to twelve alphanumeric characters. If not

specified, the directory defaults to the master

directory.

type A single letter which describes the type of data

within a file. For the Monroe BASIC commands SAVE,

UNSAVE, LOAD, CHAIN and RUN, the system recognizes

two different types:

B (default) BAC-BASIC compressed form

AB (ASCBAS) - BASIC uncompressed ASCII form

When the file type is omitted for the above Monroe

BASIC commands the computer will look for type BAC

(compressed form) first and then ASCBAS

(uncompressed form). If type “AB” (ASCBAS) is

specified only ASCBAS will be searched for in the

directory.

"82 1-4

L
U

SECTION 1 ~- INTRODUCTION

For the Monroe BASIC statements OPEN, NAME, KILL,

MERGE, LIST and PREPARE the default is “AB” if type

is not specified.

Refer to the 8800 Series Monroe Operating System

Programmer's Reference Manual for a detailed

explanation of type.

Examples:

Examples of legal file descriptors and their usage are:

LIST PR: The current program is displayed on

printer.

MERGE MAIN Merges lines from ASCII file MAIN from the

Master Directory into the current program.

LOAD PACK:MAIN Loads program MAIN from disk "PACK" into

working memory.

UNSAVE PACK:DIRECTA.MAIN Deletes program MAIN from user directory

“DIRECTA“ on volume “PACK”.

1.4 CHARACTER SET

Monroe BASIC is designed to utilize the American Standard Code for

Information Exchange (ASCII) for its character set. This set

includes:

1. Printable Characters-

a. Letters A through Z

b. Lower case letters a through z

c. Numbers 0 through 9

d. Special punctuation characters and symbols

2. Control Characters

Lower case letters are treated equivalently to upper case letters by

Monroe BASIC except in strings, DATA and REMARK statements.

Appendix A shows the complete set of Monroe BASIC ASCII characters

and their respective decimal codes.

LS Feb. '82

SECTION 1 - INTRODUCTION

1.5 ORGANIZATION OF THIS MANUAL

This manual is organized into 15 sections and seven appendices.

Sections 2 through 5 contain information necessary to understand and

work with Monroe BASIC. There are many types of BASIC in-use today.

Hence, these sections define the procedures and language elements

within the context of Monroe BASIC language.

Sections 6 through 10 describe the individual control commands,

statements, and functions available in Monroe BASIC. Statements are

divided into three sections: Data, Input/Output and Program Control

Statements for ease of reference. For each command, statement, or

function, the following information is included:

1. Function ~- Summarizes purpose of statement.

2. Mode - Specifies which mode applies - Direct,

Program or both.

3. Format - Shows the command syntax.

4. Arguments - Defines the format variables.

5. Use - Describes in detail how the command is used

including restrictions and exceptions.

6. Example ~ Lists program examples illustrating the various

uses of the command.

Section 11 describes how the appearance of output data can be

controlled using the PRINT USING statement. °

Sections 12 and 13 deal with low and high resolution color graphics,

respectively.

Section 14 contains advanced file information and Monroe BASIC

statements and functions to be used for sophisticated programming.

Detailed knowledge of Monroe BASIC and the operating system is

required before this information can be applied.

Section 15 describes low resolution business graphics.

Appendix A shows the complete set of Monroe BASIC ASCII characters

and their respective decimal codes.

Feh. '82 1-6

SECTION 1 -— INTRODUCTION

Appendix B contains a list of error messages with comments.

Appendix C contains sample programs.

Appendix D lists the port numbers and associated devices.

Appendix E shows the low resolution character set.

Appendix F contains the high resolution color selection table.

Appendix G contains a quick reference summary of Monroe BASIC

commands, statements, and functions.

1.6 ABBREVIATIONS

The following abbreviations are used in this manual:

channel no. - Channel Number ;

fd - File Descriptor -

line no. - Line Number

record no. = Record Number

string var = String Variable

vol - Volume

1.7 RELATED MANUALS

This document is to be used as a reference manual. If more

instructional information is needed refer to the Monroe BASIC

Primer.

If additional information on the operating system's software is

required refer to the following 8800 Series Programmer's Reference

Manuals:

eoMonroe "Jtility Programs

°Monroe Text Editor

*Monroe Operating System

1-7 Feb. ‘82

SECTION 2

WORKING WITH MONROE BASIC

SECTION 2

WORKING WITH MONROE BASIC

2.1 INITIATING AND TERMINATING MONROE BASIC

Monroe BASIC is delivered on a diskette. To load Monroe BASIC, enter

the word "BASIC" in response to the operating system prompt "-",

Optional parameters may be included after “BASIC” as shown below.

-BASIC[,[C][,xmemory]]{ [Note: { = Return key]

Where: xmemory is optional. It is the additional memory size

required in bytes to load or to enter the desired program.

Since memory is allocated in blocks of 8,192 bytes;

xmemory is rounded up to the next multiple of this value.

The minimum amount always provided is 6600 bytes.

C is an optional switch which when specified disables the

STOP key (or the CTRL-C sequence). This prevents the user

e from stopping the execution of a program once it begins.

(This switch is present only in Monroe BASIC versions

R1-03 or later.)

Monroe BASIC begins loading and when ready displays the following:

BASIC8 Rn=xx yyyy-mm-dd (where Rn-xx yyyy-mm—-dd refers

BASIC to the Version Level and Rev.

Date)

It is also possible to execute a Monroe BASIC program directly from

the operating system by entering:

-BASIC[,[C][,xmemory]] <fd>q (where fd refers to the file

descriptor as previously

defined in Section 1.3)

More than one Monroe BASIC program can be run simultaneously. The

LOAD and START commands necessary to do this are shown in Appendix C

and described in the 8800 Series Utility Programs Programmer's

Reference Manual. The method of starting one Monroe BASIC program

from another is also shown in Appendix C.

To remove Monroe BASIC from working memory and return to the

operating system type:

BYEY

The operating system prompts with a dash (-) for the next series of

commands.

2-1 Feb. '82

SECTION 2 -— WORKING WITH MONROE BASIC

2.2 MODES OF OPERATION

Monroe BASIC allows for-three modes of operation:

1. Program Mode

Zs Nirect Mode

3. Run Mode

Program Mode

Monroe BASIC distinguishes between those statements intended for

immediate execution and those for delayed execution. This difference

is based solely on the absence or presence of a line number in front

of a statement. A statement preceded by a number, for example:

180 INPUT X,Y

is noted as being intended for delayed execution. Statements

discussed in this text to which this definition is applicable have

“Program” specified after the Mode declaration.

Direct Mode

Conversely, the absence of a line number in statements such as:

PRINT 1000/1249

cause the interpreter program to execute it directly after depression

of the RETURN key. This is called the direct mode and so specified

for applicable statements in Sections 6 through 14 in this text.

The Direct mode also allows for immediate solution of problems,

generally mathematical, which do not require interactive program

procedures. For example:

A=1.5: B=3: PRINT A, B, “ANS-“3; (A+B*A)

Another use of the direct mode is as an aid in program development

and debugging. Through use of direct statements, program variables

can be altered or read, and program flow may be directly controlled.

Feb. '82 2-2

SECTION 2 ~ WORKING WITH MONROE BASIC

Direct statements in combination with program variables can be used

whenever the BASIC edit mode prompt appears or

-after CTRL-C has been typed

-after an error message has been printed

-after a STOP statement has been executed

-after a program terminates normally.

Run Mode

A program consisting of a series of numbered statements can be

executed only in the Run Mode. Execution (run mode) is begun when

the RUN command is entered or the RUN key is typed: For example:

80 A= 5]

100 PRINT Aq

RUN

5

BASIC

2.3 PROGRAM STRUCTURE

A user program is composed of one or more properly formed Monroe

BASIC statements, constructed with the language elements and syntax

described in the following sections. A statement contains

instructions to Monroe BASIC. A program line begins with a line

number followed by one or more Monroe BASIC statements, up to a

maximum of 157 characters. Line numbers indicate the particular

sequence of execution. Each statement begins with a keyword

specifying the type of operation to be performed. A program line can

also contain multiple statements.

Each statement gives an instruction to the computer (in this example

PRINT):

30 PPINT S

2=3 Feb. '82

SECTION 2 —- WORKING WITH MONROE BASIC

The value currently assigned to the variable "S", above, is printed.

If the instruction requires further details, operands (numeric

details) are supplied. The operands specify what the instruction

acts upon, (for example, GOTO):

40 GOTO 10

In the above example, the operand “10” is the line number to which

program control will be transferred upon execution of the “GO TO”

statement.

The last statement in a program, as shown.here, is an END statement.

10 INPUT A,B,C,D,E

20 LET S = (A+B+C+D+E)/5

30 IF A=999 GOTO 60

40 PRINT §S

50 GOTO 10

60 END

The END statement informs the computer that the program is finished,

but its presence is not mandatory.

2.4 LINE NUMBERING

Each program line in the program mode is preceded by a line number. A

line number has the following effects.

l. Indicates the order in which the statements are executed.

(The statements may be written in any order.)

2. Enables the normal order of evaluation to be changed by

GOTO, GOSUB statements, etc.

3. Permits program modification of any specified line without

affecting any other portion of the program.

Feb. '82 2-4

SECTION 2 - WORKING WITH MONROE BASIC

The line number is chosen by the programmer. [It may be any integer

from 1 to 65,535 iaclusive. The system uses the line numbers to keep

the program lines in order and for the execution required.

Program lines may be entered in any order; they are usually numbered

by fives or tens so that additional statements can be easily

inserted. The computer keeps them in numerical order no matter how

they are entered. For example, if the program lines are input in the

sequence 30, 10, 20, Monroe BASIC rearranges them in order: 10, 20,

30. These are commands for automatic line numbering (AUTO) and for

renumbering (REN).

2.5 STATEMENTS

A program line begins with a line number followed by a Monroe BASIC

statement. The keyword of a Monroe BASIC statement identifies the

type of statement. Monroe BASIC is thereby informed what operation

to perform and how to treat the data - if any - that follows the

keyword.

Multiple Statements on a Program Line

The user is allowed to write more than one statement on a single

line. A maximum of 157 characters per line is permitted. Each

multi-statement (except the last) is terminated with a colon. Only

the first statement on the program line can have a line number

preceding it.

Example:

100 PRINT A,B,C

is a single statement program line.

200 LET X=X+1 : PRINT X : IF Y = 1 GOTO 100

is a multiple statement program line containing three

statements: LET, PRINT and IF-GOTO.

As a rule any statement can be used anywhere in a multiple statement

line. The exceptions to the rule have been explicitly specified in

individual statement descriptions.

2-5 Feb. '82

SECTION 2 - WORKING WITH MONROE BASIC

2.6 LINE ENTRY

After calling Monroe BASIC, the following default modes are initially

in effect:

NO EXTEND Variable names can only be composed of one letter

and an optional digit.

FLOAT Numbers and variables without the “%" suffix are

interpreted as floating point.

SINGLE Precision of variables or expressions is accurate up

to six significant digits.

In the default NO EXTEND mode, Monroe BASIC is a “free format"

language - it ignores most blank spaces in a statement. For example,

these four statements are equivalent:

30 PRINT S

30 PRINT)

30PRINTS

30P RINT S

When a program is listed, Monroe BASIC adds spaces to make the |

listing more readable. It is important to note that entered spaces

are significant in the following areas:

1. REM Statements and Comments »

2. String Constants

3. Data Statements

Procedure

Lines input to Monroe BASIC are either executed immediately (Direct

Mode) or stored in the user program area for later execution (Program

Mode). Program mode statements can also be saved on disk for future

execution. Monroe BASIC accepts lines when it is not executing a

program. The RETURN q key must be pressed after each line.

Example: 10 INPUT A,B,C,D,E4q

20 LET S=(A+B+C+Dt+E)/54

30 PRINT Sf

40 IF A <= 999 GOTO 104

50 END

Pressing RETURN "“{" informs Monroe BASIC that the line is complete.

Monroe BASIC then checks the line for mistakes in syntax. If such

mistakes are found, an error message is displayed on the screen.

(Refer to Section 2.7.)

Feb. '82 2-6

SECTION 2 - WORKING WITH MONROE BASIC

Immediate Corrections

The row of terminal keys at the top right of the keyboard, the CTRL

key and the cursor left and right keys can be used for immediate

corrections. Immediate corrections can be made to a program line or

to the data entered in response to the execution of an INPUT or INPUT

LINE statement. Operation begins in the overstrike mode in which

each character typed replaces the character over the cursor. The

cursor is then moved to the right one character. The following

correction keys are available:

BACKS PACE In overstrike mode replaces the character to the left

of the cursor with a blank and moves the cursor one

position to the left. In insert mode (see below),

deletes the character to the left of the cursor and

moves the cursor one position to the left.

DELETE LINE Causes all the text on the line to be deleted.

CURSOR LEFT Moves the cursor one position to the left for each

<—) touch of the key.

CTRL- <— Moves the cursor to the beginning of the entered line.

CURSOR RIGHT Moves the cursor one position to the right for each

(>) touch of the key.

CTRL-~ —> Moves the cursor to the end of the entered line.

DELETE CHAR Deletes the character at the current cursor position

and moves all the following characters one position to

the left.

INSERT LOCK Allows characters to be inserted into the text string

to the left of the character where the cursor is

positioned. Insert mode is cancelled by 4% or any

cursor key.

2-7 Feb. '82

SECTION 2 - WORKING WITH MONROE BASIC

RETURN Terminates corrections. Cursor does not have to be

positioned at the right margin when RETURN is entered.

Deleting a Statement

To delete the statement being typed, depress CTRL X or the LINE DEL

key. This deletes the entire line being typed. For example:

20 LET S = 12X CTRL X

To delete a previously typed statement, type the statement number

followed by a RETURN “4”. For example:

5 LET S = 0

10 INPUT A,B,C,D,E

20 LET S = (A+B+C+D+E)/5

To delete Statement 5, above, type:

54

To delete blocks of statements, refer to ERASE, Section 7.

Changing a Statement

To change a previously typed statement (in program mode), retype it

with the desired changes. The new statement replaces the old one.

,

To change statement 5 in the above sequence, type:

5 LET S = 59

The old statement is replaced by the new one. Use the LIST command

to check what is left of the program.

“ss

SECTION 2 - WORKING WITH MONROE BASIC

If a single or a few characters need to be corrected, use the ED

(EDIT) command. (Refer to Section 6.5.)

Blocks of statements from another program can be inserted by the

MERGE commands. The user thereby has the possibility to handle

programming on a modular basis.

It is important to note that when a statement is changed, an implicit

CLEAR command is performed.

2.7 EDITING A PROGRAM

Lines may be deleted, inserted or changed according to the procedures

described previously in this section and the commands that are

available in Monroe BASIC. The LOAD command places the desired

program into working storage. The MERGE command allows you to

combine or change your program with a set of statements loaded from a

disk file. The ERASE command deletes blocks of statements. The ED

command facilitates corrections of an existing line on a character

basis.

When editing a program, you may want to increase or decrease

increments between selected lines. This is done by the RENUMBER

Command after additions or deletions have been done.

If there is a syntax error in the previously typed statement, an

error message is printed. This line is not entered but is retained

in a save area and displayed on the screen with the cursor positioned

to the last character. The erroneous line may be immediately edited

using the same set of special keys as specified for the EDIT command.

(Refer to Section 6.5.)

Example: 10 PRONT CUR (2,30) “TROUBLE REPORT"4

UNDECODEABLE STATEMENT

10 PRONT CUR (2,30) “TROUBLE REPORT" _

(Use cursor left (<-) to position cursor over

the 0 in pront, enter an “I“ and then depress

RETURN)

LIST 104

10 PRINT CUR(2,30) “TROUBLE REPORT"

BASIC

2-9 Feb. '82

SECTION 2 - WORKING WITH MONROE BASIC

2.8 EXECUTING A PROGRAM

The RUN command is provided to start the execution of a program.

When the command (RUN 7) is entered, Monroe BASIC starts to execute

the program in the user's program area at the lowest numbered line.

Execution continues until either one of these conditions is

encountered:

STOP

END

ERROR

When the program executes a STOP or END statement it halts and all

the variables are still in existence. The user can examine the

variables by simply addressing the respective ones by the variable

Mame. For example, you want to know the values of the variables A,

S, and K%. Enter the following command:

PRINT A,S,K%4

The computer will then write the current values of the variables when

program execution was stopped.

Errors cause an error message to be written on the screen. See

Appendix B for the complete set of error messages.

A running program can be halted by typing CTRL C (both keys

simultaneously) or by typing the STOP key. After halting, it is

possible to single step the program by depressing and holding the

CTRL key and then simultaneously striking the S key once for each

step. To continue execution depress any key. The program can be

stopped again as specified above.

Feb. '82 2-10

ae a

SECTION 2 - WORKING WITH MONROE BASIC

2.9 DOCUMENTING A PROGRAM

Monroe BASIC permits the programmer to document a program with notes,

comments and messages. There are two methods available: Standard

REM statements and text preceded by an exclamation point. The latter

type of comments are easier to use since they can occur without a

colon.

Examples:

a. 10A = 7: REM ASSIGN "7" TO THE VARIABLE “A”

b. 10 A= 7! ASSIGN "7" TO THE VARIABLE "A"

REM lines are part of a BASIC program and are printed when the

program is listed; however, they are ignored when the program is

executing. Any series of characters may be used in a comment line.

The remarks are usually marked with some clearly visible character,

making them easily noticed in a program. For example:

100 REM*** CAUTION ***

A comment cannot be terminated by a colon. The colon is treated as

part of the remark. For example:

150 REM ***INITIALIZE R1***:LET R1=3.5E2

The assignment statement will not be executed. The entire line is

considered to be a non-executable comment.

Indentation is another method of documentation. Any spaces entered

between the line number and the first character of a line will be

ignored by Monroe BASIC. Monroe BASIC automatically indents FOR/

NEXT loops, WHILE loops and multiple line user defined functions.

2-11 Feb. '82

SECTION 2 - WORKING WITH MONROE BASIC

2.10 FILE USAGE

Monroe BASIC provides facilities to define and manipulate input and

output data on the disk drives, console, printers and other non

file-structured devices. Three file access methods are supported:

Sequential (one record after another from beginning of the Filed,

Random (by relative record number), and Indexed Sequential (random by

‘key). Random and Indexed Sequential access are discussed in Section

14, “Advanced Programming”.

A data file consists of a sequence of data items transmitted between

a BASIC program and an external input/output device. The external

device can be the user's terminal, printer or disk.

Each data file is externally identified by a file name, (e.g.

ADC123). Internally in the user's program, the file is accessed as a

channel number. PREPARE, OPEN and CLOSE statements are used to

establish and terminate a channel for the data transfer. All further

references to the file in the program will be to channel number (e.g.

#1) not to file name - ADC123.

Random I/O permits the user's program to have complete control of I/0

operations. Properly used, Random I/O is the most flexible and

efficient technique of data transfer available under Monroe BASIC.

It is, however, not as simple as Sequential I/0. Less experienced

users should first experiment with the Sequential I/O techniques

before attempting Random [/0. Random I/O is explained in detail in

Section 14, Advanced Programming.

The file number is given in the program by means of one of the

instructions PREPARE or OPEN. These statements will open the file,

i.e. set up a channel for the data transfer. To explicitly close

such a data transfer channel the instruction CLOSE is used. Files

are automatically closed when a BASIC program terminates normally.

The instructions INPUT and PRINT or GET and PUT are used for the data

transfer.

A buffer area is created by the system when a file is opened. All

data transfer to and from a file is buffered. Channel number 0

always refers to the console; attempts to open or close channel 0 are

ignored.

Feb. ‘82 2-12

N
e
t

SECTION 2 - WORKING WITH MONROE BASIC

Upening & Pile
To open

new, LE

Example:

an existing file the OPEN statement is used. If the file is

should be opened with a PREPARE statement.

10 OPEN “MAST” AS FILE 1

opens existing file named MAST for input/output and assigns

logical unit 1, for I/0, to that file.

Data Transfer To/From a File

The transfer of data takes place directly between the internal

channel (the file number) and the string variable or the value of the -

expression in question.

The following instructions can be used:

INPUT

INPUT

PRINT

GET #

GET #

PUT #

POSIT

LINE #

COUNT on

i

Reads a value to a variable or a string from the

position of the file pointer to a carriage return.

Reads a value to a string variable including the

carriage (CR) return and line feed (LF). Also

accepts leading, trailing, and embedded spaces and

commas.

Writes the contents of a variable into the file.

Reads one byte from the position of the file

pointer.

Reads the given number of bytes from the position of

the file pointer.

Writes one record into the file.

Moves the file pointer to the desired position.

If no file number is given in the GET statement, it will attempt to

read from the keyboard.

2-13 Feb. '82

SECTION 2 - WORKING WITH MONROE BASIC |

Example:

20 GET #1,DS COUNT 62

will read from file number 1 the first six characters

Starting from the position of the file pointer... These

characters are put in the string DS.

The instruction POSIT is used to position the file pointer at the

given position in the file. The number of characters always refers

to the beginning of the file (position 0). POSIT can be used

together with any one of the other file handling instructions.

Example: LISTY

40 OPEN "PEARL" AS FILE 1 ! PEARL contains ABCDEFGHIJK.

50 POSIT #1,5

60 GET #1,AS COUNT 3

70 PRINT AS

80 ; POSIT (1)4

90 END4

RUN

FGH

8

BASIC

The function POSIT(<file number>) reads the position of the file

pointer. In the example above, POSIT(1) returns the value 8, when

the example has been executed. POSIT returns a floating point value,

so that very long files can be handled.

Closing a File

The data transfer to or from a file will not be correctly terminated

until the file is closed. The contents of the buffer area are then

transferred, and the file is given an end-of-file (EOF) mark.

There are two ways of explicitly closing a file:

1. CLOSE no closes the file associated with file number no

2. CLOSE closes all files

Also, all files are automatically closed when the END statement of a

BASIC program is executed. Files are also closed whenever a program

is modified.

Feb. '82 2-14

SECTION 2 - WORKING WITH MONROE BASIC

2.11 LOGICAL UNITS

Monroe BASIC ensures independence from physical input/output devices

through the use of file numbers. The file number can be treated as a

logical unit and is handled with the instructions OPEN, PREPARE and

CLOSE. The file number may, for instance, represent a printer or a

file on a disk.

Example:

10 - -

20 OPEN "PR:“ AS FILE 2 ! Open the printer

30 - -

40 PRINT #2, “Hello”

50 CLOSE 2 ! Close the printer

60 END

Note: If no device is specified in the PRINT statement (i.e., omit

#2 in statement 40 above) then CON: is assumed. CON: stands

for console (keyboard and screen). Channel #0 is always

opened to the console and cannot be closed.

2.12 ERROR HANDLING

Certain errors can be detected by Monroe BASIC when it executes a

program. These errors can, for instance, be computational errors

(such as division by 0) or input/output errors (reading an

end-of-file code as the input to an INPUT statement). Normally, the

occurrence of any of these errors will cause termination of program

execution and the printing of a diagnostic message. The file

BASICERR/ASC must be on the system volume; otherwise, just the error

number will be printed.

Some applications may require that program execution continues after

an error has occurred. To accomplish this, the user can include an

ON ERROR GOTO <line number> statement in the program. The program

will then jump to a subroutine, which begins at the specified line

number. The subroutine can contain an error handling routine, which

will analyze the error in question.

The ON ERROR’ GOTO statement should be placed before all the

executable statements with which the error handling routine deals.

2-L5 Feb. '82

SECTION 2 - WORKING WITH MONRUE BASIC

When an error occurs in a program, Monroe BASIC checks to see if the

program has executed an ON ERROR GOTO statement. If not, a message

is printed at the screen and the program execution is terminated. If

an ON ERROR GOTO statement has been executed, the program execution

will continue at the line number specified by that statement. The

subroutine at that line number can test the function ERRCODE to find

out precisely what error has occurred and decide what action is to be

taken.

If there are portions of the program in which any errors detected are

to be processed by the system and not by the subroutines of the

program, the error subroutine can be disabled by executing the

following statement:

ON ERROR GOTO

The computer will then attend to all errors as it would do if no ON

ERROR GOTO <line number> had ever been executed.

The error handling routine is terminated by a RESUME statement. The

function of RESUME resembles the one of the RETURN statement at the

end of an ordinary subroutine; the program resumes at the beginning

of the statement that caused the error. If the program execution
should continue at another line number, the line number desired

should be given in the RESUME statement.

Example of error handling:

LIST 10-1204

10 ON ERROR GOTO 100 !At erroneous input go to line 100
20 INPUT “AGE, WEIGHT " A,W
30 ON ERROR GOTO !Disable the error handler

40 STOP

100 PRINT !Error handler

110 PRINT “ Erroneous input! ”

120 RESUME !Jump to line 20

BASIC

Feb. '82 2-16

SECTION 2 - WORKING WITH MONROE BASIC

2.13 FUNCTION KEYS

The console has eight function keys labelled F1/F9 through F8/F16.

A programmer can assign various functions to the function keys, e.g.

cursor movements, write data, read data, update data or a jump to a

program module.

The function keys can produce 32 different ASCII values as shown in

Table 2-1.

Table 2-1. Function Key ASCII Values

| Key |Normal| Shift | CTRL |Shift+CTRL |

| F1/F9 | 128 | 136 | 144 | 152 |

| F2/Flo | 129 | 137 | 145 | 153 |

| ¥F3/Fli | 130 | 138 | 146 | 154 |

| F4/Fi2 | 131 | 139 | 147 | 155 |

| ¥F5/F13 | 132 {| 140 | 148 | 156 |

| F6/Fl4 | 133 | 141 | 149 | 157 |

| F7/Fi5 | 134 | 142 | 150 | 158 |
| F8/Fl6 | 135 | 143 | 151 | 159 |

| RETURN | 13 | | |
| RUN | 208 | | | |

| LOAD | 209 | | | |

| CONTINUE | 210 | | | |

| HOME | 199 | | | |

| * | 197 | | | |
|_v {| 198 | | | |

The function keys will act as data terminators in all operating

modes, unless keyboard input is being analyzed by the user's program

on a single byte basis (e.g., by use of the GET <string variable>

statement in Monroe BASIC). In addition, the RETURN, RUN, LOAD,

CONTINUE, HOME, cursor up and cursor down keys act as terminators.

2-17 Feb. '82

SECTION 2 - WORKING WITH MONROE BASIC

To determine which terminating key has been depressed, use the SYS(7)

function in conjunction with the values in Table 2-1.

The use of one of these alternate terminating keys will have no

effect on treatment of the data entry.

Example: When a specific function key is depressed, a corresponding

subroutine can be called as shown below.

LISTY

90 ; “TERMINATE DATA INPUT BY Fl, F2, OR F3"

100 INPUT “DATA?” AS

110 A=SYS(7)

120 ON A-127 GOSUB 1000, 2000, 3000 4

Here control is transferred to statement 1000, 2000 or 3000

depending on whether the input data was terminated by Fl,

F2, or F3 respectively.

For a complete list of all the possible ASCII codes capable of being

generated by the 8800 Series Keyboard see Appendix A.

Feb. "82 2-18

4
2

R
e
s
s
e
!

SECTION 2 - WORKING WITH MONROE BASIC

2.14 CHANGING THE SYSTEM DISK

Once the operating system and Monroe BASIC have been loaded from the

system volume, that volume need no longer be mounted. It is

sometimes necessary OF desirable to remove the system disk in order

to mount another volume for the purpose of loading or saving 4

program on that volume; this is particularly relevant to the single

disk EC8800.

The ability to change the system disk allows you to keep system

programs and utilities on a separate disk from your BASIC programs

and data files. This can be an advantage when you have a large

number of BASIC programs or data files since it will reduce the total

number of diskettes required to contain them. It also allows the

maximum amount of on-line disk space for application programs and

data.

Your data disk should contain any system utility programs that you

might want to use while your data diskette is mounted, @-8=,;

CMDSLIB/T is required if you will want to use the LIB command. If

you want BASIC to print textual error messages instead of error

numbers when a BASIC error occurs, the file BASICERR/A should be

copied to your data disk.

The manual OPEN and CLOSE commands for changing the system disk can

be implemented by a BASIC program directly through SVCs; see Section

14 of this manual and the 8800 Series Monroe Operating System

Programmer's Reference Manual for additional information.

Single Disk System

The following procedure should be followed when switching disks on a

single disk system, the VOLUME command need be entered only the first

time you switch disks. The file CMDSVOLUME/T must be on the disk you

booted from.

BASIC

CLOSE4

BASIC

PAUSE

2=19 Feb. '82

SECTION 2 - WORKING WITH MONROE BASIC

00.00.00 Paused

-VOLUME -:4(only the first time you switch disks)

-CLOSE FPYO: 4

(now switch the disks)

-OPEN FPYO: 4

FPYO (new volume name)

- (now type the CONT key)

BASIC

Multiple Disk System

The following is the recommended procedure for changing the system

volume; it requires that a copy of the file CMDSVOLUME/T be on each

new volume to be mounted. This procedure can be repeated to switch

to other data disks or back to the original system disk.

BASIC

CLOSEY

BASIC

PAUSE

00.00.00 Paused

-CLOSE FPY0:

(now switch the disks)

-OPEN FPY0O:4

FPYO (new volume name)

-~: VOLUME <new volume name>{ (type the name just output above)

- (now type the CONT key)

BASIC

Note that the first dash shown preceding the VOLUME command is the

console monitor prompt; you must type the second dash. If a

“Load-error 75" results when the VOLUME command is issued, the file

CMDSVOLUME is not on the disk to be mounted; you must remount and

reOPEN the system disk and use the alternate sequence which follows.

Feb. '82 2-20

SECTION 2 -— WORKING WITH MONROE BASIC

If the disk to be mounted does not contain the file CMDSVOLUME, the

order of the CLOSE, OPEN and VOLUME commands above must be changed as

follows; this sequence requires that you know the name of the new

volume to be mounted:

-VOLUME <new volume name>

-CLOSE FPY0:4

(now switch the disks) :

-OPEN FPYO: 4

FPYO (new volume name)

If the volume name printed out by the OPEN command does not match the

volume name you entered in the VOLUME command or if you subsequently

want to switch to another data disk, you must remount and reOPEN the

system disk and then repeat one of the above sequences.

The above procedures are the safest in the sense that that default

system volume is always a single known volume. The “~" character can

be supplied for the new volume name in the VOLUME command, in which

case the VOLUME command need only be issued once and the file

CMDSVOLUME/T need only be present on the volume you boot from. If

this is done, the system will search all mounted volumes to find an

existing file. However, when creating a new file (or replacing an

old one), the volume name should be explicitly specified to ensure

that the file will be created on the volume you intend. In addition,

when the same filename appears on more than one volume, the volume

name should be explicitly specified to ensure that the correct file

will be referenced.

2=21 Feb. '82

SECTION 3

FORMING EXPRESSIONS

SECTION 3

FORMING EXPRESSIONS

Expressions are a fundamental building block used in many Monroe

BASIC statements. The primary elements of expressions are constants,

variables, arrays and functions. These elements are then combined

using arithmetic, relational and/or logical operators, to form

expressions. This and succeeding sections will define these terms

within the context of Monroe BASIC.

3.1 ARITHMETIC EXPRESSIONS

An arithmetic expression has an arithmetic value which is either

floating point or integer. Mixed expressions (i.e., both floating

point and integer) yield a floating point value. The following

mathematical operators can be used in arithmetic expressions:

Operator Function

+ Addition

= Subtraction

* Multiplication

/ Division

“~ or ** Exponentiation

- (unary) Subtraction or negation

No two mathematical operators may appear in sequence and no operator

is ever assumed (e.g., At+B and (A+2) (B-3) are not valid).

Examples of Arithmetic Expressions:

4.123

3 +A

AZ +50

B * (C¥*3 + 1.5)

PI *R**2

3-4 Feb. '82

SECTION 3 - FORMING EXPRESSIONS

3.2 RELATIONAL EXPRESSIONS

A relational expression yields a truth value that reflects the result

of comparing two values. Symbolically it can be defined as:

<expression><relational operator><expression>

The expression can be either arithmetic terms or string terms but not

both in a single relational expression.

The relational symbols Monroe BASIC allows are:

Mathematical Monroe BASIC

Symbol Symbol Example Meaning

= = =B A is set equal to B

< < A<B A is less than B

> > ADB A is greater than B

& <= A<=B A is less than or

equal to B

> >= A>=B A is greater than or

equal to B

<> A<>B A is not equal to B

Examples:

XY

NUM8<=0

A=B

Examples of string relational symbols are shown in Section 5.

3.3 LOGICAL EXPRESSIONS

A logical expression yields a truth value that reflects the existence

or nonexistence of a particular condition.

A logical expression is one of the following:

1. An integer expression (FALSE if 0, TRUE if <> 0).

2. A set of relational expressions, connected by logical

operators.

3. A set of integer expressions, or logical expressions,

or both, connected by logical operators.

Feb. '82 3=2

a
e

SECTION 3 - FORMING EXPRESSIONS

Logical operators are used in IF - THEN and such statements where

some condition is used to determine subsequent operations within user

program.

The logical operators are as follows (where A and B are relational

expressions):

Monroe

BASIC

Operator Example Meaning

NOT NOT A The logical negative of A. IF A is true, NOT

A is false.

OR A OR B A OR B has the value true if either or both

A or B are true and has the value false only

if both A and B are false.

XOR A XOR B The logical exclusive OR of A and B.

A XOR B is true if either A or B is true but

not both, and false otherwise.

IMP A IMP B The logical implication of A and B.

A IMP B is false if and only if A is true

and B is false; otherwise the value is

true.

EQV A EQV B A is logically equivalent to B. A EQV B has

the value true if A and B are both true or

both false, and has the value false

otherwise.

AND A AND B The logical product of A and A. A AND B has

the value true only if A and B are both true

and has the value false if A or B is false.

3-3 Feb. ‘82

SECTION 3 - FORMING EXPRESSIONS

3.4 DATA TYPES

Three types of data are supported by Monroe BASIC: Floating Point,

Integer and String Values.

Floating Point Values

Floating point values range from: |

2.93874 x 10739 through 1.70141 x 1038 - single precision

2.938735877055719 x 10739 through - double precision

1.701411834604692 x 1038

All floating point variables and expressions are calculated to single

or double precision. Mixing of types is not possible. The default

is single precision.

Single precision allows for six digits of significance and double

precision allows for sixteen digits. Numbers are internally rounded,

using 5/4 round method to fit the appropriate precision. Numbers may

be entered and displayed in three formats:

1. Whole - 153

2. Fractional - 34.52

3. Setentific Notation (E-format) - 136E-2

Integer Values

The range of integer numbers is:

-32768 through 32767

String Values

A string can contain any number of characters.

Note: Strings used in string arithmetic have a maxim:-: - .e of 126

characters including the sign and the decimal pe it.

Feb. '82 3-4

N
Y

ss

SECTION 3 — FORMING EXPRESSIONS

3.5 CONSTANTS

Numeric constants retain a constant value throughout a program. They

can be positive or negative. Numeric constants can be written using

decimal notation as follows:

+3

~4.567

12345.6

-.0001

The example constants would normally be stored as floating point,

since they have no % suffix.

The use of an explicit decimal point or percent sign is recommended

in all numeric constants to avoid unnecessary data conversions and to

improve documentation.

3.6 VARIABLES

A variable is a data item whose value can be changed during program

execution. A numeric variable is denoted by a fixed variable name.

Two modes dictate the length of a variable name: EXTEND and NO

EXTEND.

In EXTEND mode variable names of up to 32 characters are permitted,

but spaces are required to delineate names and functions unless the

adjoining characters are a line number or arithmetic operator. In NO

EXTEND mode variable names of one letter and an optional digit are

allowed but spaces are unnecessary. The default is NO EXTEND mode.

The following are the letters and digits which can be used to form

variable names: A,B,...,Z and 0,1,...,9.

A name can also have an FN prefix (denoting a function name), a 4%

suffix (denoting an integer), a . suffix (denoting floating point), a

$ suffix (denoting a string), or a subscript suffix that consists of

a set of subscripts enclosed in parentheses.

3-5 Feb. ‘82

SECTION 3 - FORMING EXPRESSIONS

A string expression is a value that consists of a sequence of

characters, each character occupying a byte. A string expression can

be expressed either as a sequence of characters enclosed in quotation

marks or as a variable by a variable name with a $ suffix.

For efficiency considerations, mixing of data types in a statement

should be avoided if possible. Use integers whenever possible.

The same name in combination with various prefixes and suffixes can

appear in the same program and generate mutually independent

variables. For example, the name A refers to a floating point

variable A. The name A can be used as follows:

A floating point variable A

AZ integer variable A%

AS string variable A$

A(d) floating point array A with dimension subscript d
AZ(d) integer array AZ with dimension subscript d
AS(d) string array AS with dimension subscript d

FNA . floating point function A

FNAZ integer function AZ

FNAS string function AS

In the EXTEND mode a name can be used as follows:

SECANT floating point variable SECANT

SECANTZ integer variable SECANT%

SECANTS string variable SECANTS

SECANT(d) floating point array SECANT with subscript d

SECANTZ(d) integer array SECANT% with subscript d

SECANTS(d) string array SECANTS with subscript d
FNSECANT floating point function SECANT

FNSECANTZ integer function SECANT%

FNSECANTS string function SECANTS

Variables are assigned values by LET, INPUT and READ among other

statements. Variables are set to zero before program execution.

Feb, '82 3-6

SECTION 3 — FORMING EXPRESSIONS

It is necessary to assign a value to a variable only when an initial

value other than zero is required. To ensure that later changes or

additions will not cause problems it is good programming practice to

always initialize all variables to zero.

3.7 SUBSCRIPTED VARIABLES (ARRAY) AND THE DIM STATEMENT

In addition to the simple variables the use of subscripted variables

(arrays) is allowed. Subscripted variables provide the programmer

with additional computing capabilities for dealing with lists,

tables, matrices, or any set of related variables. Variables are

allowed one (vector) or two or more (matrix) subscripts.

The name of a subscripted variable is any acceptable variable name

followed by one or two integers enclosed in parentheses. For

example, a list might be described as A(I) where I goes from 0 to 5

as follows: A(O), A(1), A(2), AC3), AC4), ACS).

This allows the programmer to reference each of six elements in the

list, which can bé considered a l-dimensional algebraic vector as

follows: ,

ACO)

ACL)

A(2)

A(3)

A(4)

“A(5)

A 2-dimensional matrix B(I,J) can be defined in a similar manner. It

is graphically illustrated below:

B(0,0) B(O,1) BC0,2) B(0,3) ..- BC0,J)
BC 1,0) BC1,1) ~ BC1,2) BC1,3) ... BCL,J)

B(2,0) B(2,1) B(2,2) B(2,3) «+. BC2,J)
B(3,0) B(3,1) B(3,2) B(3,3) «es BC3,J)

BCI,9) BC(I,1) BCL,2) BCL 5.3) «as B(I,J)

3-7 Feb. '82

SECTION 3 — FORMING EXPRESSIONS

Subscripts used with subscripted variables can only be integer

values. Subscripts are truncated to integers if they are of floating

type.

A DIM dimension statement is used to define the maximum number of

elements in an array. DIM statements are executable and can

decrease, but not increase subscript limits established by previously

executed DIMs.

Arrays may start with subscript 0 or 1. An array dimensioned A (5),

will have 5 elements if option base 1 is specified or 6 elements if

option base 0 is specified. The default is option base 0. If an

option base is specified, it must be declared before any array is

dimensioned or used.

If a subscripted variable is used without a DIM statement, it is

assumed to be dimensioned to length 9 or 10 in each dimension (that

is, having 10 or 11 elements in each dimension, 1 through 10 or 0

through 10 respectively). DIM statements are usually grouped

together among the first lines of a program.

The first element of every matrix is automatically assumed to have a

subscript of (0,0), if OPTION BASE 1 is not specified.

Example: OPTION BASE 0

10 REM - MATRIX CHECK PROGRAM

20 NIM AC4,8)4

30 FOR I=0 TO 44

40 LET ACT,0O)=14

50 FOR J=0 TO 84

60 LET AC0O,J)=J4

70 PRINT A(L,J)319

80 NEXT J4

90 PRINTY

100 NEXT 14

999 END

Feb. ‘82 | 3-8

SECTION 3 - FORMING EXPRESSIONS

Example:

10

15

20

30

40

50

60

70

80

90

100

999

RUN4

4

BASIC

o
O

0

0

CO

REM ~- MATRIX CHECK PROGRAM

0
o
O
.
0

92

0

N

o
o

0

CO

Ww
W

o
o

Ol
Cl
Ol
lL
Um
F

OPTION BASE 1

o
o

0
0
M

OPTION BASE 14

DIM

FOR

LET

FOR

LET

A(4,8)4

I=1 TO 44

ACI,1)=14

J=1 TO 84

AC1,J)=J4

PRINT AC(I,J)39

NEXT J4

PRINTY

NEXT I

END

o
o

°o
O

N

o
O
o

oO

Ww
W

O
o

0O

0

+

o
o

A
o
W

o
o

Oo

ff

o
o

oO

0

OW

o
O
o

O
N

o
O
o

O
O

™N

o
O
o

Oo

@

o
o
o

Oo

BD

Notice that a matrix element, like a simple variable, has a value of

0 until it is assigned a value.

3-9 Feb. "82

SECTION 4

ARITHMETIC OPERATIONS

SECTION 4

ARITHMETIC OPERATIONS

Normally, all numeric values (variables and constants) specified in a

Monroe BASIC program are stored internally as floating point numbers.

If the numbers to be dealt with in a program are integers,

significant economies in storage space can be achieved by use of the

integer data type. Integer arithmetic is also faster than floating

point arithmetic. This section discusses integer and floating point

operations within the context of Monroe BASIC.

A constant, variable or function can be specified as an integer by

ending its name with the %- character.

Example:

A%Z FNXZ (Cy)

-8% 23%

Unless the INTEGER statement has been entered, the user always has to

terminate a value with the %-character to indicate where an integer

is to be generated. Otherwise, a floating point value is produced.

When raising to an integer power, the power value should be indicated

explicitly as an integer.

4.1 MATHEMATICAL OPERATIONS

When more than one operation is to be performed in a single formula,

rules are observed as to the precedence of the operators. The

arithmetic operations are performed in the following sequence.

Operation described in item 1 has precedence.

1. Any formula within parentheses is evaluated first. Then the

parenthesized quantity is used in further computations.

Where parentheses are nested the innermost parenthetical

quantity is calculated first. For example, (A+(B*(C**3))) is

evaluated as follows:

Step 1 - (C**3), Step 2 - (B¥(C**3)), and Step 3 -

(A+(B*(C**3))).

4-] Feb. '82

SECTION 4 - ARITHMETIC OPERATIONS

2. In absence of parentheses the following precedence is

performed:

ae Intrinsic or user-defined functions

be Exponentiation (**)

c. Unary, minus (~), that is, a negative number or variable

d. Multiplication and division (* and /)

e. Addition and subtraction (+ and -)

f. Relational operators (=, <>, >=, <, <=, >)

g. NOT

h. AND

i. OR and XOR

j- IMP

k. EQV

Thus, for example, -A**B with a unary minus, is a legal

expression and is the same as -(A**B). This implies that

-2**3 evaluates as -8. The term Ax*-—B is not allowed;

however, A**(-B) is allowed.

3. In absence of parentheses, operations on the same level are

performed left to right, in the order the formula is

written.

4.2 INTEGER ARITHMETIC

Addition or subtraction with integer variables is performed in modulo

"2416. The number is -32,768 to +32,767 and can be regarded as a

continuous circle with -32,768 following +32,767. The result of an

integer multiplication or exponentiation operation must be contained

in the above range or an error message will be generated.

Integer division forces truncation of any remainder. Note that the

function MOD makes the remainder available.

Example:

3%/4% = 0 and 283%/100% = 2.

SECTION 4 - ARITHMETIC OPERATIONS

When an arithmetic operation is performed between integer and

floating point operands, the result is floating point. When the

result of an operation is assigned to a variable, it is converted to

the mode of the variable to which it is assigned. When a floating

point value is assigned to an integer variable, the value is rounded

up to the nearest integer if the fractional part is greater than or

equal to 0.5.

Example:

10 LET BZ = Z% + 3/X

The result is rounded to give BZ an integer value.

4.3 INPUT/OUTPUT WITH INTEGERS AND FLOATING POINT

Input and output of integer variables is performed in exactly the

Same manner as the corresponding operations on floating point

variables.

Any number which can be represented by up to six significant digits

in single precision mode (or 16 digits in DOUBLE precision mode) is

printed without using the exponential form.

Any floating point variable that has an integer value is automat-

ically printed as an integer but is internally still a floating point

number.

If more than six digits (single precision) or sixteen digits (double

precision) are generated during any computation using floating point

numbers, the result is automatically printed in E format:

[-] x Ey

where: -= Sign of the number, if number is negative

x = A maximum of six digits for single precision and sixteen

digits for double precision

E = Represents the expression “times 10 to the power of”

y = An exponent in the range (-38 through +38)

Examples:

5E-06 = 5xl07® = .000005

-125E+4 = -125 x 104 = -1250000

4-3 Feb. '82

SECTION 4 - ARITHMETIC OPERATIONS

Input allows all the formats used in output.

4.4 USER-DEFINED FUNCTIONS

An integer function is defined to be of integer type by including the

"%" suffix following the function name.

Example:

10 DEF FNAZ(XZ) = X% * (2% + X%)

A floating point function could be written as:

Example:

10 DEF FNV (X%)=X2%2*(Z2+XZ)

4.5 USE OF INTEGERS AS LOGICAL VARIABLES

Integer variables or integer valued expressions can be used within IF

statements in any place that a logical expression can appear. Any

non-zero value is defined to be true and an integer value of 0%

corresponds to the logical value false. The logical operators (AND,

OR, NOT, XOR, IMP, EQV) operate on logical (or integer) data in a

bit-wise manner.

Note: Logical values generated by Monroe BASIC always have the

values -1% (true) and 0% (false).

4.6 LOGICAL OPERATIONS ON INTEGER DATA

Monroe BASIC permits a user program to combine integer variables or

integer valued expressions using a logical operator to give a

bit-wise result.

For the purpose of logical operations the truth tables following are

valid. A is the condition of one bit in one integer value and B is

the condition of the bit in the corresponding bit position of another

integer value.

Feb. '82 I +

SECTION 4 - ARITHMETIC OPERATIONS

The truth tables are as follows:

B A XOR B A EQV B Al A B A AND B A OR MP B NOT A

1 1 l 1 0 l l

1 0 0 l l 0 0 0)

0 1 0 l 1 an?) l l

0 60 0 0 0 1 1 l

The result of a logical operation is an integer value generated by

combining the corresponding bits of two integer values according to

the rules shown above.

The result of any logical operation can be assigned to an integer or

a floating point variable.

Example: 10 REM BIT VALUES: 13 = 00001101, 14 = 000011104

20 REM ** 13 or 14 = ONOOLII1 = 154

30 AZ = 13% or 1424

40 PRINT AZ4

RING

15

BASIC

Variables and valued expressions can be operated on by AND, OR, XOR,

ENV, IMP and NOT to give a bit-wise integer result. If logical

operations are done on floating point variables or floating point

valued expressions, conversion to integer format is done before the

execution of the logical operation.

Example:

100 IF A% AND 1% THEN ...

is the same as:

190 IF AZ AND 1.6 THEN ...

4-5 Feb. '82

SECTION 5

CHARACTER STRINGS

SECTION 5

CHARACTER STRINGS

Besides the manipulation of numerical information Monroe BASIC also

processes information in the form of character strings. A character

string is a sequence of characters. This section defines string

elements within the context of Monroe BASIC.

5.1 STRING CONSTANTS |

Character string constants are allowed analogous to numerical

constants. Character string constants are delimited by either single

(') or double (") quotes. If the delimiting character occurs twice

in a string sequence it is considered as part of the string constant

as a single occurence.

For example, the string value BOB'S can be expressed in two ways:

“BOB''S” or ‘'BOB''S',

Examples:

10 AlS = “CHARLES”

20 IF AS = "GOOD" GOTO 40

30 BS = 'DON''T! (has the value DON'T)

5.2 STRING VARIABLES

Any legal name followed by a dollar sign ($) character is a legal

name for string variable.

Examples:

AS ,B4S$ are simple string variables.

BS(8) ,H5S(N,0),JS(K) are subscripted string variables.

AMOUNTS(4) - (EXTEND MODE ONLY)

Note: The same name, without the $, denotes a numeric variable

which can be used in the same program.

Example:

A,AS and % are allowed in the same program.

5-1 Feb. ‘82

SECTION 5 - CHARACTER STRINGS

53.3 SUBSCRIPTED STRING VARIABLES

The DIM-statement is used to define string lists and string matrices.

Examples:

DIM WS(2,4)=8 !STRING LENGTH 8 maximum subscript ‘values

2 and 4

DIM R5$(9,9) !STRING LENGTH UP TO 80; maximum subscript

values 9 and 9

DIM NAMES(7,6,3,2)=10 !STRING LENGTH 10; four-

dimensional matrix with maximum subscript values 7,6,

3, and 2

5.4 STRING SIZE

The maximum length of a non-dimensioned string variable is

automatically set to the current length the first time the string is

assigned a non-null value (<>''). _

If less than 80 characters are assigned to the variable, then a

default maximum length of 80 characters is assigned.

Each string, both scalar and each array element, has two lengths:

l. The maximum length is the number of bytes in memory allocated to

the string.

26 Current length is the number of bytes currently in use. Current

length may vary between zero and the maximum length. The

current length is the only visible length; this length may be

examined by the function LEN, etc.

Both lengths are initialized to zero as a program is started. They

are modified when the string is dimensioned or assigned. If a string

is assigned a null value (='') the current length will be set to

zero. No further action is taken.

Feb. '82 5-2

SECTION 5 — CHARACTER STRINGS

5.5 STRING FUNCTIONS

Monroe BASIC provides various functions for use with character

strings. These functions permit the program to:

« perform arithmetic operations with numeric strings

- concatenate two strings

» access part of a string

« determine the number of characters in a string

- generate a character string corresponding to a given number

or vice versa

.» search for a substring within a large string, etc.

Section 10 discusses each string function in detail.

5.6 STRING ARITHMETIC

The string arithmetic features functions that treat numeric strings

in arithmetic operands. This is a way to perform calculations with

greater precision. Numeric string variable names must be suffixed

with a dollar sign ($) character. Numeric string constants must be

bounded by quotation marks (") or apostrophes (').

The maximum size of a string arithmetic operand is 125 characters

including the sign and the decimal point.

5.7 STRING INPUT

The READ, DATA and INPUT statements can also be used to assign data

to string variables in a program.

Example:

10 INPUT “YOUR ADDRESS?";AS,

20 INPUT “YOUR NAME?”;BS

is the same as

10 PRINT “YOUR ADDRESS";

20 INPUT AS,

30 PRINT “YOUR NAME";

40 INPUT BS

2-3 Feb. '82

SECTION 5 - CHARACTER STRINGS

INPUT LINE is useful for string input because it accepts leading,

trailing and embedded blanks, commas, etc. It accepts only one line

from the keyboard and appends carriage return and line feed

characters to the string.

Example:

10 INPUT LINE DS

Example: 10 READ A, B, CS, D

20 DATA 17, 14, 61, 4

This results in the following assignments:

By

A = 17

B = 14

C$ = character string "61"

D =4

The INPUT statement is used to input character strings exactly as

though accepting numeric values.

5.8 STRING OUTPUT

Only those characters that are within quotes are printed when

character string constants are included in PRINT statements. The

delimiters are not printed:

Example:

10 PRINT “ALL IS OKAY"4

RUN

ALL IS OKAY

BASIC

Strings can also be output to disk files or an output device (e.g.,

PR:). Formatted string output is possible with the PRINT USING

statement.

Feb. '82 5-4

SECTION 5 - CHARACTER STRINGS

5.9 RELATIONAL OPERATORS

The relational operators, when applied to string operands, indicate

alphabetic sequence.

Example:

15 IF ASC(1I)<AS(I+1) GOTO 115

When line 15 is executed the following occurs: AS(I) and AS(I+1) are

compared; if AS(I) occurs earlier in alphabetical order than AS(I+1),

execution continues at line 115.

The chart below contains a list of the relational operators and their

string interpretations.

Operator Example Meaning

= AS=BS The strings AS and BS are equivalent.

< AS<BS The string AS occurs before BS in

collating sequence.

<= AS<=BS$ The string AS is equivalent to or occurs

before BS in collating sequence.

> AS>BS The string AS occurs after BS in

collating sequence.

>= AS>=BS The string AS is equivalent to or occurs

after BS in collating sequence.

<> AS<>BS The strings A$ and BS are not equivalent.

When two strings of unequal length are compared, the shorter string

(of length n) is compared with the first n characters of the longer

string. If this comparison is not equal, that inequality serves as

the result of the original comparison. If the first n characters of

the strings are the same, the longer string is greater than the

shorter string; trailing blanks are significant in string compar-

isons.

A null string (of length zero) is less than any string of length

greater than zero.

5-5 Feb. '82

SECTION 6

CONTROL COMMANDS

SECTION 6

CONTROL COMMANDS

6.1 INTRODUCTION:

It is possible to communicate with the Monroe BASIC interpreter

entering direct commands from the keyboard. Also, certain other

Statements can be directly executed when they are given without

statement numbers.

Commands have the effect of causing Monroe BASIC to take immediate

action. A Monroe BASIC language program, by contrast, is first

entered into the memory and then executed later when the RUN command

is given.

When Monroe BASIC is ready to receive a command, the word BASIC is

displayed on the screen. Commands should be typed without any line

numbers.

After a command has been executed, the user will either be prompted

for more information, or the RASIC prompt will again be displayed.

This indicates that Monroe BASIC is ready for more input, either

another command or program statements.

Example:

|

100

110

<command>

BASIC

|
|
<command>

BASIC

Commands control the editing and execution of programs and allow

files to be manipulated. Each command is identified by a keyword at

the start of the line. Keywords are shown in upper-case letters.

All characters of the keyword are mandatory.

6-1 Feb. '82

SECTION 6 — CONTROL COMMANDS

Table 6-1 lists the Monroe BASIC control commands described in this

section along with a short description for each.

Table 6-1. Monroe BASIC Control Commands

Command Description

AUTO Generates line numbers automatically.

CLEAR Clears all variables and closes all files.

CONT After CTRL C operation this command restarts the

(or CON) program at the line at which it stopped.

ED Gives program editing facilities.

ERASE Deletes blocks of lines from a Monroe BASIC program.

LIST Outputs a program to a specified device.

LOAD Loads the program requested into memory from a

specified device.

MERGE Inputs lines from a program on disk to the current

program.

NEW Deletes the current program and resets all

variables.

RENUMBER Changes the line numbering.

(or REN)

RUN Executes a Monroe BASIC program.

SAVE Stores the current program on a disk.

UNSAVE Deletes a non-protected program from the disk.

Feb. '82 6-2

S
e

/

SECTION 6 - CONTROL COMMANDS

The following sections describe the function, type, format, arguments

and use of each of the above commands. Examples are included to show

how the command can be used. Errors may occur when using a command

incorrectly or syntaxically wrong. A complete list of error messages

is shown in Appendix B.

6-3 Feb. '82

SECTION 6 -— CONTROL COMMANDS

6.2 AUTO COMMAND

Function:

Mode:

Format:

Arguments:

Use:

Examples:

Feb. "82

Generates line numbers automatically after each

carriage return.

Direct

1. AUTO

2. AUTO <lineno.l>

3. AUTO <line no.1>,<interval>

Line no.l specifies the start line and interval

specifies the step value.

Both line no.l and interval are optional. If no

arguments are given, then the line numbering starts

with the next whole 10th number (i.e., 10, 20, 30,

etc.) after the existing line numbers. The step is

set to 10 if the new interval is not included.

AUTO facilitates freedom from line numbering. It is

continuously available during the programming work.

Automatic line generation stops when the carriage

return is entered as first character on a line. If

an explicit line number is entered, BASIC uses it

instead of the line number specified by auto mode,

and it will reprompt with the same line number. If

a line entered causes an error message, automatic

line numbering is stopped and the line can be

edited. The line numbering can be started by a new

AUTO command.

Ex. 1

AUTO 10,5

The first line number will be 10 and the line number

will be incremented by 5 for each line.

6-4 AUTO

}

SECTION 6 - CONTROL COMMANDS

AUTO 10,54

10 LET A=1¢

15 == #4

20 - - -4

25 -—= + -§

Ex. 2

AUTO4

10 INPUT “CYLINDER

20 INPUT “CYLINDER

30 PRINT “CYLINDER

40 END4

50 4

BASIC

NEW

AUTO 504

50 INPUT “CYLINDER

60 INPUT “CYLINDER

70 PRINT “CYLINDER

80 ENDY

90 4

BASIC

NEW

AUTO 100,5

100 INPUT “CYLINDER HEIGHT

105 INPUT “CYLINDER RADIUS

110 PRINT “CYLINDER VOLUME

115 END4

120 ¢

BASIC

AUTO 6-5

HEIGHT

RADIUS

VOLUME

HEIGHT

RADIUS

"RA

2*PL*R*HY

", RY

VOLUME -",2*PI*R*HY

i)
u

", HY

",R4

", 2*PL*R*HY

Feb. "82

SECTION 6 - CONTROL COMMANDS

6.3 CLEAR COMMAND

Function:

Mode:

Format:

Action:

Example:

Feb. '82

Clears all

Direct

CLEAR

CLEAR does

still left

10 A%=1234%

20 END

RUN

BASIC

3 AZ

1234

BASIC

CLEAR

BASIC

3 Az

0

BASIC

A%=4567%

BASIC

3 Az

4567

BASIC

variables and closes all open files.

not affect the existing program which is

in memory.

CLEAR

SECTION 6 — CONTROL COMMANDS

6.4 CONTINUE COMMAND

Function:

Mode:

Format:

Action:

Use:

Example:

CONTINUE

Continues program execution from where it was

stopped by either CTRL C entered twice or a STOP

statement.

Direct

1. CON
2. <CONT key>

Execution of “CON” causes the program to restart at

the line at which it stopped.

A variable may be displayed and changed using a

direct mode statement before “CON” is used. If the

program is edited or an “END” statement caused the

program to be terminated, the “CON” statement will

cause an error and should not be used.

10 FOR L = 1 to 100004

20 3134

30 NEXT L4

40 END

RUN4

12345 ...

CTRL C (enter twice)

CON

eccccesceeevee (Continue Printing)

BASIC

6-7 Feb. '82

SECTION 6 — CONTROL COMMANDS

6.5 EDIT COMMAND

Function:

Mode:

Format:

Argument:

Use:

Note:

Examples:

Feb. '82

Allows a previously entered program line to be

edited.

Direct

ED <line no.>

Line no. is the line to be corrected.

Once the command is entered, the line specified will

be displayed. The cursor is positioned after the

last character on the line. Refer to Section 2.6,

“Immediate Corrections" for the list of editing keys

which can be used at this point.

When editing a program line with the editing keys,

entering a DELETE LINE prior to a return will negate

any changes that have been made. Note that when an

Edit command is issued, an implicit CLEAR Command is

performed.

The line number of a line can also be edited to copy

a line to a different portion of the program; the

original line will remain, but can be deleted i

necessary.

LIST4

10 AS="1.4726"

20 BS="7.75"

30 ;ADDS(AS ,BS ,4)

BASIC

6-8 EDIT

SECTION 6 - CONTROL COMMANDS

Examples: 1. To change 1.4726 to 1.46 in line 10 do the

following:

ae ED 10

b. Depress cursor left ©) three times

Ce

d.

Depress DELETE CHAR twice

Depress RETURN key

2. To insert 423 before 75 in line 20, do the

following:

ae ED 20

b. Depress cursor left ©) twice

Ce Depress INSERT CHAR lock

d. Enter 423

e. Depress RETURN key

LIST 10-204

10 AS = "1.46"

20 BS = "7.42375"

BASIC

EDIT 6-9 Feb. '82

by

SECTION 6 — CONTROL COMMANDS

6.6 ERASE COMMAND

Function:

Mode:

Format:

Arguments:

Use:

Examples:

Feb. '82

Deletes blocks of lines from the current program.

Direct

ERASE <line no(s)>

Line no(s) can be the single line number or a range

of line numbers to be listed. A single line number

can have a “-" appended to or before it (e.g., 10-,
-10) to designate all lines up to 10 or from 10 to
the end of the program are to be listed, respec-

tively.

All lines between line no. 1 through line no. 2 are

removed,

ERASE 20-200 ! ERASE LINES 20 UP TO AND INCLUDING

200

ERASE -100 ! ERASE ALL LINES UP TO AND INCLUDING

LINE 100

ERASE 50- ! ERASE FROM LINE 50 TO END OF PROGRAM

6-10 ERASE

S
S

SECTION 6 — CONTROL COMMANDS

6.7 LIST COMMAND

Function:

Mode:

Format:

Arguments:

Use:

LIST

Lists all or part of the current program to the

console, printer or disk.

Direct

1. LIST [fd]

2. LIST [line no(s)]

3. LIST <fd>[{,line no(s)]

fd is the file descriptor as previously defined in

Section 1.3.

Line no(s) can be the single line number or range of

line numbers to be listed. A single line number can

have a "-" appended to or before it (e.g., -10, 10-)

to designate all lines up to 10 or from 10 to the

end of the program are to be listed, respectively.

1. LIST VOL:xXY¥Z

Saves a program in an uncompressed way on the

disk with volume VOL under specified file name

XYZ and type “AB“ (ASCBAS). Note that only a

file saved with LIST rather than SAVE can be

edited or listed by a utility outside of Monroe

BASIC.

2. LIST

The entire program is listed.

3. LIST 100

Line 100 is displayed on the screen.

6-11 Feb. '82

‘SECTION 6 — CONTROL COMMANDS

Note:

Examples:

Feb. '82

4. LIST 100-1000

All lines between 100 and 1000 inclusive are

displayed on the screen.

5. LIST PR:

The entire program is output on the printer.

6. LIST -1500

All lines up to 1500 are listed.

7. LIST 2000-

All lines from 2000 through the last line are

listed. |

If a large program is listed, the listing will stop

after one full page has been displayed. The next

line will be displayed when you press the space bar.

A long listing may be stoped by pressing CTRL C,

RETURN or entering any Monroe BASIC command/

statement. If the TAB key is entered after the

listing has stopped, an implicit EDIT command is

issued for the last line number appearing on the

screen.

LIST ACCT:PAYROLL ! SAVE FILE PAYROLL ON DISK ACCT

LIST ! LISTS THE ENTIRE PROGRAM ON THE SCREEN

LIST 100 ! LISTS LINE 100

LIST 100 — 500 ! LISTS LINES 100 TO 500

LIST PR: ! LISTS THE ENTIRE PROGRAM ON PRINTER

LIST PR:, 100-200 ! LISTS LINES 100-200 ON PRINTER

6-12 LIST

SECTION 6 — CONTROL COMMANDS

6.8 LOAD COMMAND

Function:

Mode:

Format:

Arguments:

Use:

Examples:

LOAD

Loads a Monroe BASIC program from external storage

into working storage.

Direct

1. LOAD <fd>

2. <f£d><LOAD key>

fd is the file descriptor as previously defined in

Section 1.3.

Note that when the file type is omitted, the computer

will look for type BAC (compressed form) first and

then ASCBAS (uncompressed form).

If type "AB" (ASCBAS) is specified only ASCBAS will

be searched for in the directory.

Loads the specified file after having cleared the

working memory.

All open files are closed, the program area and

buffers are reset. All variables are erased.

Ex. l

LOAD TEST:ABC200

Filename ABC200 on volume TEST is read, not to the

END statement, but to the EOF (end of file).

6-13 Feb. '82

SECTION 6 -— CONTROL COMMANDS

Example: Ex. 2

LOAD MAST/AB

Filename MAST in uncompressed format is to be loaded

into working storage.

Feb. '82 6-14 LOAD

SECTION 6 ~ CONTROL COMMANDS

6.9 MERGE COMMAND

Function:

Mode:

Format:

Arguments:

Use:

Note:

Example:

MERGE

Merges lines from a file into the current program.

Direct

MERGE <fd>

fd is the file descriptor as previously defined in

Section 1.3.

The numbered lines from the specified file are

inserted in line number sequence in the current

Program. The lines are validated on input. New

lines are inserted in line number sequence. If a new
line has the same line number as an existing line

then the old line is replaced by the new. All

variables are initialized.

Lines are read until the end of file is encountered.

The program being merged must have been saved using

the LIST command.

Existing program XRAY

LIST XRAY

5 Y=1

10 PRINT

20 FOR L=1 TO 10

30 PRINT L;TABCY);"L";

40 READ Y

50 FOR I=1 TO Y

60 PRINT “ * “3;

70 NEXT I

80 PRINT

90 PRINT TAB(Y);“I" z

100 NEXT L

BASIC

6-15 Feb. '82

SECTION 6 - CONTROL COMMANDS

Feb. "82

The following program file is stored on an external

disk under the name TABLE:

200 DATA 5,4,2,3,1

300 DATA 10,15,28,15,6

999 END

The commands: LOAD XRAY

MERGE TABLE

add lines 200 to 999 into the existing program.

LIST XRAY4

5 Y=1

10 PRINT

20 FOR L=1 TO 10

30 PRINT L;TABCY);“L";

40 READ Y

50 FOR I=1 TO Y

60 PRINT “ * “5

70 NEXT I

80 PRINT

90 PRINT TAB(Y); "I"

100 NEXT L

200 DATA 5,4,2,3,1

300 DATA 10,15,28,15,6

999 END

6-16 MERGE

SECTION 6 - CONTROL COMMANDS

6.10 NEW COMMAND

Function:

Mode:

Format:

Use:

Note:

Example:

NEW

Clears the user's program area from working storage.

Direct

NEW

Clears working storage and all variables and resets

the pointers. The effect of this command is to

erase all traces of the program from memory and to

start over.

All open files are closed.

Use this command before typing in a new program.

The SCR command can also be used. It works just

like NEW.

| Existing program

RUN

BASIC

NEW

| Type in a new program

RUN Run the second program

6-17 Feb. '82

SECTION 6 — CONTROL COMMANDS

6.11 RENUMBER COMMAND

Function:

Mode:

Format:

Arguments:

Use:

Feb. "82

Changes the line numbering in the current program.

Direct

1. REN(umber]

2. REN(umber] <lst line no.><,increment>

3. REN({umber] <lst line no.><,increment><,start line

-last line>

lst line no. is required in formats 2 and 3 above and

is the number to be given to the first line. The

default is 10.

Increment is required in formats 2 and 3. It is the

increment desired between lines. The default is 10.

Start line-last line is the range of lines to be

renumbered. As format 3 shows both “lst line no.”

and the “increment™ must be specified.

All line references in the program will be changed

according to the REN command.

Any references to line numbers in GOSUB, GOTO, IF,

ON and RESUME statements are changed to the new

numbers if necessary.

If any statement in the program references a line

number and that line number does not exist, an error

message is printed on the terminal. Renumbering is

not done.

6-18 RENUMBER

SECTION 6 — CONTROL COMMANDS

Example:

RENUMBER

Existing Program

LIST

2A=1

3 B= At2

7 PRINT A,B

10 END

BASIC

REN

BASIC

LIST4

10 A= 1

20 B = A+2

30 PRINT A,B

40 END

BASIC

REN 10,5

BASIC

LISTY

10 A=1

15 B = A+2

20 PRINT A,B

25 END

BASIC

REN 100,20,15-25

BASIC

LIST

10 A=l

100 B = At+2

120 PRINT A,B

140 END

BASIC

6-19 Feb. "82

SECTION 6 - CONTROL COMMANDS

6.12 RUN COMMAND

Function:

Mode:

Format:

Arguments:

Use:

Loads and executes a Monroe BASIC program or

executes the current program.

Direct

1. RUN [fd]

2. [fd]<RUN key>

fd is the file descriptor as previously defined in

Section 1.3.

The type specification in fd is the kind of file -

B (default) - BAC

AB - ASCBAS

Note that when the file type is omitted, the

computer will look for type BAC (compressed form)

first and then ASCBAS (uncompressed form).

If type “AB” (ASCBAS) is specified only ASCBAS will

be searched for in the directory. _

1. RUN

All variables and arrays in the program area are

erased and all buffers are cleared. The actions

of a RESTORE statement are performed and then

execution of the current program is started at

the lowest numbered line.

2. RUN <vol:><filename>

The action of a LOAD command is performed.

Execution of the loaded program is then started

at the lowest numbered line.

6-20 RUN

SECTION 6 - CONTROL COMMANDS

Example: Ex. 1

10 READ A,B

20 LET A= A+ BY

30 PRINT A

40 DATA 2,34

50 END4

RUNG

5

BASIC

If the same program is a file on the system diskette

with the name APLUSB then:

Ex. 2
RUN APLUSBY

5

BASIC

RUN 6-21 Feb. '82

SECTION 6 — CONTROL COMMANDS

6.13 SAVE COMMAND

Function: Creates a disk file and stores the current program

into that file.

Mode: ’ Direct

Format: SAVE <fd>

Arguments:

Use:

Note:

Example:

Feb. '82

fd is the file descriptor as previously defined in

Section 1.3.

The command causes the program, which is currently

in the working storage, to be saved in compressed

form under the given file name (type BAC). No other

type can be specified. The program is saved in a

compressed way to enable faster loading.

If the file already exists on the disk the old

contents in the file will be destroyed and replaced

by the new program.

If the file is saved via SAVE, the file cannot be

edited or listed by a utility outside of Monroe

BASIC. If this is desired, refer to the LIST

command.

10 -- -

4

999 END4

SAVE ACTY

BASIC

6-22 SAVE

6.14 SCR COMMAND

SECTION 6 — CONTROL COMMANDS

Function:

Mode:

Format:

Use:

Example:

Clears

Direct

SCR

Clears

resets

of the

again.

the user's program area.

working storage and all variables and also

the pointers. The command erases all traces

existing program from memory and starts over

All open files are closed. Use this or the NEW

command before entering a new program.

100 3

200 A

300 ;

“THIS IS A TEXT"4

= 44q

Aq

THIS IS A TEST

6-23 Feb. '82

SECTION 6 - CONTROL COMMANDS

6.15 UNSAVE COMMAND

Function:

Type:

Format:

Arguments:

Examples:

Feb. '82

Erases a file from a specified disk.

Direct

UNSAVE <fd>

fd is the file descriptor as previously defined in

Section 1.3.

Note that when the file type is omitted, the

computer will look for /BAC (compressed form) first

and then ASCBAS (uncompressed). ~

If type “AB” (ASCBAS) is specified, only ASCBAS will

be searched for in the directory.

Ex. 1

After the user has completed all work with file XYZ

on the system disk, the file can be removed fron

storage by executing the following statement:

UNSAVE XYZ

Ex. 2 —_—
Erase file PROGA with file type ASCBAS.

UNSAVE PROGA/AB.
ae od

6-24 UNSAVE

SECTION 7

DATA, STATEMENTS

SECTION 7

DATA STATEMENTS

7.1 INTRODUCTION

Data statements consist of the set of statements shown in Table 7-1.

Each data statement is described in detail following this table.

Table 7-1. Data Statements

Statement

DATA

DIM

DOUBLE

EXTEND

FLOAT

INTEGER

LET

NO EXTEND

OPTION BASE

RANDOMIZE

DAT J

Description

Assigns values to variable (via READ).

Defines size of vector/matrix and strings.

Designates all subsequent floating point variables

and expressions to be double precision.

Specifies that spaces are significant, which allows

for variable names of up to 32 characters in length.

Sets listing and input format to float mode.

Sets listing and input format to integer

mode.

Assigns a value to a variable.

Specifies that spaces are not significant and allows

for variable names of one letter and an optional

digit.

Defines the default minimum subscript value.

Selects a random starting point for the RNDO

function.

~ l a ry

D om

* oO

nN

_SECTION 7 - DATA STATEMENTS

Statement

READ

RESTORE

SETTIME

SINGLE

Feb. '82

Description

Assigns value(s) to variable(s).

Moves data pointer.

Sets the date and time.

Designates all subsequent floating point

and expressions to be single precision.

variables

See”

DATA

SECTION 7 - DATA STATEMENTS

7.2 DATA STATEMENT

Function:

Mode:

Format:

Use:

Examples:

DATA

Assigns values to variables; used in conjunction with

READ statement.

Program

DATA <value list>

All DATA statements, no matter where they occur in a

program, cause data to be combined into one data list.

Commas are used as data separators. Single or double

quotes are used to enclose items that contain a comma.

If an item does not contain a comma, the enclosing

quotes are optional.

A DATA statement must be the only statement on a line.

READ and DATA statements are not used without the other.

See the READ statement for more information.

Ex. 1
10 FOR I=l TO 34

20 READ AS

30 PRINT PRINT AS{

40 NEXT If

50 END

60 DATA “HELLO: HOW ARE YOU?", “TODAY IS DEC. 13, 1980°4

70 DATA GOOD BYE

RUNY

HELLO: HOW ARE YOU?

TODAY IS DEC. 13, 1980

GOOD BYE

BASIC

i-3 Feb. '82

SECTION 7 ~ DATA STATEMENTS

Ex. 2
10 OPEN “PR: AS FILE 124

20 READ AS

30 PRINT #1 AS4

40 READ AS

50 PRINT #1 AS4
60 FOR I=1 TO 64

70 READ AS

80 PRINT #1 AS4
90 NEXT IY

100 READ AS

110 PRINT #1 AS]

120 DATA ABC,DEF,GHI,JKL,MNO,PQR,STU,WXYZ4

130 DATA ABCDEFGHIJKLMNOPQRSTUVWXYZ4
140 END

STU

WXYZ

ABCDEFGHIJKLMNOPORSTUVWXYZ

BASIC

Feb. '82 7-4

SECTION 7 - DATA STATEMENTS

7.3 DIM STATEMENT

Function:

Mode:

Format:

Arguments:

Note:

Use:

DIM

Defines the maximum number of elements in a vector or

in a matrix. Also defines a string's maximum length.

Direct/Program

1. DIM <numeric array> [([exprl:]expr2[,...])]

2. DIM <string variable>[{(exprl:]Jexpr2[,...])][=expr3]

Expr2 is a numeric expression specifying the maximum

subscript values. The default lower limit is either 0

or 1 depending on the most recent OPTION BASE

statement. The default value is 0.

An array can have any number of subscripts depending

upon the available memory.

Expr3 is the maximum string length for a variable or

for each of the strings in the array.

Exprl specifies a non-default lower limit value for

each subscript. It can be overridden individually for

each index. This is done by replacing the single

maximum index for each dimension by two values

separated by a colon.

A dimensioned variable can be redimensioned only if the

new DIM statement defines a smaller dimension.

All values used in DIM statements will be truncated to

integer.

7-5 Feb. '82

‘SECTION 7 - DATA STATEMENTS

If a subscripted variatle is used without appearing

before in a DIM statement, it is assumed to be

dimensioned to length 11 in each dimension (0-10).

The first element of every matrix is assumed to have a

subscript of zero unless it is overridden by using expl

or OPTION BASE. All variables have a value of zero

until they are assigned a value.

Vector and matrix elements can be treated as ordinary

variables in the program.

A non-dimensioned string variable's maximum length is

automatically set to the current length the first time

the string is assigned a non-null value. If less than

80 characters are used then a standard length of 80

characters is assigned.

Example:

C (1,1) = A (10,20) + B(4,7)

adds the two elements A (10,20) and B (4,7)

into a mew element C (1,1) in the matrix C.

The following alternative DIM statements for strings

are available:

DIM AS(N) Defines a string vector with N + 1

strings AS(0) - AS(N). Each string has

its own automatic maximum length. (See

above.)

DIM AS(N)=I As above but each string's maximum length

is forced to I characters.

SECTION 7 - DATA STATEMENTS

DIM AS(N,M) Defines a string matrix with (N+1)*(M+1)

strings each with its automatic maximum

length.

DIM AS(N,M)=5 As the matrix above but each string's

. maximum length is forced to 5

characters.

DIM AS=I Forces the maximum length of the single

string AS to I characters.

DIM BS(N:M)=200 Defines "M-(M+1)" string each with 200

bytes maximum, where M or N can be

positive or negative.

DIM ACN:M) Defines a vector with elements A(N) to

ACM) which are totally independent of

the current lower limit.

Examples:

10 DIM X(5), 2(4,3), A (10,10)

12 DIM A4 (100)

13 DIM A(5:10,8:20)

14 DIM AS$(20), BS$(10,20)

16 DIM CS(40) = 4°

18 DIM DS$(10,10) = 8

20 DIM QS = 253%

30 DIM A(-2:2) ! YIELDS VECTOR WITH FIVE

40 ! ELEMENTS A(-2),A(-1),A(0),AC1) and A(2)

50 DIM BS(-3:4)=300

DIM 7-7 Feb. '82

‘SECTION 7 - DATA STATEMENTS

7.4 DOUBLE STATEMENT

Function:

Note:

Example:

Feb. '82

Sets double precision mode. Changes all variables and

expression with floating point numbers to double

precision (16 digits).

Direct/Program

DOUBLE

The DOUBLE statement should be placed before the

variables are used in the program and cannot be changed

after the program has been started by RUN. This change

can be made when a program line has been edited or the

CLEAR or NEW command has been used. The default

precision is SINGLE.

Default is SINGLE. SINGLE and DOUBLE cannot be mixed in

the same program.

NEW q

BASIC

10 DOUBLEY

20 INPUT Aq

30 PRINT Aq

40 END q

RUNG

? 1234567894

123456789

BASIC

7-8 DOUBLE

SECTION 7 -— DATA STATEMENTS

7.5 EXTEND STATEMENT

Function: Specifies that spaces are significant and allows for

extended length variable names.

Mode: Direct/ Program

Format: EXTEND

Use: In the EXTEND mode, Monroe BASIC requires spaces to

delimit names and functions, unless the adjoining

character is a line number or an arithmetic operator (-

+ * /). If key words are written without spaces they

may be mistaken for long variable names. Variable

names can be any length up to 32 characters; all

characters are significant. This will allow for more

readable and understandable programs.

Note: The default is NO EXTEND.

Examples: Ex. 1 Ex. 2

AUTO4 10 EXTEND

10 INPUT NS 20 LET SUBTOTAL=UNITS*UNITPRICE1

20 EXTEND4 ’

30 INPUT ADDRESSS4

40 NO EXTEND4

50 ;NS4

60 EXTEND

70 ;ADDRESSS4
80 END

RUN

? JOHN SMITH4

? USA4

JOHN SMITH

USA

BASIC

EXTEND 7-9 Feb. '82

SECTION 7 - DATA STATEMENTS

7.6 FLOAT STATEMENT

Function: Interprets all numbers without a suffix as floating

point. Integers must have a "%" suffix.

Mode: Direct/Program

Format: FLOAT

Use FLOAT is the default mode. In the FLOAT mode all

variables written without the "%" suffix will be

interpreted as floating point. Suppose a program was

entered and listed in the INTEGER mode. If FLOAT was

entered prior to the loading of this program all

variables (e.g., A=12.456) would be treated as floating

point variables (A%Z=12.456). The results of the

program may change. Refer to example below and INTEGER

statement for additional information.

Examples: Ex. 1

9 OPEN “PR:" AS FILE 1%4

10 A=12.3454

20 B=123%4

30 CZ=Bq

40 DIl%=Aq

50 PRINT #1% A,B,C%,D1%Zq

60 END{

SAVE TEXTY

RUN

12.345 123 123 12

BASIC

7-10 Feb. '82 FLOAT

SECTION 7 - DATA STATEMENTS

Feb. "82

Ex. 2

INTEGER

BASIC
LIST PROG ! LIST TO DISKY

BASIC
NEW

BASIC
FLOAT

LOAD PROGB4
LISTY
10 REM RUN: FLOAT PROGRAM AS INTEGER

20 A=12.345

30 B=123
40 C=B
50 Dl=A

60 ;A,B,C,D1
70 END

RUNY

12 123 123 12

7-11 FLOAT

SECTION 7 -— DATA STATEMENTS

7.7 INTEGER STATEMENT

Function: Controls the sign suffix for integer and float

variables when entering and listing programs. Allows

conversion of program from float to integer.

Mode: Direct/Program

Format: INTEGER

Use: When a program is being entered and the INTEGER

statement has been given, the programmer need not type

the integer suffix %. Om the other hand, all floating

point variables should be marked by a decimal point

suffix (.). The strings should have the usual $

suffix.

A program which is stored in text format and contains

floating point variables can be run as an INTEGER

program if the command INTEGER is given prior to

loading the program. To do this, save the program via

LIST, change the mode to INTEGER mode, and LOAD and RUN

the program. See Example 2, below.

Note: Default is floating point format.

Examples: Ex. 1

100 OPEN “PR:" AS FILE 14

110 A.=10.5324

120 B.=1454

130 C=B.4

140 D1l=A.4

150 PRINT #1 A.,B.,C,D1q

160 END4

RUNG

10.532 145 145 I1

BASIC

INTEGER 7-12 Feb. '82

SECTION 7 -— DATA STATEMENTS

Example:

Feb. "82

Ex. 2

FLOAT4

BASIC
LIST TEST !LIST TO DISK4

BASIC
NEW

LOAD TEST
LIST TEST4
100 OPEN "PR:" AS FILE 1

110 A=12.345
120 B=123_
130 C=B

140 DL=A

150 PRINT #1 A,B,C,D1

160 END
RUNG
12.345 123 123

BASIC

7-13

12

INTEGER

SECTION 7 -— DATA STATEMENTS

7.8 LET STATEMENT

Function: Assigns a value to a variable.

Mode: Direct/Program

Format: [LET] <variable> = <expression>

Arguments: The use of the word LET is optional. The statement does

not indicate algebraic equality but performs the calcu-

lations within the expression.

Use: The LET statement can be used anywhere in a multiple

statement line.

Note: The LET keyword must be specified when assigning an

extended variable name which is the same as a Monroe

BASIC command name.

Example: 10 LET DATA=1q

20 PRINT DATAY

RUNY

l

BASIC

Examples: Ex. 1

10 LET A = 5.02

20 LET X= Y7 :Z=0

30 LET B9 = 5 * (X/2)

40 LET D = (3 * A) /2 * 8

Ex. 2
10 X= 36 :A=3+B/C:Y=xX#*Z

20 AS="SMITH"

30 BS="456.72"

Feb. '82 : 7-14 LET

SECTION 7 - DATA STATEMENTS

7.9 NO EXTEND STATEMENT

Function:

Mode:

Format:

Use:

Example:

NO EXTEND

Disables EXTEND mode.

Direct/ Program

NO EXTEND:

In NO EXTEND mode spaces are usually ignored and

variable names can only be composed of one letter and

one

10

optional digit. The default mode is NO EXTEND.

EXTEND

INPUT “NEXT NAME: “NAMES

INPUT “YOUR ADDRESS: ADDRESSS

IF NAMES=DEFAULTNAMES THEN 100

IF ADDRESSS=LOCATIONAS THEN PRINT “MATCH FOUND";

; NAMES , ADDRESSS

NO EXTEND

LET B = 400

INPUT “NAME IN DEFAULT” AS

7=15 Feb. ‘82

SECTION 7 - DATA STATEMENTS

7.10 OPTION BASE STATEMENT

Function: Defines the default minimum subscript value.

Mode: Direct/Program

Format: OPTION BASE <n>

Arguments: nm must be zero or one. The default value is 0.

Use: Option base allows the user to specify the Starting
Subscript for an array or vector. It allows for a
saving in the memory space used for working storage
when the zero element of an array is not used.

Example: LISTY

10 OPTION BASE 1

20 DIM AS$(4)

30 A$(1)="JONES"

40 AS(2)="SMITH"

50 AS$(3)="WILE”

60 A$(4)="MOHAN"

100 OPTION BASE 0

110 DIM B(5)

120 B(O)=1:B(1)=2:B(2)=4

130 B(3)=8:B(4)=16:B(5)=32

Feb. '82 7-16 OPTION BASE

SECTION 7 - DATA STATEMENTS

7.11 RANDOMIZE STATEMENT

Function:

Mode:

Format:

Use:

Note:

Examples:

RANDOMIZE

Selects a random starting value for the function

RND.

Direct/Program

RANDOMIZE

This statement is placed before the first random

number generator call (RND) in a program. When

executed, the RND function will then select a random

starting value so that if the same program is run

twice, different results will be given.

Randomize should only be used once in a program.

Ex. 1

LIST

10 REM A TEST OF FUNCTIONALITY

15 REM WITHOUT RANDOMIZE STATEMENT

20 REM USING RND-----~ FUNCTION

30 REM

35 OPEN "PR:" AS FILE 12%

40 INPUT 'HOW MANY NUMBERS?'X%

50 FOR I%=1% TO X%

60 PRINT #1% 5*RND+5

70 NEXT I%

80 END

BASIC

RUNY

HOW MANY NUMBERS? 4

5.39556

5.22086

8.82632

9.88786

BASIC

RUNG

7-17 Feb. '82

SECTION 7 - DATA STATEMENTS

HOW MANY NUMBERS? 4

5.39556

5.22086

8.82632

9.88786

BASIC

Ex. 2

10 REM A TEST OF FUNCTIONALITY OF RANDOMIZE STATEMENTY

20 REM USING RND------ FUNCTION.

30 REM.

35 OPEN “PR:" AS FILE 124

40 INPUT 'HOW MANY NUMBERS?'X%q

50 FOR 1%=1% TO X%4q

55 RANDOMIZEY

60 PRINT #1% 5*RND+5 {

65 NEXT [249

70 END

RUN

HOW MANY NUMBERS? 4

5.05425

6.39596

8.10356

6.15174

BASIC

RUNG

6.15174

5.85948

8.05445

5.07878

BASIC

Feb. '82 7-18 RANDOMIZE

SECTION 7 - DATA STATEMENTS

7.12 READ STATEMENT

Function:

Mode:

Format:

Use:
———

Examples:

Assigns values to variables; used in conjunction with

the DATA statement.

Program

READ <variable list>

READ causes the variables listed to be assigned

sequential values from the NATA statements. Before the

program is run, Monroe BASIC creates a data block from

all the DATA statements in the order they appear. Each

time a READ statement is encountered in the program,

the data block supplies the next value.

READ and DATA statements are used together.

If it is necessary to use the same data several times

in a program, the RESTORE statement will reset the data

pointer within the data block. See RESTORE statement,

Section 7.

The READ and DATA statements can also be used to input

string variables to a program. See Ex. 1. below.

Ex. l

10 READ AS,BS,CS4

20 PRINT AS,BS,CS4

30 DATA CHARLIE,BOB, ““"STONE"""4

RUNG -

CHARLIE BOB “STONE”

BASIC

7-19 Feb. '82

SECTION 7 — DATA STATEMENTS

Note:

Feb. "82

Ex. 2

50 FLOATY

100 READ A,B,C,D,X1,X24

150 DATA 3,6,1.84

200 DATA 6.83E-3,-86.4,3.14]

210 PRINT “A=" A,"B=" B,"“C=" Cq

220 PRINT “D=" D,"“Xl=" X1,"X2=" X2q

230 END

RUNG

A=3 B= 6 c= 1.8

D= .00683 Xl= -86.4 X2= 3.14

BASIC

If a comma or both leading and trailing quotation

marks or apostrophes are to be read into a string, the

string must be enclosed by quotation marks. This also

applies to leading or trailing blanks.

7-20 READ

SECTION 7 ~- DATA STATEMENTS

7.13 RESTORE STATEMENT

Function: Resets data pointer to enable a specific DATA statement

to be used again.

Mode: Program

Format: RESTORE [line number]

Examples: Ex. 1

60 RESTORE Sets the DATA statement pointer

to the first DATA statement in a

program.

Ex. 2

50 RESTORE 100 Sets the DATA statement pointer

to the first data on line 100.

Ex. 3

10 READ AS

20 PRINT AS{

30 READ AS{
40 PRINT AS4

50 FOR I=1 TO 64

60 READ AS4

70. PRINT AS{

80 NEXT [4

90 RESTORE 1204

100 READ AS

110 PRINT AS4 .

120 DATA ABC,DEF,GHI,JKL,MNO,PQR,STU,WXYZ4
130 DATA ABCDEFGHIJKLMNOPQRSTUVWXYZ4Y

140 END4

RESTORE 7-21 Feb. '82

SECTION 7 - DATA STATEMENTS

7.14 SET TIME STATEMENT

Function:

Mode:

Format:

Arguments:

Use:

Example:

Feb. '82

Sets the date and time to the specified values.

Direct/Program.

l. SET TIME <string expression>

String expression is of the form:

yyyy~mm-dd

where: yyyy

hh

ss

hh:mm:ss

= year, mm = month, dd = day

hour (0-23), mm = minutes,

seconds

SET TIME is used to set the internal system clock. The

TIMES function is used to return the updated date and

time. The date and time may be separated by a blank or

comma. The hour, minutes and seconds may be separated

by a period or colon; the TIMES function returns a

period as the separator.

10 PRINT “SET INTERNAL CLOCK"

20 PRINT “IN YYYY-MM~DD HH:MM:SS FORMAT4

30 INPUT AS4

40 SET TIME AS{

390 ; “END TIME AND DATE”

400 ; TIMES

410 END

RUN

IDISPLAY END TIME AND DATEY

SET INTERNAL CLOCK

IN YYYY-MM-DD HH:MM:DD FORMAT

2? 1981-05-17 17:40:204

END TIME AND DATE

18.05.01 1981-05-17

BASIC

7222 SETTIME

SECTION 7 -— DATA STATEMENTS

7.15 SINGLE STATEMENT

Function: Changes all variables and expressions, which are

floating point numbers to single precision (6 digits).

Mode: Direct /Program

Format: SINGLE

Use: The SINGLE statement must be placed before any

variables that are used and cannot be changed once the

program has been started by RUN. Lf a line is edited

or the command CLEAR is given, SINGLE may be changed to

DOUBLE or vice versa. The default is SINGLE.

Note: Default is single precision. SINGLE and DOUBLE cannot

be mixed in the same program.

Examples: Ex. 1

New

10 INPUT A,B

20 PRINT A,B

30 ENDY

RUNY

212345,1234567894

12345 12345678

BASIC

SINGLE 7-23 Feb. '82

SECTION 7 - DATA STATEMENTS

Ex. 2

10 DOUBLE

20 INPUT A,Bq

30 PRINT A,BY

40 END4

RUN

212345 ,1234567894

12345 123456789

BASIC

SINGLE 7-24 — Feb. '82

SECTION 8

INPUT/OUTPUT STATEMENTS

INTRODUCTION

Table 8-1.

operations with them.

Statement

SECTION 8

INPUT/OUTPUT STATEMENTS

Input/Output statements are program instructions that enable the user

to create new disk files and perform writing, reading and maintenance

Table 8-1 lists the Input/Output statements

discussed in this section.

Input/Output Statements

Function

CLOSE

DIGITS

GET

INPUT

INPUT LINE

KILL

NAME

OPEN

OPTION

EUROPE

POSIT

PREPARE

PRINT

PRINT USING

PUT

Terminates I/0 between the Monroe BASIC program and

a peripheral device.

Sets the number of digits to be printed.

Reads a specified number of characters from a binary

file or from the console into a string variable.

Fetches data from a source that is external to a

program.

Accepts a line of input.

Erases a file.

Renames a file.

Opens a file.

Allows periods and commas “PRINT USING”

periods, respectively,

in output to

be replaced by commas and

by blanks.

or

Positions or reads the file pointer.

Allocates and opens a new file.

Writes or lists data to a specified device.

Allows for formatted printing.

Writes a string to a file or the console in binary

format.

Feb. '82

SECTION 8 - INPUT/OUTPUT STATEMENTS

8.2 CLOSE STATEMENT

Function:

Mode:

Format:

Argument:

Note:

Example:

Feb. '82

Terminates input/output between the Monroe BASIC

program and peripheral device(s) and closes the

file(s).

Direct/Program

CLOSE [channel no.,...]

Channel no. has the same value as in the OPEN

statement and indicates the internal channel number of

the file to be closed.

The CLOSE statement is used to close one or more

files. If no file number is given, all files will be

closed.

The END statement closes all open files. Ordinary

output with the PRINT instruction will cause the last

buffer to be output when the file is closed.

All I/O operations to record I/O files are explicitly

performed with the GET and PUT statements. For this

reason, be sure that the user program writes

explicitly the last record onto a Record I/O file

before executing a CLOSE.

5 EXTEND

10 REM CREATE AN ASCII SEQUENTIAL VARIABLE LENGTH

15 REM RECORD FILE

20 PREPARE “MAST1” AS FILE 2
30 FOR I=l TO 5
40 READ MS,MM,DD,YY

50 PRINT #2,MS,MM,DD,YY

60 NEXT I
70 CLOSE 2
80 DATA...

90 DATA... .

8-2 CLOSE

SECTION 8 ~ INPUT/OUTPUT STATEMENTS

8.3 DIGITS STATEMENT -

Function:

Mode:

Format:

Argument:

Use:

Note:

Example:

DIGITS

Sets the number of digits to be printed.

Direct/Program

DIGITS <value>

Value is a number representing the printing accuracy.

A number displayed by PRINT is rounded off to the

nearest value for the last digit. Values too great to

be displayed in this form are printed in exponent form

with the specified number of digits.

DIGITS does not affect the accuracy of calculations.

AUTO4

10 INPUT Aq

20 ;Aq

30 DIGITS 24

40 3A

50 END4

60 4

BASIC

RUN4

? 12689254

1.26893E+06

1.3E+06

BASIC

8-3 Feb. '82

SECTION 8 - INPUT/OUTPUT STATEMENTS

8.4 GET STATEMENT

Function:

Mode:

Format:

Arguments:

Use:

Note:

Feb. '82

Reads one or more characters from the specified binary

file or from the keyboard into a string variable.

Direct/Program

l. GET <stringvar> [COUNT bytes]

2. GET #<channel no.>,<stringvar> [COUNT bytes]

Channel no. refers to the channel number as assigned

by the OPEN or PREPARE statement.

Stringvar is the destination variable for the input

transfer.

Bytes are the number of characters to be read from the

console (format 1) or from a file (format 2) starting

from the position of the file pointer. The default is

one byte.

GET is used to read a specified number of bytes from

either the console or a disk file. The data is placed

into a string variable and can then be processed. It

is important to position the file pointer to the

correction position before each GET, This is done via

the POSIT statement.

Note that if GET reads from the console, user input

will not be echoed on the screen. Once the correct

number of characters is entered, they are processed

without the return key being depressed.

The fastest way to read a disk file is in blocks of

256 bytes (i.e., 256, 512, 768, etc.)

8-4 GET

SECTION 8 - INPUT/OUTPUT STATEMENTS

Examples:
(>

)
4
 rq

Ex. l

10. REM **kUSE OF GET WITHOUT COUNT**4

290 GET BS !GET ONE BYTE FROM KEYBOARD4

RUN

X (Not shown on console)

;BS4

x

BASIC

Ex. 2
10 GET AS COUNT 64

RUN

AAAAAA (not shown on console)

Ex. 3
LIST4

10 OPEN “DATA/8" AS FILE 1

20 !POSITION FILE POINTER TO LOTH BYTE

30 POSIT #1,9

40 GET #1,AS COUNT 10

50 !PRINT LOTH TO 19TH BYTES IN FILE

60 PRINT AS

70 CLOSE

BASIC

Feb. "82

SECTION 8 - INPUT/OUTPUT STATEMENTS

8.5 INPUT STATEMENT

Function:

Mode:

Format:

Arguments:

Use:

Feb. '82

Requests data from a source that is external to the

program.

Direct/Program

1. INPUT #<channel no.><,list>

2. INPUT <“prompt text"> <list>

Channel no. refers to the channel number as defined by

the OPEN or PREPARE statement.

If the “#<channel no.>" is not included (see format 2

above), the system assumes data will come from the

user's terminal. When the # channel number (not 0) is

defined and points to another device, then the

prompting function is excluded. The data is read from

a file or device assigned to that specified channel.

(see OPEN statement, Section 8.9). Data requested

from a file must have been placed into the file by a

prior PRINT statement (see Example 2.).

List contains the names of numeric variables, numeric

array elements, string variables or string array

elements. As with the PRINT statement, if a semicolon

follows the last list item, the carriage return and
line feed normally supplied when a terminator is typed

is suppressed. If a comma follows the last list item,

the cursor is moved to the next 14-column tab position

when a terminator is typed.

Prompt text is a character string delimited by quotes.

When included prompting messages can be specified to

query the user for required information.

During program execution, the programmer can enter

data when prompted. INPUT (format 2 above) causes the

terminal to pause during execution, print the prompt

text and wait for the user to enter data. If no

prompt text is included a question mark is displayed

on the screen.

8-6 INPUT

SECTION 8 - INPUT/OUTPUT STATEMENTS

Examples:

INPUT

The user then enters the values separated by commas.

The values are stored. If insufficient data is given

or too much data is entered, the system displays error

message No. 148 or 150, respectively (see Appendix B)

and no variables are updated. Depending upon how many

values are to be accepted by the INPUT command, the

programmer may include a PRINT statement that reminds

the user of the kind of input required. This is

conveniently done with the multiple format shown in

example 3, below.

Ex. 1

AUTO"

10 INPUT A,B,C{

20 5;C,A,B4

304

BASIC

RUNG

T dg 2 ot

3 1 2

BASIC

Ex. 2

LIST

10 PREPARE “FILEA™ AS FILE 1

20 INPUT A,B,C

30 3#1,A","B","C4Y

40 CLOSE #1! WRITES END OF FILE

50 OPEN "“FILEA™ AS FILE l

60 INPUT #1, X,Y,Z
70 «=5X,Y,Z

RUN

? 5,7,9

5 7 9

BASIC

8-7 Feb. '82

SECTION 8 = INPUT/OUTPUT STATEMENTS

Ex. 3

10 INPUT “YOUR NAME : ?"AS

20 INPUT “YOUR ADDRESS : ?"“BS

Is equivalent to

10 PRINT “YOUR NAME .

20 INPUT AS

30 PRINT “YOUR ADDRESS .

40 INPUT BS

oe

we

Ex. 4

20 OPEN “MAST” AS FILE 3

30 INPUT #3, AS

Feb. '82 8-8 INPUT

SECTION 8 - INPUT/OUTPUT STATEMENTS

8.6 INPUT LINE STATEMENT

Function:

Mode:

Format:

Arguments:

Use:

INPUT LINE

Accepts a line of input from the terminal or file.

DIRECT/ PROGRAM

l. INPUT LINE <string variable>

2. INPUT LINE [{#channel no.],<string variable>

Channel no. is associated with the OPEN statement and

stands for a device or file as a logical unit.

String variable is any legal string variable where the

text from the keyboard or from a specified file is

placed.

INPUT LINE causes the program to accept a line of

characters from the terminal or from the specified

ASCII file.

All characters belonging to the line are read -

spaces, punctuation characters, and quotes. The line

termination characters, carriage return (CR) and line

feed (LF) are always appended to the string regardless

of the actual terminator character; the terminator

character is not echoed. (See Section 2.13.)

No text string (prompting message) can be written with

the INPUT LINE statement; this facility is only

available in the INPUT statement. The PRINT statement

can be used to print out the prompt text.

8-9 Feb. ‘82

SECTION 8 —- INPUT/OUTPUT STATEMENTS

Examples: Ex. 1

10 ;"“YOUR ADDRESS? “34

20 INPUT LINE AS]

30 PRINT TAB(25);AS4

RUN4

YOUR ADDRESS? MORRIS PLAINS, NJ4

MORRIS PLAINS ,NJ

BASIC

Ex.2

LIST{

10 INPUT LINE AS

20 BS=LEFTS$(AS$,LEN(AS)—2)

BASIC

Line 20 removes CR and LF from string AS.

Feb. '82 . 8-10 INPUT LINE

SECTION 8 - INPUT/OUTPUT STATEMENTS

8.7 KILL STATEMENT

Function:

Mode:

Format:

Arguments:

Note:

KILL

Erases the file, named by the string, from the user's

file area.

Program/Direct

KILL <string expression>

<string expression> contains the file descriptor (as

previously defined in Section 1.3) for the file to be

erased. The default file type is /A-ASCII.

A user is not allowed to KILL a file if the volume is

write-protected.

LISTY

10 !

20 ! THIS IS A SIMPLE EXAMPLE OF A

30 ! BACKUP PROCEDURE USING NAME

40 ! AND KILL STATEMENTS.

50 !

55!

57 INPUT “FILE TO BE BACKED UP? “C$

60 OPEN CS AS FILE 1

70 PREPARE “DUMMY” AS FILE 2

80 PRINT #2, TIMES ! PRINT TIME FIRST ON FILE.

90 ON ERROR GOTO 140

100 INPUT #1,AS ! READ FROM CS

110 PRINT #2,AS ! WRITE TO DUMMY

120 GOTO 100

130 !

140 IF ERRCODE<>14 THEN STOP ! STOP IF NOT EOF.

150 CLOSE

160 KILL C$! DELETE OLD FILE.

170 !

180 ! RENAME NEW FILE TO THE OLD NAME.

190 !

8-11 Feb. '82

SECTION 8 - INPUT/OUTPUT STATEMENTS

200 NAME “DUMMY” AS CS

210 CLOSE

220 END

BASIC

Feb. '82 8-12 KILL

SECTION 8 - INPUT/OUTPUT STATEMENTS

8.8 NAME STATEMENT

Function:

Mode:

Format:

Arguments:

Note:

Examples:

Renames a file on disk.

Program/Direct.

NAME <string expressionl> AS <string expression2>

<string expressionl> specifies the name of the file you

want to rename.

<string expression2> is the new name.

Note that type in the file descriptor is the type of

any file. If no type is specified A-ASCII is the

default. If type2 is specified, it must be different

than typel. If typel is specified and not type2, then

the file type will not be changed.

Refer to the 8800 Series Monroe Operating System

Programmer's Reference Manual for available types..

If the file being renamed is referenced by another

program when the NAME statement is executed, an error

messsage will result.

Ex. I

NAME

100 NAME “DRO:OLD” AS “NET”

Ex. 2

The following statement:

200 NAME “DRO:ABC/B" AS “XYZ"

Changes the name of the file ABC/B on disk DRO:. The

NAME statement cannot transfer a file from one device

to another.

8-13 Feb. '82

SECTION 8 — INPUT/OUTPUT STATEMENTS

Ex. 3

120 NAME “NJTT” AS “NJTTL”

changes name of file NJTT to NJTT1 on the system

volume.

Feb. '82 8-14 NAME

SECTION 8 —- INPUT/OUTPUT STATEMENTS

8.9 OPEN STATEMENT

Function:

Mode:

Format:

Note:

Arguments:

Use:

OPEN

Opens a device or a file for sequential access with a

channel number internal to a Monroe BASIC program.

Direct/Program

OPEN <string expr> AS FILE <channel no.> [MODE a% + b&]

The above format without the MODE option opens a file

in MODE 192, a byte 1/0, sharable read, exclusive

write (SREW) mode. To use OPEN for other I/0 modes

and random access refer to Section 14, Advanced

Programming. It is important to note that when

accessing a write-protected disk, the MODE option must

be included (i.e., “MODE 192%" for sharable read and

“MODE 193%" for exclusive read).

String expr is the name of the disk file to be opened.

If no file type is specified the default is /A-ASCII.

Channel no. after AS FILE must be an integer value

between 1 and 250 corresponding to the internal

channel number on which the file is opened.

aZ + b%, used with MODE option, is defined in

Section 14.

OPEN is used to open files which already exist. When

more than a few items are to be read or written, then

the technique used by the READ, DATA and INPUT

statements is inefficient. When a sequence of data

items is to be transferred, the data can be

conveniently handled as a data file through the use of

a “channel”.

8-15 Feb. '82

SECTION 8 - INPUT/OUTPUT STATEMENTS

Note:

Feb. "82

The data file has both an external name by which it is

identified within the system and a channel number that

references the file. The OPEN statement associates

the external file specification with the internal

channel number.

The channel number is referred to by use of the symbol

(number sign) and is followed by the channel number.

Writing and reading from a file is done by use of

INPUT and PRINT statement of a special form. The

PRINT and INPUT formats to be used with the OPEN

Statements are:

PRINT # <channel no.>,{<list>]

INPUT # <channel no.>, <list>

INPUT LINE # <channel no.>, <list>

The <channel no.> is the same value as the expression

in the OPEN statement <channel no.> and the <list> is

a list of variable names, expressions, or constants as

described in the PRINT and INPUT statement descrip-

tions.

GET and PUT can also be used to read from and write to

a binary file respectively.

A file must already be created using the PREPARE

Statement before OPEN can be used. When data is to be

read from an existing file, the file should be opened

by the OPEN instruction.

8-16 OPEN

SECTION 8 - INPUT/OUTPUT STATEMENTS

Examples:

OPEN

Ex. 1

50 OPEN "TEST" AS FILE 1

Ex. 2
10 OPEN “DATA” AS FILE 2

20 INPUT #2,A

30 INPUT #2,B

40 INPUT #2,C7S

The values of the variables A,B, and C7S$ are read from

the file, which was opened as file number 2. The

values are read directly after the values last read.

If reading is to be done from the beginning of the

file, it must be opened again with the OPEN

instruction.

Ex. 3

30 INPUT A,B,CS4 *

40 ;A,B,CS4

50 PREPARE “DATA” AS FILE 24
60 PRINT #2)C$;","3A;","3B
65 ! STORED IN FILE AS -HELLO,12,244
70 CLOSE 24
80 A=0:B=0:CS=" “4
90 ;A,B,CS4

100 OPEN “DATA” AS FILE 44
110 INPUT #4, DS,E,F¥
120 ;E,F,DS4
130 CLOSE 44 ;
140 ENDY _
RUNG

? 12,24,HELLOY
12 24 HELLO
0 0
12 24 HELLO

BASIC

8-17 Feb. '82

SECTION 8 - INPUT/OUTPUT STATEMENTS

8.10 OPTION EUROPE STATEMENT

Function: Replaces periods and commas in "PRINT USING" output by

commas and periods respectively.

Mode: Direct/Program.

Format: OPTION EUROPE n

Arguments: n can be either 1 or 0. A value of 1 replaces periods

and commas as previously specified while a value of 0

(default) negates the replacement.

Use: This statement is used before the PRINT USING statement

a to allow output to conform to European notation. That

is, commas in numbers are replaced by periods and

periods by commas.

Example: LISTY

5 OPEN “PR:" AS FILE 1

10 DOUBLE

20 A=1.23456789E+06

30 ; #1 “FORMAT:”

4O ASS" HPHEEE EE EEE PEE PAA Z PE PEO

50 AS=AS+" FEHR OPE FLEE, PEROT PCEEEZ HOE"

60 ; #1 AS

70 FOR I=0 TO 1

80 OPTION EUROPE [

90 ; #1 USING “OPTION EUROPE = #",I

100 ; #1 USING AS,A,A,A,A,A,A
110 NEXT I

120 END

RUN

FORMAT:

PEPER E RE PLP PEE PCE EE PR PEE EE Ot

PPE PZ REZ EE St

OPTION EUROPE = 0

1234567.89 1,234,567.89 1 234 567.89 1234567 89

1,234,567 89 1 234 567 89

OPTION EUROPE = lI

1234567 ,89 1.234.567,89 1 234 567,89 1234567 89

1.234.567 89 1 234 567 89

Feb. '82 8-18 OPTION EUROPE

SECTION 8 -— INPUT/OUTPUT STATEMENTS

8.11 POSIT STATEMENT

Function:

Mode:

Format:

Arguments:

Use:

Note:

POSIT

Positions the file pointer or reads where file pointer

is positioned.

Program/Direct.

1. Positions File Pointer

POSIT # <channel no.>,<position>

2. Reads File Pointer

POSIT (<channel no.>)

Channel no. corresponds to the internal channel number

on which the file is opened.

Position is the number of bytes from the beginning of

the file where access is to begin. The position

supplied or returned is a floating point number.

Each data file contains a pointer specifying the

present position in bytes from the beginning of the

file. This pointer can be read or positioned to a

specific byte position using POSIT.

Format 1, above, is used to move the file pointer the

specified number of positions from the beginning of the

file (the first position). The first position = 0.

POSIT can be used together with all file handling

instructions. The instruction points to a certain

character or the first character of a character

sequence to be read or written.

Format 2, above, yields the current position of the

file pointer.

To use POSIT for record I/O refer to Section 14,

“Advanced Programming”.

8-19 Feb. '82

SECTION 8 - INPUT/OUTPUT STATEMENTS

Examples:

Feb. "82

80 POSIT #1,154

The file pointer is moved to position 15 (i.e. it

points to the 16th character of file number 1).

Ex. 2

50 A=POSIT(1)4

|

A=the position of the file pointer. In Example l

above, the file pointer is in position 15, i.e. A=15.

Ex. 3
(Read - byte I/0)

LIST{

10 OPEN “VOLL:LISTER” AS FILE 2

20 POSIT #2, 10 .

30 GET #2, AS COUNT 5

40 PRINT AS

BASIC

Ex. 4
(Position - Byte I/0)

LIST4

10 PREPARE “TEST” AS FILE 3

20 ;POSIT(3)

30 ;#3"JOHN ALDER";

40 3;POSIT(3)

BASIC

8-20 POSIT

SECTION 8 - INPUT/OUTPUT STATEMENTS

8.12 PREPARE STATEMENT

Function:

Mode:

Format:

Note:

Arguments:

Use:

PREPARE

Allocates and opens a new file with an internal file

number within the current program.

Direct/Program.

PREPARE <string expr> AS FILE <channel no.>

[MODE aZ% + bZ]

The above format without the MODE option opens a file

in MODE 192, a byte I/0, sharable read, exclusive write

(SREW) mode. To use PREPARE for other I/0 modes and

random access refer to Section 14, Advanced

Programming. It is important to note that when

accessing a write-protected disk, the MODE option must

be included (i.e., “MODE 192%" for sharable read and

"MODE 193%" for exclusive read).

String expression corresponds to an external file

specification for the file to be created and opened.

If no file type is specified, the default is /A-ASCII.

Channel no. after AS FILE must be an integer value

between 1 and 250 corresponding to the internal channel

mumber on which the file is opened.

PREPARE performs the same function as OPEN with the

exception that it first creates the file. If the file

exists before PREPARE, it will be deleted and a new

file established. The use of OPEN assumes that the

file exists.

ee)
 | 21 Feb, '82

SECTION 8 - INPUT/OUTPUT STATEMENTS

Examples: Ex. 1

LIST

10 REM *EXAMPLE OF PREPARE*

20 INPUT “ENTER NEW FILENAME? “ AS

30 PREPARE AS AS FILE 2

40 INPUT “5-LETTER MERCHANDISE CODE? ” BS

50 INPUT “COLOR CODE (R-RED,G-GREEN,B-BLUE)? “CS

60 INPUT “NUMBER REQUIRED (1K,5K, OR 9K)? “DS

70 INPUT "SOURCE CODE (1,2 OR 3)? " ES

80 PRINT #2 BS,CS,DS,ES

90 PRINT BS,C$,DS,ES

100 INPUT “CONTINUE (Y OR N) ? " FS

110 IF F$ = “Y" GOTO 40

120 CLOSE #2

130 END

BASIC

Ex. 2

10 REM~------TESTING THE USE OF PREPARE STATEMENT--—4

20 REM THIS PROGRAM CREATES A FILE ON THE DISK-4

30 PREPARE “PASC:NEWFILE” AS FILE 3%§

40 AS="AB"4

50 BS="CD"4

60 CS="EF"q

70 PUT #3% AS+BS+CS

80 POSIT #3,04

90 GET #3,DS COUNT 64

100 ;DSq

RUNG

ABCDEF

BASIC

Feb. '82 8-22 PREPARE

h
e

SECTION 8 - INPUT/OUTPUT STATEMENTS

8.13 PRINT STATEMENT

Function:

Mode:

Format:

Arguments:

Use:

PRINT

Prints data on a device in ASCII format.

Direct/Program.

1. PRINT

2. PRINT <list>

3. PRINT #<channel no.> <list>

Note: The keyword PRINT can be replaced in the above

formats with a semicolon (e.g., ;<list>).

Channel no. corresponds to the channel number in the

statement. If omitted, the list data will be displayed

on the screen.

List can contain variables, expressions or text

strings. If an element in the PRINT list is not a

simple variable or a constant, the expression is

evaluated before the data is printed. Text strings are

enclosed in quotes.

The positions on a line are numbered from 0 to 39/79

(39 is valid on education model and 79 on business

model). The line is subdivided into columns, fixed

tabulator positions, starting in positions 0, 15, 30,

45, 60, and 75. A comma (,) after a variable or a

string in the PRINT list specifies that the next

element of the list will be printed in the next column.

Two commas together in a PRINT statement cause a column

to be skipped.

A semicolon (;) following a variable or a string in the

list causes the next element in the list to be printed

in the position immediately after the previous

character. If neither a comma or semicolon separates

list items, a semicolon is assumed. If the list is

8-23 Feb. '82

SECTION 8 - INPUT/OUTPUT STATEMENTS

Examples:

terminated by a semicolon (;) no carriage return or

line feed will follow the last item printed.

A PRINT statement without any argument causes a

carriage return and line feed to be printed (i.e. one

blank line).

When a line is filled, the display continues on the

first portion of the next line.

The TAB(con) and CUR(y,x) functions are used to cause

data to be printed in certain positions. These

functions instruct Monroe BASIC where to print the next

value of the PRINT list. Note that for TAB, if the

cursor is already beyond this point, it moves to the

corresponding position on the next row.

If the #<channel no.> is not written, the system

assumes the user's terminal. The data is output to a

file or device assigned to the specified channel.

Ex. lL

Feb. "82

110 PRINT X;Y; 5

120 PRINT (spaces one line)

130 PRINT "VALUE= ";X3, “ SAM2= ";A+2

Ex. 2

10

20

30 PRINT A,B,A+B,A*B,A-B,B-A,A/B

40 END

EY

Ef

hI

lo

|

wo

Pp

ul
lt

pm

uw

Ex. 3

110 PRINT TAB(2) B; TAB(2*R) C

8-24 PRINT

SECTION 8 - INPUT/OUTPUT STATEMENTS

PRINT

Ex. 4 Cursor positioning (Console Only)

PRINT CUR(5,12) “TESTSTRING" ;

Writes TESTSTRING beginning at row 5 and column 12.

The “;" in the PRINT statement above specifies that no

carriage return or line feed will follow.

Ex. 5

100 OPEN "MYFILE” AS FILE 2

200 PRINT #2, A","B","C

Opens a disk file by the name MYFILE. Values are

written (printed) to this file.

8-25 Feb. '82

SECTION 8 -— INPUT/OUTPUT STATEMENTS

8.14 PRINT USING STATEMENT

Function:

Mode:

Format:

Use:

Example:

Specifies the appearance (format) of printed data.

Direct/Program.

See Section Il.

See Section ll.

10 PRINT USING

RUNG

$12.34

BASIC

“S## #3 12.34

8-26 PRINT USING

SECTION 8 — INPUT/OUTPUT STATEMENTS

8.15 PUT STATEMENT

Function: Writes a string to a file or console in binary format.

Mode: Direct/Program.

Format: PUT [#channel no.,]<string>

Arguments: Channel no. refers to the channel number previously

defined by an OPEN or PREPARE statement.

String is either a string variable or a string

expression.

Use: PUT is used to write in binary format a string variable

or expression to a file or the console. POSIT is used

to position the file pointer to the desired point in

the file.

Example: LIST

10 PREPARE "FILA/B” AS FILE 2

20 ! FILEA/B SPECIFIES BINARY DATA FILE

30 INPUT “ENTER DATA? ™ AS

40 PUT #22,AS

50 POSIT #2,0

60 GET #2,BS COUNT 10

70 =5BS

RUN4

ENTER DATA? “JOHN SMITH"4

JOHN SMITH

BASIC

PUT 8-27 Feb. '82

Jd

SECTION 9

PROGRAM CONTROL STATEMENTS

SECTION 9

PROGRAM CONTROL STATEMENTS

9.1 INTRODUCTION

In previous sections, program examples have been executed top to

bottom in order of their line numbers. In most applications,

however, a programmer needs the flexibility of specifying alternate

execution routes. For example, branching from one point of a program

to another or reexecuting a given set of code for a specifying number

of times may be required. Control statements are the mechanism which

allows the programmer to control the flow of a program, and to

interrupt and resume sequential execution at will. Some of these

statements may also be used for debugging. Table 9-1 lists the

control statements discussed in this section.

Table 9-1. Program Control Statements

Statement Function

BYE Transfers control from Monroe BASIC to the

Operating System.

CHAIN Loads and executes a program from a program

currently being executed.

COMMON Transfers variables to the next CHAINed

program.

DEF Defines single or multi-line user defined

functions.

END Terminates execution of a Monroe BASIC

progran.

FNEND Terminates a multi-statement function

definition.

FOR Provides the specifications for repetition in

a program loop.

GOSUB Directs program control to the first statement

of a subroutine.

9-1 Feb. '82

SECTION 9 - PROGRAM CONTROL STATEMENTS

Table 9-l.

Feb.

Statement

GOTO

IF...THEN...ELSE

NEXT

NO TRACE

ON ERROR GOTO

ON...GOSUB..

ON.. GOTO

ON...RESTORE

PAUSE

ON...RESUME

RESUME

RETURN

"82

Program Control Statements (Cont.)

Description

Transfers control unconditionally to the

statement with the specified line number.

Executes a specified statement or transfers

control to another line depending upon a

stated condition.

— the end of a FOR loop.

Disables trace mode.

Specifies a user routine for error handling.

Transfers control conditionally to one of

several subroutines or to entry points to one

subroutine.

Transfers control to one of several lines

depending on the value of the expression at

the time the statement is executed.

Restores the DATA pointer to one of several

lines in the program.

Pauses the current BASIC program task.

Transfers control to one of several places in

error handling situations.

- Transfers control from an ERROR subroutine.

Transfers control in a subroutine back to the

calling GOSUB or causes a return from a

multi-line function.

SECTION 9 — PROGRAM CONTROL STATEMENTS

Table 9-1. Program Control Statements (Cont.)

Statement Description

STOP Stops program execution.

TRACE Prints line numbers of designated executed

program line.

WEND Defines the limit of the WHILE loop.

WHILE Defines the specific condition for leaving a

loop.

It is important to note that transfer of program control is not

allowed from inside a function definition or subroutine to another

part of a program. Also, transfer is not allowed from any point in a

program to inside the body of a function definition or subroutine.

If such an attempt is made, a run-time error will result in BASIC

versions R1-04 or later.

9-3 Feb. ‘82

SECTION 9 — PROGRAM CONTROL STATEMENTS

9.2 BYE STATEMENT

Function: Finishes the working session in Monroe BASIC and

returns control to the operating system.

Mode: Direct/Program

Format: BYE

Action: BYE closes and saves any files remaining open for

that user and returns control to the operating

system.

Examples: 1. BASIC

BYE

2. | |
| EXISTING PROGRAM |

| |
|
100 BYE

Feb. '82 9-4 BYE

m
a
t

SECTION 9 — PROGRAM CONTROL STATEMENTS

9.3 CHAIN STATEMENT

Function:

Mode:

Format:

Arguments:

Use:

CHAIN

Loads and executes a program.

Direct/Program

CHAIN <string expression>

String expression contains the file descriptor

specifying the name of a disk file from which a

Monroe BASIC program is to be loaded. The default

file type is /B-BAC. See Section 1.3 for a

definition of the file descriptor.

If the user program is too large to be loaded into

memory and run in one operation the user can segment

the program into two or more separate programs. The

CHAIN instruction is used as a logical termination

of one program to call the next one. Each program

is called by its name. The program in the computer

is erased and the new one is loaded. The lowest

numbered program line is executed first as though a

RUN command had been used. The CHAIN instruction is

the last instruction to be executed. The last

program in a chain does not need any CHAIN

statement, but control is often transferred by CHAIN

back to a program that allows the user to select the

program to be run.

When CHAIN is executed, all open files for the

current program are closed. Any files to be used in

common by several programs should be opened in each

program.

9=5 Feb. '82

SECTION 9 -— PROGRAM CONTROL STATEMENTS

Note: Variables can be passed on to a CHAINed program by

means of the COMMON instruction.

Example: BASIC

NEW"

AUTO

10 COMMON A,BS=10,C4

20; “AB="3A4 (Note: % = space)

30; “BS=6";BS4

40; C+A¥

50 END4

604

BASIC

SAVE TESTAY

BASIC

NEW4

“BASIC

AUTO

10 COMMON A,BS=10,C

20 INPUT Aq

30 INPUT BSq

40 INPUT CY

50; A,BS,CY .

60 CHAIN “TESTA"Y

704

BASIC

SAVE TEST4

BASICY

RUNY

?1¢

2Aq

224

l A 2

A=1

Feb. '82 9-6 . CHAIN

SECTION 9 - PROGRAM CONTROL STATEMENTS

9.4 COMMON STATEMENT

Function:

Mode:

Format:

ae Arguments:

Use:

Note:

Example:

“es COMMON

Enables variables to be passed from one program to

another when the programs are CHAINed together.

Program

1. COMMON <numeric array>[(exprl:]expr2[,...])]

2. COMMON <string variable>[([expri:]Jexpr2[,...])]

{=expr3]

Expr2 is a numeric expression specifying the maximum

subscript values. The default lower limit is either

0 or 1 depending on the most recent OPTION BASE

statement. The default value is 0.

The array can be any number of subscripts depending

upon the available memory.

Expr3 is the maximum string length for a variable or

for each of the strings in the array.

Exprl specifies a non default lower limit value for

each subscript. It can be overridden individually

for each index. This is done by replacing the

single maximum index for each dimension by two

values separated by a colon.

The variables being passed must be present in the

COMMON statement and the COMMON statement(s) must be

executed before any other statement. The passed

variables must look alike in all programs where the

common variables are to be used.

The length of common string variables must be

declared. The COMMON statement replaces the DIM

statement.

Common variables will not be passed from a

compressed BASIC program (Type BAC) to an ASCII

Monroe BASIC program (ASCBAS).

10 COMMON A%,D(8) ,F$(20)=40

Also, see example for CHAIN, Section 9.

9=7 Feb. '82

SECTION 9 - PROGRAM CONTROL STATEMENTS

9.5 DEF STATEMENT

Function:

Mode:

£3 Forma

Arguments:

Note:

Feb. "82

Defines single and multiple line user-defined

functions.

Program

1. DEF FN<name>[type] [(arguments)]=<expression>

2. DEF FN<name>[type][(arguments)]{LOCAL variables]

<name> is any valid variable name.

Type is optional and can be either % (or ".") or S.

Arguments consist of dummy variables. They are

optional. If included, the same number of arguments

must appear in the function reference.

Expression can be any valid arithmetic or string

expression which matches the type of the function.

Variables are temporary variables needed within a

function definition. The LOCAL keyword makes

possible the local variable name option. Variables

should be declared local to the function in order to

protect the global variables from being disturbed.

This eliminates the need for using different

variable names outside the function. Arrays cannot

be declared LOCAL. String variables specified as

LOCAL must have an explicit length. (See Example

below.)

Type will default to either FLOAT or INTEGER if not

specified; which one depends on the current mode,

FLOAT or INTEGER. Make sure when editing or

revising the program that the type in effect is

consistent with type in your program. Otherwise,

erroneous results may occur.

9-8 DEF

SECTION 9 - PROGRAM CONTROL STATEMENTS

Use: Monroe BASIC allows the programmer to define user

a functions and call these functions in the same

Manner as standard functions such as SIN. User-

defined functions can consist of a single line (see

format 1, above) or multiple lines (see format 2).

A multiple line DEF function differs from the single

line functions due to the absence of an equal sign

following the function designation on the first

line. Any number of arguments of any type or any

mixture of types may be used including zero. Within

the multiple line function definition there must be

statements of the form: RETURN <expression> and

FNEND.

When the RETURN statement is encountered, the

expression is evaluated and used as the value of the

function, and exit is performed from the definition.

The definition may contain more than one RETURN

statement, as can be seen from the example 2 below.

Multiple line DEF functions can be called

recursively; one multiple line function definition

can refer to itself or another multiple line

function definition. The same rules apply here as

for the nesting of program loops. There must be no

transfer from within the definition to outside its

boundaries or from outside the definition into it.

The line numbers used by the definition must not be

referred to elsewhere in the program. If ON ERROR

GOTO is used inside the function it will be reset to

the line number that was active in the calling

program when the function exits.

DEF 9-9 Feb. '82

SECTION 9 - PROGRAM CONTROL STATEMENTS

If temporary variables are needed within a function
definition they should be declared local to the
function in order to protect the global variables
from being disturbed. The LOCAL modifier makes
possible the local variable name option. See
example 4 below.

Examples: Ex. 1

Single Line Function:

10 DEF FNA(X,Y)=X+X*Yq

Ex. 2

Multiple Line Function: The function below
determines the larger of two numbers and returns
that number. Such use of the IF - THEN instruction
is frequently found in multiple line functions:

10 DEF FNM(X,Y)4
20 IF Y<=X THEN RETURN X4¥
30 RETURN Yq

40 FNEND4

Ex. 3

Multiple Line Function: This example shows a
recursive function that computes the N-factorial.
(However, there are more efficient, non-recursive
routines for the computation of N-factorial.):

LIST4
5 EXTEND

10 DEF FNFAK(MZ)
20. IF Mé=0% THEN RETURN 1% ELSE RETURN

M%* FNFAK(M%-1%)
30 FNEND
32 REM FACTORIAL FACTOR MUST BE <9
35 INPUT “VALUE FOR FACTORIAL (<9)?: "X
40 PRINT X;"-FACTORIAL EQUALS ";FNFAK(X)
50 END

RUNG
VALUE FOR FACTORIAL (<9)?: 44
4-FACTORIAL EQUALS 24

BASIC

Feb. '82 9-10 DEF

SECTION 9 — PROGRAM CONTROL STATEMENTS

Ex. 4

This example shows the use of the LOCAL option.

LIST¢

10 DEF FNA(X) LOCAL A,AS=10

20 A=33: AS="LOCAL"

30 PRINT AS

40 PRINT A

50 RETURN 5*X

60 FNEND

100 A=22: AS="GLOBAL”

110 PRINT AS

120 PRINT A

130 PRINT FNA(8)

RUNG

GLOBAL

22

LOCAL

33

40

BASIC

Ex. 5
The next example shows a string function:

LIST4

100 PRINT FNV1S("“AABBCCDDEEFF" ,5%,10%)

110 END

120 DEF FNV1S(AS,BZ,CZ)

130 IF BZ=C% THEN RETURN LEFTS(AS,B%) ELSE

RETURN RIGHTS(AS ,C%-B2Z)

140 FNEND

RUN

CCDDEEFF

BASIC

DEF 9-11 Feb. '82

SECTION 9 — PROGRAM CONTROL STATEMENTS

9.6 END STATEMENT

Function: Terminates a Monroe BASIC program.

Mode: Program

Format: END

Use: The END instruction is normally, but need not be,

the last statement of a program. After END there

must be only subroutines and functions which can be

called by the main program. END closes all files.

Note: The variables keep their values after END. END

should be on a line by itself.

Example: Ex. 1

10 REM **q

20 A$="5000"4

30 OPEN “XRAY” AS FILE 14

40 PUT AS4

50 CLOSEY

60 END{

Ex. 2
NEW4

BASIC

AUTO

10 READ A,B,C¥

20 IF A=99 GOTO 604

30 sA5B3C3q

40 GOTO 104

50 DATA 4,5,6,1,2,3,99,99,994

60 END {

70 4

BASIC

Feb. '82 9-12 END

SECTION 9 -— PROGRAM CONTROL STATEMENTS

9.7 FNEND STATEMENT

Function: Terminates a multiple statement function definition.

Mode: Program

Note: This statement must never be reached by sequential

statement execution. The function definition should

be exited before this statement by a RETURN <expr>.

Example: LISTY

10 DEF FNMOT (X,Y)

20 IF Y >=X**3 THEN RETURN X

30 RETURN Y

40 FNEND

BASIC

FNEND 9-13 Feb. ‘82

SECTION 9 - PROGRAM CONTROL STATEMENTS

9.8 FOR STATEMENT

Function:

Format:

Mode:

Arguments:

Feb. '82

Sets up program loops by causing the execution of one

Or More statements for a specified number of times.

NEXT statement is also necessary.

FOR <variable> = <expression> TO <expression>

[STEP expr]

NEXT <variable>

Program

The variable in the FOR ... TO statement is initially

set to the value of the first expression. The

Statements following the FOR are then executed. When
the corresponding NEXT statement is encountered, the

variable is incremented by the value indicated as the

STEP interval. The NEXT statement is specified

separately. See NEXT.

The initial value is assigned to the variable and the
loan test is made. When the step value is positive and

the variable value exceeds the TO expression, then the

next statement executed is the one following NEXT.

If the step value is negative and the expression

exceeds the variable, the next statement executed is

the one following NEXT. Otherwise, the program will

execute statements between FOR and NEXT and repeat the

test.

Program execution for a step value of 0 does not end in

the normal manner. It continues until interrupted by

the user.

The expressions within the FOR statements are evaluated

once upon initial entry to the loop. The test for

completion of the loop is made prior to each execution

of the loop,

9-14 FOR

SECTION 9 -— PROGRAM CONTROL STATEMENTS

FOR

Program loops have four characteristic parts:

l. Initialization to set up the conditions which

must exist for the first execution of the

loop.

2. The body of the loop to perform the operation

to be repeated.

3. The modification which alters some value and

makes each execution of the loop different.

4, The termination condition, an exit test which,

when satisfied, completes the loop. Execution

continues to the program statement following

the loop.

If the STEP expression is omitted from the FOR

statement, +1 is the assumed value. Since +l is a

common STEP value, that position of the statement is

frequently omitted.

The control variable can be modified within the loop.

When control falls through the loop, the control

variable retains the last value used within the loop

plus the step value.

FOR loops can be nested but not overlapped. Nesting is

a programming technique in which one or more loops are

completely within another loop. The depth of nesting

depends upon the amount of user memory space available.

The field of one loop must not cross the field of

another loop.

It is possible to leave a FOR NEXT loop without the

control variable reaching the termination value. A

conditional or unconditional transfer can be used to

exit from a loop. When reentering a loop which was

left earlier without being completed remember that the

terminator and STEP values are not reevaluated.

9-LS Feb. ‘82

SECTION 9 - PROGRAM CONTROL STATEMENTS

Note: The FOR statement is especially suited for using

integer variables; it results in faster loop

execution.

Examples: Ex. 1

This program demonstrates a FOR - NEXT loop. The loop

is executed 20 times. When the value for A is 20,

control leaves the loop and displays the last value of

A. A STEP value of +l assumed since FOR contains no

STEP variable.

10 FOR AZ=1Z% TO 20244 ©

20 PRINT "A="; AZY

30 NEXT AZ4

40 PRINT “A="; AZ4

RUNY

=]

=2

A=21

BASIC

The loop consists of lines 10, 20 and 30. The numbers

A=1 to A=20 are printed when the loop is executed.

After A=20, control passes to line 40 which causes

A=21 to be displayed.

Ex. 2
Acceptable nesting Unacceptable nesting

20 FOR A= 1 TO 10 100 FOR A = 1 TO 10

30 FOR B= 2 TO ll 110 FOR B = 2 TO ll

40 NEXT B 120 NEXT A

50 FOR C = 1 TO 10 130 NEXT B

60 NEXT C

70 NEXT A

Feb. ‘82 9-16 FOR

gos

SECTION 9 — PROGRAM CONTROL STATEMENTS

9.9 GOSUB STATEMENT

Function: Se

Mode:

Format:

Arguments:

Use:

Example:

GOSUB

Transfers control to the first of a sequence of
statements that form a subroutine,

Program

GOSUB <line no.>

Line no. is the first line number of the called

subroutine. Control is transferred to that line in the

subroutine.

A subprogram is a sequence of instructions which
perform a task that may be repeated several times in a
Program. To call such a sequence of instructions,
Monroe BASIC provides subroutines and functions.

A subroutine is part of a program that received control
upon execution of a GOSUB statement. Upon completion
of the subroutine a RETURN statement is used to exit
the subroutine and continue program execution. At this
point control is transferred to the Statement following
the GOSUB statement.

The only instruction that may be used to exit a
subroutine is RETURN.

150 GOSUB 1300

9-17 Feb. '82

SECTION 9 - PROGRAM CONTROL STATEMENTS

Feb. "82

300 GOSUB 1300

400 GOSUB 1800

1300 REM ** SUBROUTINE #1**

1310 FOR IT = J TOR

1320 LET’'I = 2 * N

1330 PRINT [I

1340 NEXT I

1350 RETURN

1800 REM ** SUBROUTINE # 2+XX

1900 RETURN

2900 END

GOSUB

SECTION 9 — PROGRAM CONTROL STATEMENTS

9.19 GOTO STATEMENT

Function:

Mode:

Format:

Arguments:

Use:

Note:

Example:

GOTO

Transfers program execution unconditionally to a

specified program line.

Nirect/Program

GOTO <line no.>

Line no. is usually not the next sequential line in the

program. GOTO must be written as one word in EXTEND

mode.

The GOTO statement is used when it is desired to

unconditionally jump to a line other than the next

sequential line in the program. It is possible to jump

backward as well as forward within a program.

When written as a part of a multiple statement line,

GOTO should always be the last statement on the line,

since any statement following the GOTO statement on the

Same line will never be executed.

The GOTO statement can be used in the direct mode after

a pause, i.e., STOP or CTRL C.

110 X = 20

120 PRINT X

130 X=X++1

140 IF X = Z THEN 900

150 GOTO 120

900 END

9-19 Feb. '82

SECTION 9 - PROGRAM CONTROL STATEMENTS

9.11 IF...THEN...ELSE STATEMENT

Function:

Mode:

Format:

Arguments:

Feb. "82

Executes a specified statement depending upon a stated

condition.

Program

IF <condition> | THEN <argumentl> [ELSE argument 2]

GOTO

Condition is a relational expression. The test of

whether or not a given condition is true is normally

performed by means of relational operators. They

permit comparisons to be performed that determine the

relationship of variables, constants, or expressions to

each other. Note that condition may not reference the

same function (e.g., FNAS(x) < > FNAS(y)).

The result of the comparison is a numerical value

indicating whether a given relationship between two

data items is true or false.

Argumentl can be a line Mumber or one or, more

statements. The line number when present is the line

number control is transferred to when the condition

(relational expression) is evaluated to be true (<>0).

The statement when present is any Monroe BASIC

statement(s) which is executed when the condition

(relational expression) is evaluated to be true (<>0).

Argument2 can be a line number or one or more

statements. This line number when present (requires

ELSE keyword) is the line number control is transferred

to:when the condition (relational expression) is

evaluated to be false (0).

9-20 IF...THEN

SECTION 9 -— PROGRAM CONTROL STATEMENTS

Note:

Use:

IF...THEN

The statement(s) when present (requires ELSE keyword)

is any Monroe BASIC statement(s) which is executed when

the condition (relational expression) is evaluated to

be false (0).

THEN may be replaced by GOTO in the format but the

arguments are then restricted to line numbers only.

IF...THEN...ELSE is a built-in test which allows a

program to determine which of two routes it should

choose during execution.

The specified condition is tested. If the condition is

met (the expression is logically true), control is

transferred to the line number given after THEN or the

Statement given after THEN is executed. If the

condition is not met (the expression is logically

false), the program execution continues at the program

line following the IF statement if the "ELSE" clause is

not included.

THEN may be followed by either a line number or one or

more Monroe BASIC statements. If Monroe BASIC

statements are given and the condition is met, these

Statements will be executed before the program

continues with the line following the IF statement.

The condition applies to all statements that follow on

the same line as the IF statement.

ELSE, when included, is followed either by a line

number which is used as a jump address or one or more

Statements which are executed before the line following

the IF statement.

IF statements can be nested, but they must all fit on

one program line.

9-21 Feb. '82

SECTION 9 - PROGRAM CONTROL STATEMENTS

Examples:

When relational expressions are evaluated, the

arithmetic operations take precedence in their usual

order. The relational operators have equal weight and

are evaluated after the arithmetic operators but before

the logical operators.

The Relational Operators are:

= Equal

<> Not Equal

Less Than

Greater Than

<= Less Than or Equal

>= Greater Than or Equal

A relational expression has a value of ~-l if it is

evaluated to be true and zero if it is evaluated to be

false. For example:

5+6*5>15*2 is true.

Relational operators can be used to perform comparisons

between two strings for example, whether AS=BS. .

In performing string comparisons, the system does a

left-to-right comparison. This is based on the ASCII

collating sequence of the numeric codes in the

characters of the strings being compared (including

such characters as leading and trailing spaces).

Ex. 1

Feb. "82

170 IF A<B+3 THEN 160

180 IF A=B+3 THEN PRINT “A HAS THE VALUE ”

190 IF A>=B THEN T1=B

200 IF AS=BS THEN PRINT “EQUAL “:A=1/B

210 IF ADB THEN PRINT “GREATER “ ELSE PRINT

“NOT GREATER”

220 IF X THEN Y=X

230 IF X=0 GOTO 1600

9-22 IF...THEN

oo

SECTION 9 - PROGRAM CONTROL STATEMENTS

Ex. 2

TRACE

10 REM LIF...THEN...ELSE EXAMPLE4

15 34

20 INPUT “F="F4

40 C=(F-32)*5/94

50 IF F>=0 AND F<=32 THEN 709

60 IF F>=212 THEN 165 ELSE 1904

70 REM PATH TAKEN FOR F=0 TO 324

80 REMY

90 REMY

100 ; “F=s" F,"C=" C ! PATH TAKEN FOR F>32 TO <2124

110 GOTO 154

165 REM PATH TAKEN FOR F >= 2124

170 ; “END OF TEST"

180 END

RUN

10 «15

20 =-30¢4 (USER ENTERS -30)

40 50 60 100 F=-30 C=-34.444

110 15

20 ¥F=214 (USER ENTERS 21)

40 50 709 80 90 100 F=21 =-6§.11111

110 15

20 ¥F=384 (USER ENTERS 38)

40 50 60 100 F=38 C=3.33333

110 15

20 F=4009 (USER ENTERS 400)

40 50 60 165 170 END OF TEST

180

BASIC

IF...THEN 9=23 Feb. '82

SECTION 9 - PROGRAM CONTROL STATEMENTS

9.12 NEXT STATEMENT

Function:

Mode:

Format:

Arguments:

Use:

Example:

Feb. "82

Terminates a program loop which began with a FOR

statement.

Program

NEXT <variable>

Variable is the same variable specified in the FOR

statement. Together the FOR and NEXT statements

describe the boundaries of the program loop.

When execution encounters the NEXT statement for

positive step values, the computer adds the STEP

expression value to the variable. When the condition

for execution of the FOR statement is no longer true,

it checks to see if the variable is still less than or

equal to the terminal expression value. When the

variable exceeds the terminal expression value, control

falls through the loop to the statement following the

NEXT statement.

If the step value is negative and the expression

exceeds the variable, the next statement executed is

the one following NEXT; otherwise, the program will

execute statements between FOR and NEXT and repeat the

test.See FOR statement, Section 9.8.

See FOR statement, Section 9.8.

Ne
 I 24 NEXT

SECTION 9 - PROGRAM CONTROL STATEMENTS

9.13 NOTRACE STATEMENT

Function: Terminates the printout of line numbers initiated by

TRACE statement.

Mode: Direct/Program

Format: NOTRACE

Example: 10 PRINT “BEGIN "§

20 K=-149

30 TRACEY

40 IF K>1 THEN 804

50 K=K+14

60 PRINT “NUMBER “3K4

70 GOTO 404

80 A=Kf

90 NO TRACE4

100 PRINT “STOP"4

RUNG

BEGIN

40 50 60 NUMBER 0

70 40 50 60 NUMBER 1

70 40 50 60 NUMBER 2

70 40 80 90

STOP

The TRACE function is disabled before line 40 and

after line 90.

NOTRACE 9-25 Feb. '82

SECTION 9 - PROGRAM CONTROL STATEMENTS

9.14 ON ERROR GOTO STATEMENT

Function:

Mode:

Format:

Arguments:

Use:

Feb. '82

Specifies a user routine for error handling.

Program

ON ERROR GOTO [line no]

The specified line no. is the start of an error

routine.

Normally the occurrence of an error causes termination

of the user program execution and the printing of a

diagnostic message.

Some applications may require the continued execution

of a user program after an error occurs. In these

situations, the user can execute an ON ERROR GOTO

statement within the program.

This statement is placed in the program prior to any

executable statements with which the error handling

routine deals. The system will then know that a

routine exists that will take over and analyze any 1/0

or computional error encountered in the program and

possibly make an attempt to recover from that error.

The variable ERRCODE is associated with the statement

and available for the user program.

For Error Codes and Messages see Appendix B.

If there are portions of the user program in which any

errors detected are to be processed by the system and

9-26 ON ERROR GOTO

SECTION 9 - PROGRAM CONTROL STATEMENTS

not by the user program, the error routine can be

disabled by:

line no ON ERROR GOTO

without a line number following GOTO, which returns

control of error handling to the system.

Note: For proper operation of the ON ERROR GOTO <line no.>

statement, the error handling routine must execute a

RESUME.

Example: 10 REM THIS PROGRAM ACCEPTS ONLY POSITIVE NUMBERS. 4

20 ON ERROR GOTO 804

30 REM “CON:" IS OPEN AS FILE O24

40 INPUT “POSITIVE NUMBER"A

50 Z=SQR(A)4
60 PRINT “SQUARE ROOT OF:” A "IS----- 5" 24

70 STOP4
80 FOR I=1 TO 104

85 ; CHRS(7) ! SYSTEM BEEPS]

87 NEXT I4

90 PRINT “ENTRY ERROR----ONLY POSITIVE NUMBERS”

95 PRINT "ALLOWED" 4

100 RESUME4

110 END

RUNG

POSITIVE NUMBER? 25

SQUARE ROOT OF 25 IS ----~ >5
STOP IN LINE 70

BASICY

RUNY

POSITIVE NUMBER? -10

(system beeps 10 times)

ENTRY “RROR----ONLY POSITIVE NUMBERS ALLOWED

BASIC

ON ERROR GOTO 9-27 Feb. '82

SECTION 9 - PROGRAM CONTROL STATEMENTS

9.15 ON...GOSUB...STATEMENT

Function:

Mode:

Format: |

Arguments:

Use:

Example:

Feb. ‘82

Conditionally transfers control to one of several

subroutines or to one of several entry points in one

subroutine.

Program

ON <expression> GOSUB <line no. 1> [lime nos Zyeea]

Depending on the rounded integer value of the

expression, control is transferred to the subroutine

which begins at one of the line numbers listed. When

the subroutine returns, execution is resumed at the

statement following the ON GOSUB statement. If the

value of the expression addresses a line number outside

the range of the list, an error message will be

displayed.

Since it is possible to transfer control into a

subroutine at different points, the ON - GOSUB

statement could be used to determine which part of the

subroutine should be executed. An error message will

be generated if outside the range. See also ON oe

GOTO statement.

10 FOR X = 1.7 to 5.9 STEP .64

20 PRINT X34

40 ON X GOSUB 1300, 200, 1300, 400, 1300, 13004

50 PRINT AS

60 NEXT X4

70 GOTO 99994

200 LET AS = “SUB200"4

210 RETURN

400 LET AS = “SUB400"4

410 RETURNY

1300 LET A$ = “SUB1300"4

1310 RETURN

9999 END

9-28 ON...GOSUB...

SECTION 9 — PROGRAM CONTROL STATEMENTS

ON...GOSUB...

Control is transferred to:

line

RUNY

1.7

2.3

29

3.5

4.1

4.7

5.3

5.9

BASIC

200 for X = 1.7

200 2a3

200 2.9

1300. 3.5

400 4.1

1300 4.7

1300 5.3

1300 5.9

SUB200

SUB200

SUB1300

SUB1300

SUB1400

SUB1300

SUB1300

SUB1300

9-29 Feb. "82

SECTION 9 -— PROGRAM CONTROL STATEMENTS

9.16 ON...GOTO STATEMENT

Function:

Mode:

Format:

Arguments:

Use:

Example:

Feb. '82

Transfers control to one of several lines depending on

the value of the expression at the time the statement

is executed.

Program

ON <expression> GOTO <line no.1>{,line no.2,...,...]

Expression can be any legal arithmetic expression.

Line no. is where control is transferred to as

illustrated in the example below.

ON. ..GOTO permits the program to respond to multiple

choices. It eliminates the necessity of separate IF

statements for each alternative. The expression is

evaluated and rounded to the nearest-integer. This

integer is used as an index or as a pointer to one of

the line numbers in the list. An error message will be

generated if it is outside the range.

100 ON A/B GOTO 1000,1500,1700

transfers control to:

1. line number 1000 if .5 < = A/B < 1.5

2. line number 1500 if 1.5 < = A/B < 2.5

3. line number 1700 if 2.5 < = A/B < 3.5

4, gives error if A/B < 0.5

5. gives error if A/B > 3.5

9-30 ON...GOTO

SECTION 9 —- PROGRAM CONTROL STATEMENTS

9.17 ON...RESTORE STATEMENT

Function:

Mode:

Format:

Arguments:

Use:

Example:

ON...RESTORE

Restores the DATA~pointer by the same selection routine

as the ON-GOTO statement.

Program

ON <expression> RESTORE <line no.1>[,line no.2,...,...]

Expression can be any legal arithmetic expression.

Line no. is where the DATA-pointer is restored to as

explained below.

This statement can be used to reset the DATA-pointer to

a specific point in the data buffer. The expression is

evaluated and rounded to the nearest integer. This

integer is used as an index to set the DATA-pointer to

the corresponding list number. An error message will

be generated if it is outside the range.

AUTO4 °

10 FOR X=1 TO 34

20 READ A,B,C¥

30 ON X RESTORE 60,70,804

40 PRINT A,B,C

50 NEXT Xq

60 DATA 1,2,34

70 DATA 4,5,64

80 DATA 7,8,94

90 END4

RUNG

12 3

123

456

BASIC

9=31 Feb. '82

SECTION 9 —- PROGRAM CONTROL STATEMENTS

9.18 ON...RESUME STATEMENT

Function:

Mode:

Format:

Arguments:

Use:

Example:

Feb. ‘82

Transfers control to one of several line numbers

depending on the value of the expression in error

handling situations.

Program

ON <expression> RESUME <line no.1>[,line no.2,...,...]

Expression can be any legal arithmetic expression.

This statement is used to accomplish a conditional

return from an error handling routine. The expression

is evaluated and rounded to the nearest integer. This

integer is used as an index to one of the line numbers

in the list. ON...RESUME is used with ON ERROR GOTO as

described in Section 2.12.

10 ON ERROR GOTO 100

100 REM ERROR HANDLER

150 ON B RESUME 1000, 2000

9=32 ON. . «RESUME

SECTION 9 - PROGRAM CONTROL STATEMENTS

9.19 PAUSE STATEMENT

Function:

Mode:

Format:

Use:

Example:

PAUSE

Pauses the current BASIC program task.

Direct/Program

PAUSE

The PAUSE statement allows the user to temporarily

suspend the current BASIC program task, in order to

communicate with the operating system or another task,

without losing the current BASIC program workspace.

The PAUSE statement should be used (rather than

CTRL~A) to invoke and communicate with another task if

that task requires interactive console input. The

PAUSE statement is identical in function to the
monitor PAUSE command, but in addition, also closes

the BASICERR file, if it is open; other files are not

affected. The PAUSE statement allows the system disk
to be changed; see Section 2.14 for additional
information.

The paused BASIC program task can be resumed by using

the operating system CONTINUE command or the CONT key.

If the BASIC task was invoked by typing “BASIC"
(rather than using the RUN or START commands), then
the task (USPO) can be resumed by simply typing the

CONT key in response to the monitor prompt. If the

BASIC program was given a different task Name, then

the task can be resumed simply by typing in the task

name following the monitor prompt and terminating it
with the CONT key, or by using the CONTINUE command

(see the 8800 Series Utility Programs Programmer's

Reference Manual for additional information).

See Section 2.14,

9-33 Feb. '82

SECTION 9 —- PROGRAM CONTROL STATEMENTS

9.20 RESUME STATEMENT

Function: Transfers control to a specified line number from an

error subroutine or to the statement which caused the

error.

Mode: Program

Format: RESUME [line no.]

Arguments: Line no. specifies where program execution will

continue. If it is omitted, program execution

continues at the beginning of the statement which

caused the error.

Example: LIST

10 REM THIS PROGRAM WORKS FOR ONLY POSITIVE NUMBERS.

15 REM ----~ FUNCTIONALITY OF RESUME--~-—

20 ON ERROR GOTO 80

30 REM “CON:" IS ALWAYS OEPN AS FILE 024

40 INPUT “POSITIVE NUMBER" A

50 Z=SQR(A) 2
60 PRINT “SQUARE ROOT OF:" A “IS-------- >" Z

70 STOP
80 ; “ELNSTEIN-~--- ONLY POSITIVE NUMBERS ALLOWED”

85 3; CHRS(7)

90 RESUME 40

100 END

BASIC

Feb. '82 9-34 RESUME

SECTION 9 — PROGRAM CONTROL STATEMENTS

9.21 RETURN STATEMENT

Function:

Mode:

Format:

Argument:

Use:

RETURN

Transfers control back to the statement after the

calling GOSUB or causes a return from a multiple line

function.

Program

1. RETURN

2. RETURN <expression>

Expression is any valid Monroe BASIC expression

containing constants and variables.

Format 1 is used to transfer control back to the

statement following the original GOSUB statement.

After having reached the subroutine through a GOSUB or

an ON...GOSUB statement, the subroutine is executed

until the interpreter encounters a RETURN statement.

Subroutines can be nested, that is one subroutine can

call another subroutine or itself.

Format 2 is used when RETURN is part of a multiple line

DEF function. When this RETURN statement is

encountered, the expression is evaluated and used as

the value of the DEF function. An exit is then

performed from the definition. The DEF can contain

more than one RETURN statement.

9-35 Feb. '82

SECTION 9 — PROGRAM CONTROL STATEMENTS

Examples: Ex. lL

LIST

50 GOSUB 1300

1300 REM ** SUBROUTINE 1***

1400 LET k=1

2000 RETURN

9999 END

BASIC

Ex. 2

AUTO4

10 DEF FNM (X,Y)4

20 IF Y<X THEN RETURN X94

30 RETURN Y4

40 FNEND4

50 4

BASIC

Feb. '82 9-36 RETURN

SECTION 9 ~- PROGRAM CONTROL STATEMENTS

9.22 STOP STATEMENT

Function:

Mode:

Format:

Use:

Example:

STOP

Terminates program execution.

Program

STOP

The STOP statement terminates the execution of the

program. The variables are not reset and the open

files remain open. Program execution can be

continued by one of these commands: CON or GOTO.

The STOP statement differs from the END statement in

that it causes Monroe BASIC to display the statement

number where the program halted. It can occur

several times in a single program and is recommended

for debugging purposes.

The message displayed is:

STOP IN LINE line number

9=37 Feb. '82

SECTION 9 -— PROGRAM CONTROL STATEMENTS

9.23 TRACE STATEMENT

Function: Prints the line numbers of the executed program

lines.

Mode: Direct/Program

Format: TRACE [#channel no.]

Argument: Channel no. is the internal file number representing

the destination where trace data is to be sent. The

default is the user's console.

Use: TRACE is used when debugging a program to track the

execution of the program.

Example: LIST

100 OPEN “PR:" AS FILE 12

110 A=15.345

115 TRACE #12

120 B=1534

: 125 IF A=0 THEN STOP

130 CZ=B

135 X=A*2

140 DI4Z=A

145 NO TRACE

150 PRINT #1% A,B,CZ,D1Z,X

160 CLOSE 1%

170 END

RUN4

(The following text will be printed or - printer

when the above program is executed:)

120 125 130 135 140 145

15.345 153 153 15 30.69

Feb. '82 9-38 TRACE

SECTION 9 - PROGRAM CONTROL STATEMENTS

9.24 WEND STATEMENT

Function:

Mode:

Format:

Use:

Example:

Defines the limit of the WHILE loop.

Program

WEND

When the WEND statement is executed, control is

transferred to the last non-terminated WHILE statement.

See WHILE statement in this section.

9-39 Feb. '82

SECTION 9 -— PROGRAM CONTROL STATEMENTS

9.25 WHILE STATEMENT

Function: Defines a specific condition for leaving a loop.

Mode: Program

Format: WHILE <relational expression>

Argument: Relational expression is some test condition.

Use: WHILE should be used only in iterative loops where

the logical loop structure modifies the values that

determine the loop termination. This is a significant

departure from FOR loops in which control is

automatically iterated.

There are many situations in which the final value of

the loop variable is unknown in advance. What is

destred is to execute the loop as many times as

necessary to satisfy some special conditions specified

by WHILE.

Examples: : 10 WHILE X < LO

20 X = X*¥X +1

30 WEND

Before the loop is executed and at each loop iteration

the condition X < 10 is tested. The iteration

continues if the result is true.

The above example is equivalent to:

10 IF X > = 10 THEN 40

20 X = X*X¥ + 1

30 GOTO 10

AD wwemnmeewcass

Feb. '82 9-40 WHILE

SECTION 10

FUNCTIONS

SECTION 10

FUNCTIONS

10.1 INTRODUCTION

Functions in the context of Monroe BASIC are independent programs

stored in the interpreter which perform specific mathematical,

string, or miscellaneous operations. A user program can include a

call to a Monroe BASIC function program whenever it requires the

execution of any of these operations. These functions can save a

great deal of coding time. They enable the user to include the

function without having to know the details behind them.

This section discusses three type of functions:

1. Mathematical

2. String

3. Miscellaneous

10-1 Feb. ‘82

SECTION 10 — FUNCTIONS

10,2 MATHEMATICAL FUNCTIONS

When programming, the user may encounter many cases where relatively

common mathematical operations are performed. The results of these

common operations are likely to be found in mathematical tables;

i.e., sine, cosine, square root, log, etc. Since the computer can

perform this type of operation with speed and accuracy, these

operations are built into Monroe BASIC. Internal functions can be

called whenever such a value is needed. For example:

SIN (23.*PI/180.)

LOG (144.)

The various mathematical functions available are listed in

Table 10-1.

Table 10-1. Mathematical Functions

Function Result

ABS(x) Returns absolute value of x.

ATN(x) Returns arctangent of x in radians.

COS(x) Returns cosine of x in radians.

" EXP(x) Returns exponential function (i.e., e*),

FIX(x) Returns the truncated value of x.

HEXS (x) Returns the hexadecimal string representation of a

decimal number.

INT(x) Returns the greatest integer that is less than or

equal to x.

Feb. '82 10-2 MATHEMATICAL

SECTION 10 — FUNCTIONS

Function

LOG(x)

LOG10(x)

MOD(x,y)

OCTS(x)

PI

7 RND

SGN(x)

SIN(x)

SQR(x)

TAN(x)

Result

Returns

Returns

Returns

Returns

number.

Returns

Returns

Returns

Returns

Returns

the

the

the

the

natural logarithm of x (i.e., log e*).

common logarithm (base 10) of x.

remainder of the integer division x/y.

octal string representation of a decimal

a constant value of 3.1415927.

a random number between 0 and 0.999999.

the

the

the

sign of x.

sine of x.

square root of x.

Returns the tangent of x.

Each function listed in Table 10-1 is described in detail in sub-

sequent paragraphs.

Order of Execution

A mathematical function is executed in the following manner:

l. The operation or operations within the argument are performed.

2. The function itself is evaluated.

3. The remaining arithmetic operations in the statement are

performed in their normal order or precedence.

MATHEMATICAL 10-3 Feb. '82

SECTION 10 -— FUNCTIONS

ABS Function

Function: Returns the absolute value of x

Mode: Direct/Program

Format: ABS(x)

Argument: x is numerical

Result: Floating

Example: ; ABS(- 123)4

123

BASIC

Feb. '82 10-4

SECTION 10 — FUNCTIONS

ATN Function

Function:

Mode:

Format :

Argument:

Result:

Example:

ATN

Returns the arctangent of x.

Direct/Program

ATN(x)

x is in radians

Floating

3; ATN(5)4

1.3734

BASIC

10-5 Feb. "82

SECTION 10 - FUNCTIONS

COS Function

Function: Returns the cosine of x.

Mode: Direct/Program

Format: COS(x)

Argument: x is in radians

Result: Floating

Example: 10 A= .574

20 B = COS (A)4

30 PRINT Bq

40 END4

RUN

841901

BASIC

Feb. '82 10-6 cos

SECTION 10 - FUNCTIONS

EXP Function

Function: Returns the value of the antilog (e* where

e = 2.71828, single precision).

Mode: Direct/Program

Format: EXP(x)

Argument: “88 < x > 88

Result: Floating

Example: PRINT EXP (1)4

2.71828

BASIC

EXP 10-7 Feb. '82

SECTION 10 - FUNCTIONS

FIX Function

Function:

Mode:

Format:

Argument:

Result:

Example:

Feb. '82

Returns the truncated value of x.

Direct/Program

FIX(x)

x is numeric

Floating

PRINT FIX (-123.96)4

-123

BASIC

10-8 FIX

SECTION 10 — FUNCTIONS

HEXS Function

Function: — Converts a decimal number into a hexadecimal string.

Mode: Direct/Program

Format: HEXS (x)

Argument: x is decimal number

Result: String

Example: 10 YS=HEXS(255)4

20 3 YS4
RUNG

FF

BASIC

HEX 10-9 Feb. '82

SECTION 10 — FUNCTIONS

INT Function

Function:

Mode:

Format:

Argument:

Result:

Use:

Examples:

Returns the greatest integer which is less than or

equal to X.

Direct /Program

INT (x)

x is numeric

Floating

The integer function returns the value of the greatest

integer not greater than x.

INT can also be used to round to any given decimal

place, by asking for:

INT (X*10.**D%Z+.5)/10.**D%

Where D% is the number of decimal places desired.

If the number is negative, INT will return the largest

integer less than the argument.

Ex. lL

10 Y=INT(34.67)

The result is Y=34

Ex. 2

10 Y=INT(34.67+.5)

The result is Y=35

Ex. 3

10 Y=INT(-23.15)

The result is Y=-24

19-19
INT

SECTION 10 - FUNCTIONS

Ex. 4

1200 INPUT “NUMBER TO BE PROCESSED BY INT", Aq

1210 INPUT “NUMBER OF DEC. PLACES FOR ROUNDING", D4

1220 PRINT “TRUNCATED INTEGER=";INT(A)4

1230 PRINT “ROUNDED INTEGER=";INT(A+.5)4

1240 PRINT “ROUNDED TO “;D; “PLACES="3 4

1250 PRINT INT(A*10**D+.5)/(10**D) 4

1300 PRINTY

1310 PRINT “ENTER ANOTHER NUMBER, TYPE A ZERO TO STOP"4

1320 INPUT Aq

1330 IF A < > O THEN GO TO 12104

9999 END§

RUN4

NUMBER TO BE PROCESSED BY INT? 13.564

NUMBER OF DEC. PLACES FOR ROUNDING? 14

TRUNCATED INTEGER=13

ROUNDED INTEGER=14

ROUNDED TO 1 PLACES=13.6

ENTER ANOTHER NUMBER, TYPE A ZERO TO STOP

2? 123.4567]

NUMBER OF DECIMAL PLACES FOR ROUNDING? 24

TRUNCATED INTEGER=123

ROUNDED INTEGER=123

ROUNDED TO 2 PLACES=123.46

ENTER ANOTHER NUMBER, TYPE A ZERO TO STOP

? OF

BASIC

INT 10-11 Feb. "82

SECTION 10 - FUNCTIONS

LOG Function

Function:

Mode:

Format:

Argument:

Result:

Example:

Feb. '82

Returns the natural logarithm of X, log x.

Direct/Program

LOG(x)

x > zero

Floating

PRINT LOG (2) 4

0.693147

BASIC

10-12 LOG

SECTION 10 - FUNCTIONS

LOG10 Function

Function: Returns the common logarithm of x, log, ox-

Mode: Direct/Program

Format: LOG10(x)

Argument: x > zero

Result: Floating

Example: 10 A = LOG1O(5)4

20 PRINT 2*A4

30 ENDY

RUNG

1.39794

BASIC

LNG10 10-13 Feb. '82

SECTION 10 - FUNCTIONS

MOD Function

Function: Returns an integer value representing the remainder of

a division of the arguments.

Mode: Direct/Program

Format: MOD(x,y)

Argument: x and y are numeric.

Result: Integer

Example: : MOD(22,4)4

2

BASIC

Feb. '82 10-14 MOD

SECTION 10 - FUNCTIONS

OCTS Function

Function: Converts a decimal number into an octal string.

Mode: Direct/ Program

Format: OCTS(x)

Argument: x is a decimal number

Result: String

Example: 3 OCTS(59)4

73

BASIC

Y$=OCTS(59)4

3X94

73

BASIC

OCTS 10-15 Feb. '82

SECTION 10 - FUNCTIONS

PI Function

Function:

Mode:

Format:

Result:

Example:

Feb. '82

Returns a constant value of 3.14159 (single

or 3.141592653589793 (double precision).

Direct/Program

PI

Floating

10 INPUT RY

20 C = 2*PI*RG

30 PRINT Cf

40 END4

RUNY

? 1149

69.115

BASIC

10-16

precision)

PL

w
w

SECTION 10 -— FUNCTIONS

RND Function

Function:

Mode:

Format:

Use:

Result:

Example:

Returns a random number between 0 and 0.999999,

Direct/Program

RND

RND is used to return a random number between O and

0.999999. The function will generate the same random

number sequence every time the program is run unless a

RANDOMIZE statement is placed before RND in the

program.

Floating

Ex. lL

10 Y=RND

Ex. 2

10 Y=(D-A)*RND+A

Y will be assigned a random number between A and D.

10-17 Feb. '82

SECTION 10 - FUNCTIONS

SGN Function

Function:

Mode:

Format:

Argument:

Result:

Use:

Example:

Feb. '82

Returns the sign of X.

Direct/Program

SGN(x)

x is numeric.

Integer

The sign function returns a value of +1 if X is a

positive value, 0 if X is 0, and -1 if X is negative.

For example: SGN(3.42) = 1,SGN(-42) = -1, and

SGN(23-23) = 0.

1000 REM — SGN FUNCTION DEMO4

1010 READ A, BY

1100 PRINT “A=";A, "B=";Bq
1110 PRINT “SGN(A)="; SGN(A), “SGN(B)=" SGN(B)4q

1120 PRINT “SGN(INT(A))=";SGNCINT(A))4

1200 DATA -5.43, 0.214

9999 END

RUN

A=-5.43 B=.21

SGN(A)=-1 SGN(B)=1

SGNC INT(A))=-1

BASIC

10-18 SGN

SECTION 10 — FUNCTIONS

SIN Function

Function:

Mode:

Format:

Argument:

Result:

Example:

SIN

Returns the sine of x.

Direct/ Program

SIN(x)

x is in radians.

Floating

PRINT SIN (.57)4

+ 539632

BASIC

PRINT SIN (PI/2)4

1

BASIC

10-19 Feb. ‘82

SECTION 10 - FUNCTIONS

SOR Function

Function: Returns the square root of x.

Mode: Direct/Program

Format: SQOR(x)

Argument: x > zero

Result: Floating

Example: ;SOR(9)4

3

BASIC

Feb. '82 10-20 SQR

SECTION 10 -— FUNCTIONS

TAN Function

Function: Returns the tangent of x.

Mode: Direct/Program

Format: TAN(x)

Argument: x is in radians.

Result: Floating

Example: 10 INPUT Aq

20 PRINT “SIN(A)/COS(A)=";SIN(A)/COS(A)4

30 ;"TAN(A)=";TAN(A) 4

40 END

RUNG -

20.574

SIN(A)/COS(A)= .640969

TAN(A)= .640969

BASIC

TAN 10-21 Feb. ‘82

SECTION 10 — FUNCTIONS

19.3 STRING FUNCTIONS

Besides intrinsic mathematical functions (e.g., SIN, LOG), various

functions for use with character strings are provided. These

functions allow the program to perform arithmetic operations with

numeric strings, concatenate two strings, access a part of a string,

determine the number of characters in a string, and perform other

useful operations. These functions are particularly useful when

dealing with whole lines of alphanumeric information input by an

INPUT LINE statement. The various string functions available are

summarized in Table 10-2.

Table 10-2. String Functions

Function Description

ADDS Returns the result of adding two numeric strings.

ASCII or Returns the ASCII decimal value for the first

ASC character in a string.

AS+BS Returns the concatenation of two strings.

CHRS Returns a character-string having the ASCII value of

arguments.

COMP% Returns a truth value based on result of numeric

comparison.

DIVS Returns a quotient.

INSTR Searches for and returns the location of a substring

within a string.

LEFTS Returns left substring of an existing string.

LEN Returns the length of a string.

Feb. '82 10-22 STRING

SECTION 10 - FUNCTIONS

Table 10-2. String Functions (Cont.)

Function Description

MIDS Returns or replaces a substring of a string.

MULS Returns the result of multiplying two numeric

strings.

NUMS Returns a string of numeric characters.

RIGHTS Returns a right substring of a string.

SPACES Returns a string of spaces.

STRINGS ' Creates and returns a string of ASCII characters.

SUBS Returns the result of subtracting two numeric

strings.

VAL Returns the numeric value of the string of numeric

characters.

Each string function is described in detail in subsequent

paragraphs.

STRING 10-23 Feb. '82

SECTION 10 - FUNCTIONS

' ADDS Function

Function:

Mode:

Format:

Argument:

Result:

Note:

Example:

Feb. '82

Adds the values of two numeric strings to a specified

number of decimal places.

Direct/Program

ADDS(AS,BS,p%)

AS and BS are numeric strings.

p% when positive specifies the number of decimals in

the result and when negative specifies the number of

places of precision desired.

String

ASCII arithmetic calculations can operate on up to 125

characters.

$$="12349.178°4

BASIC

PRINT ADDS(SS$,"89.454" ,3)4

12438.632

BASIC

10-24 ADDS

SECTION 10 - FUNCTIONS

ASCII Function

Function: Returns an integer equal to the ASCII value of the

first character of a string.

Mode: Program/direct

Format: 1. ASCII(string) or

2. ASC(string)

Note: If the second form ASC is entered, it will be listed as

the first form, ASCII.

Argument: String is a string expression.

Result: Integer

Example: 3 ASCIIC"T")4

84

BASIC

10 AS="XAB"4

20 ;ASCII(AS)4

RUNG

88

BASIC

Note: .- The returned value is zero if A$ is null.

ASCII/ASC 10-25 Feb. '82

SECTION 10 - FUNCTIONS

CHRS Function

Function: Returns a character-string corresponding to the ASCII

value of the arguments.

Mode: Direct/Program

Format: CHRS(n1[,n2,n3...])

Argument: n is the ASCII decimal of the character desired.

Result: String

Example: AS=CHRS(65,66,67)4

BASIC

3AS4

ABC

BASIC

Feb. '82 10-26 CHRS

SECTION 10 — FUNCTIONS

COMP% Function

Function: Returns a truth value based on the result of a numeric

comparison.

Mode: Direct /Program

Format: COMP%(AS,BS)

Argument: AS and BS are numeric strings.

Result: Integer

Use: The truth values are as follows:

-l1 IF AS < BS

O IF AS = BS

1 IF AS > BS

Example: AS="12345.6789":BS="9876.54321"4

BASIC

T%=COMP% (AS,BS)4

BASIC

PRINT T%4

1

BASIC

PRINT COMP% (BS, AS)4

-1

BASIC

COMP% 19-27 Feb. '82

SECTION 10 - FUNCTIONS

DIVS Function

Function:

Mode:

Format:

Argument:

Result:

Note:

Example:

Feb. '82

Returns a quotient, AS divided by BS.

Direct/Program

DIVS(AS ,BS ,p%)

AS and BS are numeric strings.

AS is the numerator and BS is the denominator.

p% when positive is the number of decimal places in

the quotient and when negative specifies the number of

places of precision desired.

String

ASCII arithmetic calculations can operate on up to 125

characters.

10 C$="3.5"4

20 V9S=DIVS(C$,"1.7777" ,32%)4

30 PRINT V9S4

40 END

RUNY

1.969

BASIC

10-28 DIVS

SECTION 10 — FUNCTIONS

INSTR Function

Function: Searches for and returns the location of a substring

within a string.

Mode: Direct/Program

Format: INSTR(n%,AS ,BS)

Argument: AS is a string.

BS is the substring within A$ you want to locate.

n% is the character position within AS where the

search will begin.

Result: Integer

Use: A value of 0 is returned if BS is not in A$ or the

character position of BS if BS is found to be in AS

(character position is measured from the start of the

string with the first character counted as character

1).

Example: AS="ABCDEFGHIJKLMNOPQRSTUVWXYZ"4

BASIC

PRINT INSTR(54%,AS,"OP") 4

15

BASIC

INSTR TOQ=29 Feb. '82

SECTION 10 - FUNCTIONS

LEFTS Function

Function: Returns a substring of an existing string.

Mode: Direct/Program

Format: LEFT[$](AS$,n)

Argument: AS is a string.

n is character position in AS where the substring will

end. N= 0 is permitted. N must be < the length of AS.

Result: String

Use: The substring will begin with the first character in

A$ and end with the nth character.

Example: 10 AS$="ABCDEFGHIJKLMNOPQRSTUVWXYZ"f

20 ;LEFTS(AS,6)4

30 END4

RUNY

ABCDEF

BASIC

Feb. '82 10-30 LEFTS

SECTION 10 - FUNCTIONS

LEN Function

Function:

Format:

Argument:

Result:

Example:

LEN

Returns the length of a string.

Direct/Program

LEN(AS)

AS is a string.

Integer

PRINT LEN ("JOHN SMITH") 4

10

BASIC

10-31 Feb. "32

SECTION 10 - FUNCTIONS

MIDS Function

Function: Returns or replaces a substring of a string.

Mode: Direct/Program

Format: MID[$] (AS ,n1,n2)

[LET] MID[$](AS,nl,n2)=<string expression>

Argument: AS is a string.

nl is the character position in AS where the substring

begins.

n2 is the number of characters in the substring.

n2 = 0 is permitted.

ol + n2 must not exceed one more than the string

length.

Result: String

Note: This function can also be used on the left-hand side

of a LET statement. The length of the string on the

right hand side must be of length n2.

Use: The characters between and including nol through

nl+n2-1 characters of A$ comprise the substring.

Example: 10 ;"NAME,ADDRESS? “54
TO 20 INPUTLINE AS4

30 PRINTY
40 Z=INSTR(1,A$,",")4
50 Y=LEN(AS)4
60 ;"“NAME= ";LEFTS(AS,Z-1)4
70 ;“ADDRESS= ";MIDS(AS,Z+1,Y-(Z+1))4
80 BS= "MONROE FOR BUSINESS”
90 MIDS (BS,8,7)="SYSTEMS"
100 ;BS
110 END4
RUNG
NAME ,ADDRESS? MONROE,USA4
NAME= MONROE
ADDRESS= USA
MONROE SYSTEMS FOR BUSINESS
BASIC

Feb. '82 10-32 MIDS

SECTION 10 — FUNCTIONS

MULS Function

Function:

Mode:

Format:

Argument:

Result:

Example:

MULS

Returns the result of multiplying two numeric strings.

Direct/Program

MULS(AS,BS,p%)

AS and BS are numeric strings.

p when positive specifies the number of decimal places

required and when negative, the number of places of

precision desired.

String

10 INPUT AS,BS4

20 ;MULS(AS,BS,6)4
30 END
RUN
212345.6789,987.543214

12191891.370535

BASIC

10-33 Feb. '82

SECTION 10 - FUNCTIONS

NUMS Function

Function:

Format:

Argument:

Result:

Example:

Note:

Feb. '82

Returns a string of numeric characters representing

the value of n as it would be displayed by a PRINT

statement.

Direct/Program

NUMS (n)

n is a string of numeric characters.

String

;NUMS (123456789012) 4

1.234568E+11

BASIC

Returned string will not have any leading blanks.

10-34 , NUMS

y
é

n
e

SECTION 10 -— FUNCTIONS

RIGHTS Function

Function: Returns a particular substring of a string.

Mode: Direct/Program

Format; RIGHT[$](AS,n)

Argument: AS is a string.

n is the character position in A$ where the substring

will begin. n can equal LEN(AS) + 1 which results in

an empty string, but cannot be greater than AS + 1.

Result: String

Use: RIGHTS returns the characters from the nth character

through the last character in AS.

Example: 10 ;“NAME,ADDRESS? "3 4

20 INPUT LINE AS

30 PRINTY

40 Z=INSTR(1,AS,",")4 :

50 ;"NAME= ";LEFTS(A$,2-1)4
60 ;"ADDRESS= ";RIGHTS(AS,Z+1)4
70 END4
RUNG
NAME ,ADDRESS? MONROE, USA
NAME= MONROE
ADDRESS= USA

BASIC

RIGHTS 10-35 Feb. '82

SECTION 10 -— FUNCTIONS

SPACES Function

Function: Returns a string of a specified number of spaces.

Mode: Direct/Program

‘Format: SPACES (NZ)

Argument: NZ is the number of spaces.

Result: String

Example: PRINT “ABC";SPACES(10);"DEF"4

ABC - DEF

BASIC

Feb. '82 10-36 SPACES

SECTION 10 - FUNCTIONS

STRINGS Function

Function: Returns a string of ASCII characters.

Mode: Direct/Program

Format: STRINGS (n1 ,n2)

Argument: nl is the length of the string in characters.

n2 is the ASCII decimal value of the character.

Result: String

Example: Print a string of 15 *'s,

10 FS=STRINGS(15,42)4

20 PRINT FSq

30 END

RUNY

RaRAKKKKKKK KEKE

BASIC

STRINGS 10-37 Feb. '82

SECTION 10 — FUNCTIONS

SUBS Function

Function: Subtracts two numeric strings and gives the result to

a specified number of decimal places.

Mode: Direct/Program

Format: SUBS(AS ,BS,p4)

Argument: AS and BS are numeric strings.

p% when positive specifies the number of decimal

places in the result and when negative, the number of

places of precision desired.

Result: String

Note: ASCII arithmetic calculations can operate on up to 125

characters.

Example: 10 BS="9876.54321"9
20 ;SUBS(BS,"98.76",5)4

30 END
RUN

9777.78321

BASIC

Feb. '82 10-38 SUBS

SECTION 10 - FUNCTIONS

VAL Function

Function: Computes and returns the numeric value of a string of

numeric characters.

Mode: Direct/Program

Format: VAL(<string>)

Argument: String is a numeric string. The result is a floating

point number. If the string contains non-numeric

characters other than +, -, or E for exponential, an

error is generated.

Result: Floating

Example: 10 A=VAL("14.3E-5") 4

“20 PRINT Aq

30 END

RUNY

000143

BASIC

VAL 10-39 Feb. '82

SECTION 10 - FUNCTIONS

10.4 MISCELLANEOUS FUNCTIONS & STATEMENTS

The following are described in this section:

CUR Positions the cursor on specified line and column.

CURREAD Reads the current cursor position.

ERRCODE Returns the value of the most recent error code.

FN Calls a user-defined function.

PDL Returns a specific joystick's X or Y coordinate or a

value specifying which joystick and control button

was depressed.

REM or ! Insert comments into a user's program.

SLEEP Stops the running of a program for a specified

number of seconds.

SOUND Returns sounds on system speakers with specified

qualities.

TAB Tabulates to the specified column on the line.

TIMES Returns year-month-day, hour.minutes.seconds.

Feb. '82 10-40 MISCELLANEOUS

SECTION 10 - FUNCTIONS

CUR Function

Function:

Mode:

Format:

Argument:

Example:

CUR

Moves the cursor to the specified row and column on

the screen.

Program/Direct

CUR(Y%,x%)

y% is the line where the cursor is to be moved with

values of 9 to 23.

x% is the column position on the line with values of 0

to 39/79 (39 is valid for education model and 79 for

business model).

String

This function generates a string which, when printed,

places the cursor at the specified row and column on

the screen.

Ex. 1

100 PRINT CUR(12,20) "1980 STATUS REPORT" 4

200 ; CUR(13,22) “EASTERN DIVISION’ 4 :

300 . .«-

Ex. 2

10 PRINT CUR (10,10); “COLUMN 10, ROWN 10"4

20 AS = CUR (1,2) + 'ROW 1, COLUMN 2' : PRINT AS

10-41 Feb. '82

SECTION 10 ~ FUNCTIONS

ERRCODE Function

Function:

Mode:

Format:

Use:

Result:

Example:

Feb. '82

Returns the value of the latest generated error code.

Direct/Program

ERRCODE

The ERRCODE function is normally used in conjunction

with the IF and ON statements. If no error has been

indicated the function value is 0.

Integer

LISTY

10 REM THIS PROGRAM WORKS FOR_ POSITIVE NUMBERS ONLY.

20 REM-----

30 ON ERROR GOTO 90

40 OPEN "CON:" AS FILE 0%

50 INPUT "POSITIVE NUMBER "A;

60 Z=SQR(A)
70 PRINT “SQUARE-ROOT OF:" A “IS-->" Z
80 STOP
90 IF ERRCODE=142 THEN ; “ NO NEGATIVE NUMBERS ALLOWED"

100 IF ERRCODE=210 THEN ; “ NO CHARACTERS ALLOWED"

110 ; ERRCODE

120 ; CHRS(7); : REM BELL SOUNDS AFTER ERROR MESSAGE

125 REM IS PRINTED

130 RESUME 50

140 END

RUN

POSITIVE NUMBER? A4¥ NO CHARACTERS ALLOWED

210 (bell sounds)

POSITIVE NUMBER? -54 NO NEGATIVE NUMBERS ALLOWED

142 (bell sounds)

POSITIVE NUMBER 94 SQUARE-ROOT of: 9 IS--> 3

10-42 ERRCODE

SECTION 10 — FUNCTIONS

FN Function

Function:

Mode:

Format:

Arguments:

Result:

Use:

Note:

Examples:

FN

Calls a user-defined function.

Direct/Program

FN<name> [<type>] [(arguments)]

Name is any valid variable name.

Type is optional and can be either % (or “.") or $.

Parameter consists of one or more expressions which

are passed to the defined function. They must be

specified if they were included in the DEF FN

statement.

Depends on the type.

This function allows the programmer to call a

user-defined function in the same way as, for example,

SIN would be called.

Refer to DEF FN statement, Section 9 for how to define

the function.

Ex. lL

EXTEND{
BASIC
LIST
5 REM **DEFINE AND USE SECANT FUNCTION***
10 DEF FNSEC(X)=1/SIN(X)
20 ;INT(FNSEC(PI/4Z))
RUNY

\
BASIC

10-43 Feb. '82

SECTION 10 - FUNCTIONS

Ex. 2
LIST

5 EXTEND

10 ! THIS EXAMPLE COMPUTES THE :

20 ! VOLUME OF SPHERE WITH RADIUS(R) IN

30 ! RANGE: L<=R<=4.

40 OPEN “CON:”" AS FILE 1

50 DEF FNSPVOL

60 FOR R=1 TO 4

70 X=R**3

80 Y=PI*X

90 2234/3

100 VOL=Y*Z

110 ; #1 FIX(VOL)

115 NEXT R

116 CLOSE

120 RETURN O

130 FNEND

140 X=FNSPVOL

150 ; “END

160 END

RUN

4

33

113

268

END

BASIC

Feb. '82 10-44 FN

SECTION 10 - FUNCTIONS

PDL Function

Function:

Mode:

Format:

Argument:

Result:

Use:

PDL

Returns a specific joystick's x or y coordinate or a

value specifying which joystick control button was

depressed.

Program/Direct

PDL(<expression>)

<expression> is an integer expression which can have

the following values:

0% - Reads x coordinate for joystick 1

1% - Reads y coordinate for joystick 1

2% - Reads x

3% - Reads y coordinate for joystick 2

coordinate for joystick 2

4% - Reads which joystick and control button was

depressed as follows:

Button Depressed Value Returned

1 1

2 4

l and 2 5

Integer

There are two possible joysticks: l and 2. Each

joystick contains a control lever and a control

button identified here as A and B. PDL allows the

system to read and return the x and y coordinates of

each joystick's control level (y = 0 to 239, x = 0 to

239. It also enables Monroe BASIC to return a value

specifying which one or all of the control buttons

were depressed.

10-45 Feb. '82

SECTION 10 - FUNCTIONS

Examples: Ex. 1

3PDL(42)

5 (Assume all control buttons were depressed.)

Ex. 2

10 X%Z=PDL(0%) 4

20 YZ=PDL(1%)4

30 3;"S=" X%Z,"Y= “ Y% ! RETURNS HI-RES COORDINATES§

40 ENDY

RUN

X= 60 (position 10)

Y= 190 (line 5)

BASIC

Ex. 3

LISTY

10 ! USE JOYSTICK TO DRAW FIGURE ON SCREEN

20 FGTCL 130 ! SELECT COLOR GROUP

30 FGPOINT 0,0,0

40 FGFILL 239,239 ! CLEAR SCREEN

50 FGLINE PDL (0),PDL(1),1 ! DRAW LINE

60 I[%Z=1% + 1% ! INCREMENT COUNTER

70 IF I < 500 THEN GOTO 50

80 END

BASIC

Feb. ‘82 10-46 PDL

SECTION 10 - FUNCTIONS

REM Function

Function:

Format:

Argument:

Result:

Use:

Example:

REM

Inserts comments into a user's program.

REM [remark]

or

! [remark]

Remark can contain any printing characters on the

keyboard. The Monroe BASIC interpreter completely

ignores anything on a line following the letters REM

or !.

Must be used as a statement.

It is often desirable to insert notes and messages

within a user program. Documenting a program enables

easy referencing by anyone using the program. REM

statements do not offset program execution.

Typical REM statements are shown below:

10 REM ...THIS PROGRAM CALCULATES MEAN VALUES..

20 | ***MEAN VALUES ARE AVERAGE VALUES***

30 DEF FNSEC(X)=1/SIN(X)!DEFINE SECANT FUNCTION

Remarks are printed when the user program is listed.

10-47 Feb. '82

SECTION 10 — FUNCTIONS

SLEEP Function

Function: Suspends the currently running program for a specified

number of seconds. At the end of this period the

program resumes execution.

Mode: Program.

Format: SLEEP <expression>

Argument: The value of the expression determines the number ~

of seconds.

Result: None, must be used as a statement. 7

Example: 10 FOR I = 0 TO 1004

20 NEXT Iq

30 ;14

40 TS$="1981-6-2 10:10:00"

50 SET TIME TS
60 ;TIMES

70 SLEEP (30) !10 SECOND DELAYY

80 PRINT “GOOD-BYE" 4

90 ;TIMES

100 END4

RUNG

101 (Note: 10 second delay)

1981-06-02 10:10:00

GOOD~BYE

1981-06-02 10:10:10 ~~

BASIC

Feb. '82 10-48 SLEEP

SECTION 10 - FUNCTIONS

SOUND Function

Function:

Mode:

Format:

Argument:

Generates sounds on system speakers with specified

qualities.

Program/direct.

* SOUND <channel%>,<pitch%>,<attenZ>

Channel is the number of the sound or tone generator

desired. It can be an integer constant or an integer

variable. Values of 1,° or 3 determine which tone

generator is desired wnuile 4 specifies the noise

generator. All previous sound or tone generators can be

turned off if a value of “O" is used and the rest of the

parameters are omitted (e.g., SOUND 0%).

Pitch is a divide factor used to change the tune

frequency (base to mid range to treble) of the sound

produced. It is an integer variable. Values between 1

(treble) to 1024 (base) are acceptable. A value of “0”

can also be specified but is normally only used on

channel 4 (noise) to avoid clicks in “CRASH” sounds when

the attenuation is changed.

Atten is the desired amount of attenuation of the sound

that is produced. It can be an integer variable or

constant. Values between 0 (no attenuation) to 15 (no

sound) are acceptable and produce the following

attenuations (DBs).

Value Attenuation (DB's) | Value Attenuation (DB's)

0 0) | 8 16
L 2 | 9 18
2 4 | 10 20

3 6 | 11 22
4 8 | 12 24

5 10 | 13 26
6 i | 14 28

14 | 15 sound off

10-49 "ab. 82

SECTION 10 — FUNCTIONS

Result: Must be used as a statement.

Use: The SOUND function can be used to generate tones,

clicks, buzzes, etc. of various pitches, loudness and

duration. They can be combined to give still more

variations. When SOUND function follows another, the

resulting sound continues without interruption but

mixes with the previous ones.

Example: LIST

5 INPUT “TIME” T%

10 INPUT “A FRE" AZ

20 INPUT “B FRE" BZ

30 INPUT "C FRE" CZ

40 FOR J%Z = 1% TO T%

50 SOUND 1%, AZ, 0%

60 SOUND 2%, BZ, 0%

70 SOUND 3%, CZ, 14%

80 NEXT J%

90 END

BASIC

Feb. '82 10-50 SOUND

SECTION 10 - FUNCTIONS

TAB Function

Function:

Mode:

Format:

Argument:

Note:

Nse:

Example:

TAB

Tabulates to the specified position on a line.

Program/Direct.

TAB(<expression>)

Expression is evaluated to an integer.

TAB must be preceded on the program line by a “;" or

"PRINT". TAB must be used in a PRINT statement.

TAB can only be used with the PRINT statement. The

first position on a line is position 1. The position

specified by expression is always relative to position

l.

More than one TAB can appear on a line. In this

case, TABS and items to be printed are normally

separated by a semicolon or nothing at all. If

expression evaluates to a position number to the left

of the current position, that TAB will be executed at

the specified position on the next line. If

expression evaluates to a position greater than the

screen width, expression will be treated as modulo the

screen width.

; TAB(1)“ HHHH" §

HHHH

BASIC

10 REM ***TAB SPACING*** 4

20 F=2 : G=54

30 ; TABCF)"X";TAB(G)"Y";TAB(G)"A"; TABCF)"B"

RUNG

x Y

A

B

BASIC

10-51 Feb. '82

SECTION 10 - FUNCTIONS

TIMES Function

Function: Returns year-month-day and hour:minutes:seconds.

Mode: , Program/direct.

Format: TIMES

Use: TIMES is used in conjunction with the SET TIMES

Statement. SET TIMES sets the time and date and TIMES

reads it when desired in a program.

Result: String

Example: LIST]

, 10 INPUT "N=" N

20 DIM TS=25%

30 T$="1981-6-2 10:12:00"

40 SET TIME TS

50 3; TIMES

60 GET XS

70 FOR I=1 TO N

80 3; CHRS(7); ! BELL SOUNDS

90 NEXT I

100 ; TIMES

110 END

RUNG

N=1004

1981-06-02 10.12.00

1

1981-06-02 10.12.06

BASIC

Feb. '82 10-52 TIMES

SECTION 10 -— FUNCTIONS

CURREAD Function

Function: Reads the current cursor position.

Mode: Program/direct.

Format: CURREAD <yposition, xposition>

Arguments: yposition is a variable which will be set to the value

(from 0 to 23) of the current line where the cursor is

positioned.

xposition is a variable which will be set to the value

(from 0 to 39/79, 39 is valid for the educational

model and 79 for the business model) of the current

position on the line where the cursor is positioned.

Use: This function reads the current cursor position and

assigns its values to specified variables.

Note: The previous values of the yposition and xposition

variables are lost once this function is given.

Example:

LISTY

10 PRINT CHRS(12) ! CLEAR THE SCREEN

20 PRINT CUR(12,15) “T"; ! PRINT ON 13th LINE, 16th COLUMN

30 CURREAD Ypos,Xpos ! READ CURSOR POSITION

40 PRINT ! SKIP TO NEXT LINE

50 PRINT Ypos,Xpos ! THEN PRINT OLD CURSOR POSITION

60 END .

BASIC

RUNG

L2 16

BASIC

CURREAD 10-53 Feb. '82

SECTION 11

FORMATTED PRINTING

SECTION 11

FORMATTED PRINTING

11.1 INTRODUCTION

The PRINT USING statement can be employed in situations where a

specific output format is desired. This situation might be encoun-

tered in such applications as printing payroll checks or accounting

reports.

Format: PRINT USING [#<channel no.>,] <stringl>;<value list>

or

: USING [#<channel no.>]<stringl>;<value list>

The string may be a string variable, string expression, or a string

constant, which is a precise image of the line to be printed. Ail

the characters in the string are printed just as they appear, with

the exception of the formatting characters. The value list is a list

of the items to be printed. The string is repeatedly scanned until

(1) the string ends and there aré no values in the value list, or (2)

a field is scanned in the string, but the value list is exhausted.

If more than one format is included in the string, the first list

item will use the first format, the second item the second format and

so on. The string is constructed according to the rules listed in

this section. The string may be separated from the value list by a

comma, semicolon or nothing.

Note that the “OPTION EUROPE Ll" statement can be specified before the

“PRINT USING" statement when European notation is desired. Refer to

Section 8 for details. The formatting characters for this option are

specified in Section 11.3.

Ll=1 Feb. '82

SECTION 11 - FORMATTED PRINTING

11.2 STRING FIELDS

When strings are to be printed via "PRINT USING", one of the

following three formatting characters may be specified:

Character Function

wpe
Specifies that only the first character in the given

string is to be printed.

Example:
10 AS="LOOK"4

20 PRINT USING “!";AS4

RUNG

L

BASIC

\n spaces\ Specifies that the first 2+m characters from the string

are to be printed. If the “\"“ characters are typed

without any spaces, two characters will be printed and so

on. If the string is longer than the field, the extra

characters are ignored. If the field is longer than the

string, the string will be left justified in the field

and padded with spaces to the right.

Example:

10 AS="LOOK" :BS="OUT"4

20 PRINT USING "\\";BS4 nail
30 PRINT USING “\\ $";AS,BS{ (Note: $ = blank space)

40 PRINT USING “B\bb\K";AS,BS,"!1!"4

RUN

ou

LO OU

LOOK OUT Y!

Feb. '82 11-2 PRINT USING

SECTION 1l - FORMATTED PRINTING

Example:

PRINT USING

Specifies a variable length string field. When the field

is specified with "&", the string is output exactly as

is.

10 AS$="LOOK": BS="OUT"4

20 PRINT USING “!";AS4

30 PRINT USING "&";BS4

RUNG

L

OUT

BASIC

10 AS="LOOK"4

20 PRINT USING “& &," CUR (10,10)BS4

30 ! BS WILL BE PRINTED AT LINE 10, COL 104

11-3 Feb. '82

SECTION 11 - FORMATTED PRINTING

11.3 NUMERIC FIELDS

The following formatting characters can be used to format a numeric

field:

Character

Feb. "82

Use

A number character # is used to represent each digit

position. All digit positions will be filled. If the

number to be printed has fewer digits than the positions

specified, the number will be right-justified (preceded

by spaces) in the field.

Example:

PRINT USING “####"; 884

bb88

A decimal point may be inserted at any position in the

field. If the format string specifies that a digit is to

precede the decimal point, the digit will always be

printed (0 if necessary). The numbers will be rounded

off if necessary. Note that by including the “OPTION

EUROPE 1" statement, the decimal point in a numeric field

will be replaced by a comma.

Examples:

PRINT USING “##.##"; .084

0.08

PRINT USING “##i#.##" 5 887.6544

887.65

PRINT USING “##.## "320.2,7.3,88.789,.5574

20.20 7.30 88.79 0.57

DOUBLEY

OPTION EUROPE 14

PRINT USING “####tHE HE'S 1.25.56

1234567 , 89

11-4 PRINT Us .NG

SECTION 11 - FORMATTED PRINTING

Character

kk

$s

PRINT USING

Use

The "+" sign may be used at either the left or the right

of the numeric field. If the number is positive, the +

sign is printed at the specified side of the number. If

the number is negative, a - sign is printed at the

specified side of the number.

Example:

PRINT USING “+##.##"3;-75.95,2.5,88.6,-.84

-75.95 +2.50+88.60 -0.80

The "-" sign, when used at the right of the numeric

field, prints to the right of a negative number. If the

number is positive, a space is printed.

Example:

PRINT USING “##.##- "3-75.95,44.449,-8.014

75.95- 44.45 8.91-

The "**" placed at the beginning of a numeric field fills

the unused spaces in the leading portion with asterisks.

The "**" also specifies positions for two more digits

(termed “asterisk fill").

Example:

PRINT USING “**#.# 322.39,-0.8,543.14

*22.4 *-0.8 543.1

When the $$ is used at the beginning of a numeric field a

$ sign is printed in the space immediately preceding the

number printed. Note that $$ also specifies positions

for two more digits, but that the $ sign itself takes up

one of these spaces.

Example:

PRINT USING “SS##.## “3123.454

$123.45

11-5 Feb. '82

SECTION 11 - FORMATTED PRINTING

Character

#KS

A AAA

Feb. "82

Use

The combination “**$" at the beginning of a format string

combines the effects of ** and $$. Leading spaces will

be filled with asterisks and a dollar character will be

printed before the number. “**S" specify three more

digit positions, one of which is the dollar character.

Example:

PRINT USING "“**S##.##"32.349

RRND 4

A comma to the left of the decimal point in a formatting

string causes a comma to be printed to the left of every

third digit to the left of the decimal point. A comma at

the end of the format string is printed as part of the

string. This comma serves as the delimiter between two

numbers. A comma specifies one digit position. Note

that by including the statement, “OPTION EUROPE 1", the

decima? .oint in a numeric field will be replaced by a

comma.

Examples:

PRINT USING “#,###.##" 3 4567.84

4,567.80

PRINT USING “####. ##" 34567 .89

4567.80

DOUBLEY

OPTION EUROPE 1

PRINT USING “#,###, FHP. ##" 5 1.23456789E+069

1.234.567,89

Four carats may be placed after the digit position

characters to specify exponential format. The four

carats specify the position of E+xx. Any decimal point

position may be specified; the exponent will be adjusted.

Unless a leading + or leading or trailing + or - are

specified, one digit position at the beginning of the

number will be used to print the minus sign.

11-6 PRINT USING

SECTION 11 - FORMATTED PRINTING

PRINT USING

Examples:

PRINT USING “##.##°~ "7 "3123.454

1.23E+02

PRINT USING “.###E "7°" 377777774

4-777777

PRINT USING “+.##°* 77" 3234

+.23E+03

An underscore in the format string causes the next

character to be output as a literal character. The

literal character itself may be an underscore. The

underscore is used to print the characters which would

otherwise be interpreted as format characters.

Example:

PRINT USING “_!#i#.i#_1"345.674
145.67!

Note that if the number to be printed is larger than the

specified numeric field, a percent character is printed

before the number. A percent character is printed also

if rounding causes a number to exceed the field.

Examples:

PRINT USING “##.##";711.224

4 711.22

PRINT USING ".##";.9994

% .999

A “%" sign may replace the ",” in a numeric field format

in order to insert a blank where the “," (or ".”" with

“OPTION EUROPE 1") was to be in the output. This can be

used, for example, for special forms.

Examples:

DOUBLE4

PRINT USING “#Zi#iE Ci’ 5 1.234567E+064

1 234 567

li-? Feb. '82

SECTION ll - FORMATTED PRINTING

Feb. "82

ww A “~" may replace the “." in a numeric field format to

insert a blank where the “." (or ",“ with “OPTION EUROPE

lL") was to be in the output. This can be used, for

example, for special forms.

Examples:

DOUBLE

PRINT USING “#Z#EEZE ROPE 5 1.23456789E+064

1 234 567 890

11=8 PRINT USING

SECTION 11 - FORMATTED PRINTING

11.4 ILLUSTRATED EXAMPLE

The following program illustrates the formatting rules presented in

this section.

10 INPUT AS,Aq

20 PRINT USING AS;A9

30 GOTO 104

RUN4

(The screen displays a “?". The numeric field and value list are

entered and the output is. displayed.)

? ##,-24

2? +#,-24

~2

2 +H #ELO

+9 -2

2? #,-24

4-2

2 +t, 024

+.020

2 ##tE. #,1ON4

100.0

? BES Lj

2+

? THIS IS A NUMBER ##,24

THIS .5s A NUMBER 2

? BEFORE ## AFTER,124

BEFOR™ 12 AFTER

2? ## Es 4444aq

44444

PRINT USING 11-9 Feb. '82

SECTION 11 - FORMATTED PRINTING

Feb.

2 exHHL LY

kK]

2 wet L124

**12

2 RHE LI2349

*123

? we L123449

1234

2 we 1234549

% 12345

2 **,14

*1

2? ** «i224

22

2 *x, HHLI24

12.00

2 weft,

RAKE]

? StH #H,L12.344

§ 12.34

2? SS##t#t. #E,12.564

$12.56

? SS.##,1.234

$1.23

2? S$S.##,12.349

% 12.34

2? SS##F,O.234

$0

2 SSH#HEE. HELOF

$0.00

2 ASHE HELL.234

RARKST 23

2 FS #HL1.2349

*$1.23

2 weaSHHE LLY

KRKKS]

"82 11-10

(Note:

(Note:

not floating $)

floating $)

PRINT USING

SECTION 11 - FORMATTED PRINTING

2 #,6.94

7

2 #.#,6.999
7.0

2 ##-,24
2

2 #i-,-24
2-

2 HE, 24
2+

2 Fit, -24
2-

DHHS An, 24

2E+00

a, aot v

LE+O1.

DUBERHE HEE 7°77" 522456784

2456. 780E-03

2" # HEB T1234
0.123E+03
2" HHS 5" -1234

~.12E+.03

2 “HEHE, FHP. E" ,1234567.899
1,234,567.9

°

e

(Depressing the STOP key stops the program.)

PRINT USING li-il Feb. '82

SECTION 12

LOW RESOLUTION COLOR GRAPHICS

SECTION 12

LOW RESOLUTION COLOR GRAPHICS

12.1 COLOR GRAPHICS KEYWORDS

Low resolution color graphics is available on the Monroe 8800 Series

Educational Computer. The selection of display colors for low

resolution text or graphics is enabled by including special control

keywords in the PRINT statement. The PRINT statement affects one

display line at a time.

Table 12-1.

A summary of these keywords is shown in

Table 12-1. Low Resolution Color Graphics Keywords

Keyword

RED (Red) MAG (Magenta)

GRN (Green) CYA (Cyan)

YEL (Yellow) WHT (White)

BLU (Blue)

GRED GMAG

GGRN GCYA

GYEL GWHT

GBLU

FLSH

NWBG

Function

Displays background or alphanumeric

variables, expressions or text strings

in specified color.

Displays graphics via text strings in

specified color.

Displays text or graphics in flashing

mode.

Negates flashing mode.

Displays text or graphics in double

height mode.

Negates double height mode.

Enables background color to be changed.

12-1 Feb. '82

SECTION 12 - LOW RESOLUTION COLOR GRAPHICS KEYWORDS

Table 12-1. Low Resolution Color Graphics Keywords (Cont.)

Keyword Function

BLBG Changes background color to black.

GCON Displays graphics characters in

contiguous mode.

GSEP Displays graphic characters in

separated mode.

GHOL , Enables control blanks on screen to be

filled with previous graphic characters.

GREL Negates previous GHOL keyword.

AIDE Allows graphics to be hidden in display.

Each of the control keywords in Table 12-1 places a control character

on the screen. Although these characters are not visible, they take

up one position each on the current line. Specified control

characters can be covered by a background color if the control

keywords are given in the correct order. Detailed ‘descriptions

including correct keyword order can be found in subsequent

paragraphs.

The available low resolution graphics characters in the system are

listed in Appendix E. This table gives the ASCII value of each

character and its meaning in character mode and in graphic mode.

Note that the capital letters still remain the same in graphic mode.

You can mix capital letters and graphic characters just ‘as you like.

Feb. ‘82 12=2

N
Y

SECTION 12 - LOW RESOLUTION COLOR GRAPHICS

Keyword:

Funetion:

Mode:

Format:

Arguments:

Feb. '82

<color>

Displays alphanumeric characters in designated

color.

Direct/Program.

PRINT [position] <color> <list>

Position can be of the form CUR(y,x) or TAB(con),

where:

y,x is the row and column where the cursor is to be

moved and color alphanumeric characters are to be

displayed (0,0 is the top left corner of screen).

Con is the stated horizontal position on the current

row where color alphanumeric characters are to be

displayed. The first position of a line is position

1. An expression may be substituted for con.

List can contain variables, expressions, or text

strings.

Color can be any one of the following seven colors:

RED = red

GRN = green

YEL = yellow

BLU = blue

MAG = magenta

CYA = cyan

WHT = white

12-3 ; <color>

SECTION 12 - LOW RESOLUTION COLOR GRAPHICS

Use: This command causes alphanumeric text of the user's

choice to be displayed in color. It can be given

and reissued at any point in a program; however, the

character position (x,y) at the current line where a

PRINT... color... command is given is lost for

display purposes (refer to example below).

Examples: Ex. l

10 5 CHRS (124)4
20 ; “THIS LINE PRINTS IN WHITE (DEFAULT)."4
30 ; RED “THESE TWO LINES PRINT IN RED AND"
40 ; RED "ONE CHARACTER TO THE RIGHT. "4
50 END
RUNY
BASIC

THIS LINE PRINTS IN WHITE (DEFAULT).

THESE TWO LINES PRINT IN RED AND

ONE CHARACTER TO THE LEFT. ‘

\

Ex.2 The statement:

PRINT CUR (5,12) GRN “CHART OF ACCOUNTS”

will display “CHART OF ACCOUNTS” in green beginning

in row 5 column 12.

Ex. 3 The statement:

PRINT TAB (7) YEL “ADDRESS:"

will display “ADDRESS:" in yellow in pos 7.

<color> 12-4 Feb. '82

SECTION 12 - LOW RESOLUTION COLOR GRAPHICS

Keyword:

Function:

Mode:

Format:

Arguments:

Use:

Feb. "82

NWBG

Selects new background color of display.

Direct/Program.

PRINT [position] <color> NWBG <list>

Position can be of the form CUR(y,x) or TAB(con),

where:

y,x is the row and column where the cursor is to be

moved and color alphanumeric characters are to be

displayed (0,0 is the top left corner of screen).

Con is the stated horizontal position on the current

row where color alphanumeric or graphic characters

are to be displayed. The first position on a line is

position 1. An expression may be substituted for

colle

Color can be any one of the following seven colors:

RED = red . MAG = magneta

GRN = green CYA = cyan

YEL = yellow WHT = white

BLY = blue

List can contain variables, expressions, or text

strings.

The background of a display is normally black. A

background of any of the standard colors can be

selected using the NWBG keyword. After this keyword

is given, the background becomes the color of the

preceding color keyword. This facility allows

letters, numbers and graphics to be highlighted and

shaded. It can also be used for prompting purposes.

A black background can be restored by issuing the

BLBG keyword.

12-5 NWBG/ BLBG

SECTION 12 - LOW RESOLUTION COLOR GRAPHICS

Examples:

NWBG/BLBG

Note that the color of the background should be

specified first followed by the NWBG keyword. If

this order is adhered to the new background color

will start one character to the right of where it is

expected on the current line. That is, the

attribute NWBG occupies one print position. If TAB

or CUR is included that print position will still be

reserved for the keyword and should not be used.

Ex. 1

The following statements use a yellow prompt (NAME?)

on a blue background. “JOHN SMITH” prints in red on

a black background.

10 +; CHRS (12%)
20 ; BLU NWBG YEL “NAME?#$"

30 3; BLBG RED “JOHN SMITH"

Ex. 2

3; “THIS PRINTS WHITE LETTERS ON A BLACK

BACKGROUND”

Ex. 3

The following statements set the background color

for the entire screen to cyan.

10 FOR I=0 to 23

20 ; CYA NWBG

30 NEXT I

12-6 Feb. ‘82

SECTION 12 - LOW RESOLUTION COLOR GRAPHICS

Keyword:

Function:

Mode:

Format:

Arguments:

<gcolor>

Displays graphic characters in designated color.

Program/Direct.

PRINT [position] <gcolor> <glist>

Position can be of the form CUR(y,x) or TAB(con),

where:

y,x is the row and column where the cursor is to be

moved and color graphic characters

displayed. The first position on a line

1. An expression may be substituted for

Con is the stated horizontal position on

row where color graphic characters

displayed.

1. An expression may be substituted for

The first position on a line

are to be

is position

CON.

the current

are to be

is position.

CON. ~

List can contain variables, expressions, or text

strings.

GCeolor can be any one of the following seven colors:

red = GRED magenta = GMAG

green = GGRN cyan = GCYA

blue = GBLU white = GWHT

yellow = GYEL

glist is a text string which contains one or more of

the 64 graphic characters that are available (refer

to Appendix E).

12-7 geolor

SECTION 12 — LOW RESOLUTION COLOR GRAPHICS

Use:

Examples:

gcolor

This keyword permits the construction of extra large

letters and graphic diagrams. Note that the graphic

character is displayed one additional character to

the right of where it is expected to be. That is,

the attribute <gcolor> occupies one print position.

This reserved space can be eliminated via the GHOL

keyword.

Ex. 1 The following statements print the block

letter “L” in magenta.

10 3; CHRS (12%)

20 ; TAB (15) GMAG “5”
30 ; TAB (15) GMAG “5"

40 ; TAB (15) GMAG “up”

50 END .

Ex. 2 The statement:

3; GRED "%" GHOL GGRN "%"

prints the graphic character "%" in red three times

then once in GREEN.

12-8 Feb. '82

SECTION 12 - LOW RESOLUTION COLOR GRAPHICS

Keyword: FLSH and STDY

Function: Displays alphanumeric or graphic characters in

flashing color.

Mode: Direct /Program.

Format: PRINT [position] FLSH <color>

Arguments: Position can be of the form CUR(y,x) or TAB(con),

where:

y,x is the row and column where the cursor is to be

moved and color characters are to be displayed (0,0

is the top left corner of screen).

Con is the stated horizontal: position on the current

row where color alphanumeric characters are to be

displayed. An expression may be substituted for

cone

List can contain variables, expressions, or text

strings.

Colors can be any of the following alphanumeric or

: graphic colors:

Color Alphanumeric Graphic

Red RED GRED

Green GRN GGRN

Blue BLU GBLU

Yellow YEL GYEL

Magenta MAG GMAG

Cyan CYA GCYA

White WHT GWHT

Feb. '82 12-9 FLSH/STDY

SECTION 12 - LOW RESOLUTION COLOR GRAPHICS

Use: The keyword, FLSH, causes alphanumeric or graphic

text to be displayed in a flashing mode. Note that

the graphic character is displayed one additional

character to the right of where it is expected to

be. That is, the attribute FLSH or STDY occupies

one print position. This reserved space can be

eliminated via the GHOL keyword. ,

The STDY keyword disables the FLSH mode.

Example: The statement:

3; CUR(0,4) RED FLSH DBLE “MONROE” STDY

“SYSTEMS FOR BUSINESS"

prints “MONROE” in a red, flashing and double height
mode. “SYSTEM FOR BUSINESS” does not flash. STDY

disables the flashing mode.

FLSH/STDY 12-i9 Fah 199

SECTION 12 - LOW RESOLUTION COLOR GRAPHICS

Keyword: DBLE and NRML

Function: Display alphanumeric or graphic characters in

designated color with twice the normal height but

with the same width.

Mode: Program/Direct.

Format: PRINT [position] DBLE <color> <list>

Arguments: Position can be of the form CUR(y,x) or TAB(con),

where:

y,X is the row and column where the cursor is to be

moved and color characters are to be displayed (0,0

is the top left corner of screen).

Con is the stated horizontal position on the current

row where color alphanumeric or graphic characters

are to be displayed. The first position on a line

is position 1. An expression may be substituted for

cone

List can contain variables, expressions, or text

strings.

Colors can be any of the following:

Color Alphanumeric Graphic

Red RED GRED

Green GRN GGRN

Blue BLU GBLU

Yellow YEL GYEL

Magenta MAG GMAG

Cyan CYA GCYA

White WHT GWHT

Feb. '82 12-11 DBLE/NRML

SECTION 12 - LOW RESOLUTION COLOR GRAPHICS

Use:

Examples:

DBLE/NRML

The double-height alphanumeric and graphic

characters displayed by this keyword can be used to

highlight a particular section on the screen and for

prompts. Note that the character width remains the

same. This keyword is in effect for only the lines

(rows) where it is given and also occupies one print

position. When DBLE is in use, it causes the

information for the row below it to be ignored and

blanked out.

The keyword NRML when included causes the characters

to be displayed in normal height.

Ex. l

; CUR (3,3) DBLE “THIS LINE PRINTS IN DOUBLE

HEIGHT.”

Ex. 2

; CUR (0,0) YEL DBLE “MONROE” NRML “SYSTEMS FOR

BUSINESS”

Displays “MONROE” in yellow in double height on a

black background.

12-12 Feb. '82

SECTION 12 ~ LOW RESOLUTION COLOR GRAPHICS

Keyword: GSEP and GCON

Function: Display graphic characters in separate (dotted line) ~

or contiguous configuration.

Mode: Direct /Program.

Format: PRINT [position] <gcolor> GSEP <list>

Arguments: Position can be of the form CUR(y,x) or TAB(con),

where:

y,x is the row and column where the cursor is to be

moved and color graphic characters are to be

displayed (0,0 is the top left corner of screen).

Con is ‘the stated horizontal position on the current

row where graphic characters are to be displayed.

The first position on a line is position l. An

expression may be substituted for con.

Gcolor can be any one of the following seven colors:

red = GRED magenta = GMAG

green = GGRN cyan = GCYA

blue = GBLU white = GWHT

yellow = GYEL

List can contain expressions or text strings.

Use: The GSEP keyword allows specific areas of graphic

characters to be distinguished by being separated

(dotted).

Figure 12-1 shows the difference between separate

and normal (contiguous) configuration, for graphic

character "f". The graphic display will start at

least two characters to the right (one for <geolor>

and one for GSEP keywords) of where it is expected

on the current line. That is, the attributes gcolor

Feb. '82 12-13 GSEP/GCON

SECTION 12 - LOW RESOLUTION COLOR GRAPHICS

and GSEP occupy two print positions. If TA or CUR

is included the current two character pos -ions on
4

the specified line will be reserved and sf «7 not

be used.

The use of the keyword GCON returns the character to

to the contiguous configuration.

rlilt! LLL eee
ZEB CEG
BA lili keke

||
aA |

A_| |
A |_|

|
|

|
ll c“kce

4 \Li kere
AA | eee

(a) Separate (b) Contiguous

Figure 12-1. Graphics Character Generation

Example: Ex. Ll

; GCYA GSEP "f"

will produce Figure 12-1 (a).

Ex. 2

; GCYA GCON “f™

will produce Figure 12-1 (b).

GSEP/GCON 12-14 Feb. ‘82

SECTION 12 - LOW RESOLUTION COLOR GRAPHICS

Keyword: GHOL and GREL

Function: Fills the blanks on the graphic display produced by
the previous graphic keywords with a repeat of the

preceding graphic character.

Mode: Program/Direct.

Format: PRINT [position] <gcolor> <list> GHOL

Arguments: Position can be of the form CUR(y,x) or TAB(con),
where:

y,x is the row and column where the cursor is to be

moved and color graphic characters are to be

displayed (0,0 is the top left corner of screen).

Con is the stated horizontal position on the current

row where color alphanumeric characters are to be

displayed. The first position on a line is position

1. An expression may be substituted for con.

Gcolor can be any one of the following seven colors:

red = GRED Magenta = GMAG

green = GGRN cyan = GCYA

blue = GBLU white = GWHT

yellow = GYEL

List can contain variables, expressions, or text

strings.

Use: This keyword allows different colored areas in

graphics and diagrams to be connected without gaps

in between colors. Without this keyword gaps would

appear between colors, background changes, etc.

The keyword GREL (release graphic) cancels the GHOL

keyword. This keyword is in effect for only the

line where it is given.

GHOL/GRED 12-15 Feb. '82

SECTION 12 - LOW RESOLUTION COLOR GRAPHICS

Example: ; GREL "%" GHOL

which is the same as

3; GREL "22"

GHOL/GRED 12-16 Feb. '82

SECTION 12 — LOW RESOLUTION COLOR GRAPHICS

Keyword:

Function:

Mode:

Format:

Arguments:

Use:

Feb. ‘82

HIDE

Enables graphics to be hidden by displaying graphics

in the same color as the background.

Program/Direct.

PRINT [position] <gcolor> HIDE <glist>

Position can be of the form CUR(y,x) or TAB(con),

where:

y,x is the row and column where the cursor is to be

moved and color alphanumeric characters are to be

displayed (0,0 is the top left corner of screen).

Con is the stated horizontal position on the current

row where color alphanumeric characters are to be

displayed. The first position on a line is position

1. An expression may be substituted for con.

Geolor can be any one of the following seven colors:

red = GRED magenta = GMAG

green = GGRN cyan = GCYA

blue = GBLU white = GWHT

yellow = GYEL

Glist-can contain variables, expressions, or text

strings.

This keyword can be used to animate graphic displays

or to hide answers to questions until the user

responds accordingly. The hidden graphic will start

at least two characters to the right (one for

<gcolor> and one for HIDE keywords) of where it is

expected on the current line. That is, the

attributes gcolor and HIDE occupy two print

positions. If TAB or CUR is included, the current

12-17 HIDE

SECTION 12 - LOW RESOLUTION COLOR GRAPHICS

two-character positions on the specified line will

be reserved and should not be used. Refer to GHOL

keyword to see how these reserved spaces can be

filled.

Example: LISTY

10

20

30

40

50

60

70

80

90

999

HIDE

; CHR$ (122)

AS(1) = “THESE” : A$(2) = “WORDS”

AS(3) = “WERE” : AS$(4) = "HIDDEN"

FOR I=0 TO 23 : REM DISPLAY CYAN BACKGROUND

; CYA NWBG

NEXT I

C$ = BLU : HS=HIDE : X=0

Z=FNA : REM HIDE THE ANSWERS

;CUR(0,0)

INPUT "TYPE Y TO CONTINUE ";Y$

HS=FLSH : X=0

Z=FNA : REM FLASH THE ANSWERS

DEF FNA

FOR I=4 TO 19 STEP 5

X=X + 1

3; CUR (I,I) C$ H$ AS$(X)

NEXT I

RETURN 0

FNEND

STOP

12-18 Feb. ‘82

a

SECTION 12 - LOW RESOLUTION COLOR GRAPHICS KEYWORDS

12.2 COLOR GRAPHICS STATEMENT AND FUNCTION

The following statement and function is available to write, delete,

or test for the presence of a graphic point on the screen:

TXPOINT Writes, deletes or tests for a point on

the screen.

Feb, '82 12-19

SECTION 12 -— LOW RESOLUTION COLOR GRAPHICS

TXPOINT Function

Function:

Mode:

Format:

Argument:

Use:

Example:

Feb. ‘82

Returns a value specifying whether a particular

graphic point was turned on or off.

Program/Direct.

TXPOINT (<xvar>,<yvar>)

xvar, yvar is the location on the screen which is to

be tested. These variables can take on values from

0 to 78 for x and 0 to 71 for y, where the point

(0,0) is at the bottom left, one column to the right

as shown below.

it
0,0

| |
| |
| |
| I
| |
|_lo

|
|

An expression may be substituted for the variable.

This function returns a “-1" if the point is set and

a “O" is not set.

10 2% = TXPOINT (6,10)4

20 IF 2% <> 0 THEN TXPOINT 6,10,-19

If the TXPOLINT is set at (6,10), the graphic point

is turned off.

-12-20 TXPOINT

SECTION 12 - LOW RESOLUTION COLOR GRAPHICS

TXPOINT Statement

Function: Sets (writes) or deletes a specific graphic point

on the screen.

Mode: Program/Direct.

Format: TXPOINT <xvar>,<yvar>[,-1]

Argument: xvar, yvar is the x,y coordinate on the screen which

is to be set or deleted. This variable can take on

values from 0 to 78 for x and 0 to 71 for y, where

the point (0,0) is at the bottom left, one column to

the right as shown below.

-1, when included, deletes instead of writes the

point.

Use: This statement can be used to turn on or turn off

any one or all of the 71 by 78 blocks on a screen.

Example: Ex.1 The following statements display a red point

at (0,0). That is, at the second print position on

line 0.

LISTY

10 3; CHRS (12%) : REM CLEAR LOW RES SCREEN

20 3; CUR (23, 0) GRED;

30 TXPOINT 0,0

BASIC

TXPOINT 12-21 Feb. '82

SECTION 12 - LOW RESOLUTION COLOR GRAPHICS

EX. 2 The following program causes a SINE curve to

be displayed with all seven colors using the TXPOINT

statement.

LISTY

10 INTEGER

29 DIM AS$(7%) ! DEFINE 7 COLORS FOR LO-RES DISPLAY

30 AS(0%)=GRED

40 AS(1%)=GGRN : AS(2%)=GYEL : AS$(3%)=GBLU

50 AS(4%)=GMAG : AS(52%)=GCYA : AS(6%)=GWHT

60 INPUT “m,r ="MZ,R

63 ! r is used to set # of periods (select a value from

64 ! .3 to 2)

65 !m = # of frequency increments (select a value

66 ! from 1 to 8)

70 S=2%*PI/(R*77%) ! INCREMENT FOR ARGUMENT OF SINE

80 PRINT CHRS(12%) ! CLEARS SCREEN

90 FOR I%=0% TO 23% ! SELECT COLOR FOR EACH LINE

100 PRINT CUR(1I%Z,0%) AS(MOD(1IZ,7%));

110 NEXT 1%

120 FOR 12=2% To 77% ! FOR EACH COLUMN COMPUTE

125 ! COORDINATES AND DISPLAY POINTS OF SINE CURVE

130 GOSUB 170

140 NEXT 1%

150 PRINT CUR(0%,15%) RED FLSH DBLE “sine”

160 END

170 FOR JZ=0% TO M@%

180 TXPOINT [2%,32%+SIN((1%+J%)*S) *30%

190 NEXT JZ

200 RETURN

210 END

BASIC

Feb. '82 12-22 TXPOINT

SECTION 12 - LOW RESOLUTION COLOR GRAPHICS

12.3 STRING MANIPULATION OF LOW RESOLUTION GRAPHICS

The following low resolution graphics functions actually generate

strings which can be manipulated and be printed as strings:

Alphanumeric colors: RED, GRN, YEL, BLU, MAG, CYA, WHT

Graphic colors: GRED, GGRN, GYEL, GBLU, GMAG, GCYA, GWHT

Graphic functions: FLSH, STDY, DBLE, NRML, MWBG, BLBG, GCON,
GSEP, GHOL, GREL, HIDE

In addition, the CUR(row,column) function also returns a string

value; however, the TAB function can only be used with a PRINT

statement.

Of the functions listed above NWBG and HIDE use the previous

character as either the new background or hidden color respectively.

Example: AS=CUR(22,10)+ FLSH + RED + BLBG + 'ATTENTION'Y

3 AS ! Print a red flashing 'ATTENTION' on line

22, column 104

STRING 12-23 Feb. *82

‘ SECTION 13

HIGH RESOLUTION

COLOR GRAPHICS

SECTION 13

HIGH RESOLUTION

COLOR GRAPHICS

13.1 INTRODUCTION

High resolution color graphics is available on the Monroe 8800 Series

Educational Computer. For high resolution, the screen is divided

into 240 x 240 individually accesslble points called pixels. The

origin of the screen (0,0) is in the lower left corner and each

coordinate has a range of from 0 to 239.

Two data bits correspond to each pixel. When these bits are used to

select one of four colors of a particular group, it is referred to as

the four-color mode. High resolution graphics can be shown together

with the usual text or graphics display. When the two data bits are

considered to belong to two separate pictures each having only two

colors, it is referred to as the animation mode. The animation mode

“is used to enable one picture to be generated while another is being

shown. It is also used when very fast switching between two pictures

is desired.

Table 13-1 lists the available high resolution graphic statements.

Table 13-1. High Resolution Graphics Statements

Statement Use

FGCIRCLE Draws a circle.

FGGET Copies a rectangle.

FGCTL Selects color combination to be used.

FGDRAW Displays a specified shape.

FGERASE Sets all elements of a shape to its

background color.

13-1 Feb. ‘82

SECTION 13 ~ HIGH RESOLUTION COLOR GRAPHICS

Statement Use

FGFILL . Fills a rectangle with desired color.

FGLINE Draws a straight line between two pixels.

FGPAINT Fills a closed area with desired color.

FGPOINT Sets or returns the color number of a

specified pixel.

FGPUT Restores a rectangle to high resolution

memory.

FGROT* Rotates specified shape in 45° increments.

FGSCALE* Scales shape to be drawn.

Once the. four-color combination is specified by the FGCTL statement,

other high resolution statements may specify a particular color in

that group. Each of these statements contains a <color> argument.

This variable can take on values between 0 and 3 and corresponds to

the colors in that particular color group (see Table F-1). For

example, consider color group 3 in Table F-1:

0 1 2 3

black, red, green, blue.

Here, 0 = black, 1 = red, 2 = green, and 3 = blue.

Color groups 0 to 127 are for both graphics text and high resolution

color in a display and color groups 128 to 256 are for high

resolution graphics only. Once a high resolution color group is

specified (e.g., FGCTL 130) and the execution of the program has

completed, a LIST command must be entered to get back to BASIC! -

* Note that the FGROT and FGSCALE statements previously executed

remain in effect until reset by a “FGROT 0" and “FGSCALE 1,1."

Hence, it is a good practice to specify these reset statements

at the beginning of each high resolution program.

Feb. '82 13-2

SECTION 13 -— HIGH RESOLUTION COLOR GRAPHICS

13.2 ANIMATION MODE

Two colors are used in the animation mode. The following procedure

can be used:

l. Pick out a color selection group (72-127). The color selection

groups are used in pairs (e.g., 72-73, 74-75).

2. Draw a picture with color number 1 or 2. Select the same color

as the one the picture is drawn on. The picture cannot be seen.

3. Change the color selection group so that the picture that was

drawn in color number 1 or 2 becomes visible.

4. Draw a new picture according to step 2 above.

5. Change the color selection group so that the picture that was

drawn in step 2 disappears and the one drawn in step 4 will

show.

6. Erase the picture drawn in step 2 and draw a new one.

7. Change the color selection group so that the picture drawn in

step 6 becomes visible.

Repeat the procedures under step 6 and 7.

To protect the current picture until a new picture is to be shown use

the following method:

100 FGLINE 100,100, 256*2+1

This instruction will cause a line to be drawn from the previous

position to the point 100,100 with color number 1. Color number 2 is

protected and will not be changed. Additional examples of this

feature are shown under the FGLINE statement.

13-3 Feb. ‘82

SECTION 13 - HIGH RESOLUTION COLOR GRAPHICS

13.3 FGCIRCLE STATEMENT

Function: . Draws a circle or a specifried sectior.

Mode: Program/Direct.

Format: FGCIRCLE <x,y>[,length]

‘Arguments: x,y specifies the coordinates of the center of the

circle or are to be drawn. The radius is equal to

the distance between x,y and the previous x,y.

Length equals the length of the arc to be drawn,

starting at the line joining the center of the

circle with the previous x,y and proceeding

clockwise. If length is omitted, the full circle

will be drawn.

If a negative length is given, the drawing of the

arc will proceed counterclockwise instead of

clockwise. a

The length of the arc is expressed as a fraction of

the circumference of the circle. The circumference

is equal to 2*PI*R where:

RaV(X,- % 1? +, -%, 97)

The coordinates X, , Y, are the previous x,y

location (from FGPOINT) while X, , Y2 are those

specified by this statement.

Use: FGCIRCLE draws a circle or a specified section

depending on whether the length parameter was

included. Specifying a length greater then 2*PI*R

has the same effect as if the length was omitted.

After execution of the FGCIRCLE statement, the final

point drawn will be the effective x,y.

Feb. '82 13-4 FGOCIRCLE

SECTION 13 - HIGH RESOLUTION COLOR GRAPHICS

Example: LIST

5 ;CHRS$(12) ! CLEAR LO-RES SCREEN

10 FGCTL 2

20 FGPOINT 0,0,0

30 FGFILL 239,239

35 S%Z=1%

36 ! DRAW CIRCLES WITH ORIGIN MOVING FROM

37 ! LOWER LEFT CORNER TO THE CENTER.

38 ! THE POINT ON ARC FOLLOWS.

40 FOR I=110 TO O STEP -2

50 FGPOINT 110-I,10,1

55 ! THE LENGTH OF ARC IS A FULL CIRCLE.

60 FGCIRCLE 140-1,110-1,(120-1)*2*PI*SZ

65 S%=S2%*(-1)

70 NEXT I

BASIC

FGCIRCLE 13-5 Feb. '82

SECTION 13 - HIGH RESOLUTION COLOR GRAPHICS

13.4 FGGET STATEMENT

Funetion:

Mode:

Format:

Arguments:

Use:

Feb. "82

Copies the high resolution memory contents for the

rectangle defined by the previous x,y coordinate and

. the x,y in FGGET.

Program/Direct

<string var> = FGGET(x,y)

x,y are the coordinates of the pixel directly

opposite the previous x,y which together form

opposite corners in a rectangle.

String var will contain header and graphics data for

the rectangle to be copied. See "Use" below for an

explanation of this data.

The high resolution graphics data is described in a

string by an 8-byte header and succeeding graphics

data. It is used by FGPUT in restoring the

rectangle stored by FGGET. This header can also be

manipulated by the user to alter the restored

rectangle's shape and relative position (refer to

examples under FGPUT). The header's contents look

like this:

Byte AS

|xpos

lypos
|xsize

|ysize

|xst

lyst
|xcant

O
n
t

n
u

F
W
N

|
|
|
|
|
|
|

oo]

Graphics data

¥ vr

13-6 FGGET

SECTION 13 ~— HIGH RESOLUTION COLOR GRAPHICS

FGGET

Byte

1-2

Contents

xpos ,ypos- The rectangle collected by
FGGET is specified by the old position

and the position in FGGET statement.

The FGPUT restores the rectangle on the
screen using the previous point. The

relative positioning of the rectangle

is maintained in FGPUT using xpos and

ypos. They contain the displacements

from old position to the upper left

hand corner, where retrieval and

restoration starts. xpos and ypos can

be modified by the user to alter the

relative positioning of the restored
rectangle.

xsize,ysize- xsize describes the
horizontal dimension in bytes. ysize

is the number of lines in the defined
rectangle. These are used in block
transfers and memory allocation in

FGPUT. They cannot be changed by the
user.

xSt,yst- xst indicates the position of

upper left hand corner of the rectangle

in a byte. Although a pixel in a

non~byte boundry specified, the byte
containing the pixel is collected. The
xst is used to align the first pixel in

FGPUT. yst is always assigned the

value 0.

xcant,ycant- This data specifies the

pixel counts in both x and y

directions. These can be modified to

change the shape of the rectangle

restored by FGPUT.

Graphics data.

13-7 Feb. '82

SECTION 13 - HIGH RESOLUTION COLOR GRAPHICS

Example: Ex.

5 ;CHRS(12) ! CLEAR LO-RES SCREEN

10

20

30

40

50

60

1

FGCTL 2

FGPOINT 0,0,0

FGFILL 239,239
FGPOINT 10,10,1

FGFILL 90,90

FGPOINT 11,11,2

70 FGFILL 89,89

80 ! COLLECT THE RECTANGLE IN AS

90 FGPOINT ‘10,10,1

100 AS=FGGET(90,90)

110 ! PRINT CONTENTS OF HEADER

120 FOR I = 1 TO 8

120 NS$-.= MIDS(AS,I,1)

140 3; ASCII (NS)

150 NEXT I

160 END

RUN

QO (xpos)

80 (xpos)

21 (xsize)

81 (ysize)

2 (xst)

0 (yst)

81 (xcant)

81 (ycant)

BASIC

Feb. '82 13-8 FGGET

SECTTON 13 - HIGH RESOLUTION COLOR GRAPHICS

"xaunie: ox. 2

EXTEND

BASIC

LIST4
5 ;CHRS$(12) ! CLEAR LOW-RES SCREEN

10 ! THIS PROGRAM DISPLAYS GROUPS OF RECTANGLES (10
20 ! x 10) IN RANDOM COLORS IN RANDOM POSITIONS ON

25 ! SCREEN.

30. DIM AS (22)
40 FOR II% = 130% TO 200%

50 FGCTL II
60 FOR IZ = 1% TO 3%
70 FGPOINT 0,0,1%
80 FGFILL 10,10
90 FGPOINT 0,0,1%
100 AS(1%-1%) = FGGET(10,10)
110 NEXT I%
120 FGPOINT 0,0,0

130 FGFILL 239,239

140 RANDOMIZE

150 FOR I%=1% TO 90%

160 X% = RND * 239%

170 Y% = RND-* 2392

180 FGPOINT X%,Y%

190 J%Z=RND*2%

200 FGPUT AS(J%)

210 NEXT I%

220 NEXT IIZ

230 END

BASIC

NOTE: List command must be entered after execution

of this program to get back to BASIC.

13-9 Feb. '82

SECTION 13 — HIGH RESOLUTION COLOR GRAPHICS

13.5 FGCTL STATEMENT

Function:

Mode:

Format:

Arguments:

Note:

Use:

Example:

Feb. '82

Selects the mode (animation -or four-color) and color

combination to be used.

Program/Direct

FGCTL <code>

Code can take on values between O and 255 and

represents the mode and color combination to be

used. Refer to Appendix F for color selection

table.

Once a color group from i28 to 156 is specified

and the execution of the program has completed, a

LIST command must be entered to get back to BASIC!

This statement allows the user to select the

animation or four-color mode.

The <code> variable (see Table F-1) is in the’

interval 0 to 255. Values less than 128 mean that

the ordinary text and graphics are displayed on top

of the high resolution graphics. That is, at the

point of intersection the low resolution and high

resolution colors will mix. From 128 upwards the

high resolution graphics memory is displayed. Color

codes from 72 to 127 and 200 to 255 are used in the

animation mode.

LIST 100-11004

100 FGCTL 0:REM SET COLORS TO ALL BLACK

120 FGPOINT 0,9,0 : REM SETS POINT (0,0)

130 FGFILL 239,239 : REM CLEAR SCREEN

140 FGCTL 3 : REM SELECTS COLORS - BK, R, GR & BL

1100 FGCTL 131 : REM HIGH RES DISPLAY FOR COLOR

CODE 3 (128 + 3)

13-10 FGCTL

SECTION 13 - HIGH RESOLUTION COLOR GRAPHICS

13.6 FGDRAW STATEMENT

Function:

Mode:

Format:

Arguments:

Use:

FGDRAW

Displays the shape at the previous x,y coordinates

(subject to scaling and rotation) described by a

table.

Program/Direct

FGDRAW <string var>

String var contains a shape table.

Monroe BASIC has three statements - FGDRAW, FGSCALE

and FGROT - which allow the user to manipulate

shapes in high-resolution graphics. Before using

these statements the desired shape must be defined

in a Shape Table. This table consists of a series

of integer values describing the shape desired.

Figure 13-1 shows a Shape Table form where the user

enters information called M-values about the shape

to be generated. The initial point where you start

drawing the shape is the previous X, Y coordinates

from a graphics statement. The shape required

should be drawn on graph paper, one dot per square

Starting at a particular X, Y coordinates. This

coordinate is the last one specified in a graphics

Statement before the FGDRAW is given. The shape can

be encoded moving in increments of one pixel in the

up, down, right or left direction. If the point you

are at is to be set (lit), it is specified in the

next movement description (see below). Hence two

types of movement are possible: a move without

setting the previous point and a move that also sets

the previous point.

13-11 Feb. '82

SECTION 13 - HIGH RESOLUTION COLOR GRAPHICS, SHAPE TABLE

STEP 1: Enter M-values* In sequence in M(n) and M(n+l1) colum.s beto::

to obtain Num(m) integer values.

Num(m) = M(n) x 16 + M(ntl) =
Num(1) = x 16 + =

Num(2) = x 16 + =

Num(3) = x 16 + =

Num(4) = x 16 + =

Num(5) = x 16 + =
Num(6) = x 16 + =
Num(7) = x 16 + =

Num(8) = x 16 + =
Num(9) = x 16 + =

Num(10) = x 16 + =

Num(1l1) = x 16. + =
Num(12) = x 166+ =

Num(13) = x 16 + =

Num(14) = x16 + =
Num(15) = x 16 + =
Num(16) = x 16 + = -
Num(17) = x16 + =
Num(18) = x 16 + =
Num(19) = © x 16 + =
Num(20) = x16 + =

Num(m) = x 16+ =)

If more space is needed use another form, keeping numbers in sequence

STEP 2: Create Shape Table
AS=CHRS (Num(1),Num(2),..., Num(m))
AS=CHRS (’ ’ > ? > > > ’ ’ > > gees)

STEP 3: Enter A$ in your program

LEGEND

*M~Values Num(m) Integer Valuc 3|
Direction Set Previous Num(1) = MCO)x1l6+M(1)

of Move — Move Only Pixel & Move Num(2) = M(1)x16+M(2)

Up 0 4 °
Right 1 5 e

Down 2 6 .

Left 3 7 Num(m) = M(n)xl6+M(n+1)
m = 1,2,...

n = 0,1,2...

Figure 13-1. Form To Create Shape Table

Feb. ‘82 13-12 FGDRAW

SECTION 13 - HIGH RESOLUTION COLOR GRAPHICS

FGDRAWN

The following M-values are available to accomplish

this task:

Direction M-Values

of Move - Move only Set Previous Pixel & Move

Up 0 4 -_
Right 1 5

Down 2 6

3 7 Left

The corresponding M-values for the shape to be drawn

are entered on the form on Figure 13-1. Two are

entered per line and multiplied and added as

specified.

Suppose, for example, the following shape is to be

encoded where S represents the previous point.

| |x] |
|x] [x]
|x| [x]
|s |x] |

This shape is composed of the following M-values:

M(O) = 0 - Move up from point §$

M(1) = 4 - Set previous Pixel & move up

M(2) = 4 - Set previous Pixel & move up

M(3) = 1 - Move right

M(4) = 5 - Set previous Pixel & move right

M(5) = 2 - Move down

M(6) = 6 - Set previous Pixel & move down

M(7) = 6 - Set previous Pixel & move down

13-13 Feb. '82

SECTION 13 - HIGH RESOLUTION COLOR GRAPHICS

M(8) = 3. - Move left

M(9) = 7 - Set previous Pixel & move left

These M-values are entered in the form on Figure

13-1 in consecutive order to produce the following

integer values.

Num(m) = M(n) X 16 + M(n+1)

Num(1) = 0 X 16+424

Num(2) = 4 X 16 + 1 = 65

Num(3) = 5.X 16 + 2 = 82

Num(4) = 6,X 16 + 6 = 102

Num(5) = 3 X 16 + 7 = 55

These integer values can then be stored in the shape

table and referred to a particular string variable

using the CHRS function, as follows:

AS = CHRS (Num(1),Num(2), eesccceee)

= CHRS (4,65,82,102,55)

The statement “FGDRAW AS" draws the shape.

Feb. '82 13-14 FGDRAW

SECTION 13 - HIGH RESOLUTION COLOR GRAPHICS

Example: Generate and display the following shape starting at

the lower left corner of the screen and fill the

shape with green:

X |
x

mt

[P
t

[b
s

xX

[| [|x| x]
[x] | |
[L | | |
[x{ | |
[| [x[x]

| L
| | x |
| [x |
[x [x |
| Xx [|| X {| X

STEP A - Generate the Shape Table:

M(O) = 0 -=- Move up

M(1) = 4 - Set previous pixel & move up

M(2) = 4 - Set previous pixel & move up

M(3) = 5 =- Move right

M(4) = 5 = Set previous pixel & move right
M(5) = 5 - Set previous pixel & move right

M(6) = 4 = Set previous pixel & move up

M(7) = 1 =- Move right

M(8) = 5 < Set previous pixel & move right
M(9) = 5 = Set previous pixel & move right

M(10) = 5 = Set previous pixel & move down
M(11) = 2 = Move down

M(12) = 6 = Set previous pixel & move down
M(13) = 6 - Set previous pixel & move down

M(14) = 6 - Set previous pixel & move down

M(15) = 3 - Move left

M(16) = 7 = Set previous pixel & move left
M(17) = 7 - Set previous pixel & move left

FGDRAW 13-15 Feb. '82

SECTION 13 - HIGH RESOLUTION COLOR GRAPHICS

M(18) = 4 - Set previous pixel & move up

M(19) = 3 - Set previous pixel & move left

M(20) = 7 =- Set previous pixel & move left

M(21) = 6 - Set previous pixel & move down

M(22) = 3. - Move left

M(23) = 7 - Set previous pixel & move left

STEP B ~ Enter the above values on the form in

Figure 13-1 as follows:

Step 1: Enter M-values*

Num(m) = M(n) X 16+ M(ntl) =

Num(1) = 0 X 16+ 4 = 4

Num(2) = 4 x 16 + 1 = 65

Num(3) = 5 ».4 16 + 5 = 85

Num(4) = 4 X 16+ 1 = 65

Num(5) = 5 X 116+ 5 = 85

Num(6) = 5 xX 16+ 2 = 82

Num(7) = 6 xX 16 + 6 = 102

Num(8) = 6 X 16+ 3 = 99

Num(9) = 7 X 16+ #7 = 119

Num(10) = 4 x 16 + 3 = 67

Num(11) = 7 X 16+ 6 = 118

Num(12) = 3 +X 16 + 7 = 55

Num(13) = ».¢ 16 + =

Step 2: Create Shape Table

AS=CHRS(Num(1),Num(2) , »..., Num(m))

AS=CHRS(4,65,85,65,85,82,102,99,119,67,

118,55)

Feb. '82 13-16 FGDRAW

“"CTION 13 - HIGH RESOLUTION COLOR GRAPHICS

Step © - Enter Shap Table in Program

LIST4

5 ;CHRS(12) ! CLEAR LO-RES SCREEN

10 FGCTL 2

20 FGPOINT 0,0,0

30 FGFILL 239,239

40 FGPOINT 0,0,2

50 A$=CHRS(4,65,85,65,85,82,102,99,119,67,118,55)

60 FGDRAW AS

70 FGPAINT 1,1,2 ! PAINT SHAPE

75 ! PAINT REMAINING AREA NOT COVERED BY PREVIOUS PAINT
80 FGPAINT 6,1,2

BASIC

FGDRA! 13-17 Feb. '82

SECTION 13 — HIGH RESOLUTION COLOR GRAPHICS

13.7 FGERASE STATEMENT

Function: . Sets all elements of the shape being drawn to the

background color.

Mode: Program/Direct

Format: FGERASE <string var 1>

Arguments: String var 1 contains a shape table.

Use: FGERASE is used to erase a particular shape from the

display when parts of the display are to be saved.

This statement resets all the points in the shape to

the display's background color. The specified shape

is specified via its shape table contained in a

string variable. (See FGDRAW Section 13.6.)

Example: LIST

5 ;CHRS(12) ! CLEAR LO-RES SCREEN

10 FGCTL 2

20 FGPOINT 0,0,0
30 FGFILL 239,239
40 FGPOINT 0,0,2
50 AS=CHRS$(4,65,85,65,85,82,102,99,119,67,118,55)
60 FGDRAW AS
70 FGPAINT 1,1,2 ! PAINT SPACE
80 FGPAINT 6,1,2 ! PAINT REMAINING AREA NOT

COVERED BY PREVIOUS PAINT
90 FGPOINT 0,0,0 ! SET COLOR FOR ERASE
100 FGERASE AS
BASIC

Feb. '82 13-18 FGERASE

SECTION 13 - HIGH RESOLUTION COLOR GRAPHICS

13.8 FGFILL STATEMENT

Function:

Mode:

Format:

Arfuments:

Use:

FGFILL

Fills a rectangle from the previous position to the

position indicated by the coordinates (x,y).

Program/Direct

1. FGFILL x,y[,colorl]

2. ‘FGFILL x,y, 256 * <color2> + <colorl>

x,y are the coordinates (0-239, 0-239) of the pixel

directly opposite the previous position which

together form the opposite corners in a rectangle.

It can be an integer constant or variable.

Colorl specifies which one of the two (animation

mode) or four-color choices the rectangle will be

colored. It can take on values between 0 and 3. If

omitted, the pixel's color will be the previous

color in effect.

Color2 is optional and specifies that if the

previous pixels color was color2 (0 to 3) it will be

protected and not overwritten by colorl. This is

useful in the animation mode where one picture is

shown while the other is updated.

FGFILL can be used to fill a particular rectangular

area on the screen or to clear part or all of the

screen.

13-19 Feb. '82

SECTION 13 - HIGH RESOLUTION COLOR GRAPHICS

“xanple: LIST

10 ;CHRS(12) ! CLEARS %..4 SCRE ™N

15 FGCTL 3 ! COLORS BL,RD,GR + BL

20 FGPOINT 0,0,1 ! SETS PIXEL 0,0 IN RED

30 FGFILL 239,239 ! FIC.LS SCREEN WITH RED

40 FGFILL 0,0,0 ! CLEARS SCREEN

BASIC

Feb. '82 13-20 FGFILL

SECTION 13 - HIGH RESOLUTION COLOR GRAPHICS

13.9 FGLINE STATEMENT

Function:

Mode:

Format:

Arguments:

Use:

FGLINE

Draws a line from the previous position to the

position indicated by the specified coordinates.

Program/Direct

1. FGLINE x,y[,colorl]

2. FGLINE x,y,256 * <color2> + <colorl>

X,y are the coordinates of the pixel to where the

line will be drawn.

Colorl specifies which one of the two (animation

mode) or four-color choices the line will be

colored. It can take on values between 0 and 3. If

omitted, the pixels color will be the previous color

in effect.

Color2 is optional and specifies that if the

previous pixel's. color was color2 (0 to 3) it will

be protected and not overwritten by colorl. This is

useful in the animation mode where one picture is

shown while the other is updated.

This statement sets all pixels to fill the line

being drawn from previous point to the specified x,y

position.

13-21 Feb. '82

SECTION 13 - HIGH RESOLUTION COLOR GRAPHICS

Feb. '82

Example: Ex. 1

LIST

10 FGPOINT 0,0,0 : REM SETS PIXEL 0,0 IN COLOR 0

15 PRINT CHRS(12) : REM CLEARS THE DISPLAY STORACE

20 FGFILL 239,239 : REM CLEARS THE HIGH RES STORAGE

30 FGCTL 3 : REM SELECTS COLORS BK, R, GR, B + TEXT

35 REM DRAW A SQUARE

40 FGPOINT 20,20,2 : REM SETS PIXEL 20,20 IN COLOR

45 REM 2 (GR)

50 FGLINE 220,20 : REM DRAWS A LINE TO 220,20 IN

55 REM COLOR 2

60 FGLINE 220,220,3: REM DRAWS A LINE TO 220,220

IN COLOR 3(B)

70 FGLINE 20,220,2 : REM DRAWS A LINE TO 20,220

75 REM IN COLOR 2 (GR)

80 FGLINE 20,20 : REM DRAWS A LINE TO 20,20 IN

85 REM COLOR 2

90 PRINT CUR(12,15); CYA DBLE “SQUARE”;

100 END .
BASIC

13-22 FGLINE

SECTION 13 - HIGH RESOLUTION COLOR GRAPHICS

Example: Ex. 2

LISTY

2 ;CHRS(12) ! CLEAR LOW RES SCREEN

5 REM ** ANIMATION*

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

REM ** THIS PROGRAM DRAWS A BLUE BAR

REM ** ON LEFT SIDE OF SCREEN AND

REM ** MOVES IT FROM X=1 TO X=230 POSITION

FGPOINT 0,0,0

FGFILL 239,239

FGCTL 109

C=1 : X#l : Y=1

Z=FNDRAW(C)

C=2

G=FNDRAW(C)

R=FNSHOW(C)

S=FNERASE(C)

IF C=1 THEN C=2 ELSE C=1

IF X < 230 THEN GOTO 100

DEF FNDRAW (C)

FGPOINT X,Y,C

FGLINE X,Y + 100, C

X=X + 2

RETURN 0

FNEND

DEF FNERASE(C)

FGPOINT X-4,Y,0

FGLINE X~-4,Y+100,0

RETURN 0

FNEND

DEF FNSHOW(C)

IF C=1 THEN FGCTL 108 ELSE FGCTL 109

RETURN 0

FNEND

END

BASIC

FGLINE 13-23 Feb. '82

SECTION 13 - HIGH RESOLUTION COLOR GRAPHICS

13.10 FGPAINT STATEMENT

Function:

Mode:

Format:

Arguments:

Use:

Feb. "82

Fills a closed area with a specified color.

Program/Direct

1. FGPAINT x,y[,colorl]

2. FGPAINT x,y,256 * <color2> + <colorl>

x,y are the coordinates (0-239, 0-239) of the pixel

inside the closed area to be filled with a specified

color.

Colorl specifies which one of the two (animation

mode) or four-color choices the closed area will be

colored. It can take on values between 0 and 3. If

omitted, the pixel's color will be the previous

color in effect.

Color2 is optional and specifies that if the

previous pixel's color was color2 (0 to 3) it will

be protected and not overwritten by colorl. This is

useful in the animation mode where one picture is

shown while the other is updated.

In order to paint an object or the area around an

object, a point x,y must be specified whose

coordinates represent a certain spot on the console.

This point determines where the painting will begin

and exactly what area will be painted during the

execution of a single instruction. Thus, the

position of the point within the object being

pointed or outside the object (i.e., when coloring

the area around the object) is very important with

respect to the performance of the FGPAINT statement.

13-24 FGPAINT

SECTION 13 - HIGH RESOLUTION COLOR GRAPHICS

Note:

FGPAINT

Painting takes place in the following manner:

Step 1:

Step 2:

Step 3:

Step 4:

Starting at (x,y), an upward traversal is

made until the end of screen or a new color

is found.

Then, coloring takes place horizontally

from right to left, filling in the area

between the end of screen and the object,

or within the object itself, until the

point x,y is reached.

A downward traversal is then made until the

end of screen or a new color is found.

Once again, coloring takes place on a

horizontal hasis, painting the area between

the object and the end of screen or between

the object's boundaries.

Remember, however, that depending upon the location

of the point with respect to the area to be painted,

some of the area may or may not be colored as

desired. The location of the point must then be

changed to accommodate for such an occurrence. With

practice, you will find that most objects may be

colored with one or two FGPAINT statements.

13-25 Feb. '82

SECTION 13 - HIGH RESOLUTION COLOR GRAPHICS

Example: LIST

10

20

30

40

50

60

65

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

“1 DRAW A CIRCLE WITHOUT USING FGCIRCLE

EXTEND

cal
; CHRS(12) ! CLEARS THE SCREEN
FGPOINT 0,0,0 ! SETS PIXEL 0,0 IN COLOR 0

FGFILL 239,239 ! FILLS THE SCREEN WITH COLOR 0

FGPOINT 0,0,0
FGCTL 7 ! SELECTS A COLOR COMBINATION

ORIGIN=119

RADIUS=103

COLOR=1
FOR XPOSITION=-RADIUS TO RADIUS STEP .2

HEIGHT=SQR(RADIUS*RADIUS—KPOSITION*XPOSITLON)*C

FGPOINT XPOSITION+ORIGIN, ORIGIN-HEIGHT , COLOR

FGPOINT XPOSITION+ORIGIN, ORIGINHIEIGHT

NEXT XPOSITION

FOR YPOSITION=-RADIUS TO RADIUS STEP .2

WINTH=SOR(RADLUS*RADIUS - YPOSITION*YPOSITLION)
FGPOINT ORIGIN-WIDTH, YPOSITION+ORIGIN

FGPOINT ORIGIN+WIDTH, YPOSITION+ORIGIN

NEXT YPOSITION ‘

FGPAINT ORIGIN,ORIGIN !PAINTS CIRCLE IN RED

END

BASIC

Feb. '82 13-26 FGPAINT

SECTION 13 - HIGH RESOLUTION COLOR GRAPHICS

13.11 FGPOINT FUNCTION

Function: Returns the color number of a specified pixel.

Mode: Program/Direct

Format: FGPOINT (x,y)

Arguments: x,y are the coordinates of the pixel being

interrogated for color number.

Example: LISTY

10 FGTICL 3

20 FGPOINT 0,0,3

40 FGLINE 0,10

50 ;FGPOINT (0,5)

BASIC

FGPOINT . 13-27 Feb. '82

SECTION 13 - HIGH RESOLUTION COLOR GRAPHICS

13.12 FGPOINT STATEMENT

Function:

Mode:

Format:

Arguments:

Use:

Feb. "82

Turns on a particular pixel in the specified or

previous color.

Program/Direct

1. FGPOINT x,y [,colorl]

2. FGPOINT x,y,256*<color2> + <colorl>

x,y are the coordinates of the pixel to be turned on

(on line x (0-239) in position y (0 to 239)).

Colorl specifies which one of the two (animation

mode) or four-color choices the pixel will be

colored. It can take on values between 0 and 3.

If omitted, the pixel's color will be the previous

color in effect.

Color2 is optional and specifies that if the

previous pixel's color was color 2 (0 to 3) it will

be protected and not overwritten by colorl. This is

useful in the animation mode where one picture is

shown while the other is updated.

FGPOINT is used to initially turu on a particular

pixel. Other high resolution statements can then be

given to draw lines, rectangles, and fill areas

starting at this point.

13-28 FGPOINT

SECTION 13 - HIGH RESOLUTION COLOR GRAPHICS

Examples: Ex. 1

LIST{

2 ;CHR$(12) ! CLEAR LOW RES SCREEN

5 FGCTL 3 ! COLORS BK,RD,GR, + BL

10 FGPOINT 5,5,2 ! SETS PIXEL 5,5 IN GREEN

20 FGLINE 15,15 ! DRAWS LINE IN GREEN

30 FGPOINT 15,10,256*2+1 !SETS PIXEL 10,10 IN

35 ! RED ONLY IF GREEN WASN'T PREVIOUSLY PRESENT

BASIC

Ex. 2

In this example two points ((0,0) and (0,200)) are

protected while a second picture is drawn with color

black.

LIST

5 ;CHR$(12) ! CLEAR LOW RES SCREEN

10 FGCTL 200 ! COLORS BK, R, BK, R

20 FGPOINT 0,0,0

30 FGFILL 239,239

40 FGPOINT 0,0,1

50 FGLINE 100,100

60 FGLINE 200,0

70 ! PROTECT (0,0) FROM BEING OVERWRITTEN BY BLACK

80 FGPOINT 0,0,256*1+2

90 FGLINE 100,105,256*1+2

100 ! PROTECT (200,0) FROM BEING OVERWRITTEN

105 ! BY BLACK

110 FGLINE 200,0;256*1+2

120 FGCTL 201 ! COLORS BK, BK, R, R

BASIC

NOTE: List command must be entered after executing

this program to get back to BASIC.

FGPOINT , 13-29 Feb. '82

SECTION 13 - HIGH RESOLUTION COLOR GRAPHICS

13.13 FGPUT STATEMENT

Function: Restores to high resolution memory the contents of a

rectangle specified by a string variable via an

FGGET statement.

Mode: Program/Direct.

Format: FGPUT <string var>

Arguments: String var contains header and graphics data for the

rectangle copied by the FGCOPY statement.

Use: The high resolution graphics rectangular data is

described by an 8-byte header and succeeding

graphics data. FGPUT uses this data to restore the

rectangle, stored by FGGET, starting at the

previous x,y location. Parts of the 8-byte header

can be changed by the user (see example) to alter

the shape and relative position of the restored

rectangle. The header's contents have been described

in detail under FGGET and are summarized below:

Byte AS

1 |xpos |

2 l|ypos |

3 |xsize |

4 |ysize

5 [xst |

6 lyst |
7 |xcant |

8 |yeant |

Agraphics datal,

T. T

FGPOUT 13-30 Feb. '82

SECTION 13 - HIGH RESOLUTION COLOR GRAPHICS

Suppose, for example, the shape of a rectangle is to

be reduced to half in both length and width. Hence,

the 7th and 8th bytes (xcnt, yent) in the header
have to be changed. This can be done using the MIDS

function as .follows (assume xcent=200, yent=100):

MIDS$S(AS,7,2) = CHRS(100,50)

Example: LISTY

2 ;CHRS(12) ! CLEAR LOW RES SCREEN

5 ! DEFINE COLOR, LOCATION AND SIZE OF RECTANGLE

10 FGCTL 2

20 FGPOINT 0,0,0

30 FGFILL 239,239

40 FGPOINT 10,10,1

50 FGFILL 90,90

60 FGPOINT 11,11,2

70 FGFILL 89,89

80 ! COLLECT THE RECTANGLE IN AS

90 FGPOINT 10,10,1

100 A$ = FGGET (90,90)

110 ! PUT RECT FROM 100,100

120 FGPOINT 100,100

130 FGPUT AS

140 ! REDUCE SIZE OF RECT AND PUT FROM

150 ! POST. 120,10

155 ! 7TH AND 8TH BYTE ARE X AND Y PIXEL

156 ! COUNTS. ORIGINALLY 90,80 CHANGE TO 45,45.

160 MIDS(AS,7,2)=CHRS$(45,45)

163 ! CHANGE THE REL. POS. FROM U.L. CORNER

164 ! TO OLD POS. ORIGINALLY YPOS=90 CHANGE TO 45

166 MIDS (AS$,2,1)=CHRS(45)

170 FGPOINT 120,10,0

180 FGPUT AS

182 ! PUT OFF THE SCREEN

190 FGPOINT 230,10,0

200 FGPUT AS

BASIC

FCPUT 13-31 Feb. '82

SECTION 13 - HIGH RESOLUTION COLOR GRAPHICS

13.14 FGROT STATEMENT

Function:

Mode:

Format:

Arguments:

Use:

Example:

Feb. "82

Specifies the degree of rotation to be applied to

the shape(s) displayed by subsequent executions of

FGDRAW and FGERASE.

Program/Direct.

FGROT <number>

Number is an integer specifying the degree of

rotation to be applied to the shape being displayed,

as follows:

Number Meaning

0 No rotation (initial value assumed)

1 45°

2. 90°

3 135°

4 180°

5 225°

6 270°

7 3159

Use rotation value of 0 when no rotation is desired.

An initial value of 0 will be assumed unless a FGROT

statement was previosly executed. The FGROT

statement which is to rotate the shape must appear

in a program before the FGDRAW statement.

LIST4
2 FGSCALE 1,1 :FGROT 0 ! RESET SCALE AND ROTATION

5 ;CHR$(12) ! CLEAR LOW RES SCREEN

10 FGCTL 2
20 FGPOINT 0,0,0
30 FGFILL 239,239
40 FGPOINT 120,120,2

50 AS=CHRS(4,65,85,65,85,82,102,99,119,67,118,55)

55 FGROT 2 ! ROTATE SHAPE 90 DEGREES

60 FGDRAW AS

BASIC
13-32 FGROT

SECTION 13 - HIGH RESOLUTION COLOR GRAPHICS

13.15 FGSCALE STATEMENT

Function: Scales either or both the x or y coordinate of the

Shape to be displayed by the FGDRAW or FGERASE

statement.

Mode: Program/Direct.

Format: FGSCALE <x,y>

Arguments: . x is a nonzero positive integer and specifies the

multiplier of the x-dimension of the shape(s) to be
displayed.

y is the corresponding multiplier for the y-dimension
of the shape(s).

Use: Use scale values of 1 when no scaling is desired. An

initial value of 1 will be assumed unless a FGSCALE
Statement was exacuted previosly. The FGSCALE state-

ment which is to scale the shape must appear in a

program before the FGDRAW statement.

Example: LISTY

3 FGSCALE 1,1 ! RESET SCALE TO NORMAL

4 FGROT 0 ! RESET ROTATION TO 0

5 CHRS$(12) ! CLEAR LOW RES SCREEN

10 FGCTL 2

20 FGPOINT 0,0,0

30 FGFILL 239,239

40 FGPOINT 0,0,2

50 AS=CHRS$(4,65,85,85,82,102,99,119,67,118,55)
55 FGSCALE 2,1 ! SCALE SHAPE 2 X IN X DIRECTION

60 FGDRAW AS

BASIC

FGSCALE 13-33 Feb. '82

SECTION 14

ADVANCED PROGRAMMING

SECTION 14

ADVANCED PROGRAMMING

14.1 INTRODUCTION

This section contains information that should only be applied by.

user's who have a complete understanding of Monroe BASIC and the

Monroe Operating System. Subjects discussed here include advanced

statements and functions, file creation and access methods.

14.2 ADVANCED STATEMENTS AND FUNCTIONS

This section contains Monroe BASIC statements and functions which are

to be used for advanced programming. The user is cautioned that if

certain of these statements are used incorrectly, program execution

or parts of the operating system may be inadvertently destroyed. The

advanced programming statements and functions are summarized in

Table 14-1.

Table 14-1. Advanced Programming Statements and Functions

Statement or

Function Use

CALL Calls an Assembler Program.

CVT Permits floating-point and integer values to be

represented in binary in ASCII I/O files.

INP Returns value of data from in-port specified.

ISAM CREATE Creates an ISAM index file and specifies the

PROCEDURE associated data file.

ISAM DELETE Deletes a record from an ISAM index file.

ISAM OPEN Opens an ISAM index file and its associated data file.

ISAM READ Accesses an ISAM data file.

ISAM UPNATE Modifies an existing record in the data file

associated with an ISAM index file.

14-1 Feb. ‘82

SECTION 14 - ADVANCED PROGRAMMING

Table 14-1. Advanced Programming Statements and Functions (Cont.)

Statement or

Function

ISAM WRITE

OPEN

OUT

PEEK

PEEK2

POKE

POSIT

PREPARE

svc

SWAP%

SYS(A)

VAROOT

VARPTR

Feh. '82

Jse

Enters a new record into the data file and updates

all indices in the index file.

Opens file in Record or Byte I/O mode.

Sends data to the out-port specified.

Returns memory contents of a specified address.

Reads the contents of two bytes.

Changes or loads a value into specified address.

Positions file pointer to record or byte position

desired or returns the current position of the

pointer.

Opens (and allocates) a new file in byte I/O mode.

Communicates with operating system to perform

special functions.

Transposes first and second bytes of an integer.

Provides essential system information.

Returns starting address of a table containing data

about a variable.

Returns starting address of where a variable is

stored.

14-2

R
o
e

SECTION 14 -— ADVANCED PROGRAMMING

CALL Function

Function:

Mode:

Format:

Arguments:

Note:

Result:

Example:

Caution:

CALL

Calls an Assembly program and returns the contents

of CPY register HL.

Direct/Program.

CALL(AZ[,D%])

A% is an integer holding the address of the machine

code being called.

D% is optional integer parameter which will be placed

in CPU Register DE of the processor at the call.

The assembly routine should always return to Monroe

BASIC by executing a return instruction.

The contents of register HL (integer) will be returned

as the value of the function.

LIST4
5 ! DEFINE ADDRESS WHERE ASSEMBLY ROUTINE STARTS.

10 A%=12342
15 ! DEFINE THE PARAMETER WHICH WILL BE TRANSFERRED

17. ! TO ROUTINE

20 D%=ASCII("A")
25! CALL THE ASSEMBLY ROUTINE AND PUT THE RETURNED

27. ! RESULT IN H%

30 H%=CALL(AZ%,D%)
40 END

This function is machine-oriented and should only be

used for advanced programming. CALL can destroy a

program execution if used erroneously.

14-3 Feb. '82

SECTION 14 - ADVANCED PROGRAMMING

CVT Conversion Functions

CVT Conversion Functions are provided to permit floating-point and

integer values to be represented in binary in ASCII I/O files. These

functions are:

Function Form Description

CVTZS(1%) AS=CVTZS(12%) Maps an integer into a

two~character string.

CVTS%(AS) L%Z=CVTSZ(AS) Maps the first two characters of

a string into an integer. The

string must have at least two

characters.

CVTFS(X) AS=CVTFS(X) Maps a floating-point number into

. a four- or eight-character string

(depending upon whether Single

or Double precision is used).

CVTSFCAS) X=CVTSF(AS) Maps the first four or eight

characters (depending upon

whether Single or Double

precision is used) of a string

into a floating-point number.

The string must have enough

characters; otherwise, wrong

results will be returned.

The above functions do not affect the value of the data, but rather

its storage format. Each character in a string requires one byte of

storage (8 bits); hence, characters may assume (decimal) vaiues from

0 through 255 and no others. A 16-bit quantity can be defined as

either an integer or a two-character string; two-word floating point

numbers can equally be defined as four-character strings.

The four CVT Conversion Functions are described in detail in

subsequent paragraphs.

Feb. '82 : 14-4 CVT

SECTION 14 ~ ADVANCED PROGRAMMING

CVTZS Function

Function:

Mode:

Format:

Arguments:

Use:

Example:

CVTZS

Returns a two-character string representation of an

integer.

Program/direct

CVT%ZS(<variable>)

Variable can be an integer constant, integer variable or

a subscripted variable.

This function permits dense packing of data in records.

For example, any integer value between -32768 and 32767

can be packed in a record in two characters. This

would only be true for integers between -9 and 99 if the

data was stored as ASCII characters.

LIST
10 RANDOMIZE
20 DIM AS(100%)
30 ! GENERATE 10 FIVE-DIGIT RANDOM INTEGER NUMBERS
40!
41 3 "*** INTEGERS GENERATED ***"
42 ;

50 FOR I%=1% to 10%
70 AZ (1%) =INT(RND*327672)
75 ; AZ(I%)

80 NEXT I%

81S

90 !

100 ! THE INTEGERS ABOVE CAN BE STORED INTO A FILE IN

105 ! TWO WAYS

110!

120 ! 1. NSING THE PUT AND NUMS STATEMENTS

130 ! ...THE SIZE OF FILEA WILL BE 50 BYTES...

14-5 Feb. '82

SECTION 14 ~ ADVANCED PROGRAMMING

131 !

140 PREPARE “FILEA” AS FILE |

150 FOR I%=1% TO 102%

157 SS=NUMS (AZ(1%))

158 SS=SS+SPACES (5%-LEN(SS))

160 PUT #1%,SS

170 NEXT I%
180 CLOSE 1%
181!
185!
190 ! 2. USING THE PUT AND CVTZS STATEMENTS

200 ! ...THE SIZE OF FILEB WILL BE 2 x 10 = 20 BYTES

201 ! ..eFILEB WILL BE PACKED FROM 50 BYTES TO 20

202 ! ...BYTES BY USING CVTZS.

203!

210 PREPARE “FILEB” AS FILE 2

22) FOR I%=1% TO 10%

230 PUT #2% CVT%S(AZ(1Z))

240 NEXT IA%

250 CLOSE 2%

240!

270 END

BASIC

Feb. '82 » 14-6 CVT%S

SECTION 14 - ADVANCED PROGRAMMING

CVTS% Function

Function:

Mode:

Format:

Arguments:

Use:

Example:

CVTSZ%

Returns the integer representation of the first two

characters of a binary string (having a least two

characters).

Program/direct

CVTSZ(<string>)

String is any string variable or constant but only the

first two characters will he converted at a time.

The CVTS% function provides the means to speed the

processing of a large amount of packed data within a file.

Converting the internal binary representation to an ASCII

string is a less time-consuming process with CVTS% than

the NUMS function.

LISTY
270 ! THIS PROGRAM READS THE INTEGERS FROM THE FILES

275 ! CREATED FOR PREVIOUS CVT%$ EXAMPLE

280 =!

290 ! 1. FROM FILEA

300 DIM BZ (102)

310 OPEN “FILEA" AS FILE 1

320 FOR J%Z=1% TO 10%

321 GET #1%,BS COUNT 5

331 B% (J%)=VAL(BS)

350 NEXT JZ

S5L §

355 CLOSE 1%

360 !

370 ! 2. FROM FILEB BY USING CVTS%

380 !

390 OPEN “FILEB” AS FILE 2

14-7 Feb. ‘82

SECTION 14 - ADVANCED PROGRAMMING

400 FOR J%Z=1% TO 10%

430 GET #2%,B$ COUNT 2

440 B%Z(IZ)=CVTSZ(BS)

450 NEXT JZ

460 CLOSE 22%

470 END

BASIC

Feb. '82 14-8

SECTION 14 — ADVANCED PROGRAMMING

CVTFS Function

Function:

Mode:

Format:

‘ Arguments:

Use:

Example:

CVTFS

Returns the four- or eight-character string

representation of a floating point number depending on

whether Single or Double precision was in effect.

Program/direct

CVTFS(<n>)

n is a Single or Double precision floating-point number.

This function permits dense packing of floating point data

in records. For example, any floating point number between

2.93874 x 10729 through 1.70141 x 1078 (single precision)

can be stored in a four-character string and between

2.938735877055719 x 10729 through 1.70141183460492
9738

xl in an eight-character string (double precision).

LISTY

2 ! THIS PROGRAM STORES A FLOATING POINT ARRAY

4 ! ON A DISC FILE IN A COMPACT FASHION

10 DIM A(100)

1000 PREPARE “FIL” AS FILE 1%

1010 FOR I% = 1% to 100%

1020 PUT #1%, CVTFS(A(IZ))

1030 NEXT I%

1940 CLOSE 1%

BASIC

14-9 Feb. ‘82

SECTION 14 - ADVANCED PROGRAMMING

CVTSF Function

Function:

Mode:

Format:

Arguments:

Use:

Example:

Feb. "82

Returns the floating point number representation of the

first four- (Single precision) or eight-character (Double

precision) of a string.

Program/direct

CVTSF(<string>)

String is any string variable or constant having at least

four characters (Single precision) or eight characters

(Double precision). Unknown results will be returned if

the string length is less than four (Single) or eight

(Double).

The CVTSF function provides the means to speed the

processing of a large amount of packed data within a

file. Converting the internal binary representation to

an ASCII string is a less time-consuming process with

CVTS% than the NUMS function.

LIST4

2 ! THIS PROGRAM READS BACK THE ARRAY

3! CREATED BY EXAMPLE FOR CVTFS

4 ! LEN (CVTFS(0)) IS USED TO DETERMINE IF

5 ! SINGLE OR DOUBLE PRECISION IS USED

10 DIM AC(100):LZ=LEN(CVTFS(0))

2000 OPEN “FIL” AS FILE 14%

2010 FOR I% = 1% to 1002

2020 GET #1 AS COUNT L% : AC(I%) = CVTSF(AS)

2030 NEXT IZ

2040 CLOSE 14%

BASIC

14-10 CVTSF

SECTION 14 - ADVANCED PROGRAMMING

INP Function

Function:

Mode:

Format:

Argument:

Note:

Example:

INP

/

Returns the value of data from the in-port spent tied «

Direct/Program

INP(<port>)

All port numbers are specified in decimal.

See Appendix D for Port numbers. The user should be

familiar with I/O Device Programming. Refer to

Z80-SI0,-CTC-, and -PIO Technical Manuals for details.

LISTY
19!
20 ! SIMPLE EXAMPLE SHOWING HOW TO READ A CHARACTER
25! FROM THE SIO.
30 ! CHECK FLAG IN COMMAND PORT AND
35! JUMP IF NO CHARACTER
40 IF (1% AND INP(10%*16%+5%)) = 0% THEN 110
45 ! READ CHARACTER FROM DATA PORT.
50 AZ=INP(10%*16%+42%)
60 !

65 ! CAUTION

70 !! THIS ROUTINE WILL ONLY WORK UNDER THE

71 ! CONDITIONS

75! THAT NO OTHER TASK OR INTERRUPT ROUTINE READ OUT

80 ! THE DATA FROM DATA PORT BETWEEN LINES 40 AND 50.

85 ! E.G. THERE COULD BE OTHER INTERRUPT ROUTINES

99 ! WHICH ARE ENABLED IN THE SYSTEM USING THE SIO

95 ! DURING EXECUTING OF LINE 40 AND 50

110 END

BASIC

14-11 Feb. '82

SECTION 14 — ADVANCED PROGRAMMING

ISAM Create Procedure

Function:

Format:

Use:

Feb. "82

Allocates and creates an ISAM Index file and its

associated Data file.

CREINDEX NOTE: CREINDEX is a task. utility

program. It is run at the

operating system level.

To create and allocate ISAM files requires the execution

of Utility Program CREINNDEX. Refer to the 8800 Series

“Monroe Utility Programs Programmer's Reference Manual -

Part 1" for important information about ISAM files and

procedure instructions for CREINDEX.

When this program is executed it prompts the user as

follows:

Enter name of index file?

Enter name of data file?

Enter record length?

Enter key start position?

Enter key type (B,A,I,F or D)?

Ascending or Descending sequence (A/D)?

Are duplicate key values allowed? (Y or N)

Are there any more indices? (Y or N)?

Is information correct (Y¥ or N)?

If there are any more indices, the user is returned to

the first query inputting the name of the index file, the

name of the data file, and so on, until all indices have

been entered. Then a table is output to the console

summarizing all of the information entered during the

session.

Information correct (Y or N)?

Would you like a copy on the printer (Y or N)?

14-12 ISAM

N
e
”

SECTION 14 - ADVANCED PROGRAMMING

Exarnle:

ISAM

This example illustrates how an index and a data file

are allocated, created and then built.

specified: Name, Address and Phone Number.

~- CREINDEX4

*** CREATE ISAM FILES VER. 3.02 ***

Enter name of index file? IFILEY

Preallocate space (Y or N? Nq

Enter mame of data file? DATA

Preallocate space (Y¥ or N)? NY

Enter

Enter

Enter

Enter

Enter

Ascending or Descending sequence (A/D)? Aq

Are duplicate key values allowed? (Y or N)? Yq

Are there any more indices? (Y or N)? Yq

Enter

Enter

Enter

Enter

Ascending or Descending sequence (A/D)? Aq

Are duplicate key values allowed? (Y or N)? Yq

Are there any more indices? (Y or N)? Yq

Enter

Enter

Enter

Enter

Ascending or Descending sequence (A/D)? Aq

Are duplicate key values allowed? (Y or N)? NY

Are there any more indices? (Y or N)? NY

record length? 374

name of index? NAME]

key start position? 1]

key length? 104

key type (B,A,I,F or D)? Aq

name of index? TOWN

key start position? 204

key length? 104

key type (B,A, I, F or D)? Aq

name of index? PHONE

key start positions? 304

key length? 74

key type (B,A,I,F or D)? Aq

14-13 Feb.

Three keys are

"82

SECTION 14 — ADVANCED PROGRAMMING

The following output appears on the console:

k*Create Isam Files* Ver. P-3.02 yyyy-mm-dd/hh.mom.ss

Nata and Index File Information.

Index File name: IFILE

Data File name : DATA

Record size : 37

Filename Reclgt BlkSize Allo blks

Index File: IFILE 256 Default Nefault

Data File: DATA 37 Default Default

Index No. Index Name Key Type Sort Order Dupl. Key Start/Length

NAME Ascii Ascending Yes 1/10

TOWN Ascii Ascending Yes 20/10

PHONE Ascii Ascending No 30/7

Is information correct (Y or N)? Yq

Would you like a copy on the printer (Y or N)? Yq

Index file created!

Data file created!

Another run (y or n)? nq

hh.mm.ss End of Task 0

Feb. '82 14-14 ISAM

SECTION 14 — ADVANCED PROGRAMMING

-BASICY

BASIC Rx-xx

BASIC

(The following program enters name, address and phone

information into data file IFILE.)

5 INPUT “ISAM INDEX FILE NAME? "“JSq

10 ISAM OPEN JS AS FILE 14

20 INPUT "NAME ? “AS : IF LEN (AS)>20 THEN AS=LEFTS(AS,20)4

30 IF LEN(AS)=0 THEN STOP ELSE AS=AS+SPACES(20—LEN(AS))q

40 INPUT “TOWN ? “BS : IF LEN(BS)>10 THEN BS=LEFTS(BS,10)4

50 AS=AS+BS+SPACES(1LO-LEN(BS))4

60 INPUT “PHONE ? "BS : IF LEN(BS)>10 THEN BS=LEFTS(BS,10)4

70 AS=AS+SPACES (10-LEN(BS) }+BS4

80 ; AS

90 ISAM WRITE #1,AS : GOTO 204

RUNG

ISAM INDEX FILE NAME ? LFILEq

NAME ? J. JOHNSONY

TOWN ? MORRISTOWNY

NUMBER ? 540-76124

J. JOHNSON MORRISTOWN 540-7612

NAME ? 2. « .

ISAM 14-15 Feb. ‘82

SECTION 14 - ADVANCED PROGRAMMING

ISAM DELETE Statement

Function:

Mode:

Format:

Arguments:

Use:

Example:

Feb. '82

Removes a particular record from an ISAM index file.

Program/Direct.

ISAM DELETE #<channel no.>,<stringvar>

Channel no. corresponds to the internal number on which

the file is opened. Valid channel numbers are | to 250.

Stringvar is a string variable which must be identical

to the record last read on that <channel no.>.

This statement removes the appropriate keys from a

designated record in the ISAM file. The associated

data record is not touched but subsequent access is not

possible. Before an ISAM DELETE can be done the record

must be ISAM READ.

10 ISAM OPEN "VOL:IFILE” AS FILE 14

20 ISAM READ #1,AS INDEX “NAME” KEY “SMITH"4

30 ISAM DELETE #1,AS4

14-16 ISAM DELETE

‘
A

SECTION 14 — ADVANCED PROGRAMMING

ISAM OPEN Statement

Function:

Mode:

Format:

Arguments:

Use:

ISAM OPEN

Opens both the index and data files for ISAM access ~«

a disk.

Direct/Program.

ISAM OPEN <string expression> AS FILE <channel no.>

The string expression corresponds to an external file

specification for the index file to be opened as

specified in Section 1.3. The data file associated

with this index file is automatically opened after the

index file is specified.

The channel no. after AS FILE must have an integer

value corresponding to the internal channel number on

which the file is opened. Valid channel numbers ace 1

to 250.

ISAM OPEN when executed in a Monroe BASIC program loads

an ISAM task into memory. If no more ISAM operations

are to be performed, Utility program "KILLISAM" should

be run to release the space occupied by the ISAM task.

ISAM OPEN is the only method used to open an indexed

file for ISAM access. Once this file is opened the

data contained in the corresponding data file can be

read, written, deleted and updated using the

appropriate ISAM statements.

Note that one ISAM OPEN statement opens both the index

and data files.

14-17 Feb. ‘82

SECTION 14 — ADVANCED PROGRAMMING

Examples: Ex. 1

Feb. '82

10 REM VOL: IFILE IS THE ISAM INDEX FILE ON VOLUME VOL4

20 ISAM OPEN “VOL: INDEX" AS FILE 14

Ex. 2

10 REM PROGRAM PROMPTS FOR ISAM FILE NAME

20 INPUT “ISAM FILE NAME? "AS4

30 ISAM OPEN AS AS FILE 14

14-18 ISAM OPEN

SECTION 14 - ADVANCED PROGRAMMING

ISAM READ Statement

Function:

Mode:

Format:

Arguments:

Note:

Use:

ISAM READ

Accesses by key or sequentially, records contained in

the data file associated with an ISAM index file.

Direct/Program.

ISAM READ #<channel no.>,<stringvar> [INDEX stringa]

{ [KEY stringb>] [FIRST] [LAST] [NEXT] [PREVIOUS]]

The channel no. corresponds to the internal channel

number on which the file is opened. Valid channel

numbers are 1 to 250.

Stringvar is any legal string variable.

Stringa is either a string expression or string variable

which defines the index that is to be used.

Stringb is.either a string expression or string variable

which defines the search argument within the index.

The FIRST, LAST, NEXT, or PREVIOUS keyword can be used

in place of [KEY stringb] to position the pointer to

the first, last, next, or previous record ina

particular index. That record can now be read without

naming a particular key for stringb.
¢

The following rules are in effect for ISAM READ:

1. If the INDEX option (stringa) is missing or empty,

the first is selected.

2. If the KEY option (stringb) is missing or empty, the

first record by selected index is read.(See note

above for exceptions to this rule.)

3. If both INDEX and KEY options are missing, a

sequential read is performed. (See note above for

exceptions to this rule.)

14-19 Feb. ‘82

SECTION 14 ~- ADVANCED PROGRAMMING

4. If it is the first read operation after ISAM OPEN,

the first index is selected and the first record by

that index is read.

5. The KEY string may be a substring of the record key.

In this case, the first record (by key) that

contains the key given is read.

6. If duplicate keys are present in the index, the first

record that contains the key given is read.

Examples: The examples below illustrate the various ways ISAM READ

can be used.

Ex. 1

10 ISAM OPEN “VOL:MASTS™ AS FILE 14

20 ISAM READ #1, AS]

(Reads first index since INDEX option is missing)

Ex. 2

10 ISAM OPEN “VOL:MASTS” AS FILE 14

20 ISAM READ #1, AS INDEX “NAME"4

10 IS="NAME"4

20 ISAM READ #1,AS INDEX IS4

(Reads first record by selected INDEX)

Ex. 3

10 ISAM OPEN “VOL:MASTS” AS FILE 14

20 ISAM READ #1,AS4

30 FOR I%=1% TO NZq

40 ISAM READ#1,AS4
50 3; AS ! PRINT THE RECORDS TO THE CONSOLE4Y

60 NEXT I%4

Ex. 4

10 OPEN “PR:" AS FILE 24

20 FOR IZ%=1% TO N2Z4q

30 ISAM READ #1,AS4

40 ; #2, AS ! PRINT THE RECORDS ON THE PRINTER4

50 NEXT 124

(Performs sequential read since hoth INDEX and

KEY options are missing.)

Feb. '82 14-20 ISAM READ

SECTION 14 - ADVANCED PROGRAMMING

—

ISAM READ

Ex.

10

20

EX.

10

20

50

5

ISAM OPEN “VOL: IFILE™ AS-FILE 1

ISAM READ #1,AS INDEX “NAME” KEY "“SMITH"4

(Reads selected record by selected index -

random access of a particular record.)

6

ISAM OPEN “FIRST” AS FILE 2

ISAM READ #2, AS INDEX “SSNUM” LAST

(Reads last record by key using the

“SSNUM” index.)

ISAM READ #2, BS PREVIOUS

(Reads the 2nd from the last record using

the “SSNUM" key.)

14-21 Feb. "82

SECTION 14 — ADVANCED PROGRAMMING

ISAM UPDATE Statement

Function:

Mode:

Format:

Arguments:

Use:

Example:

Feb. '82

Alters an existing record in the data file and produces

key changes to the index file when applicable.

Program/Direct.

ISAM UPDATE #<channel no.>,<stringl> TO <string2>

Channel no. corresponds to the internal channel number on .

which the file is opened. Valid channel numbers are 1 to

250.

Stringl is a string variable and must be identical to the

record last read on that <channel no.>.

String2 is a string variable and will replace stringl in

the data file. All changed indices will be updated when

this replacement occurs.

Before using ISAM UPDATE, the appropriate file and

records must be ISAM opened and ISAM read. If a

duplicate key occurs in an index where it is not ,allowed,

that index will not be updated, and an error will result.

For example, if the name SMITH was used as a key for

record 50 and you wanted to change record 20's key to

SMITH, an error would result. In order to keep the

indices properly updated, an ISAM DELETE operation must

be performed.

LIST4

10 ISAM OPEN “VOL: IFILE” AS FILE 1

20 ISAM READ #1,AS INDEX “NAME” KEY “SMITH”

30 BS="SMITH NEW YORK 726-2677"

40 ISAM UPDATE #1,A$ TO BS

BASIC

14-22 ISAM UPDATE

SECTION 14 — ADVANCED PROGRAMMING

ISAM WRITE Statement

Function:

Mode:

Format:

Arguments:

Use:

Examples:

Enters a new record into the data file associated with

an ISAM index file and adds the new keys in the index

file.

Program/Direct.

ISAM WRITE #<channel no.>,<stringvar>

The channel no. corresponds to the internal channel

number on which the file is opened.Valid channel

numbers are 1 to 250.

Stringvar is any legal string variable.

The record is appended to the data file and all indices

are updated. The record must contain information in

all key fields. If a duplicate key occurs in an index

where it is not allowed, that index will not be

updated, and an error will result.

Ex. 1

ISAM WRITE

10 ISAM OPEN “VOL:IFILE" AS FILE 14

20 ISAM WRITE #1,"SMITH NEW YORK 632-3256"

Ex. 2

10 ISAM OPEN “VOL:IFILE” AS FILE 14

20 AS="SMITH NEW YORK 632-3256"

30 ISAM WRITE #1,AS¢

14-23 Feb. '82

SECTION 14 -— ADVANCED PROGRAMMING

OPEN Statement

Function:

Mode:

Format:

Arguments:

Feb. '82

Opens a File for s2quentLlal or random aceess 2.

Pelvess@cassared 2d eiy (Piste * SS Ae og, EA) veth, 7

192° tibernal to the Monroe BASIC program. To open

an indexed sequential file for ISAM access, refer to

ISAM OPEN in this section.

Direct/Program

OPEN <string expression> AS FILE <channel no>

[MODE a%+bZ]

String Expression specifies the name of the disk file

to be opened.

The channel no. after AS FILE must have an integer

value corresponding to the internal channel number on

which the file is opened. Numbers 1 thourgh 250 are

legal.

a% and b% are integers which determine mode I/O and

Read/Write characteristics. The following codes are in

effect:

ar Meaning

02% Record I/0 is to be used. Record length must

be specified in GET statement.

128% Physical I/O on disk sector level. If 128

is specified data in excess of 256 bytes

will be written in blocks of 256 bytes. The

first record will consist of 256 bytes, the

second 256 bytes, etc. Hence the fastest

wayu to write is in blocks of 256 bytes

(i.e., 256, 512, 768, etc.)

1922 Byte I/O is to be used (default).

14-24 OPEN STATEMENT

SECTION 14 — ADVANCED PROGRAMMING

OPEN

2%

3%

42

6%

7%

If

Meaning

Sharable Read Only (SRO)

Exclusive Read Only (ERO)

Shared Write Only (SWO)

Exclusive Write Only (EWO)

Normally when a file is opened Read and

Writes take place from beginning of a file.

However, this special mode will start at the

end of file (append) if no positioning is

done.

Shared Read/Write (SRW)

Sharable Read, Exclusive Write (SREW)

(default if b% = 192%)

Exclusive Read, Shared Write (ERSW)

Exclusive Read, Exclusive Write (ERW)

the file is opened without specifying the MODE, the

default access mode is Byte I/O and SREW.

Refer to the 8800 Series Monroe Operating System

Programmer's Reference Manual for additional

information.

14-25 Feb. '82

SECTION 14 - ADVANCED PROGRAMMING

Examples: Ex. l

To open a file for Record I/O and ERW:

10 OPEN "VOL: FILE" AS FILE 1 MODE 724

20 OPEN AS AS FILE 1 MONE 7%4

Ex. 2

To open a file for Byte I/O and ERW:

19 OPEN “VOL: FILE" AS FILE 1 MODE 192%+72%4

Ex. 3

To open a file for Byte I/O and SREW:

10 OPEN “VOL:FILE” AS FILE 14

Ex. 4

To open a file with type Bin for record I/O and

exclusive write only:

. 10 OPEN “VOL: FILE/B” AS FILE 1 MODE 3%4

Feb. '82 14-26 OPEN

SECTION 14 - ADVANCED PROGRAMMING

OUT Statement

Function:

Mode:

Format:

Arguments:

se:

Note:

Example:

OUT

Sends data to the out-ports specified.

Direct/Program

OUT <port,data> [,port,data...]

If numeric constants are specified, they will be

evaluated as decimal integers. The different ports

available are listed in Appendix D.

This is a machine-oriented statement meant for

advanced programming.

The statement, used in conjunction with the INP

function gives the user access to the I/O—handling of

the system.

The user should be familiar with 1/0 device programming.

This statement may cause the system to crash. Refer to

Z80-SIO-CTC and PIO Technical Manuals.

LIST4

10 !

20 ! SIMPLE EXAMPLE SHOWING HOW TO SET UP NUMBER OF

25 ! STOP BITS IN SIO CHANNEL A

30 !

35! SELECT REGISTER 4 IN SIO. IN THIS EXAMPLE HAS

36! SIO COMMAND PORT 165.

40 OUT 10%*16%+52%,4%

50 ! SELECT 2 STOP BITS and X16 CLOCK.

55 OUT 10%Z*16%+5% , 6427482442

60 !

7Q ! CAUTION !! THIS ROUTINE WILL ONLY WORK UNDER THE

75 ! CONDITIONS THAT NO OTHER TASK OR INTERRUPT ROUTINE

14-27 Feb. ‘82

SECTION 14 - ADVANCED PROGRAMMING

80 ! CHANGES THE SELECT REG 4 BETWEEN LINES 40 AND 50.

85 ! E.G. THERE COULD BE OTHER INTERRUPT ROUTINES WHICH

90 ! ARE ENABLED IN THE SYSTEM USING THE SIO DURING

95 ! EXECTING OF LINE 40 AND 50.

110 END

BASIC

Feb. '82 14-28 OUT

SECTION 14 ~ ADVANCED PROGRAMMING

PEEK Statement

Function:

Mode:

Format:

Argument:

Result:

Nses

Example:

PEEK

Returns the memory contents (of 1 byte) of a

specified address.

Direct /Program

PEEK(<address>)

Address is the byte in memory to be accessed.

It is specified in decimal.

Integer

PEEK is mainly used when Monroe BASIC works together

with Assembler subroutines.

;SYS(11) ! FIND START OF USER PROGRAM AREA

29999
BASIC
10 REM PEEK:----RETURNS THE CONTENTS OF THE GIVEN4

15 REM ARGUMENT (ADDRESS)4
30 REM POKE:----IS USED TO INSERT A DATA(VALUE) INTO

35 REM A SPECIFIED LOCATION IN USER'S PROGRAM AREA

40 REM USE CAUTION WHILE USING THIS STATEMENT, IT MAY4

45 REM CRASH THE SYSTEM OR DESTROY THE PREVIOUS

50 REM CONTENTS
80 A%=29999 ! ASSIGN MEMORY LOCATION IN USER PROGRAM AREAY

90 Z%=PEEK(A%)4
109 PRINT “ " 724
110 POKE A%,604
120 POKE A+Z,84
130 PRINT “-—-------- AZ=" AZ4
140 PRINT “--~-------A+Z="_ A+Z4
150 PRINT “----------" PEEK(A) 4
160 PRINT "---------- " PEEK(A+Z)4
170 END4
RUNG

6
------------ A%=29999
~--~-------- A+Z=30059

60
------------ 8

14-29 Feb. '82

SECTION 14 — ANVANCED PROGRAMMING

PEEK2 Function

Function: Reads the contents of two bytes.

Mode: Program/Direct

Format: PEEK2(<address>)

Argument: Address is the starting byte in memory to be accessed.

Result: Integer

Use: PEEK2 is mainly used when Monroe BASIC works together

with Assembler subroutines.

Example: 10 A% = PEEK2(1234%)4

20 3;AZ4 -

RUN

-3763

BASIC

Note: The above example is for illustration purposes

only. The result will vary depending on the

memory contents of locations 1234 and 1235.

Feb. '82 14-30 PEEK2

SECTION 14 -— ANVANCED PROGRAMMING

POKE Statement

Function:

Mode:

Format:

Arguments:

Jse:

Caustion:

Example:

POKE

Changes or loads a specific value into a designated

address in the user's program area in RAM.

Direct/Program

POKE <address>,<data>[,data,...]

Address is the starting byte in memory where the data

is to be loaded. It is specified in decimal.

Data is the decimal equivalent of the 8-bit binary

number to be set.

If more than one DATA-value is given the address is

incremented one step for each new data value.

Poke is mainly used when Monroe BASIC works together

with assembler subroutines.

The address of the start of the user's program area

can be found by the SYS(11) function. If a protected

area of memory is POKEd the following message will be

displayed on the console:

WRITE prot at nnnnn

PAUSED

XXeVVeZZ

XXeVVeZZ

The dash indicates you are back at the operating

system level. Enter COq and you will be back in

BASIC.

If POKE is used erroneously it may destroy the

contents of needed memory locations.

3SYS(11) ! FIND START OF USER'S PROGRAM AREA

-287

BASIC

10 ; PEEK (~287)4

20 POKE -287,04

30 ; PEEK (-287)4

RUNG
184
)
BASIC

14-31 Feb. ‘82

SECTION 14 -— ADVANCED PROGRAMMING

POSIT Statement

Function:

Mode:

Format:

Arguments:

Nse:

Feb. "82

Positions the file pointer to record or byte vosition

desired or returns the current position of the

pointer.

Program/direct

1. POSIT #<channel no.>,<position>

2. POSIT (<channel no.>)

Channel no. corresponds to the internal channel number

on which the file is opened.

Position is either the number of records or the number

of bytes from the beginning of the file where access

is to begin. Position “0” is the first reeord or first

byte. Record or byte access is determined by the MODE

specification in the previous PREPARE or OPEN

statement. Refer to these statement discussions in

this section for details.

The position supplied or returned is a floating point

number.

Each data file contains a pointer specifying the

present position in records or bytes from the

beginning of the file. This pointer can be read or

positioned to a specific byte position using POSIT.

Format 1, above, is used to move the file pointer the

specified number of records (or bytes) from the

beginning of the file (the first position). The first

position = 0. POSIT can be used together with all

file handling instructions.

Format 2, above, yields the current position of the

file pointer.

14-32 POSIT

a
e
:

SECTION 14 - ADVANCED PROGRAMMING

Examples: Ex. 1 -

Read-Record I/0, Random starting point and subsequent

(Sequential Read).

LIST
10 OPEN "VOL:DATA" AS FILE 1 MODE 7%

20 INPUT “STARTING RECORD NO.?" TZ

30 INPUT “NUMBER OF RECORDS TO BE READ?” NZ

40 POSIT #1, T%-1%
50 FOR I%=T% TO N% + TZ
60 GET #1,A$ COUNT S% ! S% IS THE RECORD LENGTH

70 NEXT I2
BASIC

Ex. 2

Read-Record I/0 (Random Access)

LIST :

10 OPEN "VOL:DATA” AS FILE 1 MODE 7%

20 POSIT #1,1% ! I% IS THE RECORD NUMBER

30 GET #1,A$ COUNT SZ

BASIC

POSIT . 14-33 Feb. '82

SECTION 14 - ADVANCED PROGRAMMING

PREPARE Statement

Function:

Mode:

Format:

Arguments:

Feb. '82

Creates and opens a new file for sequential or random

access on a file-structured device (diskette) with an

1/0 channel number internal to the Monroe BASIC

program. Any existing file with the same name is

deleted.

Direct/Program

PREPARE <string expression> AS FILE <channel no.>

[MODE a%+bZ]

String Expression specifies the name of the disk file

to be opened.

The Channel no. after AS FILE must have an integer

value corresponding to the internal channel number on

which the field is opened. Numbers 1 through 250 are

legal.

a% and b% are integers which determine mode I/0 and

Read/Write characteristics, as follows:

ar Meaning

0% Record I/0 is to be used. Record length

must be specified in GET statement.

128% Physical I/O on disk sector level. If 128

is specified data in excess of 256 bytes

will be written in blocks of 256 bytes. The

first record will consist of 256 bytes, the

second 256 bytes, etc. H ence the fastest

way to write is in blocks of 256 bytes

(i.e., 256, 512, 768, etc.)

192% Byte I/O is to be used (default)

14-34 PREPARE

SECTION 14 ~ ADVANCED PROGRAMMING

Note:

PREPARE

b%
0%

1%

2%

4%

5%

6%

7%

If

Meaning

Sharable Read Only (SRO)

Exclusive Read Only (ERO)

Shared Write Only (SWO)

Exclusive Write Only (EWO)

Normally when a file is opened Read and

Writes take place from beginning of a file.

However, this special mode will start at the

end of file (append) if no positioning is

done.

Shared Read/Write (SRW)

Sharable Read, Exclusive Write (SREW)

(default)

Exclusive Read, Shared Write (ERSW)

Exclusive Read, Exclusive Write (ERW)

the file is opened without specifying the MODE, the

default access mode is Byte I/0 and SREW.

Refer to the 8800 Series Monroe Operating System

Programmer's Reference Manual for additional

information.

For allocation of files with fixed record length refer

to example under SVC statement in this section.

14-35 Feb. '82

SECTION 14 - ADVANCED PROGRAMMING

Examples: Ex. 1

To create and open a new ASCII file for Byte

I/O and ERW:

10 PREPARE “VOL:FILE" AS FILE 1 MODE 192%+7%

Ex. 2
——

To create and open a new binary file for Byte

I/O and ERW:

10 PREPARE “VOL:FILE/B" AS FILE 1 MODE 192% + 7%

Feb. '82 14-36 PREPARE

SECTION 14 - ADVANCED PROGRAMMING

Svc Statement

Fanetion: Communicates with the operating system to perform

special functions.

Mode: Program

Format: SVC <xZ%>,<A%>[,b2Z][,d%]

Arguments: x% is the Supervisor Call Number desired, as

follows:

x Function

1 General Purpose I/0 Requests

2 Memory Handling (2.1)

Log Message (2.2)

Pack File Descriptor (2.3)

Pack Numeric Data (2.4)

Unpack Binary Number (2.5)

Fetch/Set Date/Time (2.7)

Scan Mnemonic Table (2.8)

Open/Close Device (2.12)

3 Timer Requests

4 Task Device

5 Loader Handling

6 Task Request

7 File Request

8 Resource Handling

Each of the above is discussed in detail in the

Monroe Operating System Reference Manual.

A% is an integer array parameter (SVC Block)

specifying the parameters required by the SVC. The

number of elements is dependent on the SVC which is

called. Refer to the Monroe Operating System

Reference Manual for contents and size of SVC block.

SsvC 14-37 Feb. '82

SECTION 14 - ANVANCED PROGRAMMING

Feb... '82

b% and d% are used with SVC 6 and represent switch

settings. SVC6 allows Task Programs to be called by

a Monroe BASIC program. These switches may be used

to inform the task program how to act in different

situations. Switches bZ and d% are shown as

alphabetical letters in the command formats in the

Monroe Utility Programs Programmer's Reference

Manual. They correspond to b4 and dZ as follows:
oO

x
 i 9 through Z

12 9)

8%

16%

Z2R*SZ

228*6%

2ZRRTZ

2Z**BZ

2RR*DZ, N
w

MM

H
S

G
H

NA

DW

dz = A through P

16%

22** SZ

22**6%

22**77,

27%** 82 e
H

o
o
m

m
o
O

KN

22** 15% P

14-38 SVC

Z

SECTION 14 - ADVANCED PROGRAMMING

Use:

Caution:

Examples:

Svc

Suppose, for example, the switch settings were V and

0. b% and d% would be represented as 2%%*14% and

2Z**5% respectively:

SVC 6%,A%,228*52% , 27Z8* 147

This function is used when the programmer finds that

a particular task cannot be performed with the

available Monroe BASIC commands. SVC can accomplish

the desired task by passing parameters specified by

the user. The SVC routine uses these parameters to

achieve desired results.

If this statement is used incorrectly, it may cause

the system to crash.

Ex. 1

LIST4

10 ! THIS IS AN EXAMPLE HOW TO ALLOCATE

20 ! A FILE WITH FIXED RECORD LENGTH

30 ! USING SVC 7.

40 !

50 DIM A%(8%) ! DIMENSION SVC BLOCK.

60 ! ASSIGN A VARIABLE A FILE NAME. ;

70 ! FILE NAME MUST HAVE UNPACKED FORMAT.

80 ! THIS FILE WILL BE ALLOCATED ON SYSTEM VOLUME «

90 ASs=" FILE"+SPACES (20%)

100 A%(0%)=1% ! ALLOCATE.

L1O A%(1%)=16%*256%41% |! ASCII FILE AND LU=1.

120 A%(2%)=VARPTR(AS) ! POINT TO FILE NAME.

130 A%(4%)=32% |! RECORD LENGTH.

135 ON ERROR GOTO 145

140 SVC 7%,AZ

142 GOTO 150

145 ; “ERROR = “:; ERRCODE

150 END

BASIC

14-39 Feb. ‘82

SECTION 14 — ADVANCED PROGRAMMING

Feb. "82

Ex. 2

20 ! THIS EXAMPLE SHOWS HOW TO READ FROM CONSOLE
30 ! WHEN USER HAS A LIMITED FIELD SIZE.

40 ! A CARRIAGE RETURN, FUNCTION, OR CURSOR KEY

45 ! TERMINATES THE INPUT AND CURSOR EDITING

50 ! FACILITIES ARE SUPPORTED.

70 ! THIS IS VERY USEFUL IN DATA ENTRY PROGRAMS.

80 ! :

90 INTEGER : EXTEND

100 DIM SVCBLK(4) ! CREATE SVC BLOCK.

110 OPEN “CON:" AS FILE 1

120 A$=FNKEYINS(23,20,5)

125 IF AS='' THEN 260 ! ''=TWO APOSTROPIES

130 ; "***#*OK" : GOTO 120

140 !

150 DEF FNKEYINS(YPOS,XPOS,MAX) LOCAL INS=80

160 PRINT CUR(YPOS, XPOS) SPACES (MAX) ;CUR(YPOS, XPOS);

170 INS=SPACES (MAX)

180 SVCBLK(0)=17 ! RANDOM TO AVOID CR, LF AND IMAGE

185 ! ASCII.

190 SVCBLK(1)=1 ! LU

200 SVCBLK(2)=VARPTR(IN$) ! BUFFER ADDRESS.

210 SVCBLK(3)=MAX ! BUFFER SIZE.

220 SVC 1,SVCBLK

230 TERMINATOR=SWAP%(SVCBLK(1)) AND 255 ! GET Ts.
240 RETURN LEFTS(INS ,SVCBLK(4))

250 FNEND

260 END

BASIC

Additional examples of SVC's can be found in the

examples in Appendix C.

14~40 SVC

SECTION 14 —- ADVANCED PROGRAMMING

SWAP Function

Function:

Mode:

Format:

Arguments:

Result:

Example:

SWAP

Returns an integer with the first and second bytes

transposed.

Program.

SWAPZ(nZ)

nZ is an integer.

Integer

10

20

30

35

40

45

50

55

60

70

80

90

A%=512% ! ASSIGN AN INTEGER A VALUE.

!q

! THE CORRESPONDING BIT CONFIGURATION OF AZ IS4¥

! 00000010 00000000 (binary) = 512 (decimal)¢

! CONTAINING 16 BITS OR SAME AS 2 BYTES4

! SWAP% FUNCTION SWAPS{

! THESE TWO BYTES SO RESULT WILL BEY

! 00000000 00000010 => (binary) = 2. (decimal) 4

'q

BZ=SWAPZ(AZ) 4

3; BAq

END4

RUN

9

BASTC

14-41 Feb. '82

SECTION 14 — ADVANCED PROGRAMMING

SYS Function

Function:

Mode:

Format:

Argument:

Feb. "82

Returns essential system information.

- DIRECT/ PROGRAM

SYS(iZ)

i can have the oo shown below:

SYS(0) Reserved for future use, and will presently

cause an error 143 (ILLEGAL SYS FUNCTION) if

used.

SYS(1) - Is reserved for future use, and will

presently cause error 143 if used.

SYS(2) - Returns total space available for program.

SYS(3) - Returns current program size.

SYS(4) ~ Returns space left in user's program area.

SYS(5) - Returns the key operate flag, cleared by GET

or INPUT; 0 if no key has been typed, 128 if

there is a character available.

SYS(6) - Restores the last input character into the

keyboard buffer.

SYS(7) - Returns the ASCII value of the key that was

used to terminate the last user input to an

INPUT or INPUT LINE statement. For a

complete list of the terminating keys and

their ASCII values refer to Table 2-l.

SYS(8) - Is reserved for future use, and will

_ presently cause an error 143 if used.

14-42 SYS(A)

SECTION 14 - ADVANCED PROGRAMMING

Result:

SYS(9)

SY¥S(10)

SYS(11)

SYS(12)

Integer

Reserved for future use, and will presently

cause an error 143 if used.

Returns a pointer (address) to information

block about the program.

Returns starting address of user program

area.

Returns a pointer (address) to the variable

root for all variables in Monroe BASIC.

14-43 Feb. '82

SECTION 14 - ADVANCED PROGRAMMING

VAROOT/VARPTR Statement

Function:

Mode:

Format:

Arguments:

Result:

Use:

Feb. "82

VAROOT returns the starting address of a table (or

root) which contains information about a variable.

VARPTR returns the starting address of where a

variable is stored.

Program/Direct.

VAROOT(<variable>)
VARPTR(<variable>)

Variable can be a string variable or arrays of any

kind (integer, string, or floating point).

Integer

VARPTR can be used with the SVC statement to set-up

buffer pointers, for example to SVCl or 7, to where to
PUT or GET desired data. It can also be used to

locate the address of a variable. The variable can

then be seen via PEEK and changed, if desired, via

POKE.

VAROOT is used in conjunction with the SVC statement

to change the actual length of a string variable. For

string arrays. It can be used to find the address of

a root table containing the addresses of where

individual array elements are stored.

14-44 VAROOT/VARPTR

SECTION 14 - ADVANCED PROGRAMMING

Exc. sles: 1. Use of VAR: iR and VAROOT for string variables

VARPTR

Stored Variable

VAROOT ——-> addr n|dimension length| Ly n|

| |
n+2|VARPTR address m+1 |

|
|

| | |
| n+4|actual string

| length

VAROOT/VARPTR ‘ 14-45 Feb. '82

SECTION 14 - ADVANCED PROCRAMMING

10 DIM XS=104

20 XS="AB"4

30 ;VARPTR (XS$)4q

40 ;VAROOT (XS)4q

50 END4

RUNG

2345

1234

BASIC

The above example shows the use of VARPTR and VAROOT

for string variables. Here VARPTR points to location

2345 where the string AB is stored.

address 1234 | 10 2345| A

| |
1236 | 23457 =| 46 | B

| | |
1238 | 2 | 47|

|

|
|
|

|
|

| |
| |

+
| |
| |

|
| |

|
| |

|
| |

NOTE: This example is for illustration purposes only.

Program lines 30 and 40 can give various results

depending on where the variable resides.

Feb. '82 14-46 VAROOT/VARPTR

SECTION 14 - ADVANCED PROGRAMMING

Examples: 26

single, double float)

Use of VAROOT and VARPTR for arrays (integer,

VARPTR (AZ(0%))

VARPTR (A%Z(1Z%))

VARPTR (AZ(2%))——_»_-___

VAROOT(A%(X%))——H addr n|allocated space |

|for whole array |

~ n+2|address to 4

|element |

n+4|No. of

| subscripts

n+5|Type:

|2=Integer

|4=Single Float

|6=String

|8=Double Float

‘ n+6|Lower bound

|
n+8|Size of

[Subscripts

One Block

For Each ¢

Subscript |

n+10| Reserved

- |
n+12|

de
|
|

|
|
|

|

|
|
|
|
|
|
|
|

L
T

|
|

NOTE:

Bs |
| array |

ELEMENTS i‘

| |
| The size of an |

__ > | element depends |

| on whether it |

is an integer,

pee float a

| or double |

| float. |

—?>| |
| integer=2 bytes|

Lsingle=4 bytes |,

float a

| double=8 bytes |

| float |

| |

VAROOT always points to the variable table

independent of the index of the variable.

VAROOT/VARPTR 14-47 Feb. '82

SEGTIO N 14 - ADVANCED PROGRAMMING

10 DIM

20 AZzC1

A%(3%) ! ALLOCATED i: T=GE: -25AY.4

%)=102%4

25 ! POINTER TO VARIABLE A%(0%)¢

30 ; VARPTR (A%(0%))4

35! POINTER TO VARIABLE A%(12%)4

40 ; VARPTR (A%(1%))4

45 ! POINTER TO VARIABLE ROOT FOR WHOLE ARRAY. 4

50 ; VAROOT(A%(0%))4

55! POINT AT SAME AS ABOVE.4

60 ; VAROOT(A%(12))4
65 ! PRINT CONTENTS OF VARIABLE A%(1%)4

70 3 PEEK2(VARPTR(A%(1%)))4

75! PRINT TYPE AND NUMBER OF INDEX IN ARRAY. 1

80 ; PEEK2(VAROOT(A%Z(1%))+42) 4

This example is for illustration purposes

only. Program lines 30, 40, 50, and 60 can

_ give various results depending on where the

Feb. '82

variable resides.

14-48 VAROOT/ VARPTR

w
y

SECTION 14 - ADVANCED PROGRAMMING

3. Use of VAROOT and VARPTR for string arrays.

VARPTR (ASC OZ))menamng

VARPTR (AS(1%)) ame

VAROOT (A$(X%)) njallocated space |

|for whole array |

n+2|Table address |

n+4|No. of

|Subscripts

n+5|Type:

| 2=Integer

|4=Single Float

|6=String

|8=Double Float

n+8|Size of this

ROOT TABLE

m| Dimension |
| Length | | One

mt+2|String Element | \ Block

Address | { For

mt+4|String Length | | Each

| | Element

m+6 | Dimension |

|Length |

mt+8|String Element >

| Address |

m+10|String Length |
|
|

One Block 4 |Subscript | |

For Each | ~

Subscript | nt+10| Reserved |

L | L
n+12| Element

|
|
|
|
|
|
|
|

. !
n+6|Lower Bound |

|
|
|
|
|
|
|
|

VAROOT/VARPTR 14-49

|
Array L

ii

|
|

Feb. '82

SECTION 14 — ADVANCED PROGRAMMING

5 ! ALLOCATE A STRING ARRAY

10 DIM AS(3%)=102%4

26 AS(1%)="A"4

25 ! POINTER TO VARIABLE AS(0%)4

30 ; VARPTR (AS(0%))4

35! POINTER TO VARIABLE AS(1%)4q

40 ; VARPTR (AS(1%))4

45! POINTER TO VARIABLE ROOT FOR WHOLE ARRAY4

50 ; VAROOT (AS(0%))4

55! POINT AT SAME AS ABOVE]

60 ; VAROOT(AS(12))4

65 ! PRINT ASCII VALUE OF FIRST CHAR. IN AS(12))4

70 3 PEEK2(VARPTR(AS(1%)))4

75! PRINT ACTUAL LENGTH OF AS$(1Z%)q

80 ; PEEK2(PEEK2(VAROOT(AS(1%))+2%)+102%) 4

90 END

RUNY

-5894

-5884

-5930

-5930

65

1

BASIC

NOTES: This program is for illustration purposes

Feb. '82

only. Program lines 30, 40, 50, and 60 can

give various results depending on where the

variable reside.

VAROOT always points to the variable table

independent of the index of the variable.

14-50 VAROOT/VARPTR

SECTION 14 - ADVANCED PROGRAMMING

14.3 FILE CREATION

Monroe BASIC supports data files with the following types of records:

1. Variable Length Records

2. Fixed Length Records

That is, the size of the file subdivisions to which records

correspond may be either uniform (fixed) length or variable length.

The choice of record type is determined by the anticipated use of the

file.

Variable Length Records

To allocate a data file of variable length records use the PREPARE

statement. Data can be loaded, for example, using a PUT or PRINT

statement as shown in the procedure below.

Examples:

PREPARE "“FILEA" AS FILE 1

INPUT “NUMBER OF RECORDS?” RZ

FOR 1% = I% to R%

INPUT “ASCII NATA?"™ AS

PRINT #12%,AS

NEXT 12%

PREPARE “FILA/B" AS FILE 2

! FILEA/B SPECIFIES BINARY

DATA FILE

INPUT “NUMBER OF RECORDS?" RZ

FOR I%=1% TO RZ

INPUT “BINARY DATA?” AS

PUT #2%, AS

NEXT I%

Fixed Length Records

To allocate a file with fixed length records requires the execution

of a particular Monroe BASIC program. This program should request

the operating system to perform this function via supervisor calls.

These calls are discussed in detail in the Monroe Operating System

Programmer's Reference Manual. Monroe BASIC programs that accomplish

this function are shown in Appendix C. Program FIXLEN prompts the

user for the file name and the record length and then creates the

file.

FILE 14-51 Feb. '82

SECTION 14 - ADVANCED PROGRAMMING

An ISAM index file and its associated data file are created by
Utility Program CREINDEX. The execution of this program initiates
interactive prompting for key and data information. After this
information is entered the ISAM index and data files are allocated,

14.4 ACCESS METHODS

The method of accessing a data file is determined by whether the file
contains:

1. Variable Length Records

2. Fixed Length Records

Variable Length Records

Data files containing variable length records are accessed sequen-
tially, with or without a random starting point, as shown in the

following procedure:

1. Specify OPEN statement with Byte I/O and READ/WRITE mode
desired.

Examples:

OPEN “VOL:FILELIST/B" AS FILE 1 !BYTE 1/0 (DEFAULT)

OPEN “VOL:FILEWRITE” AS FILE 2 MODE 192% + 1%

2a. Sequential Access - Use the GET statement in conjunction with

a loop, for example, to specify the number of bytes you want
to access for N number of times.

Example:

INPUT “ENTER N2?" NZ

INPUT “NUMBER OF BYTES TO BE READ?" SZ

FOR I% = 1% to NZ

GET #1, AS COUNT S% !S%Z IS NUMBER OF BYTES

! IF COUNT IS OMITTED, ONE BYTE WILL BE READ

FILE S 14-52 Feb. '82

SECTION 14 - ADVANCED PROGRAMMING

2b. Sequentially with Random Starting Point - Use the POSIT

statement to select random starting point in the data file

where access is to begin. The GET statement can then be used

to access a svecific number of bytes. Loops can also be

constructed, if desired, as in 2a above.

Example:

POSIT #1,99 !POSITIONS POINTER TO 100TH BYTE

GET #1,A$ COUNT 10

PRINT AS TeRINTS THE LOOTH TO 109TH BYTES IN FILE

Fixed Length Records

Data files containing fixed length records can be accessed Sequen-

tially or Randomly. The great advantage of working with fixed-length

records is that they allow you to place data directly into or

extract it directly from any file location you specify.

Sequential Access: The procedure specified previously for variable

length records also applies for Sequential access of fixed length

record files. Refer to this section for details.

Random Access: To randomly access a file containing fixed length

records follow the procedure shown below:

l. Specify OPEN statement with Record I/O and Read/Write mode

desired.

Examples:

OPEN “VOL: FIXEN/B” AS FILE 1 MODE 0%

OPEN “VOL:SSNUM/B" AS FILE 2 MODE 0%+3%

2. Specify the POSIT statement to select tandom point in the

data file where access is to occur.

Example:

POSIT #1, 99 !POSITIONS POINTER TO 100TH RECORD

14-53 Feb. '82

SECTION 14 — ADVANCED PROGRAMMING

3. Specify the GET statement to access the record where the

pointer is located. Loops can also be constructed to access

a specific number of records as shown below.

Example:

!FOR SINGLE RECORD ACCESS

'RECORN LENGTH (e.g., 28) MUST BE SPECIFIED

GET #1, AS COUNT 28
PRINT AS !PRINTS THE LOOTH RECORD

or

! *** FOR MULTIPLE RECORD ACCESS ***

!

INPUT “NUMBER OF RECORDS TO BE ACCESSED?" NZ

INPUT “STARTING RECORD NUMBER?” I%

POSIT #2,1%-1%

FOR I% = 1% TO NZ

GET #2, AS COUNT 28

NEXT I%

Feh. '82 14-54 FILE

SECTION 15

LOW RESOLUTION

BUSINESS GRAPHICS

SECTION 15

LOW RESOLUTION BUSINESS GRAPHICS

15.1 INTRODUCTION

Low resolution business graphics is available on Monroe's 8800 Series

Occupational Computer. It is implemented as part of Monroe BASIC

which allows information to be displayed on the console in various

graphics modes via the PRINT (;) command. These modes are enabled by

specifying particular decimal values in the CHR$ function as part of

a PRINT statement. The user has the option of using these modes

either individually or in combination, depending upon the function

and desired format of the output. The console output can appear with

such attributes as: blinking, half intensity, double height, double

width, etc. Special rectangular graphic blocks can also be displayed

separately or in combination to form desired shapes, letters,

borders, etc.

15.2 GRAPHICS CHARACTERS

Printable characters are characters which have ASCII values of 32 to

127. In a PRINT statement these characters can be enclosed in quotes

(e.g., “TEST”), can be represented by variables (e.g., AS or B), or

can be specified in functions (e.g. CHRS(33)). This set displays:

° 1. text characters-

a. letter A through Z and a through z

b. numbers 0 through 9

c. special printer characters and symbols

2. block graphics characters - any of the block graphics

characters shown in Figure 15-1. Note that these block

characters are not drawn to scale.

Unprintable characters having decimal values of 128 or greater are

treated as graphics mode attributes and are called graphics control

characters. They enable the display of text characters or graphic

blocks with particular appearance attributes. These control

characters are not displayed on the screen. Whether a character is

displayed as a text or graphics block character is determined by the

graphics control character (mode) previously specified for that line.

15-1 Feb. '82

SECTION 15 — LOW RESOLUTION BUSINESS GRAPHICS

Note: Boxes below are not drawn to scale. See

Decimal examples at right for correct scale.
Value

32 48 64 80 | 96 112 Drawn to

scale (8x)

33 49 65 BI 97 113

M 50 66 82 98 114

35 51 67 83 99 115

36 52 68 a4 100 116

37 53 69 85 101 117
118

iJ

ao

Ww

>

~~

o
 86 3 N 118

wu

ro
)

e
e

e
e

e
l

87 103

40 ~~

N
 104 N 3

4! WA

~

~

wa
 89 ry w 121

& > 42 8 122

43 wa

?)

~

Ww
 91 3S ~
 N G

44 a

o
 ~

a
 8

oe
AP

i
i

a
i)
O
P
)

e
l

124

ar

“
 45 a

_
 93 8 125 a
 e
e

“
f
f

vd

g on = ro) 46 126 Fee a

N
 Mle
 o

le
He"

 P
om

eta
ts

"The
n

Pou
'To

msf
oad

 te
d

Tol"
 T

ude
la

SH
PY

GM
a

Ga
fe

| S
P

~~

a

f
 ~~
 127

Figure 15-1. Block Graphics Character Images

Feb. '82 15-2

SECTION 15 - LOW RESOLUTION BUSINESS GRAPHICS

15.3 GRAPHICS MODES

The following business graphics modes are available:

Mode Decimal Value

Normal Text/ 128

Reset

Double Upper 130

Half

Double Lower 129

Hal f e

Block Graphics 139

15-3

Meaning

Sets the type of text to normal

It can also be

used to disable other modes in

Graphics text.

effect.

Sets the type of text to

Graphics text and displays the

upper half of each character in

double height. Used in

conjunction with "129".

Sets the type of text to

Graphics text and displays the

lower half of each character in

double height. Used in

conjunction with “130”.

Sets the type of text to

Graphics text and the type of

characters to block graphics

These are shown

in Figure 15-1.

characters.

Feb. '82

SECTION 15 - LOW RESOLUTION BUSINESS GRAPHICS

15.4 GRAPHICS ATTRIBUTES

Once a graphics mode is selected there are a variety of different

format types available for the graphic output. These are accom-

plished by “oring” the indicated mode with one or more of the decimal
values (i.e., CHRS(mode % + attribute% + attribute% e+-) as shown

below.

Attribute Decimal Value Meaning

Din 64 Half illuminates each

character.

Elongate , 32 Doubles width of alternate
characters, ignores intervening

alternate characters.

Reverse Video 16 Reverses background and text
color.

Underline 8 Underlines each character.

Blink 4 Blinks each character.

Each attribute can be used either singly or in combination with
other attributes, for example:

CHR$(128 + 16) - Enables text to be displayed in
Teverse video.

CHRS(128 + 16 + 4) Enables text to be displayed in
reverse video and blinks the text.

CHRS$(128 + 16 + 4 + 64) Enables text to be displayed in

reverse video, blinking and in half
intensity.

CHRS(139 + 4) - Enables graphic blocks to be
displayed each blinking on and off.

Note that if the “Blinking” and “reverse video” attributes are

effected simultaneously (see Example 1 at the end of this section),
the unlit (rather than the lit portions) of the character are

alternately lit and unlit.

Feb. '82 15-4

SECTION 15 - LOW RESOLUTION BUSINESS GRAPHICS

15.5 CONTROL CHARACTERS

ASCII characters having values less than 32 decimal are called

conirol characters. The control characters shown below are acted

upon in the indicated manner when sent to the console; other control

characters are ignored. When these characters are output in a PRINT

statement, a semicolon should normally follow the last item to

prevent an unwanted carriage return/line feed from being sent to the

screen.

Name Value Action

Bell 7 Sounds the beeper.

Backspace 8 Moves the cursor one character to the left.

Tab 9 Moves the cursor one character to the right.

Line feed 10 Moves the cursor down one line. If the cursor

is at the bottom of the screen, all the lines on

the screen move up one line, the top line is

lost, and the bottom line is cleared. Also

cancels all graphic types in effect.

Form feed 12 Moves the cursor to the upper left hand corner

of the screen and clears the screen.

Return 13 Moves the cursor to the beginning of the current

line.

CTRL Q 17 Clears from the cursor to the end of the screen.

CTRL R 18 Clears from the cursor to the end of the line.

CTRL Z 26 Moves the cursor to the upper left hand corner

of the screen and clears the screen.

15-5 Feb. ‘82

SECTION 15 - LOW RESOLUTION BUSINESS GRAPHICS

15.6 GRAPHICS PRINT FORMAT

The general format for displaying low resolution graphics on the

console is:

PRINT [position] CHRS(<mode> + <attributes>) {CHRS(control)] <list>

where:

1.

5.

“Position” is optional and can be any one of the functions

CUR(Row, Colunn) or TAB(Column).

"Mode" is any one of the modes given in the table in

Section 15.3.

“Attributes” is any of the attributes given in the table

in Section 15.4.

"List" can represent either a variable, expression, text

image, or a function (such as CHRS, STRINGS, or MIDS). The

user should carefully study the examples at the end of this
section.

“Control” is any one of the control characters given in the

table in Section 15.5.

15.7 ILLUSTRATED EXAMPLES

Feb.

1.

"82

Display the character string “RECORDS” using the blinking

and reverse video Graphics attributes.

3CHRS(128% + 4% + 16%) “RECORDS”

Display the character string “BASIC” using the dim and

elongate attributes.

3 CHRS(128% + 64% + 32%) "BASIC"

15-6

SECTION 15 - LOW RESOLUTION BUSINESS GRAPHICS

Display a line of solid blocks ("127") across the console.

; CHR$(139) STRINGS$(80,127)

Display a line of blinking double horizontal bars ("83")

starting at the 20th column position on the screen to the

40th column position.

3; TAB(20) CHRS$(139 + 4) STRINGS(21,83)

Refer to the sample program in 14 below, for additional

examples of using Functions with block graphics.

When multiple mode/attribute characters are included in a

PRINT statement with no intervening line feed, CHRS(128)

byte, or INPUT commands separating them, the attribute

characters are “ored” together which in turn will effect the

attributes of the output stream. For example, to display

the string "ABCD" with “AB” underlined and “CD” both

blinking and underlined, enter:

3CHR$(128% + 8%) “AB" CHRS(128% + 4%) “CD”

Display “AB” underlined and “CD” blinking only.

3;CHRS(128% + 8%) “AB” CHRS(128% + 4%) “cD”

Display "AB" in reverse video and “CD” normal.

;CHRS$(128% + 16%) “AB” CHRS(128%) “CD”

Display "AB" in dimmed normal form and “CDEFGH" in dimmed

elongated (double width) form.

3CHRS$(128% + 64%) “AB” CHRS (128% + 32%) "CDEFGH”

(Note the required spaces between letters.)

15-7 Feb. '82

SECTION 15 — LOW RESOLUTION BUSINESS GRAPHICS

Feb.

10.

ll.

12.

13.

"32

Display “AB” in dimmed normal form, “CD” in dimmed elongated

form, and “EFGH" in normal forn.

3CHR$(128% + 64%) “AB” CHRS(128% + 32%) "CD" CHRS(223%)
“EFGH"

Contiguous output strings can be generated to fill an entire

screen if necessary. Insertion of a CUR(Row, Column) to
direct some of the output will not terminate the “oring” of

attributes. If CUR(Row, Column) is omitted, the characters
will wraparound to sequential lines.

The screen attributes of prompts and echoed responses can be

controlled by the use of graphic modes/attributes as

previously specified. However, the appearance on the screen

of some combinations of attributes may not make sense or may
mot be suitable for this purpose.

The Double Upper Half Mode CHR$(130) and Double Lower Half

Mode CHR$(129) are combined to double the height of a string
of text.

3CHR$(130) “REPORT” CHRS(13,10,129) “REPORT”

The Elongate mode and the Double Upper and Double Lower Half

modes can be combined to double the height and width of a

string of text.

3CHR$(130 + 32) “RE PORT “ CHRS(13,10,129 + 32)

"REPORT"

15-8

SECTION 15 ~- LOW RESOLUTION BUSINESS GRAPHICS

14. To simplify the use of the Graphic Mode/Attributes you can

equate them with variables and then use the variables in the

CHRS command and other functions. This is shown in the

following two programs which illustrate the concepts

discussed so far.

Program 1

10 ! ILLUSTRATION OF LOW RESOLUTION BUSINESS GRAPHICS MODES

20 ! THIS PROGRAM SUBSTITUTES ACRONYMS FOR THE VARIOUS GRAPHICS

30 ! MODES REPRESENTED BY CHARACTERS 128 ~- 139 AND THE TYPE

35! ATTRIBUTES REPRESENTED BY CHARACTERS 4-64. THESE ARE

40 ! THEN USED TO PRINT A LINE OF TEXT.

50 EXTEND ,
60 INTEGER

70 Normal=128 ! NORMAL MODE

80 Dblkh=129 ! DOUBLE LOWER HALF MODE

90 Dbuh=130 ! DOUBLE UPPER HALF MODE

120 Gblck=139 ! BLOCK GRAPHICS MODE

140 !

150 ! ATTRIBUTES 'TYPES'

160 !

170 Dimi=64 ! DIM (HALF ILLUMINATION)

180 Elon=32 ! ELONGATE (DOUBLE WIDTH)

190 Rev=16 ! REVERSE VIDEO

200 Uline=8 ! UNDERLINE

210 Blink=4 ! BLINKING

250 =!

260 ! EXAMPLE OF HOW TO USE THE ABOVE SUBSTITUTIONS

270 ! PRINT CHRS(MODE + ATTRIBUTE + ATTRIBUTE) “LITERAL TEXT”

280 !

290 Text$="THIS IS A LINE OF TEXT ILLUSTRATING THE ABOVE

291 SUBSTITUTIONS”

295 LARGETEXTS = "STATUS REPORT"

300 !

310 PRINT CHRS(normal+Dimi+Rev+Uline+Blink) Text$

320 PRINT

330 PRINT CHRS(Normal+Rev) Text$

340 PRINT

350 PRINT CHRS(Dbuh) Text$ CHRS$(13,10,Dblkh) Text$

360 PRINT

370 PRINT CHRS(Dbuh + Elon) LARGETEXTS CHRS$(13,10,DBlkh +

Elon) LARGETEXTS

380 END

15-9 Feb. '82

SECTION 15 - LOW RESOLUTION BUSINESS GRAPHICS

Program 2

10 ! **** BUSINESS GRAPHIC BLOCK CHARACTERS ****

20 EXTEND
30 INTEGER

80 !

90 Block=139 ! BLOCK GRAPHICS
100 Blink=4 ! BLINKING GRAPHICS

320 ! GRAPHICS BLOCKS

330 ! SAMPLE BLOCKS - REFER TO FIG 15-1 FOR OTHERS

340 Ulcorn=55 ! UPPER LEFT CORNER BLOCK

350 Llcorn#117 ! LOWER LEFT CORNER BLOCK =

360 Urcorn=107 ! UPPER RIGHT CORNER BLOCK

370 Lreorn=122 ! LOWER RIGHT CORNER BLOCK

380 Upline=35 ! UPPER LINE BLOCK ee

390 Lline=112 ! LOWER LINE BLOCK

400 Mline=44 ! MIDDLE LINE BLOCK

410 Lbar=53 ! LEFT BAR BLOCK

420 Rbar=106 ! RIGHT BAR BLOCK

430 SBLCK=127 ! SOLID BLOCK

440 DHORZ=83 ! DOUBLE HORIZONTAL BARS

460 ! EXAMPLE

470 ! PRINT CHRS(Graphic Mode + type) “GRAPHIC BLOCKS"

480 !

485 PRINT “left bar” CHRS(Block) CHRS$(Lbar)

487 PRINT _

490 PRINT “left bar” CHRS$(Block) STRINGS$(30,Lbar) Lo

500 PRINT

510 PRINT 'upper line’ CHRS$(Block + Blink) STRINGS$(30, Upline)

520 PRINT ~

530 PRINT ‘lower line' CHRS(Block) STRINGS(30,Lline)

540 PRINT

542 PRINT ‘solid block' CHRS$(Block) CHRS$(SBLCK)

543 PRINT

545 PRINT 'solid block' CHRS(Block+Blink) STRINGS(30,SBLCK)

550 PRINT 'double horiz. bars' CHRS(Gwide) STRINGS(30, DHORZ)

560 END

Feb. ‘82 15-10

APPENDIX A

MONROE BASIC ASCIL CHARACTER SET

LF

VT (CTRL k)

FF (CTRL 1)

CR

so (CTRL n)

SI (CTRL 0)

DLE (CTRL p)

NC1 (CTRL q)

Nc2 (CTRL r)

pC3 (CTRL s)

DC4 (CTRL t)

NAK (CTRL u)

SYN (CTRL v)

FTB (CTRL w)

CAN (CTRL x)

EM (CTRL y)

SUB (CTRL z)

ESC

FS(CTRL =)

GS (CTRL{)

RS (CTRL -)

US (CTRL ~)

MONROE BASIC ASCII CHARACTER SET

APPENDIX A

Dec. Char. Dec. Char. Dec. Char.

32 SPACE 64 @ 96 *

33.—C«! 65 A 97 a

34 «CO 66 B 98 b

35 o# 67 ~C 99 c¢

36S 68 D 100 4d

37% 69 +E 101 e

38 & 70 F 102. £

39” 71 = #G 103g

40 ¢ 72 A 104 h

41) 73, «OL 105 i

42 * 744 J 106 j

43. + 75 XK 107° k

44, 76 «OL 108 «1

45 - 77M 109 mm

46. 78 ON 110 oo

47 / 79 #0 lll oo

48 @ 80 —P 112 p

49 1 81 Q 113 q

50 2 82 R 114

51 3 83 «Ss 115 s

52. 4 84 T 116 6t

53. 5 85 U 117 u

54 6 86 V 118 ov

55 7 87 W 119 ow

56 88 88 XxX 120 x

57 9 a 4 121 sy

58: 90 Zz 122. z

59 91 =f 123 {

60 < 92 \ 124 |

61 = 93] 125. }

62 > 94 + 126 ~

63? 95 127. DEL(CTRL)

A-1 Feb. '82

Dec.

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

Feb.

Key

Fl

F2

F3

F4

F5

F6

F7

F8

F9

F10

Fll

F12

F13

F14

F15

F16

CTRL

CTRL

CTRL

CTRL

CTRL

CTRL

CTRL

CTRL

CTRL

CTRL

CTRL

CTRL

CTRL

CTRL

CTRL

CTRL

"82

APPENDIX A — MONROE BASIC ASCII CHARACTER SET

Fl

F2

F3

F4

F5

F6

F7

¥F8

F9

F10

Fll

F12

F13

F14

F15

F16

Dec.

160

161

162

163

164

165

166

167

° 168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

Key

CTRL BS

CTRL TAB

CIRL CR

Dec.

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

Key

PRNT SCRN

DEL CHAR

DEL LINE

HOME

CLEAR

INSRT LOCK

RUN

LOAD

CONT

LEARN

CALC

Dec.

224

225

226

227

228

229

230

2a1

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

Key

STOP

APPENDIX B

ERROR MESSAGES

APPENDIX B

ERROR MESSAGES

Table B-1 lists the error messages that can be returned when using

Monroe BASIC. If an error is found during execution of a program the

line number where the error occurred will be appended to the message.

The file BASIC ERR/ASC must be on the system volume for the textual

message to be printed; otherwise, just the error number will appear.

Errors 10 to 80 below are associated with SVC's 1-8, respectively.

Refer to the 8800 Series Monroe Operating System Programmer's

Reference Manual.

Table B-l. Error Messages

Number

0

1

Message

Internal error.

End of nodes.

Invalid function code.

Can't connect to the resource.

Resourece off line.

Request is canceled.

Illegal or unassigned LU.

Access mode mismatch.

Time out.

Device off line.

End of file.

End of media.

Recoverable or parity error.

Unrecoverable error.

Invalid random address.

Nonexistent random address.

Invalid subfunction number.

Invalid file descriptor format.

New volume already present.

Directory device not closed.

Invalid interval/time of day.

Not assigned.

Invalid device type.

Illegal task name/number.

B-1

Meaning

Can't open any more files; seven

already open.

Invalid SVC function code

argument.

Feb. '82

APPENDIX B - ERROR MESSAGES

Number

51

* 52

53

54

55

60

61

62

63

64

65

66

67

70

71

72

43

74

75

76

77

80

81

82

83

84

85

86

120

121

122

123

124

125

126

130

Feb. "82

Message Meaning

Task already present.

Illegal priority.

Illegal option.

Illegal code/item at load.

Overlay don't fit.

Illegal task name/number.

Task already present.

Illegal priority.

Illegal option.

Event queue disabled.

Invalid task status

Invalid termination parameter.

More items present in event queue.

Assignment error.

Illegal access mode.

Size error.

LU is not a direct access device.

File descriptor of inv. format.

Name error.

Invalid key.

File already exists.

Illegal name/number.

Illegal class.

Already present.

Parent not present.

Dual not present.

Invalid RCB-type

End of memory.

ISAM - key not found.

ISAM ~ duplicate key.

ISAM - illegal key value.

ISAM - mismatch at check-read.

ISAM - index not found.

ISAM - bad data record length

ISAM - task: end of memory.

Floating point overflow. Certain value out of range.

APPENDIX B - ERROR MESSAGES

Number Message Meaning

131 Array Index outside of legal Attempt to use an index greater

range. than allowed for in the DIM.

132 Integer overflow Integer out of range.

133 ASCII Arithmetic Overflow.

134 String Index Neg. or too large.

135 Negative TAB,SPACES,STRINGS arg.

136 Overflow in string assign. The dimensions of the receiving

string are too small.

137 Attempt to expand array or A vector cannot be extended

string. beyond its original length.

138 Expression of range in ON

139 “RETURN” without GOSUB. A return statement is

encountered when no GOSUB has

been executed.

140 Wrong return type.

141 Out of DATA statements. The data list is exhausted and a

READ statement wants more data.

142 Wrong arg. to built in function.

143 Illegal SYS function.

144 Previously rejected line.

145 DEF or FNEND entered the wrong “DEF” or “FNEND" not preceded by

way. RETURN

146 “PRINT USING" error. Wrong format in PRINT USING

statement.

147 Illegal data terminator.

148 Insufficient data. Too few data items typed at

INPUT.

149 Restore to a non-data line. “RESTORE” not on a “DATA” line.

150 Too much data. Too many data items typed at

INPUT.

151 Resume or ERRCODE without error.

176 Dot address off screen.

B-3 Feb. '82

“APPENDIX B - ERROR MESSAGES

Number

180

181

182

183

184

185

186

187

188

189

190

19]

* 200

201

202

203

204

205

206

207

Feb. *82

Message

Line not found.

Line is in wrong function def.

Can't find matching NEXT.

NEXT without matching FOR.

Wrong variable after “NEXT”.

Nested FOR loops with same

Var.

FOR with local variable (Sorry).

Undefined user function.

Multiple defined user function.

Nested DEF:S illegal.

Number of indices not

consistent.

Not assignable.

Option not part of this config.

End of memory.

Protection violation.

Incompatible SAVE format.

Can't merge compiled programs.

GRAPHICS is too late to COMMON.

Please use the RUN command.

Can't continue.

B-4

Meaning

Reference to a nonexistent line

number,

Use of the FOR loop with a local

variable is not permitted. This

applies to multiple line

function.

Call for undefined function.

More than one function with the

Same name.

Mixing of several DEF

instructions is not allowed.

The number of indexes is not

accordance with the DIM |

statement.

in

The argument of the function

cannot be assigned.

Not enough space for program and

data in the main storage.

The program is saved under an

incompatible Monroe BASIC

version.

COMMON statement error.

Applies to GOTO line number and

CON.

APPENDIX B - ERROR MESSAGES

Number

2°45

209

210

211

212

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

Message

Illegal direct mode.

Bad command argument.

Illegal number.

Can't change precision.

Compiler buffer overflow.

Undecodeable statement ;

Text expected after end

of line.

Must be first on a line.

Illegal index or arguments.

Illegal mode mixing in

expression.

- Not a simple variable.

Illegal statement after ON.

Can't find comma.

Can't find '=!

Can't find ')'

Can't find AS FILE

Can't find AS.

Can't find TO.

Line number expected.

Illegal variable name.

Meaning

The instruction cannot be

used as a command.

Wrong argument to the

command e.g. LIST ##.

The number contains other

characters than digits.

Change of precision after

assignment not allowed.

Line longer than 160

characters.

Formal Monroe BASIC error.

Formal Monroe BASIC error.

Statement syntax not

complete.

Indexed variable not

allowed e.g. in a FOR loop.

Formal Monroe BASIC error.

Formal Monroe BASIC error.

Missing in OPEN and PRE-

PARE instructions.

Error in NAME ...AS ees «

In FOR loops.

Illegal variable name.

Feb. '82

APPENDIX C

SAMPLE PROGRAMS

APPENDIX C

SAMPLE PROGRAMS

‘This Appendix contains the following program examples:

1.

2.

3.

Create File Containing Fixed Length Records.

Run Utility Program from Monroe BASIC Program.

Multi-tasking.

Feb. "82

APPENDIX C - SAMPLE PROGRAMS

C.1 CREATE FILE CONTAINING FIXED LENGTH RECORDS

5

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

Feb.

! FOR REFERENCES PURPOSES THIS PROGRAM IS NAMED FIXLEN

! HOW TO ALLOCATE A FILE WITH FIX RECORD LENGTH

!

DIM A%(8%), B%Z(6%)
DIM AS=29%

;

3 “** THIS PROGRAM CREATES A FILE WITH FIX RECORD LENCTH **"

3

INPUT “NAME OF THE FILE TO BE CREATED? “ BS

INPUT "RECORD LENGTH ? “RZ

!

! SUPERVISOR CALL SVC2.3 IS USED TO SET THE CORRECT (UNPACK)

! FORMAT OF THE FILE NAME.

!

BZ(0%)=1%

BZ(1%) =3%

B%(2%) =VARPTR(BS)

B2Z(32%)=VARPTR(AS)+12%

SVC 22%,B2

! P

! SUPERVISOR CALL SVC 7 IS USED TO ALLOCATE THE FILE WITH
! DESIRABLE RECORD LENGTH (RZ)

!

AZ(0%) 212%

AZ(12)=2562*16%+1%

AZ(2%) =VARPTR(AS)+12%

AZ(42) =R%

SVC 7%,A%

IF ERRCODE=0 THEN 300

STOP

3 ? 5 “THE FILE *** “; ; ; BS; : ; “ *** HAS BEEN CREATED,"

3 “WITH RECORD LENGTH OF *** "3; : 3; R%; : 5 “ dad

END

"82 C2

APPENDIX C — SAMPLE PROGRAMS

C.2 RUN UTILITY PROGRAM FROM MONROE BASIC PROGRAM

10 !

20 ! SIMPLE EXAMPLE SHOWING HOW TO START A UTILITY PROGRAM

30 ! FROM A BASIC PROGRAM USING SVC6.

40 !

50 DIM A%(7%) ! DIMENSION SVC 6 BLOCK.

60 !

70 ! START COPYLIB PROGRAM. NAME SHOULD HAVE UNPACKED

75! FORMAT AS DESCRIBED UNDER SVC 2.3

80 !

84 ! AS IS CONSTRUCTED AS FOLLOWS:

85 ! AS=|VOL(4 CHRS.)|FILENAME(12 CHRS.) | DIRECTORYNAME(12CHRS.) |

86 ! =28 CHRS,

90 As=" COPYLIB "+SPACES(122%)

95 INPUT "COPY FROM VOLUME? "GS

97 INPUT “COPY TO VOLUME? ",QS

98 INPUT “FILE TO BE COPIED (ADD COMMA AFTER NAME)? “FS

100 BS=GS$+F$+QS+CHRS(0,0) ! PARAMETER STRING

102 BS=CVT%S(LEN(B$) AND 254)+B$! LENGTH OF STRING MUST BE FIRST IN PAR.

103 ! STRING

104 C$="COPY"! THIS WILL BE THE TASK~ID.

105 !

106 ! START CREATE SVC BI.OCK.

107 !

110 A%(0%)=1%+2% ! FUNCTION CODE LO4d AND START TASK

120 A%(2%)=VARPTR(CS$) ! TASK-ID NAME.

130 A%(3%)=VARPTR(BS) ! POINTER TO PARAMETER STRING.

135 A%(5%)=VARPTR(AS) ! POINTER TO TASK TO BE STARTED.

140 A%(6%)=10000% ! ADD EXTRA SIZE FOR FASTER COPYING.

150 SVC 6%,A%,0%,64% ! USE SVC6 TO START TASK WITH OPTION SWITCH

155 ! 'G' SET.

160 !

170 ! WAIT FOR TASK TO BE FINISHED.

180 !

190 A%Z(0%)=32%+8%

200 SVC 6%,A%

210 !

215 ;

220 ; “ALL DONE !”

230 END

APPENDIX C — SAMPLE PROGRAMS

C.3 MULTI-TASKING

The user can directly run more than one Monroe BASIC program

simultaneously through the use of the LOAD and RUN statements. The

following commands load and start a low priority BASIC spooler

program (SPOOLER) as a second task, and a BASIC report generator

program (REPORTGEN) as the primary task:

-LOAD BASIC,SPOL, 80004 (task name, xmemory)

-~PRIORITY SPOL,1504 (task name, new priority)

-START SPOL,C SPOOLERY{ (task name, option program name)

-BASIC REPORTGENY

Note that the above commands could be contained in a command file

invoked by the SETAUTO Utility. Refer to the 8800 Series Utility

Programs Programmers Reference Manual for details on LOAD, RUN, etc.

This next example shows the sample program required to run two Monroe

BASIC programs at the same time while in BASIC. These programs

should not request input or direct output to the same device, console °

or printer; output can be sent to the same disk device, but different

filenames must be used. The Monroe BASIC program (see PRINT, below)

which is referenced in the calling program (see MULTITASKPRG, below)

should contain a BYE statement as the last program line.

Before executing this program (see MULTITASKPRG, below) the user can

run the Task SLICE to specify the amount of processor time to be

given to each program. (Refer to the 8800 Series Utility Programs

Programmer's Reference Manual for details.)

-SLICE 1004 (Sets current slice to 100 milliseconds)

-BASICY

BASIC8 Rl-nn yyyy-mm-dd

BASIC

Feb. '82 c-4

APPENDIX C - SAMPLE PROGRAMS

LIST MULTITASKPRG4

10
20
30
40
45
50
60
70
76
80
90
95
96
100
105
110
120
130
140
150
160
170
180
190
200
201
210
220
230
235
240
241
242
243
250
260
270
280

DIM Svcb1k%(62%)

LoadZ=1%

Start%=2%

!

| RRARKAARHRAKKAARRAARARRERRKRRKAKKKKRAKAKKKKKKR RRR RRR RRA IK

1 *

{ * LOAD AND START THE OTHER PROGRAM

1 *

!

Progname$=' BASIC'+SPACES(19%)

Tskname$="TEST' ! ASSIGNS 4-LETTER TASK NAME TO PRINT PROGRAM TASK

! SYSTEM AUTOMATICALLY ASSIGNS 4-LETTER NAME OF USPO TO THIS

! PROGRAM TASK

Par$='PRINT'+CHRS(0Z, 0%)

! make sure the length is an even number

Par$=CVTZS$(LEN(Par$) AND 254%)+Pars

Svcb1k%(02)=Load%+Start%

Svceb1k%(1%)=0%

Sveb1k%(2%) =VARPTR(Tskname$)

Svcb1k%(32)=VARPTR(Par$)

Svcb1k%(42)=0%

Svcb1k%(52)=VARPTR(PrognameS)

Sveb1k%(62) =0%

ON ERROR GOTO 210

SVC 6%,SvcblkZ

GOTO 250

3; ‘ERROR '; INT(Svcbl1k%(0%)/2562)

STOP

!

LRA He He He He RAHA IKK KHAKI INHER RII II I IAIAP ARRAN

! * .

1 * CONTINUE YOUR WORK IN THIS PROGRAM

!

!

FOR I%=1% TO 100%

3s 2

NEXT I2%

END

BASic

C-5 Feb. '82

APPENDIX C -— SAMPLE PROGRAMS

LOAD PRINTY

BASIC

LISTY

10 OPEN 'PR:' AS FILE 1%

20 FOR I%=1% TO 40%

30 3; #1%,STRINGS(40%, 64%+12)

40 NEXT 1%

50 BYE

BASIC

RUN MULTITASKPRG{

(Task USPO starts listing on console)

(Task Test starts listing on

1

2

3 printer)

4

5

6

hh.mm.ss END OF TASK xx (Task TEST ends)

7

8

100

(Task USPO ends)

BASIC

Feb. ‘82 C-6

vA

APPENDIX D

PORT NUMBER ASSIGNMENTS

APPENDIX D

PORT NUMBER ASSIGNMENTS

Hardware Port Number
COUNTER TIME CIRCUIT (CTC)

Baud Rate Generator for Communication Port 168
Baud Rate Generator for RS232 Port 169
Baud Rate Generator for Printer Port 170
Real Time CLock 171

SERIAL 1/9 (S10)
Communication Port Data 164
Communication Port Commands 165
Auxiliary Port Data 166
Auxiliary Port commands 167

MAP

Program Map for Segment A 196
Program Map for Segment B 197
DMA Map for Segment A 198
DMA Map for Segment B 199

SWITCH SET 255

SYs 200

COLOR PROM (HC) 212

VIDEO OUTPUT AND (CHS) 216

FLOPPY CONTROLLER (1793)
Floppy Controller Status/Command 176
Floppy Controller Track 177
Floppy Controller Sector 178

Floppy Controller Data 179

PARALLEL I/O (P10)
General Status Rits Port Data 180

General Status Bits Port Command 181

UJncoumitted Parallel Port Data 182
Uncommitted Parallel Port Command 183

FLOP 192

DART

Printer Port Data 160
Printer Port Command 161
Keyboard Port Nata 162
Keyboard Port Command 163

D-1 Feb. '82

APPENDIX D -— PORT NUMBER ASSIGNMENTS

Hardware

DMA

SONND

NONMASKABLE INTERRUPT (NMLOFF)

BUSINESS VIDEO

Write Register Select

Write Data

Not sed

Read Data

READ STROBE NES58 (EDINCATION)

READ JOYSTICK PORT (EDUCATION)

Feb. '82

Port Number

172

204

220

184
185
186
187

184,185

186,187

APPENDIX E

LOW RESOLUTION COLOR

GRAPHICS CHARACTER SET

APPENDIX E

LOW RESOLUTION COLOR

GRAPHICS CHARACTER SET

Tahle E-l1 shows the low resolution color graphics character set.

Each of the 64 graphics characters in Table B-1 (columns 2a, 3a, 6a

and 7a) can be in any of the seven standard colors above. Graphics

characters are displayed on a 2-by-3 matrix. Six bits determine

which cells on the matrix are illuminated, while the seventh bit

(b,) distinguishes between alphanumeric and graphics characters.

If De is a 'O', then the code is always for an alphanumeric character;

if it is a 'l", then the code is either for an alphanumeric (columns

2,3,6 and 7) or a graphic character (columns 2a, 3a, 6a and 7a); the

control characters determine which it is.

Control characters shown in columns 0 and 1 are normally displayed as

spaces. Codes may be referred to by their column and row e.g. 2/5

refers to 26. Black represents display color. White represents

background color.

E-1 Feb. '82

APPENDIX E - LOW RESOLUTION COLOR GRAPHICS CHARACTER SET

Low Resolution Color Graphics Character Set Table E-l.

Ta C
e

add
Mal

(78
A
P
P

P
E

|e
Lee [ot Cot

>
Ct

(¥ [txt
DY Do Et Et Ect (0

-|(o-F
[ot

[ck
(3p
e
e
 5

St
=

=

S
 5

[st
iat

a
 aE

=
LF

| (@F
[<F

Lor
[oF

Lor
wf

[uh
ES

[zk
[Hb

(ek
Eck

[ab Le 4 {zt
[©

{lob
Lok

ish
[mk

[tk
oF } Fh

[=
[eo bist

H
E
S
 ok

Ly}
Fit

[

‘L|
=

a
F
e
e

ede
eee

ee
:

A

Heh [ak Lieh bh
SF

CE
Lok (eb Ch

Cot Et
C
o
S

These control characters are reserved for compatibility with

—

—

—

—

a

—

S
a

o
y

z
=

+

3
2

”
*:

”

c
$

$
2

e
y

«8
&

it
Px)

$
$

td
8

Ss
iy

i
se

loBe
SE

58
8

ot
32

°
s
a
g
s

gé
2

$3
3

2
$s

Oe
53

Lb
He

88
ts

7
me

a
o

°
w

ge
a
4

8
2

a=
2

8
5

L
d

§
2

E
o

g
a

Al
8

8
3

a
5

°
|

5
S
e

3
sf

8s
OS

L
g

.
x

nd
o
>

e
S

e
s
e

t
e

4
e
g

c
8

C
e
n

c.
w
e

«
€

=
i
e

t
a
e

z
e

.
.

"23
28

ze
£3

25
25

g:
$

3
2

ty
2&

&
-

_
“|

3
a

e
s

e
s

5
E

fg
$e

8%
3

al
c

5
5%

s
:

E
2

3|
<

<
<
>

<
<
%

<
<

a

oOo
N

n“
bf

cal

|
-

“
“

-
«

©
.

°
°

.

=

=

-

_

iJ
tsa

o

we
oO

|

5.
°

=
)

-
=)

-
°

2
=

2
=

=
=

=
‘

+
|
.

a

°
°

=
-

°
sc

=
=

-~
-

—

co
o

o

we
ott.

[
@

oa.
iJ

c

i=)
o

_~
o

=
=

=

2

2
”

c
o

°

o

o
o

o

o

o

o

=

=
i

a
u
t

other data codes.

These control characters are presumed before each row begins. k*

*82 Feb.

APPENDIX F

HIGH RESOLUTION

COLOR SELECTION CHART

APPENDIX F

HIGH RESOLUTION

COLOR SELECTION CHART

The color selection statement, FGCTL, selects the 2 or 4 color

combination to be in effect. This is done by specifying a number

with this statement between 0 and 255. Table F=-1 lists these numbers

and their associated colors. Numbers less than 128 indicate that the

ordinary text and graphics are mixed with the high resolution

graphics. From 128 to 255 only the high resolution graphics memory

will be displayed. Note that after executing a program specifying

FGCTL 128 to 255, a LIST command must be entered to get back to

BASIC. Combinations 72 to 127 and 200 to 255 are used in the

animation mode.

If a black and white monitor is used, color 3 will always be white

and color 0 will always be black. To indicate white for color 1 and

2, the symbol f will be appended to either:

l. the specific color in the table (for color combinations

72 to 127).

or

2. the top of the table when it refers to all items for that

color number (for color combinations 1 to 71).

F-1 Feb. '82

APPENDIX F — HIGH RESOLUTION COLOR SELECTION CHART

Table F-l. High Resolution Color Section Table

Selection Number Colors*

Graphics High

Text Resolution 0 if gt 3f

Only

0 128 BK BK BK BK

1 129 BK W WwW W

2 130 BK R_- GR

3 131 BK R GR B

4 132 BK R GR M

5 133 BK R GR C

6 134 BK R GR W

7 135 BK R Y 8B

8 136 BK R YY MM

9 137 BK R Y C¢

10 ° 138 BK R Y W

1) 139 BK R B WW

12 140 BK RK B C

13 141 BK RB W

14 142 BK R M C

1s 143 BK R M W

16 144 BK R CC W

17 145 BK GR Y B

18 146 BK GR Y M

19 147 BK GR Y C

20 148 BK GR Y W

149 BK GR B M

22 150 BK GR B Cc

23 Sl BK GR B W

4 152 BK GR M C

25 153 BK GR M W

26 154 8K GR DK W

27 155 BK Y BM

28 156 BK Y B c

* B=blue, C=cyan, Y=yellow, GR=green, M=magenta, R=red, BK=black,

W=white

t white on black/white monitor

Feb. '82 F=2

APPENDIX F - HIGH RESOLUTION COLOR SELECTION CHART

Selection Number Colors*

Graphics High

Text Resolution 0 it 2t 3f

Only

29 157 BK Y B W

30 158 , BK Y M C¢

31 159 BK Y M W

32 160 BK Y CC W

33 161 BK B M C

34 162 BK B M W

35 163 BK B Cc WwW

36 164 BK M C WwW

37 165 R GR Y B

38 166 R GR Y >

39 167 R GR Y C

40 168 R GR Y W

41. 169 R GR B M

42 170 R GR B C

43 171 R GR B W

44 172 R GR M C

45 173 R GR M W

46 174 R GR Cc WwW

47 175 R Y 8B M

48 176 R Y B C¢

49 177 R Y B W

‘50 178 R Y M C¢

51 179 R Y M WwW

52 180 R Y c WwW

53 181 R B M C

54 182 R B M W

55 183 R B Cc UW

56 184 R M CC M

57 185 GR Y B M

* B=blue, C=cyan, Y=yellow, GR=green, M=magenta, R=red, BK=black,

W=white

tf white on black/white monitor

F~3 Feb. '82

APPENDIX F - HIGH RESOLUTION COLOR SELECTION CHART

Selection Number Colors*

Graphics High

Text Resolution 0 it 2? 3f

Only

58 186 GR YB Cc

59 187 GR Y B W

60 188 GR Y M oC

61 189 GR Y M WwW

62 190 GR Y Cc WwW

63 191 GR B M ¢

64 192 GR B M WwW

65 193 GR B Cc W

66 194 GR M c WwW

67 195 B4 B M C

68 196 YX B M WwW

69 197 Y B c UW

70 - 198 Y M Cc W

71 199 B M cc WwW

o 1 2_3f
72 200 BK Rt BK R

73 201 BK BK Rt R

74 202 BK GRt BK GR

75 203 BK BK GRt GR

76 204 BK Yt BK Y

77 205 ; BK BK Yf Y

78 206 BK Bt BK B

79 207 BK BK Bt B

80 208 BK Mt BK M

81 209 BK BK Mt M

82 210 BK Ct BK Cc

83 211 BK BK Cf C

84 212 BK Wt BK W

85 213 BRK BK Wt W

86 214 R GRt RGR

* B=blue, C=cyan, Y=yellow, GR=green, M=magenta, R=red, BK=black,

W=white

t white on black/white monitor

Feb. '82 F-4

APPENDIX F — HIGH RESOLUTION COLOR SELECTION CHART

Selection Number Colors*

Graphics High

Text Resolution o 41 2. 3t
Only

87 215 R R GRTt GR

88 216 R Yt R Y

89 217 R R Yt Y

90 218 R Bt RB

91 219 R R Bt B

92 220 R Mt R M

93 221 R R Mt M

94 222 R ct R C¢

95 223 R R ct ¢c

96 224 R wt R WwW

97 225 R R wt W

98 226 GR Yt, GR Y

99 227 GR GR Yt Y

100 228 GR Bt GR B

101 229 GR GR Bt B

102 230 GR Mt GR M

103 231 GR GR Mf M

104 232 GR Ct GR C

105 233 GR GR ct Cc

106 234 GR Wt GR W

107 235 GR GR Wt W

108 236 Y Bt Y B

109 237 Y Y —Bt B

110 238 Y Mt yY M

lll 239 Yt Y Mt M

112 240 XY ct Y Cc

113 241 Y b 4 ct Cc

114 242 4 wt Y wW

115 243 4 Y wt W

116 244 B Mt B M

“LL? 245 BB Mt M
* B=blue, C=cyan, Y=yellow, GR=green, M=magenta, R=red, BK=black,

W=white

t white on black/white monitor

F=5 Feb. : 82

APPENDIX F - HIGH RESOLUTION COLOR SELECTION CHART

Selection Number Colors*

Graphics High

Text Resolution 0 1 2 3t

Only

118 246 B ct B Cc

119 247 B B ct c

120 248 B Wt B W

121 249 B B wt W

122 250 M ct M C

123 252 M M ct Cc

124 253 M Wt M W

125 254 M M wt wW

126 255 Cc wt c W

127 256 Cc C wt W

* B=blue, C=cyan, Y=yellow, GR=green, M=magenta, R=red,

W=white

tT white on black/white monitor

Feb. '82

BK=black,

APPENDIX G
QUICK REFERENCE SUMMARY

Reference & Format

ABS(x)

ADDS (AS ,BS ,pZ)

ASCII(AS)
ASC(AS)

ATN(x)

AUTO [line no.] [,lncr]

BYE

CALL(AS[,D%])

CHAIN <string>

CHRS(m1[,m2,m3,...])

CLEAR

CLOSE [channel no,...]

COMMON <list>

COMP%(AS ,BS)

CON (or CONT)

COS(x)

CUR(<y,x>)

CURREAD <ypos,xpos>

CVTFS(n)

CVTSF(string)

CVTS4(string)

APPENDIX G
QUICK REFERENCE SUMMARY

Use

Returns absolute value of x.

Returns the addition of two strings.

Returns the ASCII value of first
character of AS.

Returns the arctangent (in radians)
of x.

Automatic line numbering.

Transfers control to operating systen.

Calls an assembler program. CALL can
destroy program execution if used
erroneously.

Loads and executes a program.

Returns a character string
corresponding to the ASCII values of
the arguments.

Clears all variables and closes all
open files.

Closes the file(s).

Declares the variables, whose values
are to be transferred to another
program.

Returns a truth value based on a
comparison two numeric strings.

Continues program execution.

Returns the cosine of the x (x is in
radians).

Moves the cursor to line y%, position
Khe

Reads the current cursor position.

Returns a four- or eight~character
string representation of a floating
point number.

Returns the floating point number
representation of the first four or
eight characters of a string.

Returns the integer representation of
the first two characters of a binary
string.

G-1 Feb. '82

Page

10-4

10-24

10-25

10=5

10-27

6-7

10-6

10-41

14-9

14-10

14-7

APPENDIX G - QUICK REFERENCE SUMMARY

Reference & Format

CvT%S$(integer var.)

DATA <list>

Use

Returns a two-character string

representation of an integer.

Page

14-5

Assigns values to variables (used with 7-3

READ).

DEF FN<name> [type] [(argument)]=<expression>

Defines a single line function.

DEF FN<name> [type] [(arguments)] [(LOCAL variable,variable,...)]

DIGITS <number>

DIM <var list> or

DIM <string var=expr>

DIV$(AS ,BS$,p4)

DOUBLE

ED [line no.]

END

ERASE <argument>

ERRCODE

EXP(x)

EXTEND

FGCIRCLE

FGCTL <number>

FGDRAW

FGERASE

FGFILL x,y[,color number]

Feb. "82

Defines a multiple line function.

Specifies the number of digits to be

printed.

Allocates space for strings and

vectors.

Returns the quotient AS$/BS$ rounded

off to (+) p% decimals or to (-) p

places of precision.

Sets floating point numbers to double

precision (16 digits) mode.

Starts program editing.

Terminates the program.

Erases one or more program lines.

Returns the value of the latest

generated error code.

Returns the value e*,

Allows extended variable names to be

used.

Draws a circle.

Selects the color four-color

combination in effect.

Displays a specified shape.

Sets all elements of a shape to its

background color.

Fills a rectangle from the previous

position to the position indicated by

the coordinates (x,y).

G-2

9-8

7-5

10-28

ms

APPENDIX G - QUICK REFERENCE SUMMARY

Reference & Format Use Page

FGGET , Copies a rectangle. ~13-6

FGLINE x,y[,color number] Draws a line from the previous . 13-21
position to the position indicated by
the coordinates (x,y).

FGPAINT[x,y[{,color number]] Fills a closed area. 13~24

FGPOINT x,y [,color number] Turns on a pixel on line x (0-239) 13-27
in position y (0-230).

FGPOINT (x,y) Returns color number of specified 13-27
: pixel.

FGPUT <string var> Restores to high res memory the 13-30
contents of the specified string
variable.

FGROT <number> Specifies the degree of rotation. 13-32

FGSCALE <x,y> Scales the coordinates of the shape 13-33
to be displayed.

FIX(x) Returns the truncated value of x. 10-8

FLOAT Specifies that all numbers will be 7-10
interpreted as floating point.

FN<name> [type] [(parameter)] Calls a user defined function. 10-43

FNEND Terminates a multiple line function. 9-14

FOR <var>=<expr> to <expr> [STEP expr]
Starts a program loop. 9-1

GET <string variable> Reads one or more characters from the 8-4
keyboard.

GET #<channel no.>,<string var> [COUNT number] 8-4
Reads from a file.

GOSUB <line no.> Unconditional jump to a subroutine. 9-17

GOTO <line no.> Unconditional jump to the given line 9-19
number.

HEXS (x) Returns the hexadecimal string 10-9
representation of a decimal number.

G-3 Feb. '82

APPENDIX G —~ QUICK REFERENCE SUMMARY

Reference & Format

IF <condition> [THEN or GOTO]
<argl> [ELSE arg2]

INP(iZ)

INPUT [{[#channel no.] <list>

Use

Conditional control of the order of

execution of the program lines.

Returns the data value from the

in-port i%.

Fetches data for the current program.

INPUT LINE [#channel no.,]<string variable>

INSTR(n%,AS,BS)

INT(x)

INTEGER

KILL <string>

LEFT($]A$,12)

LEN(AS)

[LET] <var> = <expr>

LIST [arguments]

LOAD <fd>

LOG(x)

LOG10(x)

MERGE <fd>

MID[$](A$,p%,k2)
{LET] MID($](AS,p4,k%) = <expr>

MOD(<argument1>,<argument2>)

Feb. ‘82

Accepts a line of characters.

Returns the position of string BS in
AS starting search at position n%.

Returns the value of the greatest
integer less than or equal to x.

Specifies that all variables are
supposed to be integer variables,

unless otherwise declared.

Erases the file in question from
external storage.

Returns the first i% characters of

the string AS.

Returns the string length sasenuniaii
spaces) of AS.

Assigns a value to a variable.

Lists, saves or prints a program.

Loads a program into working storage

of the computer.

Returns the natural logarithm of x.

Returns the common logarithm of x.

Merges program files.

Returns or replaces the substring of

A4, which starts in position p% and

has a length of k% characters.

Returns the remainder of an integer

division of the arguments.

10-10

oe

10-14

APPENDIX G - QUICK REFERENCE SUMMARY

Reference & Format

MULS(AS,BS,p%)

NAME <stringl> AS <string2>

NEW

NEXT <variable>

NO EXTEND

NO TRACE

NUMS (argument)

OCTS(argument)

ON ERROR GOTO [line number]

Use

Returns the product AS*BS with p% (+)
decimals or with p (-) places of
precision.

Changes the name of a file.

Clears storage.

NEXT terminates a program loop, which
begins with a FOR statement.

Terminates work in EXTEND mode.

Terminates the printout of line

numbers, which was started by the
instruction TRACE.

Returns the numeric string

corresponding to the argument.

Returns an octal string representa-
tion of a decimal number.

Branches to the indicated line number
of an error.

ON <expression> GOSUB <line no.>[,line no.,...]

.

Conditional jump to one of several

10-34

10-15

9-26

9-28

subroutines or to one of several entry
points in a subroutine.

ON <expr> GOTO <line no.>[,line no.,...] :
Jump to one of several line numbers,

depending on the value of the
expression.

ON <expr> RESTORE <line no.>[,line no.,...]
Sets the DATA pointer by the same

selection routine as ON - GOTO.

ON <expr> RESUME <line no.>{,line no.,...]

Jump to one of several line numbers,

depending on the value of the
expression. The error handling is

resumed. Used with ON ERROR GOTO.

OPEN <string> AS FILE <expr> [MODE expr]

OPTION BASE <n>

Opens a file.

Tenotes the default minimum

subscript value.

G-5

9-30

9~31

9-32

8-15
14~24

7-16

Feb. '82

APPENDIX G - QUICK REFERENCE SUMMARY

Reference & Format Use

OPTION EUROPE <n> Specifies European or American PRINT

USING “*" and "." field parameters.

OUT <port,data> [port,data,...] Addresses the out ports at data

output.

PAUSE Pauses the current program task.

PDL(<argument>) Returns joysticks x or y coordinate.

PEEK(<i%>) Returns the contents of one byte at

storage address i5.

PEEK2(<b&>) Returns the contents of two bytes at

storage address b%. This function is

meant for advanced programming.

PI Returns a constant value 3.14159

(single precision).

POKE <addr,data>[,data,...] Loads a value into storage cell.

POSIT #<channel no.>[,number} Positions the file pointer.

POSIT (<channel no.>) Returns position of file pointer.

PREPARE <string> AS FILE <expr> [MODE expr]
Creates and opens a new file.

PRINT [#channel no.;]<argument>[,argument,...]
‘ Prints data in ASCII format.

PRINT USING <format string><list,...]
Prints numbers and strings with the
specified format.

PUT [#<channel no.>],<string expr>
Writes a string variable in binary

format.

RANDOMIZE Sets a random starting value for the

RND function (the random number

generator).

READ <variable>[,variable,...] Used together with DATA statements as

a way of assigning values to variables.

Feb. '82 G-6

8-27

7~13

APPENDIX G - QUICK REFERENCE SUMMARY

Reference & Format

REM text

Use

Inserts comments in a program.

REN [<line no.1>[,incr[line no.2-line no.3]]]

RESTORE <line number>

RESUME <line number>

RETURN [variable]

RIGHT[$] (AS ,nZ)

RND

RUN <fd>

SAVE <fd>

SCR

SET TIME <string>

SGN(x)

SIN(x)

SINGLE

SLEEP <expr>

SOUND <channel%><pitch%>,<atten%>

SPACES(n%)

Changes the line numbering of the
current program.

Makes possible renewed use of the
contents of DATA statements.

Returns from error handler.

Returns from subroutine or multiple
line functon.

Returns the last characters of AS

starting at position n%.

Returns a random number between 0
and 0.999999,

Loads and executes a Monroe BASIC

program or executes the current
program.

Creates a disk file and stores the
current program into that file.

Clear storage.

Sets the system's time and date.

Returns the value +1 if x is
positive, 0 if x and -1 if x

is negative.

Returns the Sine of x (x is in

radians).

7-21

9~34

9-35

10-35

10-17

6-20

6-22

6-24

7-22

10-18

10-19

Changes all variables and expressions, 7-23
which are floating point numbers, to
single precision (6 digits).

Suspends currently running program

for a specified number of seconds.

Returns sounds on system speakers
with specified qualities.

Returns a string consisting of n%
spaces.

10-45

10-49

10-36

Feb. "82

APPENDIX G - QUICK REFERENCE SUMMARY

Reference & Format Use Page

SQR(x) Returns the square root of x. 10-20

STOP . Stops the program execution. 9-37

STRINGS (1% ,K%) Returns a stirng of ASCII characters. 10-37

SUBS(AS ,BS,p4) Returns the arithmetic difference 10-38
AS—BS of the numeric strings AS and
BS with (+) p% decimals or with

(-) p places of precision.

SVC <x%>,<AZ>[,b%] [,d2] Communicates with the operating 14-37

_ system to perform special functions.

SWAPZ (nZ%) Returns integer with first and the 14-41

second bytes of n% transposed.

SYS(1i2) Returns system status as follows: 14-42

SYS(2) Returns total space available
for program.

SYS(3) Program size.
SYS(4) Remaining storage space.
SYS(5) Keyboard input flag.
SYS(6) Puts back the last input

character into the key-
board buffer.

SYS(7) ASCII key value of the
terminating key used after
the last INPUT or INPUT

LINE statement.

SYS(10) Points to information block
about the program.

SYS(11) Starting address of the saad

program.
SYS(12) Gives a pointer to the

variable root for all

variables in Monroe BASIC.

TAB(iZ%) Tabulates to the i%-th position on 10-51

the line.

TAN(x) Returns the tangent of x (x in 10-21

radians).

TIMES Returns year-month-day hours.min.sec 10-52
initially set by SET TIME.

TRACE [#channel no.] Prints the line number of the 9-38

executed program lines.

Feb ° : 8 2 ; G-8

APPENDIX G - QUICK REFERENCE SUMMARY

Reference & Format Use Page

TXPOINT (x,y) Returns the value of or turns a »12-20
TXPOINT x,y[,0] graphical point on line y in 12-21

position x on or off (with 0
included).

UNSAVE <fd> Erases a file from a disk. 6-25

VAL(AS) Returns the numeric value of the 10~39
numeric string AS.

VAROOT(variable) Returns the address of a table, 14-44
which contains information about
a variable.

VARPTR(Variable) Returns the address of the value of 14-44
a variable.

WEND ‘WEND terminates a loop that beings 9-39
with WHILE.

WHILE <expression> Specifies the conditions for 9~40
branching out of a program loop.

G-9 Feb. '82

INDEX

F
a
t
e

a
n
e

A

Access Methods, 14-52

Variable Length Records, 14-52

Fixed Length Records, 14-53
Advanced Programming, 14-1

Advanced Statements, 14-1

File Creation, 14-51

Access Methods, 14-52

Advanced Statements and

Functions, 14-1

CALL, 14-3
CVT Conversion, 14-4

CVTZ$, 14-5
CVTS%, 14-7
CVTIFS, 14-9

CVTSF, 14-10
INP, 14-11
ISAM Create, 14-12
ISAM Delete, 14-16

ISAM OPEN, 14-17
ISAM READ, 14-19
ISAM UPDATE, 14-22
ISAM WRITE, 14-23
OPEN, 14-24
OUT, 14-27
PEEK, 14-29
PEEK2, 14-30
POKE, 14-31
POSIT, 14-32
PREPARE, 14-34
SVC, 14-37
SWAP, 14-41
SYS(A), 14-42
VAROOT/VARPTR, 14-44

Animation Mode, 13-3

ASCII Function, 10-25

ADDS Function, 10-24

ANT Function, 10-5

ABS Function, 10-4

Auto Command, 6-4

Arithmetic Operations, 4-1

Input/Output, 4-5
Integer Arithmetic, 4-2
Logical Operations on

Integer Data, 4-4
Mathematical Operations, 4-1

Use of Integers as Logical

Variables, 4-4

User Defined Functions, 4-4

Arithmetic Expressions, 3-1
Abbreviations, 1-7

B

Blink, 15~4

Block Graphics, 15-1, 15-2
Block Graphics Character Images, 15-2

Business Graphics, 15~l

BYE Statement, 9-4

c

CALL Function, 14-3

CHAIN Statement, 9-5

Changing a Statement, 2-8
Changing the System Disk, 2-19

Character Set, 1-5

Character Strings, 5-1

Arithmetic, 5-3
Constants, 5-1

Functions, 5-3

Input, 5-3

Output, 5-4
Relational Operators, 5-5
Size, 5-2

Subscripted Variables, 5-2

Variables, 5-1

CHRS Function, 10-26

CLEAR Command, 6-6

Closing a File, 2-13
CLOSE Statement, 8-2
Color Graphics Statements, 12-19

TXPOINT Function, 12-20
TXPOINT Statement, 12-21

Color, 12-3

Color Graphics Keywords, 12-1

Color, 12-3
DBLE/NRML, 12-11
FLSH/STDY, 12-9
gcolor, 12-7

GHOL/GRED, 12-15
GSEP/GCON, 12-13
HIDE, 12-17

NWBG, 12-5
Common Statement, 9-7

COMP% Function 10-27

Constants, 3-5

Continue Command, 6-7

Control Characters, 15-5

Control Commands, 6-1

AUTO, 6-4
CLEAR, 6-6
CONTINUE, 6-7
EDIT, 6-8

Feb. ‘82

Control Commands (cont.)

ERASE, 6-10
LIST, 6-11

LOAD, 6-13

MERGE, 6-15
NEW, 6-17

RENUMBER, 6-18
RUN, 6-20

SAVE, 6-22

SCR, 6-23

UNSAVE, 6-24
COS Function, 10-6

CUR Function, 10-41

CURREAD Function, 10-53

CVI Conversion Function, 14-4

CVISF Function, 14-10

CVTF$ Function, 14-9

CVTS% Function, 14-7

CVT%$ Function, 14-5

D

DATA Statement, 7-3

DATA Statements, 7-1
DATA, 7-3
DIM, 7-5
DOUBLE, 7-8
EXTEND, 7-9
FLOAT, 7-10
INTEGER, 7-12
LET, 7~14
NO EXTEND, 7-15
OPTION BASE, 7-16
RANDOMIZE, 7-17
READ, 7-19
RESTORE, 7-21
SET TIME, 7-22
SINGLE, 7-23

Data Types, 3-4

Floating Point Values, 3-4

Integer Value, 3-4

String Values, 3-4

Data Transfer To/From a File, 2-12

DBLE/NRML, 12-11
DEF Statement, 9-8

Deleting a Statement, 2-8

DIGITS Statement, 8-3

DIM, 15-4
DIM Statement, 7-5

Direct Mode, 2-2

DIVS Function, 10-28

Documenting a Program, 2-11

Feb. '82

INDEX

Double Height Mode, 15-3

Double Statement, 7-8

E

EDIT Command, 6-8

Editing a Program, 2-9
Elongate, 15-4
END Statement, 9-12

ERASE Command, 6-10

ERRCODE Function, 10-42

Error Handling, 2-15

Executing a Program, 2-10

EXP Function, 10-7

EXTEND Statement, 7-9

F

FGCIRCLE Statement, 13-4

FGCTL Statement, 13-10

FGDRAW Statement, 13-11

FGERASE Statement, 13-18

FGFILL Statement, 13-19

FGGET Statement, 13-6

FGLINE Statement, 13-21

FGPAINT Statement, 13-24

FGPOINT Function, 13~27

FGPOINT Statement, 13-28

FGPUT Statement, 13-30

FGROT Statement, 13732

FGSCALE Statement, 13-33

File Creation, 14-51

Fixed Length Records, 14-51

Variable Length Records, 14-51

File Naming Conventions, 1-3

File Usage, 2-12

Closing a File, 2-14

Data Transfers To/From a File, 2-13

Opening a File, 2-13

FIX Function, 10-8

Fixed Length Records, 14-51,

14-53
Floating Point Values, 3-4

_ FLOAT Statement, 7-10

INDEX-2

FLSH/STDY, 12-9
FNEND Statement, 9-13

FOR Statement, 9-14

Formatted Printing, 11-1

Example, 11-9

Numeric Fields, 11-4

String Fields, 11-2

Forming Expressions, 3-1

Arithmetic Expressions, 3-1

J

a
m

Forming Expressions (cont.)
Constants, 3-5

Data Types, 3-4
Logical Expressions, 3-2

Relational Expressions, 3-2

Subscripted Variables (Array)
and the DIM Statement, 3-7

Variables, 3-5
FN Function, 10-43

Function Keys, 2-17

Functions, 10-1

Mathematical, 10-2

Miscellaneous, 10-40
String, 10-22

G

gcolor, 12-7
GET Statement, 8-4

GHOL/GRED, 12-15

GOSUB Statement, 9-17

GOTO Statement, 9-19
Graphics Attributes, 15-3

Graphics Modes, 15-3

Graphics Print Format, 15-5
GSEP/GCON, 12-13 |

H

HEXS Function, 10-9
HIDE, 12-17
High Resolution Color Graphics, 13-1

Animation Mode, 13-3
FGCIRCLE, 13-4
FGCTL, 13-10
FGDRAW, 13-11
FGERASE, 13-18
FGFILL, 13-19

FGGET, 13-6
FGLINE, 13-21
FGPAINT, 13-24

FGPOINT Function, 13-27

FGPOINT Statement, 13-28

FGPUT, 13-30
FGROT, 13-32
FGSCALE, 13-33

I

IF. e » THEN. e «ELSE Statement ? 9-20

Immediate Corrections, 2-7

Initiating and Terminating
Monroe BASIC, 2-1

INDEX

INP Function, 14-11
INPUT Statement, 8-6

INPUT LINE Statement, 8-9

Input/Output Statements, 8-1
CLOSE, 8-2 ,

DIGITS, 8-3
GET, 8-4
INPUT, 8-6
INPUT LINE, 8-9
KILL, 8-11
NAME, 8-13
OPEN, 8-15

OPTION EUROPE, 8-18
POSIT, 8-19

PREPARE, 8-21
PRINT, 8-23
PRINT USING, 8-26

PUT, 8-27
Input/Output With Integers and

Floating Point, 4-3

INSTR Function, 10-29

INT Function, 10-10

Integer Arithmetic, 4-2

INTEGER Statement, 7-12.
Integer Values, 3-4
ISAM Create Procedure, 14-12
ISAM Delete Statement, 14-16
ISAM OPEN Statement, 14-17
ISAM READ Statement, 14-19
ISAM UPDATE Statement, 14-22

ISAM WRITE Statement, 14-23

KILL Statement, 8-11

LEFTS Function, 10-30.

LEN Function, 10-31

LET Statement, 7-14

Line Entry, 2-6

Line Entry, 2-6

Procedure, 2-6

Immediate Corrections, 2-7

Deleting a Statement, 2-8
Changing a Statement, 2-8

Line Numbering, 2-4

LIST Command, 6-11

LOAD Command, 6-13

LOG Function, 10-12

INDEX-3 Feb. '82

INDEX

LOG1O Function, 10-13 Direct Mode, 2-2
Logical Expressions, 3-2 Run Mode, 2-3

Logical Operations on Integer MOD Function, 10-14

Data, 4-4 MULS Fiumction, 10-33

Logical Units, 2-15 Multiple Statements on a

Low Resolution Business Graphics, Program Line, 2-5

15-1 Multi-tasking, C-4
Low Resolution Color Graphics, 12-1

Color Graphics Keywords, 12-1 N

Color Graphics Statement and

Function, 12-19 NAME Statement, 8-13
String Manipulation of Low NEW Command, 6-17

Resolution Graphics, 12-23 NEXT Statement, 9-24

NO EXTEND Statement, 7-15

M : NOTRACE Statement, 9-25
Numeric Fields, 11-4

Mathematical Functions, 10-2 NUMS Function, 10-34

Order of Execution, 10-3 NWBG, 12-5

ABS, 10-4
ATN, 10-5 (0)
cos, 10-6
EXP, 10-7 OCTS Function, 10-15
FIX, 10-8 ON ERROR GOTO Statement, 9-26
HEXS, 10-9 ON...GOSUB...Statement, 9-28
INT, 10-10 , ON.GOTO...Statement, 9-30
LOG, 10-12 ON...RESTORE Statement, 9-31
LOG10, 10-13 ON..+eRESUME Statement, 9~32
MOD, 10-14 OPEN Statement, 8-15, 14-24
OcTS, 10-15 Opening a File, 2-12

PI, 10-16 OPTION BASE Statement, 7-16
RND, 10-17 OPTION EUROPE Statement, 8-18

- SGN, 10-18 Organization of This Manual, 1-6

SIN, 10-19 OUT Statement, 14-27
SQR, 10-20 :
TAN, 10-21 P

Mathematical Operations, 4-1

MERGE Command, 6-15 PAUSE, 9-33
MIDS Function, 10-32 PDL Function, 10-45

Miscellaneous Functions and PEEK2 Function, 14-30

Statements, 10-40 PEEK Statement, 14-29
. CUR, 10-41 PI Function, 10-16

CURREAD, 10-53 POKE Statement, 14-31

ERRCODE, 10-42 POSIT Statement, 8-19, 14-32
FN, 10-43 PREPARE Statement, 8-21, 14-34

PDL, 10-45 PRINT, 8-23
REM, 10-47 PRINT USING Statement, 8-26

SLEEP, 10-48 Procedure, 2-6

SOUND, 10-49 | Program Control Statements, 9-1
TAB, 10-51 BYE, 9-4
TIMES, 10-52 CHAIN, 9-5

Modes of Operation, 2-2 COMMON, 9-7

Program Mode, 2-2 DEF, 9-8

Feb. '82 INDEX-4

Program Control Statements (cont.)

END, 9-12

FNEND, 9-13

FOR, 9-14

GOSUB, 9-17

GOTO, 9-19

IF...eTHEN...ELSE, 9-20

NEXT, 9-24

NOTRACE, 9-25

ON ERROR GO TO, 9-26

ON...GOSUB..-, 9-28

ON..-GOTO..., 9-30

ON..-RESTORE, 9-31
ON.. RESUME, 9-32

PAUSE, 9-33

RESUME, 9-34

RETURN, 9-35

STOP, 9-37

TRACE, 9-38

WEND, 9-39

WHILE, 9-40

Program Mode, 2-2

Program Structure, 2-3

PUT Statement, 8-27

R

RANDOMIZE Statement, 7-17

READ Statement, 7-19

Related Manuals, 1-7

Relational Expressions, 3-2

Relational Operators, 5-5

REM Function, 10-47

RENUMBER Command, 6-18

RESTORE Statement, 7-21

RESUME Statement, 9-34

RETURN Statement, 9-35

Reverse Video, 15-4

RIGHTS Function, 10-35

RND Function, 10-17

RUN Command, 6-20

Run Mode, 2-3

s)

SAVE Command, 6-22

SCR Command, 6-23

SET TIME Statement, 7-22

SGN Function, 10-18

SIN Function, 10-19

SINGLE Statement, 7-23

SLERP Function, 10-48

SOUND Function, 10-49

INDEX

INDEX-5

SPACES Function, 10-36
SQR Function, 10-20

Statements, 2-5

STOP Statement, 9-37

String Arithmetic, 5-3
String Constants, 5-l
String Fields, 11-2

STRINGS Function, 10-37

String Functions, 5-3, 10~22

ANDS, 10-24
ASCII, 10-25
CHRS$, 10-26
COMP%, 10-27
DIV$, 10-28
INSTR, 10-29

LEFTS, 10-30
LEN, 10-31
MIDS, 10-32
MULS, 10-33
NUMS, 10-34
RIGHTS, 10-35

SPACES, 10-36
STRINGS, 10-37
SUBS, 10-38
VAL, 10-39

String Input, 5-3

String Manipulation of Low

Resolution Graphics, 12-23

String Output, 5-4

String Size, 5-2

String Values, 3-4

String Variables, 5-1
SUBS Function, 10-38

Subscripted String Variables,

5-2
Subscripted Variables (Array)

and the DIM Statement, 3-7

SVC Statement, 14-37

SWAP Function, 14-41

SYS(A) Function, 14-42

T

TAB Function, 10-51

TAN Function, 10-21

Text Mode, 15-3

Text Symbols and Conventions,

1-2

TIMES Function, 10-52

TRACE Statement, 9-38

TXPOINT Function, 12-20

TXPOINT Statement, 12-21

U0

Underline, 15-4

UNSAVE Command, 6-24

Use of Integers as Logical
Variables, 4-4

Wser Defined Functions, 4-4

Vv

VAL Function, 10-39

Variable Length Records, 14-51,

14-52
Variables, 3-5

VAROOT/VARPTR Statement, 14-44

W

WEND Statement, 9-39

WHILE Statement, 9-40

Working with Monroe BASIC, 2-1

Initiating and Terminating
Monroe BASIC, 2-1

Modes of Operation, 2-2

Program Structure, 2-3
Line Numbering, 2-4
Statements, 2~5

Line Entry, 2-6
Editing a Program, 2-9

Executing a Program, 2-10

Documenting a Program, 2-11

File Usage, 2-12
Logical Units, 2-15
Error Handling, 2-15

Function Keys, 2-17
Changing the System Disk, 2-19

Feb. '82

INDEX

INDEX-6

