10=002000%--5

HONROE PASCAL

mocumn's JREFERENCE PANUSL L i
. Ju_ne-»1982
Rev. 1

MONROE- s*zsmns FOR wsmsss D
The Auerican Rd. .
‘Morris Pla&ns, .J . 07950 '

*

Qcopyﬂ‘ght’“ﬂlﬂ,uuon Biuincu Systems, Inc., Ali;Right;s Eas‘rve:‘

%

2139-S (Rev. 1)

x 9 3
Except as stated in the license agreement for this
software, Monroe does not warrant this software or its
documentation, either expressly, by implication or in

Y3

relation to merchantability or fitness for a particular

purpose.

Monroe shall not be liable fo% any incidental, indirect,
special, comsequential, or punitive damages arising out of
or in any way connected with the use, furnishing of or any
failure to furnish software or any related materials,
including, but not limited to, claims for lost profits,
increased expenses or costs, loss of good will, or damage
to property. This exclusion of liability shall apply
without regard to whether such damages were foreseeable or
foreseen or are claimed to arise by reason of breach of
contract, breach of warranty, misrepresentation,
negligence, strict liability, or other legal theory.

Monroe reserves the right to make changes in the content of
this software or its documentation without obligatiom to

notify customer of such changes.

ii

PURPOSE OF THIS DOCUMENT

‘This document 1s a Programer] leference Hanual.

It is ta be used by experienced programers as a
reference tool. It is not intended for use as a

learning aid by non-programmers.

LA

iid

RECORD OF CHANGES

: g

0]
v o
(]
[+ [=] o ~
o o o <
£ sl <
(&) & v o
Lal [=] @ bD
Yy o (<] oo
o =} .n.. (=] .M
, o
dfl o u O
of - - ;] [~
-~ L\ ~ v 0
¥ o [o] []
‘i -~ 44 o
b L o ~ 3
12 - - []
9] ~ 9 o
5] o = g o
[] 13 @ L]
(=) Ay = -
_— e — e e]
o ~ 6
L1 —4] 3 ¢ @ - [+
g 1 Q B ho Wt
(3} ~
Q - 0 .
e (m. L '] . .
Yy ﬂ n o oo
< . g w o .. L4 s
of A8 R
(1] o %.h Q. i * W - 2 . o e . i a
ool R - ¥ £, % N - * 1 1 S
(] ¥ o K 5
[=¥] (2} A., N
" m i * . 4
] - e o~ *
o Q. @, ©
o ~ ~ ~
[=] -4 wy (o]
—t
Ll
o]
-4 —
1] o .
by >
=} (1]
o o
Ko
(&)

e e e e e e e e — e e ——— e e e —————— — —— — — . — o+ —— — ——

iv

TABLE OF CONTENTS

et b s e L e

-Section-- - I&E£g§§ TR . X Page
1 INTRODUCTION
LT 1.1 Introduction to PASCAL 1-1
1.2 About the Magual 1-1
Text‘Symbols;an&‘Conventions 1-2
Organization of the Manual 1-3
Abbreviations 1-4
1.3 File-Volume-Device-Naming Conventions 1-5
1.4 Related Manuals 1-7
2 WORKING WITH PASCAL
2.1 Overview 2-1
2.2 Disk Handling 2-1
2.3 Word Lengths for File and Program 2=2
Identifiers
2.4 PASCAL Program Syntax 2-3
2.5 Writing a Program 2-4
2.6 Compiling a Program 2-6
Running a Program 2-7
2.8 Baud Rate Selection 2-8
3 SPECIAL SYMBOLS AND CONSTANTS
3.1 Identifiers 3-1
Reserved Words/Special Symbols 3-1
User-Defined Words 3-2
3.2 Numbers 3-3
Integers 3-3
Reals 3-3
3.3 String Constants 3=4
3.4 Comments 3-4
4 PROGRAM HEADINGS AND DECLARATIONS
4.1 Program Heading 4-1
- 4,2 Label Declarations 4=1

v Change A, May '82

Section

Change A, May '82

TABLE OF CONTENTS (Cont.)

Title

4.3 Constant Defimnitions
4.4 Type Definitions
4.5 Variable_Declarations

4.6 Procedure and Function Definition

CONTROL STATEMENTS
5.1 Introduction
5.2 Compound ‘Statement
5.3 Assignment Statement
5.4 Repetitive Statements
WHILE Statements '
REPEAT Statements
FOR Statements *
5.5 Conditional/Umconditional Statements
IF Statement
CASE Statement
GOTO Statement

DATA TYPES
6.1 Introduction
6.2 INTEGER

6.3 REAL , Cpn
6.4 BOOLEAN i fmo 77

6.5 CHAR Coens
USER DEFINED‘TYPESE B!
7.1 Introductiom ~* °
7.2 Scalar
Restrinctions on Scal;frbghstauts
Subrange e
7.4 Set

vi

6-1
6-1
6-3

6-7

Section

8

10

11

TABLE OF CONTENTS (Cont.)

Title

STRUCTURED DATA TYPES

8.1
8.2

8.3

Introduction

Array

Packed Arrays

Arrays with BOOLEAN Base Type
String Arrays

Record .

Packed Records

WITH Statement

Record Assignment

Record Variants

Variant Record Beclarations

POINTER DATA TYPES

9.1
9.2

Introduction
Format
Pointer Type Components

FILE DATA TYPES

10.1
10.2

10.3
10.4
10.5

Introduction

Referencing Files in a Program
Declaration Format

File Types

Pascal Intrinsics for Files
Creating and Using Files

«+ . PROCEDURES AND FUNCTIONS

11.1

11.2
11.3
11.4

General Form

Subprogram Placement
FORWARD Directive
Procedures

Functions

Global and Local Variables

Varying Parameters

8-1
8-1
8=4
8-5
8-5
8-7
8-9
8-10
8-12
8-15
8-19

9-1
9-2
9-2

10-1
10-1
10-2
10-2
10-3
10-6

11-1
11-2
11-2
11-3
11-5
11-6
11-8

vii Change A, May '82

Section

12

Change A, May '82

TABLE OF CONTENTS (Cont.)

Title

PASCAL INTRINSICS

12.1
12.2

12.3

12.4

Introduction
String Intrinsics
CONCAT Function
coﬁi Function
DELETE Proceduré
INSERT Procedure
LENGTH Functionm
POS Fuhgtion ‘
Input and Output Intrinsics
BLOCKREAD Function
BLOCKWRITE Function
CLOSE Procedure
EOF Function
EOLN Function
GET Procedure
IORESULT Function
PAGE Procedure
PUT Procedure
READ Procedufgw
READLN Procedure
RESET Procedure
REWRITE Procedure
SEEK Procedure
WRITE Procedure
WRITELN Statement
Character ArfafﬁManipulation
Intrinsics ’
FILLCHAR Procedure
MOVELEFT Procedpre
MOVERIGHT Procedure
SCAN Function

viii

121

12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
12-10
12-11
12-12
12-13
12-14
12-15
12-16
12-17
12-18
12-20
12-21
12-22
12-23
12-25
12-27
12-30

12-31
12-32
12-33
12-35

TABLE OF CONTENTS (Cont.)

Section Title r Page
12.5 Mathematical Functions 12-37
ABS Function 12-38
ARCTAN Function 12-39

COS Function 12-40

EXP Function 12-41

LN Function 1242

LOG Function 12-43

MOD Function 12-44

ODD Function . 12-46

~ ROUND Function 12-47

SIN Function 12-48

SQR Function 12-49

SQRT Function 12-50
TRUNC Function 12-51

12.6 Miscellaneous Routines 12-52
~ DATE Function 12-53
DISPOSE Procedure 12-54
EOLNCHR Function 12-55

EXIT Procedure 12-57
GOTOXY Procedure 12-58

HALT Procedure 12-59

MARK Procedure 12-60

NEW Procedure 12-62
OPTION Function 12-63

i RELEASE Procedure 12-64

' '~ SIZEOF Function 12-65
STARTPAR Function 12-66

SVC Function 12-67

TIME Function 12-69

INP Function 12-70

OUT Procedure 12-71
PWROFTEN Function 12-72

ix . Change A, May '82

TABLE OF CONTENTS (Cont.)

Section Title
12.7 Logical Intrinsics
IAND Function
IOR Function
ISHIFT Function
ISWAP Function
IXOR Function

13 SYSTEM PROGRAMS AND CSS~FILES

13.1 PASCAL System Programs and CSS Files
PASCAL Interpreter
PASSYS Interpreter
PASCOMP System Program
PASCROSS System Program
PASDEL System Program
PASDUMP System Program
PASLIB System Program
PASLINK System Program
PASOBJ System Program
PASPRINT System Program

13.2 CSS-Mode '
$ = Commands
$$ = Commands
Flow of Control and Execution Commands
Taskfile Commands
Creation of Permanent Files

$$ Commands in Enteractive Mode

14 ISAM STATEMENTS
l4.1 Introduction
ISAM Error Handling
14.2 1SAM Create Procedure
Loading the Data File
Sample Program
14.3 1ISAM Delete Statement

Change A, May '82 x

Page
12-73

12-73
12-74
12-75
12-76
12-77

13-1
13-2
13-4
13-6
13-8
13-9
13-10
13-11
13-14
13-24
13-27
13-28
13-30
13-31
13-31
13-34
13-36
13-37

14-1
14-1
14=-2
14-4
14-5
14-7

Section

15

16

TABLE OF CONTENTS (Cont.)

Title

14.4 1ISAM Read Statement
Readlast
Readfirst
Readprevious
Readnext
Readkey
14.5 1ISAM Update Statement
14.6 1ISAM Write Statement

LOW RESOLUTION BUSINESS GRAPHICS

15.1 Introduction

15.2 Graphics Characters

15.3 Graphics Modes

15.4 Graphics Attributes

15.5 Control Characters

15.6 Graphics Display Format

15.7 Illustrated Examples

’ Program l: Text Graphics

Program 2: Block Graphics

LOW RESOLUTION COLOR GRAPHICS
16.1 Introduction
16.2 Printable Characters

16,3 Text Color Selection

16.4 Graphic Character Color Selection

16.5 Height Selectiomn

16.6 Flashing Mode Selection

16.7 Separate Mode Selection

16.8 Background Color Selection

16.9 Graphics Fill Mode

16.10 Graphics Hide Mode

16.11 Illustrated Examples

16.12 Low Resolution Color Graphic
Statement and Function
TXPOINT Statement
TXFPOINT Function

15-1
15-1
15-3
15-4
15=5
15-6
15-6
15-9
15-10

16-1
16=4
16=5
16=7
16-9
16-11
16-13
16-16
16-18
16=21
16=-23
16-25

16-26
16-28

xi Change A, May '82

TABLE OF CONTENTS (Cont.)

Section Title

17 HIGH RESOLUTION COLOR GRAPHICS

17.1
17.2
17.3

17.4
17.5
17.6

17.7

17.8

17.9

17.10
17.11
17.12
17.13
17.14
17.15
17.16

Introduction
Animation Mode
Declaring Buffers
Format 1

Format 2
FGCIRCLE Statement
FGCTL Statement
FGDRAW Statement
Moves and Color Selection
FGERASE Statement
FGFILL Statement
FGFPOINT Statement
FGGET Statemenﬁ
FGLINE Statement
FGPAINT Statement
FGPOINT Statement
FGPUT Statement
FGROT Statement
FGSCALE Statement

APPENDIX A QUICK REFERENCE SUMMARY

APPENDIX B COMPILE TIME OPTIONS

APPENDIX C COMPILER ERRORS

APPENDIX D RUN TIME ERRORS

APPENDIX E SUMMARY OF OPERATIONS

Change A, May '82

xii

Page

17-1
17-3
17-4

17-4

17-5

17-6

17-8

17-10

17-15

17-24

17-26

17-27

17-28

17-34

17-36

17-38

17-39

17-41

17-44

TABLE OF CONTENTS (Cont.)

Section Title Page
APPENDIX F ASCII CHARACTER SET F-1
APPENDIX G SAMPLE PROGRAMS

G.l ISAM Program ISAMDEMO G-1

G.2 FGDRAW Programs - DRAWGRAPHICS and G-8

PUT&GET SHAPE
G.3 Animation Program - ANIMATESTICK G-13
G.4 Running Assembly Language Programs G-14
Under PASCAL

G.5 Multi-tasking Example G-17
APPENDIX H LOW RESOLUTION COLOR GRAPHICS CHARACTER SET H-1
APPENDIX I HIGH RESOLUTION COLOR SELECTION CHART I-1
APPENDIX J OVERLAYING HIGH AND LOW RESOLUTION GRAPHICS J=1
APPENDIX K PORT NUMBER ASSIGNMENTS K-1
APPENDIX L RLDR - RELOCATABLE LOADER

L.l Introduction L-1

L.2 RLDR Invocation L-2

L.3 Commands L-2

L.4 Messages L-7

L.5 Illustrated Example L-8
GLOSSARY OF TERMS GLOSSARY~-1
INDEX INDEX-1

xiii Change A, May '82

Tables

8-1
12-1
12-2
12-3
12-4
12-5
12-6
12-7
15-1
16-1

Change A, May '82

LIST OF TABLES

PASCAL Statements

Restrictions on I/0 with Arrays

String Intrinsics

Input and Qutput Intrinsics

Character and Array Manipulation Intrinsics

PASCAL Mathematical Functions

Miscellaneous Intrinsics

Logical Intrinsics

Function Key ASCII Values

Block Graphics Character lLmages

Low Resolution Color Graphics Control
Characters and Keywords

High Resolution Graphics Statements

Low Resolution Color Graphics Character Set

High Resolution Color Selection Chart

Resulting Text Color on High Resolution

Background

xiv

12-8
12-30
12-37
12-52
12=-52
12-55
15-2
16-3

17-1

SECTION 1
INTRODUCTION

SECTION 1
INTRODUCTION
1.1 INTRODUCTION TO PASCAL
PASCAL is a relatively new language that has been accepted and
implemented worldwide. It was first published in 1971, yet already

it is considered one of the most promising problem—solving languages
available.

PASCAL has two powerful strengths that account for its popularity.
The first is that it is one of the few languages that was designed
for structured programming, a method of writing programs that is
sequential and well-ordered. It permits the programming of extremely

large and complex projects while minimizing the debugging time.

The second strength is that PASCAL has a small but very powerful set
of commands that makes it a relatively easy language to learn and to
use. It was also designed to be completely machine-independent so
PASCAL programs are transportable and maintainable. It is even more
flexible because it facilitates the defining of complex data

structures specifically for each application.

PASCAL is a compiled language. This means that a PASCAL program is
completely translated into object code before it can be executed.
Therefore, it is not interactive in the sense that BASIC and other

interpreted languages are.

Monroe's PASCAL language described in this manual is standard PASCAL.

It is available on Monroe's educational and occupational 8800

computer series.

1.2 ABOUT THE MANUAL
The PASCAL PROGRAMMER'S REFERENCE MANUAL is designed to be just that:

a reference manual for an experienced programmer, not a tutorial.

Although it is not designed for those learning PASCAL, many examples

are included to help you understand and implement the language.

l-l Jan. '82

SECTION 1 - INTRODUCTION

Text Symbols and Conventions

This manual uses specific “documentation conventions to describe all
PASCAL statement, function, procedure, and command formats. These

conventions are as follows:

Symbol Description and Use
1. CAPITAL LETTERS Capital letters are used for all

keywords, standard functions and
procedures, and commands that are to be

explicitly typed.

Examples: BEGIN
WRITELN

2. Lower case Lower case letters specify variables to
be supplied by the user according to the
rules explained below and in this text.

Examples: <identifier>: = <{constant>;
WHILE <boolean expression>

3. < Angled brackets enclose fields that are
raquired for valid syntax. The brackets

are never to be typed.

Examples: IF <boolean expression>
THEN <{statement)>;

4, | | Vertical lines enclose optional elements
of a statement. When a statement
contains more than one optional element,
each may be underlined to clarify any

resulting ambiguities. (See item 6.)

Examgles: REPEAT
IF <condition>

THEN <statement block>
|ELSE statement’ block]|

Jan. '82 1-2

SECTION 1 - INTRODUCTION

Symbol Description and Use
5. [1O),«; ' Square brackets and parentheses enclose

required elements or keywords of a
statement. Commas are separators.
Periods and semicolons are delimiters.
They must all be typed exactly as shown.

Examples: ARRAY[<const>..<{const>]
would be: ARRAY[l..l0];

6. oae Ellipses (3 dots) indicate that multiple
arguments are allowed.

Example: READ (|fd|,<ident>|,ident,...|)

Organization of the Manual

This manual is organized into 17 sections and twelve appendices.
Section 1 gives a gemeral overview of this document.

Section 2 gives machine-specific information about running PASCAL.
All programmers should read this section carefully.

Sections 3 through 5 contain information regarding some of the more
basic identifiers in the PASCAL language.

Sections 6 through 11 describe individual commands, more advanced
identifier definitions, and program and function definitioms. The
statements will each be explained and summarized in the following

format:

1. Function -Summarizes the purpose of the statement.

2. Format -Shows the statement syntax.

3. Arguments -Defines the format variables.

4., Use -Describes where and under what
circumstances the statement would be
used.

5. Note - =Important exceptions and limitations.

6. Example -Illustrates various uses of the command.

1-3 Change A, May '82

SECTION 1 - INTRODUCTION

Section 12 describes the PASCAL intrinsics.

Section 13 details PASCAL's system commands and the optioms that are
available to the user.

Section 14 describes the statements used to load and modify ISAM data
files.

Section 15 describes low resolution business graphics.

Sections 16 and 17 deal with low and high resolution color graphics,

respectively.

Appendix A summarizes the standard functions and procedures that are

available.

Appendix B explains the possible compile-~time options.

Appendices C and D list the compile-time and run-time errors,

respectively.

Appendix E summarizes the operators, their uses, and their operands,
while Appendix F lists all the legal characters.

Appendix G contains sample programs.
Appendix H shows the low resolution color graphics character set.
Appendix I contains the high resolution color selection chart.

Appendix J shows the resulting background color when high and low
resolution color graphics are displayed on the screen simultaneously.

Appendix K lists the port numbers and associated devices.

Appendix L describes the RLDR Utility which is used to build an

executable program (i.e., Task).

Change A, May '82 1-4

SECTION 1 - INTRODUCTION

Abbreviations

The following abbreviations are used in this manual:

cfd : File descriptor of the command file

const Constant

fd File descriptor

ident Identifier

infd File descriptor that contains the PASCAL p-code

1fd File descriptor for the list file

1ibfd File descriptor for the p-code library

outfd File descriptor that contains the relocatable
object file

stmt Statement

tid Name assigned to the task (four letters) when it
is loaded into memory

var Variable

1.3 FILE-VOLUME-DEVICE-NAMING CONVENTIONS

The Monroe Operating System file, volume, and device naming
conventions are defined as follows:

A)

B)

c)

D)

A file is a program or a collection of data stored on a
disk-type storage medium. Once saved files stay on the disk
permanently unless they are explicitly removed.

A volume name is a name given by the user to a disk. Filenames
must be preceded by their volume name unless they reside on the
system volume. The system volume is the volume from which the
operating system is booted. It can be reset by the user,

A device name is a name given to a physical device (e.g., CON:
for the console, PR: for the printer, FPYO: for drive O
(lower drive), FPYl: for drive 1 (upper drive). These names
cannot be changed by the user.

File descriptors, hereafter referred to as "fd" in this manual,
can be composed of four fields: vol, filename, directory, and
type, where vol can be either a volume or when used alone as a
device name. Device descriptors are composed of the device
monemonic omly. oL oy w0

1-5 Change A, May '82

SECTION 1 - INTRODUCTION

E) The format can be expressed in four ways:
1. <device:>
2. [vol:]<filename>[/type]
3. [vol:]<directory>
4., [vol:]<directory.filename>[/type]

where:
vol/
device

filename

directory

type

Vol is the name of the disk on which the file
resides it the file descriptor refers to a file,
or the name of a device if the file descriptor
refers to a device. It may be from one to four
characters. The first character must be
alphabetic and the remaining alphanumeric. If the
volume is not specified, the default volume is the
SYSTEM volume.

Name of the file. It may be from one to twelve
alphanumeric characters.

Name of the element file directory. It may be
from one to twelve alphanumeric characters. If
not specified, the directory defaults to the
Master File directory.

Type of file, i.e., A=ASCII, B=Binary, etc.

Examgle: Examples of legal file/device descriptors are:

—EDIT MONT :REPORT Edits file REPORT on the volume

MONT .

PROGRAM HELP(tst50,tst60) Files tst50 and tst60 will be

used in the PASCAL program
named HELP.

-PASSYS PASCOMP,VOLA:HELP Compiles file HELP on volume
VOLA.
-PASCAL VOLA:HELP Executes the compiled program

HELP on volume VOLA.

PROCEDURE WRITELN Writes the value to the file
(TESTPRG:text file) TESTPRG and then inserts a

Change A, May '82

carriage return character.

SECTION 1 - INTRODUCTION

1.4 RELATED MANUALS

This manual is as self-sufficient as possible. However,
instructional information about the Utilities and the Text Editor may
be required to effectively use the PASCAL package. For additional
information, refer to the following 8800 Series Programmer's

Reference Manuals:
o Utility Programs

o Text Editor
o Monroe Operating System

1=7 Jan. '82

SECTION 2
WORKING WITH PASCAL

SECTION 2
WORKING WITH PASCAL

2.1 OVERVIEW
Monroe Pascal software for the 8800 Series Computers is delivered on
a disk containing a compiler PASCOMP, two interpreters PASSYS and

PASCAL, and supplementary system programs. (Each is described inm
detail in Section 13.)

The following Pascal system programs are written in native code for
the Monroe computer: PASSYS, PASCAL, PASOBJ, RLDR, and PASRTL. All
others consist of "psuedo-code” which can be interpreted by the
PASSYS interpreter; PASSYS thus constitutes the basis for most
Pascal-related operations. User written application programs can be
translated by the PASCAL system either to pseudo-code or to the
native code of the computer. PASCAL is used to interpret user-
written programs which have been translated to pseudo-code; altern-
atively, PASRTL and RLDR (see Appendix L) can be used to convert
programs which have been translated to native code into directly
executable task files.

2.2 DISK HANDLING
In order to use your Pascal disk, certain procedures must be
followed. Shown below is one method that can be used. ﬁowever,

there are other methods which may be more efficient, depending on
your knowledge of the system.

Dual Drive OC System Procedure:

1. Boot from your MS8 disk in drive O (lower drive).

2. Put PASCAL disk in drive 1 (upper drive), and open the
drive-—OPEN FPYl:.

3. Copy necessary utilities and system programs from your
MS8 disk to the PASCAL disk (PASC:) which may be needed
later. Copy, for example: EDIT, CMD$VOLUME, CMDSLIB,
ISAM, COPYLIB, etc. Once this has been done, there is no

need to do this in subsequent sessions.

2-1 Change A, May '82

SECTION 2 - WORKING WITH PASCAL

4, Change system volume to PASC: (PASCAL disk) using the
volume utility-—V PASC:.
5. Remove MS8 disk and insert and open a data disk

previously initialized.

The text editor = EDIT can now be used to create a PASCAL source

program. (See Sectiom 2.5.)

NOTE: If you want your source program to be stored on the data disk,
prefix the filename with the volume name, e.g., DATA:SOURCEFILE.

Single Drive EC System Procedure:
1. Boot from your MS8 disk.
2. " Execute COPYF Utility (refer to the 8800 Series Monroe

Utility Programmer's Reference Manual) to copy necessary

utilities and system programs from your MS8 disk to the
PASCAL disk-PASC:. Copy, for example: EDIT, CMD$VOLUME,

CMDSLIB, ISAM, COPYLIB, etc. Once this has been done,
there is no need to do this in subsequent sessions.

3. Remove System disk (assume step 2 has been done). Insert
and open PASCAL disk--OPEN PASC:.
4, Change system volume to PASCAL disk——PASC:V PASC:.

You are now ready to use the Editor to create a source program.

2.3 WORD LENGTHS FOR FILE AND PROGRAM IDENTIFIERS

Identifiers are alphanumeric words that have specific meanings much

like words in informal languages. They are used to define comstants,
types, variables, procedures and functions, and files. PASCAL allows
identifiers of any length provided that they do not span more than
one line. This allows meaningful names to be used for all
identifiers, hence, the program can be read much easier. It is
important to note that only the first eight characters are
significant, i.e., "newgraphx” and “newgraphy” are both valid
identifiers but are indistinguishable to the compiler; "xnewgraph”
and "ynewgraph” might be used instead.

Change A, May '82 2-2

SECTION 2 - WORKING WITH PASCAL

The first character in an identifier must be a letter; the remaining
characters may be either letters or digits. All other ASCII
characters are illegal. Also, no reserved words (see Section 3.1 for
a list) may be used.

Examples:
The following identifiers are all legal:

abe, time2, C8915, Idname

The following identifiers are illegal for the reasons stated:

4aname does not start with a letter.

b+c . .+ is not a legal character.

the name a blank is not a legal character.
var VAR 1is a reserved word.

2.4 PASCAL PROGRAM SYNTAX
PASCAL programs consist of a heading and a block section. The

general format is:

PROGRAM<name> | (fd,...)|;
|Declarations |

{compound statement).

{name> is the identifier for the program. The optional list of
filenames designates the files to be used in the program. They must
be declared in the Variable Declarations section.

The Declarations section is composed of the following parts:

| label declarations|

| constant definitions|

|type definitions|

|variable declarations|

| procedure and function declarations|

These parts must exist in the order that they are listed above. They
will be described in greater detail in Sections 2 through 11.

2-3 Change A, May '82

SECTION 2 - WORKING WITH PASCAL

2.5 WRITING A PROGRAM

Since PASCAL programs must exist in text files, all programs are
created and manipulated through the Text Editor--Edit. Enter the
following command to invoke the Editor:

EDIT <fd>

The fd is the file descriptor as defined in Sectionm 1.4. Each time
this command is entered with a new filename, a file is created and
the name is placed in the disk's file directory. If an existing
filename is used, the Editor is invoked and the existing file is
opened.

Next, the contents of the file must be read into the buffer where it
can be manipulated. This is done by executing the Read (RE) command.
This command should be used exactly once each time the editor is
invoked or else the file and the buffer will be lost. If the file is
just being created, the RE command will return a length of zero.
Otherwise, it will give the length of the program existing in the
file.

It is often a good idea to look at the file even if it was just
created to be sure that it has not accidentally been used before.
The Print (PR) command accomplishes this. If the listing is longer
than the CRT display, the first section is displayed and the lines
that follow may be seen by hitting the space bar. To exit the Print
command, press the RETURN key.

The Insert Line (IL) is used to begin entering the program. A line
number will appear at the left of the screen with the cursor
following it. To exit the Insert Line command, type a "#" in the
first position omn the line.

The Output and READ (OR) command can be used to load the next section
of a large program file until the end of the file is reached.

Change A, May '82 2-4

SECTION 2 - WORKING WITH PASCAL

The following Text Editor commands are available:

Command Function
AB Abort session.
BT Set tab stops.
cv Change variable.
DL Delete line(s).
ED _ Edit line.
EN Normal termination.
IL Insert line(s).
KI Kills the buffer, the file, and the backup file.
LC Enable lower case input.
NU Renumber.
OR Output, kill the buffer, and read.
PR Print.
RE Kill the buffer and read.)
sV Search for string variable.
uc Force input to upper case.
WR Write current buffer.

For a more complete description of the uses and parameters of these
commands, refer to the 8800 Series Text Editor Programmer's Reference
Manual.

When an editing session 1is completed the End (EN) command will

terminate the session, write the buffer to the disk file, and exit
the Editor.

2=5 Change A, May '82

SECTION 2 - WORKING WITH PASCAL

2.6 COMPILING A PROGRAM
Once the program has been written and the editing session is ended,

the program must be interpreted into a pseudo code program so that it
can be executed. To do this, the compiler routine must be called.

The simplest forms cf this command are:

PASSYS PASCOMP,<fd> Compiles program and displays
information on the console indicating

when a block is being compiled and error

messages if any.

PASSYS,,10000¥,<£d>, ,CON: Displays complete program with line
(p = required blank) numbers as is being compiled to the
console including error messages if any.

There are a series of options that may be set if necessary. Refer to
Section 14 for the more complex versiouns.

O noomEL
The compiler stores the p~code program it produces in a file it
creates using the same filename but with a file type of BP-BINPAS.
The source program is A-ASCII.

The compiler will flag all syntactic and semantic errors, known as
compile time errors. After compilation, the programmer must return

to the Editor to correct these errors. Refer to Appendix C for the

list of compile time errors and their codes.
Note: It is important to remember that the program must be

recompiled after each editing session for the changes to be

reflected in the object file.

Change A, May '82 2-6

SECTION 2 - WORKING WITH PASCAL

2.7 RUNNING A PROGRAM
Once the program has been successfully compiled, the program is ready

for execution. The format for the simplest version of this command
is:

PASCAL <fd>

There are switches and other options available for more advanced
users which are discussed in Section 13.

An error will be displayed if no p-code file with the given filename

is found.

Run time errors will be displayed if there are inconsistencies in the
logic of the program. See Appendix D for the list of these error
codes and their meanings. Once again, the Editor must be invoked to
correct run time errors in the program. To see run time errors with
the number, a compile option must be set. (See D switch option,
Appendix B.)

The program may be manually interrupted using the CONTROL-A which is
executed by holding down the Control key and typing an "A". It will
be cancelled if the CONTROL-A command is followed by the Cancel (CA)
command. The "End of Task"” appears to signal that the termination

route has been completed.

2-7 Change A, May '82

SECTION 2 - WORKING WITH PASCAL

2.8 BAUD RATE SELECTION
The system default printer baud rate is 1200 Bd. The baud rate is

selectable at run time by defining a file-descriptor beginning with

"PR:Rx" where "x" defines the baud rate, as follows:

0= 75 Bd
l = 110 Bd
2 = 300 Bd
3 = 600 Bd
4 = 1200 Bd
5 = 2400 Bd
6. = 4800 Bd
7 = 9600 Bd
8 = 19200 Bd

Example: To specify a baud rate of 2400 for example, a PASCAL source
program must include the following statements:

"<{variable name>:='PR:R5';"
"RESET (<text filename)>,<{variable name>);"

This program must be executed to set the baud rate.

Note: The baud rates specified must be compatible with the speed of

the printer; otherwise, erroneous results will occur.

Change A, May '82 2-8

SECTION 3
SPECIAL SYMBOLS AND CONSTANTS

e |

SECTION 3
SPECIAL SYMBOLS AND CONSTANTS

3.1 IDENTIFIERS
The PASCAL vocabulary is made up of basic symbols categorized as

letters, digits, and special symbols. Special symbols are operators,
delimiters, and reserved words. Delimiters and reserved words are

interpreted as single symbols with specific meanings.

Although identifiers may be 32 characters long, only the first eight
are significant.

Identifiers are combinations of letters and digits that define
constants, types, variables, and procedures and programs. They were

introduced in Section 2.1l.

Reserved Words/Special Symbols

There are some identifiers and symbols that have specific meanings in
PASCAL and cannot be used in any other way. The following is a list
of reserved words:

AND EXTERNAL NEW REPEAT
ARRAY FILE NIL RETURN
BEGIN FOR NOT SEGMENT
B OOLEAN FORWARD OF SET
CASE FREE OR STRING
CHAR FUNCTION . OVERLAY TEXT
CHR GOTO PACKED THEN
CONST GOTOXY PROCEDURE TO
DIV IF PROGRAM TYPE
DO IN PUT UNTIL
DOWNTO INCLUDE READ VAR
ELSE INTEGER READKEY WHILE
END ISAMFILE READLN WITH

- ENTRY LABEL REAL WRITE
EXIT MOD RECORD WRITELN

In addition all standard function and procedure names are reserved

(see Sections 11 and 12).

Incorrect usage of reserved words will

Change A, May '82

SECTION 3 - SPECIAL SYMBOLS AND CONSTANTS

cause errors. Hence, the meaning and functionm of each should be

checked before use.

The following symbols and groups of symbols have special meanings and

cannot be used as part of user-defined identifiers.

+ ; > {
- * <= %
* : >= ~
/ (.
1= =) (
. <O (*)
, <]

1

The meanings and uses of these are detailed in Appendix E.

User~Defined Words

All constants, types, variables, procedures, programs, and files must
be defined and an identifier associated with it so that it may be
used. These are called user—defined identifiers. When a command
format in this manual contains an identifier field, it refers to a
user—defined identifier.

These identifiers must follow certain rules:

1. They may be any length but must be able to fit on one line.

2. Only the first eight characters are significant when
differentiating between identifiers.

3. They must begin with a letter of the alphabet.

4. The remaining characters may only be letters or digits. All
other symbols are illegal.

5. No reserved words may be used.

Refer to Section 2.1 for examples of valid and invalid identifiers.

Jan. '82 3=2

SECTION 3 - SPECIAL SYMBOLS AND CONSTANTS

3.2 NUMBERS
PASCAL has the facility to represent base ten numbers as either

integers or reals. They may be positive, negative, or zero.

Integers
Integers may be thought of in the everyday sense. 93 and =245 are

integers while 1.92 and -3.1417 are not. The integers may range from
=-32768 to +32767. The positive number 32767 is kept as a system
identifier under the name maxint. Maxint may be referred to directly
in a program. For example:

CONST max = maxint;
FOR counter := 1 TO maxint DO WRITELN(counter);

Real numbers have an integer part and a decimal part. They can be
represented the way they usually are in mathematics (i.e., 345) or
using exponential notation. Exponential notation has a decimal
number portion and a scale factor. The letter E precedes the scale
factor and means “times ten to the power of". If the decimal portion
contains a decimal point, at least one digit must precede and one
succeed the point. The scale must be between 2.93874E-39 and
1.70141E+37 or the value defaults to zero. There is seven-digit
accuracy for default.

Some valid examples are:

11E4 110000.0
-1.35 -135.0
21.55E-3 0.02155
1.93 1.93

Some invalid ones are:

.92E1 no digit preceding the decimal point.
1.E1 no digit following the decimal point.
E5 no mantissa.

2.3E no exponent.

5.1E1.5 fraction in the exponent.

3-3 Change A, May '82

SECTION 3 - SPECIAL SYMBOLS AND CONSTANTS

3.3 STRING CONSTANTS

Strings are sequences of characters enclosed in single quotes. They

are often used for text and for titles, headings and comments in
output. Any character may appear within the string. However, if a
single quote is needed, two single quotes in a row must be used.

Examples:
'Age' '"Title' '405 Makalapa Drive' 'c'

3.4 COMMENTS

It is always important to document any program so that it can be read

and easily understood. This is especially important if it may be
used by others, or even if it may be used by the programmer a long
time after it was written.
Comments may be included anywhere in a program, though they usually
appear to the right of the line of code they discuss. They may be
removed from the program anytime without affecting the program.
A comment has the following structure:

(* <any sequence of characters/symbols except '*)'> *)
The (* and *) may be replaced by % and } respectively.
Comments may be inserted or deleted from a source program without
affecting the P-code, unless the comment contains executable source
codes requiring the user to recompile the source program.
(*X:=7;%) This line is not translated to P-code:
X:=7; Removing the (*and*) will require a new

compilation. This method is useful for debugging
a PASCAL program.

Change A, May '82 3=4

SECTION 4
PROGRAM HEADINGS AND DECLARATIONS

1

SECTION 4
PROGRAM HEADINGS AND DECLARATIONS

4.1 PROGRAM HEADING
All programs in PASCAL must have a heading and a block. The heading
glves the program its name and lists all the files it uses. The

general format for a program is:

PROGRAM <name)|(fd,...)|; (*";" is a statement separator.*)
| Declarations |

{Compound Statements>. (*"."” marks the end of the program.*)

<{name> is the program name. The optional list of filenames
designates the files to be used.

The Declaration section is composed of the following sequence:
| Label declarations]|
| constant definitions |
| type dafinitions|

|variable declarations |
| procedure and function declarations |

Note: Sequence errors will result if this order is not followed.
The Compound Statement is:

BEGIN
{statement);

|statements;...
END.

Example: PROGRAM getchr (readline,printline);

4.2 LABEL DECLARATIONS
Referring back to Section 2.1, a program cousists of a heading and a

block. The block contains a declaration part where all identifiers
local to the program are defined. The first section of this part is
where the labels are declared.

4=1 Change A, May '82

SECTION 4 - PROGRAM HEADINGS AND DECLARATIONS

A label is a prefix to a statement so that it can be referenced
elsewhere in the program by a GOTO statement. Any statement except
the conditional parts of IF and CASE statements may be labeled. The
label must be defined as an unsigned integer consisting of at most
four (4) digits. The format is:

LABEL <label>|,label,...|;
Example: LABEL 4, 931, 4444;

A statement is labeled according to the following format:
{label>: <{statement>;
Example: 5: READ (testvalue);

If no labels are needed the LABEL declaration part is completely
omitted.

4.3 CONSTANT DEFINITIONS

A program sometimes uses a value that remains unchanged throughout

its execution, such as Pi or MAXINT. These values are defined as
constants and assigned to identifiers so they may be referenced
throughout the program. This makes a program more readable énd is
considered a good documentation practice. The format for the
definition is:

CONST {ident>=<const>;

| ident=const;...

The identifiers may be any legal user-defined identifier. The
constant values may be numbers, constant identifiers, or strings. As
many constants as the program needs can be defined. If none are
needed, the CONST definition part is completely omitted.

If an identifier that has been defined as a constant is assigned a

new value in the program, then a compile time error will occur. Once

the identifier has been defined, it can only refer to that value.

Jan. '82 4-2

SECTION 4 - PROGRAM HEADINGS AND DECLARATIONS

Some examples of constant definitions are:

Ex. 1 CONST valint=MAXINT;
maxnumpeople = 500;
feed = "(:12:)'

Ex. 2 CONST pi = 3.14;
cardlen = 80;
linelen = 132;

4.4 TYPE DEFINITIONS

There are some standard data types which have already been mentioned.
These are INTEGER, REAL, CHAR, STRING and BOOLEAN. However, PASCAL
has the capability of declaring more abstract types with the user
defining the properties associated with them. These types may be
scalar, subrange, set, array, record, file, and pointer enumerated
types. Each of these types will be discussed in depth in Sectiomns 7
through 10. However, the general form of the TYPE definition part
is:

TYPE {ident> = <type declaration)>;
|ident = type declaration;...

The identifiers may be any legal PASCAL user-defined identifier. The
format and legal elements of the type declaration field varies with
different types so they will be discussed later where appropriate.

If no user-defined types are needed, the TYPE definition section 1is
omitted. If included, it must be placed in the correct sequence
(i.e., before VAR).

Examgles:

These examples show enumerated type.

Ex. 1 TYPE days = (Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday);

Ex. 2 TYPE text = (True, False, Undecided);
digit = 0..9;

4-3 Change A, May '82

SECTION 4 - PROGRAM HEADINGS AND DECLARATIONS

4.5 VARIABLE DECLARATIONS
Every variable that occurs in a program must first be defined in the

variable declaration part. The format for the variable declarations
is:

VAR (ident>|,ident,...
|ident,... : type;|

: <type>;

The identifiers may be any legal PASCAL identifier. The types may be
INTEGER, REAL, CHAR, BOOLEAN, STRING or any type defined in the TYPE
definition part. These variables may be assigned new values within
the program. If no variables are needed, the section is completely
omitted. If included, it must be placed in the appropriate sequence
(i.e., before procedures or functiomns).

Examples:
Ex. 1 VAR count, intval : INTEGER;
sum, realval : REAL;
Ex. 2 VAR answer : test;

number : digict;
counter,index : INTEGER;

4.6 PROCEDURE AND FUNCTION DEFINITION
Programs often require that sections of the code appear in more than

one place in the program. If, for example, a twenty-five line
section was needed in five different places, there would be one
" hundred lines of redundant code. Instead, the code could be put into
procedures or functions that would then be called by the program.
Procedures and functions are like subroutines in that they can be
called by the main program and by each other. However, before they
can be called, they must be declared and defined. This section comes

after the variable declaration part of the block of the main program.

Change A, May '82 b=4

SECTION 4 - PROGRAM HEADINGS AND DECLARATIONS

The composition of functions and procedures is the same as a program.
They have headings and blocks that are of the form:

~ PROCEDURE <name)|(parameter list)]|;
| declarations|
BEGIN

{statement block>
END;

FUNCTION <name>|(parameter list)|:<typed;
|declarations|
BEGIN
<{statement block>
END;

This is covered in more detail in Section 11 but there is one
important fact to remember: procedure or function must be declared
before it 1s used. For example, if the main program calls FUNCTION
A, which in turn calls PROCEDURE B and PROCEDURE C, the B and C must
be defined before A is. The correct order is:

PROGRAM main;
VAR val : INTEGER;

PROCEDURE B;
BEGIN

END; (#*B*)

PROCEDURE C;
BEGIN

END; (*C*)

4=5 Change A, May '82

SECTION 4 - PROGRAM HEADINGS AND DECLARATIONS

FUNCTION A;
BEGIN
B; (* call B *)
C; (* call C *)
END; (*A%)

BEGIN
val:=A; (* call A *)

END. (* main *)

Forward references are covered in Section 1ll.

Jan. '82 4-6

SECTION 5
CONTROL STATEMENTS

5.1 INTRODUCTION

SECTION 5
CONTROL STATEMENTS

Control statements describe the actions that a program is to perform

on its defined data.
part of a program.

Together these statements form the statement

Between every two statements there must be a

semicolon that acts as a statement separator and that 1is not

considered to be part of either statement.

Monroe PASCAL statements that are available to a user are summarized

in Table 6-1.

Each is explained in greater detail in this section.

Table 5~1. PASCAL Statements

Statement

<ad>:=<{e>

BEGIN

END

WHILE

REPEAT

FOR

IF

CASE

GOTO

Descrigtion

Assigns values to variables.
Sets off a compound statement.
Terminates a compound statement.

Executes a statement or compound sStatement

repeatedly using a leading decision.

Executes a loop repeatedly using a trailing
decision.

Executes a loop a predetermined number of times.

Evaluates an expression and performs one of two

possible actions.

Transfers control to one of several statement
labels depending on the variables value.

Unconditionally transfers control from one

portion of a program to another.

5-1 Jan. '82

SECTION 5 - CONTROL STATEMENTS

5.2 COMPOUND STATEMENT

A compound statement is a sequence of statements that are set off by
the reserved word BEGIN before the first statement and by END after
the last. Simple statements may be extended with additional

instructions using a compound statement structure. This structure
allows nested compound statements. The format for a compound

statement is:

If A=4 THEN
BEGIN
statementl;
statement2
END;

The WHILE and FOR statements discussed in this section contain

examples of compound statements.

Change A, May '82 5-2

SECTION 5 - CONTROL STATEMENTS

5.3 ASSIGNMENT STATEMENT

Function:

Format:

Arguments:

Note:

To assign values to variables.

{identifier):=<{expression);

The identifier may be any user-defined identifier.
The expression may be a user-defined identifier
that has an assigned value, a constant, or a
mathematical expression using arithmetical,
relational or logical operators. The identifier

type must match the expression type.

Note: The identifier takes on the value of the

expression.

Although it is used simply to assign a value to a
variable, it is used more oftemn as a way to
evaluate an expression and retain the result as the
value associated with the user-defined identifier.

The convention of evaluating expressions from left
to right using operator precedence is observed
within the expression. The operators below are
ranked according to precedence with NOT having the
highest and the relational operators having the
lowest. Those on the same line have equal

precedence values.

()

NOT
*, /, DIV, MOD, AND
+, -, OR

=2, O, <, L=, >=, >, IN
If an expression is enclosed in parentheses it is
evaluated independently of the preceding and

succeeding operators.

5-3 Change A, May '82

SECTION 5 - CONTROL STATEMENTS

Examples:

Change A, May '82

Expression Equivalent Result
16 DIV 3 * 9 = (16 DIV 3) * 9 = 45
b * 9 =8 %4 = (4 %9) - (8% 4) = 4

All data types in an expression must be compatible.

Declaration:

VAR value, count, nextletter, length,
sidel, side2 : INTEGER;

character : CHAR;

Main Section:

BEGIN
value :=];
count := count+l;
character := chr(nextletter+l);
length := 2*(gidel + side2);
END. (* END PROGRAM *)

5=4 ASSIGNMENT

SECTION 5 - CONTROL STATEMENTS

5.4 REPETITIVE STATEMENTS

Some programs require a set of statements be executed more than once.

These statements form what is called a loop or iteration. Since the
loop must be executed a finite number of times, a decision whether or
not to continue executing the statements inside the loop must be made
during each execution of the loop. This decision can be made at the
beginniing of the loop, called a leading decision (WHILE statement),
or at the end of the loop, called a trailing decision (UNTIL
statement). The FOR statement is used when the number of repetitioans
is a numeric value that can be computed. It also allows the program

to keep an index variable available to the user.

The following repetitive statements are discussed in detail in this
section:

WHILE

REPEAT
FOR

5=5 Change A, May '82

SECTION 5 - CONTROL STATEMENTS

WHILE Statement

Function:

Format:

Arguments:

Note:

Jan.

'82

Executes a statement or compound statement
repeatedly until the condition being tested becomes

false.

WHILE <conditional expression> DO
{statement>

The conditional expression is any expression that
returns a BOOLEAN value. Statement may be either a

simple or a compound statement.

The WHILE statement is a well-structured method of
repeatedly executing a statement block with a

leading decision.

Since the WHILE statement has a leading decision,
the statement will not be executed if the
conditional expression is false when it is first
encountered. Theref.re, the condition must have a

well-defined value before it is first executed or a

run time error will occur.

The condition being tested for must be changed
somewhere in the loop. Otherwise, coantrol will
never exit the loop and an infinite loop will

result.

5-6 WHILE

SECTION 5 - CONTROL STATEMENTS

Examgles:
Ex. 1 oldval := 100;

newval :=];

WHILE newval < oldval DO
newval:=sqr(newval);

WRITELN (newval:10);

Ex. 2
PROGRAM gradeavg;
VAR score, sum, classavg : REAL;
total : INTEGER;
done : BOOLEAN;
BEGIN

sum = 0 (* initializing *)
total := 0;

done := FALSE;

WHILE (NOT donme) DO

BEGIN
WRITE ('score: ');
READ(score);
IF score < 0O
THEN done := TRUE
ELSE

BEGIN
sum := sum + score; (* add score *)
total := total + l; (* increment total number of scores *)
END (* ELSE *)
END; (* WHILE *)
IF total > O
THEN
BEGIN
classavg := sum/total; (* calculate the average *)
WRITELN (' Class average = ', classavg:10:3, ' Student count =',
total)
END (* IF *)
END. (*gradeavg *)

WHILE 5=7 Jan. '82

SECTION 5 — CONTROL STATEMENTS

REPEAT Statement

Function:

Format:

Arguments:

Note:

Jan. '82

Executes a statement or list of sftatements
repeatedly until a desired condition is met.

REPEAT

|statement |;statement;...||

UNTIL {conditional expression>

The statements may be any simple or compound PASCAL

statement.

Conditional expressiom is any Boolean expression
that returns a TRUE/FALSE value.

The REPEAT statement is used to execute the list of
statements with a trailing decision in a

well-structured format.

The statement(s) between the REPEAT and UNTIL
reserved words will be executed at least once.
This can cause unexpected results if it is not
planned for. 1If a leading decision is desired,

refer to the WHILE statement.

The condition that is being tested must be changed
somewhere in the statement block; otherwise,
control will never exit the REPEAT statement (an
infinite loop).

There is no semicolon (;) following the last
statement. A semicolon may or may not follow the
conditional expression, depending on the succeeding

statement, i.e. never before an END or an ELSE.

5-8 REPEAT

SECTION 5 - CONTROL STATEMENTS

Examples:
Ex. 1 Sample REPEAT-UNTIL Block of Code

IF number > O
THEN
REPEAT

number: = number + 1; (* increment counter ¥)

output: = number*10; (* calculate value *)
WRITELN(output)
UNTIL output > maximum; (* test *)

Ex. 2 Sample Program Using REPEAT-UNTIL
PROGRAM testing;

CONST maxlength = 50; (* the maximum number of
questions *)
VAR answersheet : ARRAY[l..maxlength] OF CHAR; (* list of
inputted answers *)
key : STRING[maxlength]; (* list of correct answers *)
response: CHAR; (* response to a question *)

totquest, wrong, totquest : INTEGER; (* counters *)

BEGIN
wrong := O; totquest := 0; (* initializing *)
key := 'TFFTFTTTFTFFTFTFFTFT.'; (* correct answers ¥*)
WRITELN;
REPEAT
totquest := totquest + 1; (* increment index *)
WRITELN('answer number ',totquesa; (* write the question number *)
READ(response); (* read the answer *)
answersheet[totquest] := response; (* record answer *)
IF key[totquest] <> response;
THEN wrong := wrong + 1 (* keep track of number wrong *)
UNTIL key[totquest+l] = '.'; (* the end of the test *)
WRITELN('wrong = ',wrong); (* output *)
FOR totquest:=1 TO totquest DO
WRITELN(answersheet[totquest],’' ' key[totquest])

END. (* testing *)

REPEAT 5-9 Jan. '82

SECTION 5 - CONTROL STATEMENTS

FOR Statement

Function:

Format:

Arguments:

Note:

Jan.

'82

Executes a simple or compound statement a
predetermined number of times. '

1) FOR <control variable):=<initial value>
TO <final value> DO <{statement>

2) FOR <control variable):=<initial value>
DOWNTO <final value> DO <statement>

The control variable is a user-defined identifier.
The initial and final values define the range of
values the control variable takes on. The conrol
variable and value limits must all be of the same
scalar type. They cannot be REAL. The statement
may be either simple or compound.

The FOR statement is used to execute a simple or a
compound statement repeatedly when the number of
repetitions is known beforehand instead of being
dependent on the results of the loop. Although the
same results could be achieved using a WHILE
statement, the FOR statement gives the reader more

information.

The initial and final values are evaluated only
once so the limits of the control variable canmnot
be changed in the loop. After the control variable
exits the loop, its value is undefined. Also, its
value should never be altered inside of the loop.

The first form of the FOR statement assigns the

- initial value to the control variable and then

increments it by one after each loop. The loop
exits when the index value is greater than the
final value. If the initial value is larger than
the final value the loop will not be executed.

5-10 FOR

SECTION 5 - CONTROL STATEMENTS

The second form assigns the initial value to the
control variable and decrements it by one after
each iteration. The loop is exited when the
control variable is less than the final value. If
the initial value is smaller than the final value,
the loop will not be executed.

Examples:
Ex. 1 Example using FOR...TO

PROGRAM dates;

TYPE weekdays = (Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday);
VAR days : weekdays;
date : INTEGER;
BEGIN
READ(date);

FOR days := Sunday TO Saturday DO
date := date +1;
WRITELN (next Sunday's date is ', date);
END. (* dates *)

Ex. 2 Example using FOR...DOWNTO
PROGRAM takeoff;
VAR countdown : INTEGER;
error : STRING;
BEGIN
FOR countdown := 100 DOWNTO O DO
BEGIN
READLN (error);
IF error <> 'ON'
THEN WRITELN(countdown, 'seconds')
ELSE WRITELN('ERROR!');

END (* FOR *)
END. (* takeoff *)

FOR . 5-11 Jan. '82

SECTION 5 - CONTROL STATEMENTS

Ex. 3 Sample program using both forms of the FOR statement.

PROGRAM getgrades (input,output);
(* This program gets grades as input and keeps them in gradeslist.
It demonstrates the use of both forms of the FOR statement. *)
CONST numgrades = 10;
VAR grade : REAL;
gradelist : ARRAY([l..numgrades] OF REAL;
students : INTEGER;
BEGIN
WRITELN;
FOR students := 1 TO numgrades DO (* get the grades *)
BEGIN
WRITE('Next grade: ');
READ(grade);
gradeligf[students] 1= grade
END; (* FOR *)
WRITELN('The grades are :'); (* write the list of grades *)
FOR students := numgrades DOWNTO l DO WRITELN(gradelist([students])

END. (* getgrades *)

Jan. '82 5=12 FOR

SECTION 5 - CONTROL STATEMENTS

5.5 CONDITIONAL/UNCONDITIONAL STATEMENTS
It is often necessary to have more than one possible course of action

and have the program choose from among them depending on the
situation when it is executed. This means that the program must
evaluate a condition and select the correct portion of code to
execute. In PASCAL this is done through the IF and the CASE

conditional statement.

Unconditional transfer of control from one part of a program to
another is performed by the GOTO statement.

The following statements are discussed in detail in this section:
IF

CASE
GOTO

5-13 Jan. '82

SECTION 5 - CONTROL STATEMENTS

IF Statement

Function:

Arguments:

Evaluates an expression and chooses between two
possible actions.

IF <{conditional expression>
THEN <true statement>
|ELSE <false statement) |

The conditional expression is any expression that
returns a BOOLEAN value (true or false). All

statements may be simple or compound.

When the IF statement is executed, the conditional
expression is evaluated. If the result is TRUE,
the true statement is executed and control passes
to the statement following the IF statement. ILf
the result is FALSE, the false statement is
executed and control passes to the statement
following the IF statement. If the false statement
is omitted then no operation 1is performed.

The true statement and false statement can be any
valid PASCAL statement.

It is incorrect to have a semicolon immediately
preceding either the THEN or the ELSE.

It is possible to have an IF statement as the

statement following either the THEN or the ELSE.

This can create confusion as this example shows:

5-14 IF

SECTION 5 - CONTROL STATEMENTS

Examgles:
Ex., 1

IF

IF <conditional expression>

THEN IF <conditional expression>
THEN <{statement>

ELSE <statement>

Which IF is the ELSE associated with? To clear up
the ambiguity, there are two things to remember.
First, the ELSE is always associated with the
closest IF statement that does not already have an
ELSE clause. Second, proper indenting makes it
easier to read and makes the nesting levels more
obvious. An example of a properly indented nesting

of IF statements is:

IF <{conditional statement>
THEN IF <conditional statement>
THEN <{statement 1>
ELSE <statement 2>
ELSE <{statement 3>

It is important to remember that the indenting is
meankngless to the computer. If the first ELSE
clause were removed, PASCAL would associate the
ELSE clause containing statement 3 with the nested
IF statement, regardless of how the indenting was

formatted.

IF ODD(number)
THEN oddnum:=oddnum + 1
ELSE
BEGIN
evennum := evennum + 1;
IF ((number/4) = 1.0 * (number DIV 4))
THEN divé := divé + 1
END; (* ELSE clause *)

5-15 Jan. '82

SECTION 5 - CONTROL STATEMENTS

Ex. 2 IF state <> 0
THEN pointer := pointer + 1;

Ex. 3
PROGRAM order;
(* THIS PROGRAM READS TWO REAL NUMBERS, PUTS THEM INTO ASCENDING

ORDER, AND PRINTS THEM OUT. IT USES AN IF STATEMENT. *)
CONST precision = 5;

field = 10;
VAR vall, val2,tempval : REAL;

BEGIN
WRITELN;
WRITE('Give two real values :');

READ(vall,val2); (* READ TWO REAL VALUES *)
IF (vall > val2)

THEN

BEGIN
tempval := vall; (* SWITCH THE TWO NUMBERS IF *)
vall := val2; (* THEY ARE NOT IN THE CORRECT *)

val2 :+ tempval (* ORDER %)
END; (* IF *)
WRITELN(vall:field:precision,val2:field:precision)
END. (* order *)

Jan. '82 5-16 IF

SECTION 5 = CONTROL STATEMENTS

CASE Statement

Function:

Format:

Arguments:

Note:

CASE

Transfers control to one of several statement

labels depending on the variable's value.

CASE {expression> OF

| |case label|:statement;...

END;

NOTE: Optional groups of elements are underlined
to indicate what each contains.

The expression must evaluate to a user-defined
identifier of either scaler or subrange type. The
statement associated with the case label that
equals the expression is executed. Control then
passes to the statement following the CASE

statement.

The case label contains one or more constants of
the expression type. A case label is equal to the
expression if the value of the expression is a

constant in the case label.

The CASE statement is used when the value of a
variable determines which of more than two actions
should be taken. It is like a generalized IF

statement that is more readable.

Each value of the case selector must be represented
in exactly one of the label lists. If no action is
to be taken, the statement field should be left
blank.

5-17 Change A, May '82

SECTION 5 - CONTROL STATEMENTS

There must be at least one value in each case
label. Multiple values separated by commas mean
that the same action is taken for each of the
values. If all the values of a type are not in a
case label then the results of executing the CASE
statement with the unlisted values is undefined by
standard PASCAL. In this case a null statement is

assumed.
Examples:
Ex. 1 Example of a CASE Statement with Simple, Compound, and Empty
Fields
PROGRAM work;
TYPE rooms = (livingroom, diningroom, bedroom, kitchen, garage);
VAR chores : rooms;
PROCEDURE wvacuum;
BEGIN
END;
PROCEDURE dust;
BEGIN
END;
PROCEDURE settable;
BEGIN
END;
BEGIN

CASE chores OF
Livingroom : BEGIN
vacuum;
dust
END;
diningroom : settable;
garage, bedroom : ; (* do nothing *)
kitchen : cook «
END; (* CASE *)
END. (* work *)

Jan. '82 5-18 CASE

SECTION 5 - CONTROL STATEMENTS

Ex. 2 A sample program uqiﬁkgy CASE statement
. PROGRAM writing(input,output);
CONST cola = 0.40; fries = 0.45; burg = 0.60; dog = 0.50;
TYPE value = 1..4; (* value is a subrange type ¥*)
VAR cost : REAL;
food : STRING;
what : value;
number : INTEGER;

BEGIN
cost := 0.0;
WRITELN;
REPEAT
WRITELN('HOW MANY OF 1-COKE,2-FRIES,3-BURGER,4-HOTDOG?');
READ(number ,what); -
CASE what OF
0 : 3
1 BEGIN
cost := number * cola + cost; (* calculate the cost *)
food := 'coke' (* assign the name of the ordered food *)
END;
2 : BEGIN
cost := number * fries + cost;

X3

food := 'frenchfries'
END;
3 : BEGIN
cost := number * burg + cost;
food := 'burger'
END;
4 : BEGIN
cost := number * dog + cost;
food := 'hotdog'
END
END; (* CASE *)
WRITELN (number, ' ',food) (* write the order *)
UNTIL number = 0;
WRITELN ('TOTAL IS $', cost:6:5)
END. (* writing *)

CASE 5-19 Jan. '82

SECTION 5 = CONTROL STATEMENTS

Ex. 3 A CASE Statement with Simple,

Compound, and Empty Fields

TYPE rooms = (livingroom,
VAR chores : rooms;
CASE chores OF
livingroom : BEGIN
vacuum;
dust
END;

diningroom : settable;

bedroom : ;
kitchen :

END; (* CASE *)

cook

Jan. '82 5-20

diningroom, bedroom, kitchen);

CASE

SECTION 5 - CONTROL STATEMENTS

GOTO Statement

Function:

Format:

Arguments:

Use:

Note:

GOTO

Unconditionally transfers coantrol from one portion

of the program to another.
GOTO <label>

The label may be any positive number with one to
four digits. All labels must be defined in the
label definition part of the program.

The GOTO statement 1is usually used to exit from a

loop or in cases of error detectiom.

The GOTO statement is not usually used in
structured programming. The readability of a
program tends to decline with the increase in GOTO
statements. This is because the flow of control is

not linear as it is in truly structured

programming.

A GOTO statement may jump forward or backward
within a level or from an inner to an outer level.
However, it may not be used to jump from an outer
to an inner level. For example, it may be used to
jump from a procedure to its calling program but
not the reverse. Another example is that it cannot

jump into a WHILE loop but can jump out of one.

5-21 Change A, May '82

SECTION 5 - CONTROL STATEMENTS

Examgles:

Ex. 1 PROGRAM
LABEL 1,2;
BEGIN

1: statement;

WHILE (condition)
BEGIN

GOTO 2;

2: statement 2;

GOTO 1
END; (* WHILE *)

°
®
°

END.

Change A, May '82 5=-22 GOTO

SECTION 5 - CONTROL STATEMENTS

Ex. 2
PROGRAM fakefor (input,output);
LABEL 100,200;
VAR index : 1..100;
initial,final : INTEGER;
BEGIN
WRITELN;
WRITE('initial and final values: ');
READ(initial,final); (* get limits for the FOR *)
index := initial;
100 : IF index > final THEN GOTO 200; (* leave loop if
condition is satisfied *)
WRITELN(index);
index := index + 1; (* update counter *)
GOTO 100; (* jump to the top of the loop *)
200 : WRITELN('next statement')
END. (* fakefor %)

GOTO 5-23 Change A, May '82

SECTION 6
STANDARD DATA TYPES

"

SECTION 6
STANDARD DATA TYPES

6.1 INTRODUCTION
All programs act on data either in the form of variables or

constants. The main difference is that a variable's value can change
during the execution of the program. Every variable in a program has

an associated type which determines the values it can have and the
operations that can be performed on it. PASCAL has four standard
types: INTEGER, REAL, BOOLEAN, and CHAR. Each of these will be

discussed in turn in this sectiomn.

6.2 INTEGER

The word "integer” is used in the normal mathematical sense: an
integer can be any positive or negative whole number. Since all
computer representations of numbers must be finite, the maximum
representable integer in PASCAL, called maxint, is 32767. The
smallest possible number is the negative of maxint. Any variable
that is assigned a value outside that range during execution will

cause a run-time error. Some examples of integers are: 3, 0, =521.

There are five operators associated with INTEGER types: +, =, *,

DIV, and MOD. The first three are the usual addition, subtraction,
and multiplication, respectively, used in everyday arithmetic. DIV
is the INTEGER divide which divides two integer numbers and then
truncates the remainder so that the result is an integer. Special
* care should be exercised when DIV is used because if the first number
is smaller than the second the result will be zero. The operator "/"
can also be used for division but the result is a real number rather
than an integer. The last operator, MOD, finds the remainder when
two integers are divided together. The result will always be an

integer. Some examples of these operators are:

5+3 =238 4 DIV 2 = 2 4/2 = 2.0 4 MOD 2 =0
5-3=2 7 DIV 6 =1 7/6 = 1.16667 7 MOD 6 =1
3-5==2 2 DIV 4 =0 2/4 = 0.5 2 MOD 4 = 2
5 * 4 =20 13 DIV 3 = 4 13/3 = 4.33333 13 MOD 3 =1

6-1 Jan. '82

SECTION 6 — STANDARD DATA TYPES

The subtraction operator, "=", can be a unary minus and act as the
negation sign, i.e. =45.

All the relational operators, <, <=, =, >=, >, <>, can be applied to

INTEGER variables. The results of these expressions are always

BOOLEAN. Examples:

(3 € 5) = True (3 >= 5) = False (5 <& 5) = False

See Appendix E for a summary description of all operators and their

operands.

There are also some important standard functions that give INTEGER
results:

abs(x) If x is an INTEGER variable, the outcome will be

the absolute value of x.

round(x) X must be a REAL variable, the result is the value

x rounded off to the nearest integer.

trunc(x) x is a REAL variable, the result is the whole

number part of x.
None of the above functions assign the computed value to X.

Note: Type INTEGER will reserve two bytes per value.

Examples:

Ex. 1 x = =4.8;
val:= trunc(x);
WRITELN(x:10:3,val:10);

output: =4,80E+00 -4

Ex. 2 x = -4.8;
val:= round(x);
WRITELN(x:10:3,val:10);
output: =-4.80E+00 -5

Change A, May '82 6-2

SECTION 6 - STANDARD DATA TYPES

Ex. 3 1ix:= =45;
val:= abs(ix);
WRITELN(ix:10,val:10);
output: =45 45

6.3 REAL

REAL values are rational numbers. PASCAL represents REAL numbers
either in fixed point or scientific notation (e.g., 452.39 or
4.5239E+02 respectively).

The E in the second format means "the first value times ten to the

power of the second number,"” i.e.,
4.5239E4+02 = 4.5239 x 10% = 452.39

The computer can only represent a finite number. Hence, all REAL
variables, R, must be within the range 2.93874E-39<R<1.70141E+37. 1If
a variable goes outside of this range during the execution of a
program, a run—time error will occur.

Another 1mportant'property of REAL numbers 1is their precision.
Calculations involving REAL values will be correct to six places.
This is also the maximum number of digits that can be written out
using the formatting described in Section 2.1. It is important to
remember that precision errors can accumulate when many calculations
are performed and can result in gross errors. These errors must be

trapped for by the programmer.

There are four operators that can take REAL variable operands. They
are addition, subtraction, multiplication, and division, (+, -, *, /)
respectively. All expressions are evaluated from left to right using
standard operator precedence, i.e. going from the highest priority
level to the lowest:

(,) = Highest priority

+,~- = Lowest priority

6=3 Change A, May '82

SECTION 6 = STANDARD DATA TYPES

Since all of the operators can take both INTEGER and REAL operands,
it is important to note that an operator that has both a REAL and an
INTEGER operand will always produce a REAL result. This is
~ especially important because it is not possible to assign the result
of a REAL expression to an INTEGER variable.

All of the relational operators can be used with REAL numbers.
However, there is a certain risk involved because of variances in
precision. If a variable has gone through many calculations, the
accumulated errors may make a theoretically correct expressiom such
as a=b incorrect. Also, two numbers with the seventh significant
digit different will be treated as though they were equal. For

example, 1000000.0 = 1000000.1 because both are represented as
1.0E+06 in memory. It is more accurate to test equality of REAL

variables by abs(a-b)<errorrange where errorrange is the amount of

precision that is significant to the problem.

Refer to Appendix E for a summary of the operators, their operands,

and the resultant types.

The standard function abs(x) produces the absolute value of x which
is REAL if x is REAL. TYPE REAL reserves four bytes per value.

6.4 BOOLEAN
BOOLEAN variables may have one of two logical values: true or false.

Their primary use is for controlling loop and statement executiom.

There are three logical operators that can be applied to BOOLEAN

operands.
NOT X logical negation
X AND Y logical conjunction
XO0RY logical disjunction

They are listed according to their precedence, with NOT always being
applied first unless parentheses alter the order. The truth table

Change A, May '82 6=4

SECTION 6 - STANDARD DATA TYPES

below shows the result that each operator produces according to the
values of its operands. The operands are shown as Al and A2 and the
outcome of each expression, depending on the values of Al and A2, are
read across the table.

X X X AND Y X OR Y z NOT Z
true true true true true false
true false false true false true
false true false true
false false false false

As this shows, both variables must have true values for anm AND
expression to be true, but only one must be true for an OR to be
true.

The following are examples of compound expressions using the logical
operators. If the following variables were declared:

VAR big, small, empty, full: BOOLEAN;

then some expressions might be:
NOT big OR empty

small AND big OR empty AND full

The first expression would be executed as though it had been

written:
(NOT big) OR empty

because NOT is always performed first. The second would be
calculated like:

(small AND big) OR (empty AND full)

6-=5 Change A, May '82

SECTION 6 - STANDARD DATA TYPES

because AND has precedence over OR. Had the expression included a
NOT, such as

small AND NOT big OR NOT empty AND Full
it would have produced the same result as
(small AND (NdT big)) OR ((NOT empty) AND full)
Once again because of NOT's precedence over AND and OR.
There are also seven relational operators that may have any type of

scalar operand that has an order such as INTEGER or REAL. They
always return BOOLEAN results. They are:

< less than

<= less than or equal to

= equal to

o= greater than or equal to
> greater than

<O not equal to

IN : include

For example, the following are true statements:
3 <5 =true
7 >= 20 = false

If relational expressions are used with logical operators, the
relational expressions must be surrounded by parentheses. For

example, using these declarations,

VAR count, max : INTEGER;
velocity, distance, miles : REAL;
next, character: CHAR;
last: BOOLEAN;

Jan. '82 6-6

SECTION 6 - STANDARD DATA TYPES

the following expressions could be formed:
count < max
(distance < miles * velocity) OR (next = character) AND last

Refer to Appendix E for a summary of the uses, legal operands, and
results of the operators. Note that the PASCAL type BOOLEAN is

defined so that (false < true).

6.5 CHAR

A variable of the type CHAR has a character value. This can be any
syﬁbol from the ASCII set (American Standard Code for Information
Interchange). A list of the characters and their numberic codes can

be found in Appendix F. The ordinal values range from zero to 255.
All CHAR literals are enclosed in apostrophes:

'A' represents a letter A

' ' represents a blank

'''' represents a single apostrophe
'3'" represents the character 3

Every symbol is ordered and has an ordinal value. The only operators
that may be used with CHAR variables are the standard relatiomnal

ones:
<, K=, =, D=, >, O

When a relational compare is performed, the operators are actually
comparing the ordinal values of the two characters rather than the

symbols themselves. For example, 'a' < 'b' = true because the

ordinal value of 'a' is smaller than the ordnal value of 'b'.

There are two standard functions that operate on CHAR variables:

ord(ch) Gives the decimal ordinal value of the character
ch. The result is an INTEGER value.

6=7 Jan. '82

SECTION 6 ~ STANDARD DATA TYPES

chr(i) Gives the character whose ordinal value is the
integer i if 0 < i < 255. Any i that is outside of
this range or is not an integer will cause either
an incorrect response or an execution-time error.

The result of the function is of type CHAR.
The ordinal values can be used as character constants. The general
form of a character constant is:
'{character>'
'(1{INTEGER constant)>:)'
Since the ordinal value of 'E' is 69, using the declaration:
VAR charac : CHAR;

the following are equivalent:

charac := 'E';
charac := "(:69:)';

These ordinal values are the decimal values shown in Appendix F.
They may be used anywhere in the program. Some examples using the

standard functions and 'E':

ord('E') = 69 and chr(69) = 'E'

Change A, May '82 6-8

SECTION 7
USER DEFINED TYPES

SECTION 7
USER DEFINED TYPES

7.1 INTRODUCTION
Many of the concepts basic to PASCAL have already been presented.

The beginning programmer knows all that is needed to write simple
programs. More advanced programmers will find that this section and
those that follow present concepts that can increase a program's
sophistication and flexibility. A complete understanding of Sections
2 through 6 will be needed for these sections.

Each of the variable types declared in this section are declared in

the TYPE definition part of a program. This was previously described

in Section 2.1. The TYPE definitions are placed between the CONST

and the VAR declarations in program declarations. The general format

is:

TYPE <type identifier> = (<type description));
Itype identifier = (type description);...

A type describes a template, not actual storage.

After they are defined, the type identifiers are used to define
variables in the VAR declaration section. Once a type identifier is
defined, it operates the same way that the standard types - REAL,
INTEGER, CHAR, and BOOLEAN - do. So the following could be used as

part of a program:

TYPE cowfoods = (milk, cheese, meat);
VAR food : cowfoods;

Now the identifier food can only be assigned one of the three values
from the enumerated type list.

7-1 Change A, May '82

SECTION 7 - USER DEFINED TYPES

7.2 SCALAR
A scalar type declaration is the set of constant values that a
variable may assume. The general format for the type descriptor is:

)

({constant>|,...
The type identifier can be any user-defined identifier. The constant
list is the ordered ascending list of values. The list consists of a
series of constants separated by commas. The constants are not
declared in the CONST declaration field because their values are
defined by their order in the list. For example:

TYPE days = (Sun, Mon, Tues, Wed, Thurs, Fri, Sat);

Days is the type identifier; the enumerated types are the values Sun

through Sat. They can Bé used almost anywhere constants can, i.e.,
FOR whatday := Sun TO Sat DO...

The order in which the constants are listed defines their ordinance

values. Going back to the example above, Sun < Sat and Wed < Thurs.

Therefore, succ, pred, or ord may be used with enumerated types to

operate on these counstant values.

For example:

IF succ (Tues) = Wed then WRITELN ('PAYDAY');

Restrictions on Scalar Constants

There are only a few restrictions on scalar constants:

1) They may not exist in more than one type list.
2) They can be assigned to variables but the variable must be
declared the same type as the scalar constant.

3) They cannot be read or written directly.

Change A, May '82 7-2

SECTION 7 - USER DEFINED TYPES

Scalar variables may be operated on only by the logical operators, <,
<=, =, >=, >, <>, which return BOOLEAN values. Both‘operands in an
expression must be of the same type. There are three standard
functions designed specifically for scalar type arguments: succ(Y),
pred(Y), and ord(Y). They find the element in the list succeeding Y,
the preceding value, and the ordinal value of the comstant, Y,
respectively. Some examples of each are:
g z B { . >
TYPE days = (Sun, Mon, Tues, Wed, Thurs, Fri, Sat);

pred(Tues) = Mon

succ(Tues) = Wed

ord(Tues) = 2

ord(Sun) =0

There are several things to note about these standard functions. The
first element in the constant list has no predecessors and the last
element has no successors. Also, the ordinal value of the first

element in the list is zero, not one.

Examgles:

TYPE meals = (breakfast, coffeebreak, lunch, dinner, snack);
animals = (dog, cat, hamster, mouse, fish, snake);
courses = (math, English, biology, philosophy,

computerscience);
VARS pet : animals;
eat : meals;

homework : courses;

Main Section:

IF succ(homework) = biology then ...;
IF ord(homework) = O then ...;
IF pred(eat) = dinner ...;

WHILE (succ(pet) > hamster) DO ... END;
WHILE (pred(eat) < lunch) DO ... END;

7-3 Change A, May '82

SECTION 7 - USER DEFINED TYPES

7.3 SUBRANGE
A type may be defined as a subrange of any other defined scalar type,

which is called its associated scalar type. It is defined by two
constants — a minimum and a maximum value where the minimum must be
smaller than the maximum and both must be of the same type. The
variable has the same type as the two constants that define it.
Subrange variable types may be INTEGER or CHAR but not REAL.

The format for defining a subrange type is:

TYPE {type identifier> = <constant>..{constant);

|type identifier = constant..constant;...

Subrange variables may then be declared in the usual way in the

variable declaration section:

TYPE date = 1..31;
VAR day : date;

A variable can define its type directly using the general form:
VAR <{identifier> : <constant>..<{constant>

Both of the following produce the same definition for counter, but

the first is more explicit and therefore is used more often.

TYPE index = 1..100;

VAR counter : index;
and:

VAR counter : 1..100;

Although counter could have been defined as INTEGER type (since both
constants are integers) the subrange definition allows range-checking
and gives the reader more information. If the range checking switch

is set, the compiler will produce code to check all assignments to

Change A, May '82 7-4

SECTION 7 - USER DEFINED TYPES

subrange type variables for values outside of the legal range. The

format for the switch option si:
(*$R+*)

The default value is R+, the switch being on. To turm it off,
exchange the plus sign with a minus sign (=) and place the "dollar
sign comment” near the top of the program code. See Appendix B for

more information.

Any operator that can operate on a scalar type can operate on its
subrange variable. Therefore, if variables are defined as the same
type but with different subranges, they may be used in the same

expression.

Example:
VAR people : 1..300;

drinks : 1..10000;
hour,counter : INTEGER;

counter := hour*people*drinks;

Subrange variables may be found on both sides of the assignment sign.
However, if an assignment is made that is outside of a variable's

range and range checking is enabled, a run time error will occur.
Some more examples of subranges are:

TYPE alphabet = 'a'..'z'; (* CHAR subrange *)
digit = '0' .. '9'; (* CHAR subrange *)
weekday = (Sunday, Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday);

workweek = Monday .. Friday;
number = 1 .. 25; (* INTEGER subrange *)

7=5 Change A, May '82

SECTION 7 - USER DEFINED TYPES

7.4 SET

A set is a collection of values that are all of the same type. Any
scalar type may be an element in a set provided they are both of the
same type.

A set type is defined using the following format:
TYPE {set type identifier> = SET OF <base type identifier>;

Although other definitions may be dispersed between these
declarations, the order must be as stated. The constant list can be
any series of scalar values as described in Sectiom 7.1. All
identifiers are user-defined. If the set type is a standard type -~
INTEGER or CHAR - the base type identifier is not defined and the
appropriate reserve word for the type is used to define the set type
identifier. For example:

TYPE gradevals = SET OF INTEGER;
VAR grades : gradevals;

completely defines grades if it is INTEGER type, but

TYPE title = (professor, associateprof, assistantprof,
lecturer);
teachers = SET OF title;
VAR faculty : teachers;

is needed to define faculty using the non-standard type.

A set may be described by a list of its values enclosed in square
brackets, i.e. [1, 3, 7, 8] might be the members of a set defined by
the INTEGER subrange 0..9. If the values are consecutive, only the
first and the last elements need to be shown after it is first
defined. For example, if the set fruits contains the following

elements,
apples, oranges, bananas, strawberries, peaches, pears

Change A, May '82 7-6

SECTION 7 - USER DEFINED TYPES

it can be written
[apples..pears]
or a part of it can be used:
[oranges..strawberries] = [oranges, bananas, strawberries]

A set may be empty, in which case it is writtenm: [].

There are four operators used exclusively for sets. The first three
are:

+ set union
* set intersection

- gset difference

The union of two sets forms a set containing the elements from each.
For example:

[apples, oranges, peaches] + [strawberries, peaches]

equals:

[apples, oranges, strawberries, peaches]

The intersection of two sets forms a set containing only those
elements found in both sets.

For example:

[apples, oranges, peaches]| * [strawberries, peaches]

equals:

[peaches |

The difference of two sets is those elements of the first set that
are not members of the second set:

For example:

[apples, oranges, peaches| - [strawberries, peaches]

equals:

[apples, oranges]

7=7 Change A, May '82

SECTION 7 - USER DEFINED TYPES

The relational operators are also used with sets, but their meanings

are different. The following operators all return BOOLEAN values.

= set equality
<> set inequality
{= 1is contained in

>= contains

Two sets are equal only if every element in one is in the other. The
order does not matter. A set contains another only if every element

in the second set is in the first set. Some examples of these

operations are:

[apples, oranges] = [oranges, apples]
[apples, pears] <> [apples, oranges]
[apples] <= [apples, oranges, pears]

[apples, oranges, pears, peaches] >= [oranges, peaches]
Each of these expressions would return a true value.

There is also a reserved word, IN, that tests for set inclusion. It
returns a BOOLEAN value by testing if the first value in the

expression, a scalar, is in the set described. An example is:

[oranges] IN fruit
or:
[oranges] IN [apples, pears, oranges]

As fruit was declared earlier, the results are both true.
The assignment sign is used in the usual way when it is used in
conjunction with sets. All -sets must be assigned to declared set
variables.

lunchfruit := [apples, oranges, pears, peaches];

dinnerfruit := [strawberries] + lunchfruit;

scratchpaper := [];

Change A, May '82 7-8

SECTION 7 - USER DEFINED TYPES

A set cannot be read in or written out using the READ or WRITE

commands .
Some further examples:

TYPE space = (house, apartment, condominium, townhouse, tent,
trailerhome);
siblings = (Karen, Cathy, Debbie, Holley, Michael, John,
David);
livingplace = SET OF siblings;
alphagét = SET OF CHAR;

VAR family : kids;

home, setting : livingspace;
alpha : alphabet;

7-9 Jan. '82

SECTION 8
STRUCTURED DATA TYPES

SECTION 8
STRUCTURED DATA TYPES

8.1 INTRODUCTION
Section 7 discussed unstructured or simple types while those in this
and the next two sections are structured types. Structured types are

different from simple types because they are compositions of other
types. The types of the components and the structuring methods are
what characterize the different structured types.

8.2 ARRAY

An array type has a fixed number of ordered components referenced by
the same identifier name. The name, the number of components, and
the component type are specified when the array is defined. This is
done by specifying a base, or component, type and an index type. The
component type may be any structured or unstructured type. The index

must be either a scalar or a subrange type. It may not be REAL.

The format for an array type is:
TYPE <array identifier>= ARRAY[<scalar>] OF <base type>

The array identifier may be any user—-defined identifier. The index
must be in one of two forms:

1) The identifier name of a defined scalar type:

TYPE numbers = (one, two, three);
codenames = (owncar, children, spouse, pets);
matrix = ARRAY[numbers| OF REAL;
questionnaire = ARRAY[codenames] OF CHAR;

2) A subrange of a defined type:
TYPE answers = (Yes, No);
codenames = (owncar, children, spouse, pets);

questionnaire = ARRAY([children..pets] OF answers;
matrix = ARRAY[1..10] OF REAL;

8-1 Jan. '82

SECTION 8 - STRUCTURED DATA TYPES

The base type may be any legal type. If it is other than a standard
type, it must be defined before it appears in the array type
definition.

The array type is then used to define variables in the VAR section in
the same way that simple types are used.

An element of an array is accessed using the array identifier name
followed by the index enclosed in square brackets. An array element

may be used anywhere that a simple variable of the same type may be

used.
Example:
TYPE -class = (John, Mary, Sue, Karen, Debbie, Mike
Dave, Alan);
classcores = ARRAY[class] OF REALS;
VAR grades : classcores;

who : class;

who := Karen;
grade[who] := 100;
grade[Alan] := 90;

Since the base type of an array may be any legal type it is possible
to have a base type that is a structured type such as amn array:

TYPE matrix = ARRAY[l..10] OF ARRAY[l..5] OF REAL;

This defines a two-dimensional array. It is customary to use the

following abbreviated form:

TYPE matrix = ARRAY[l..10,1..5] OF REAL;

Jan. '82 8-2

SECTION 8 - STRUCTURED DATA TYPES

These two definitions are equivalent, but the second is easier.
The form can be generalized for an array of n-dimensiomns by:

TYPE <ident> = ARRAY[indexl,index2,...,indexn]
OF <base type>

Each of the indices must be explicitly defined and included in the
array definition.

When a two-dimensional array, matrix (i,j), is being referenced, "i"
refers to the rows and "j" to the columns. So, matrix (2, 3) is the
element in the second row and the third column of the matrix. It
would be in the position marked by the X:

|_11]2]3]4] |
PN
2l | x| | |
EINN .
Ll

Some multidimensional arrays are:

TYPE square = (' ', 'X', '0');
board = ARRAY[1..3,1..3] OF square;
board3d = ARRAY[1l..3,1..3,1..3] OF square;

“"board” is a three by three matrix that may contain blanks, X's and
O's. This might be used to represent a normal tictactoe gameboard.
“board3d"” represents three matrices like "board"” put together. It
could be the gameboard for a three dimensional tictactoe game.

8-3 Jan. '82

SECTION 8 - STRUCTURED DATA TYPES

There are several types of arrays that warrant special attention.

These are:
1) PACKED arrays
2) Arrays with BOOLEAN base types
3) STRINGS

They will each be discussed in turn.

Packed Arrays

Often there are times when the array being manipulated is composed of
a type that is not an integral number of words such as characters.
The standard ARRAY definition places one character in each word in
memory. However, a character representation does not require a full
word so the extra space is wasted. This waste could be significant
if the array is very large. A packed array minimizes the waste by

packing more than one character into each word in memory.

The packed array does have a drawback. The word a character is
stored in must be unpacked before the correct character can be
accessed. Although the conversion is done automatically, it does

require additional processor time.

The relative importance of the minimized waste and conversion time

must be determined by analyzing each project separately.
The format for a packed array is:
TYPE <array ident> = PACKED ARRAY([<scalar>] OF <base type>

The array identifier, index, and base type are the same as those
explained for unpacked arrays.

Jan. '82 8-4

[y

SECTION 8 - STRUCTURED DATA TYPES

Arrays with BOOLEAN Base Type
An array with a BOOLEAN base type can be used like a set. Each

element has a value of either true or false, which can be used to
represent inclusion in the "set"”. Programs that use BOOLEAN array
representation are slower so a set should be used whenever possible.
The advantage of the BOOLEAN array representation is that it can be
packed so that it can hold more elements in less space. This would
be important if the set were very large.

String Arrays

A STRING is one form of a packed array of characters. It is declared
using the following format:

VAR <string ident> = STRING[maxlength];

As the format shows, the string's maximum length must be declared.
This length is stored in the first word of memory that is assigned to
the string. Then, if it is assigned a string of characters that is
shorter than maxlength, the length value in memory is changed to the
new length. However, if it is assigned a string that is longer than
maxlength, a compile time error will result. This is true of all

arrays.

As with other variables, it must be possible to assign a value to an
array element and to assign one array to another. In PASCAL, the
assignment symbol (:=) performs these functions. However, there is
one restriction: only like types may be assigned to each other.
Although an array, a packed array, and a string may all have the base
type CHAR, these array types are not represented the same way in

memory. Therefore, none of the following would work:

TYPE chr = ARRAY[1..10] OF CHAR;
pcked = PACKED ARRAY([l..10] OF CHAR;

VAR charray : chr;
pckdarray : pcked;
str : STRING[10];
index : INTEGER;

8-5 Jan. ! 82

SECTION 8 - STRUCTURED DATA TYPES

charray := str; -
pckdarray := str; |
- charray := pckdarray; _
str := pckdarray; O
pckdarray := charray; L

str := charray;

However, since they all have base type CHAR, each of the following

would compile and run if the same declarations were used:

charray[index] := str[index];
pckdarray[index] := str(index];
charray[index] := pckdarray[index];
str[index] := pckdarray(index];
pckdarray[index] := charray[index];
str[index] := charray[index];

Each assignment statement is valid because a CHAR variable
(str(index], char(index], or pckdarray[index]) is being assigned a

character value.

There are also restrictions on the array types that may be read in or
written out. The non-standard scalar and the BOOLEAN array types
cannot have I/0 performed on them at all. PACKED arrays of
characters can only be written out because of the problems that
conversions entail. Standard scalar type arrays can only be read in
or written out one character at a time, i.e. using an index. A
string can be read in or written out one character at a time or all

at once. Table 8~1 summarizes these results.

Jan. '82 8-6

SECTION 8 - STRUCTURED DATA TYPES

Table 8-1. Restrictions on I/0 with Arrays

ARRAYS PACKED ARRAYS
INTEGER/ non- STRINGS
standard
REAL character| scalar character BOOLEAN
READ I I N N N DI
READLN I I N N N DI
WRITE I 1 N I N DI
WRITELN I I N I N DI
Kez

I = Only using an index, i.e. 1 character at a time.
N = Not at all.
DI - Done directly.

8.3 RECORD

A record is a type with a user-defined structure that incorporates
several components, each of which have distinct properties. The
different components are called fieids and are accessed by name
rather than with an index.

The record is defined as a variable type. The format is:

TYPE <{record ident>=
RECORD
<component identifier>|,...| :<base type>
| component identifiers : base type; |
| CASE section|
END;

The record identifier is any user-defined variable name. The
component definitions must be enclosed by the reserved words RECORD
and END; the identifiers are user—-defined and separated by commas.
The base types may be any structured or simple type, but must be
defined before they appear in the record definition. A semicolon (;)

8-7 Jan e ! 82

SECTION 8 - STRUCTURED DATA TYPES

separates the components, but one does not appear between the last

component's base type and the reserved word END.

A field in a record is accessed using the record identifier and the

component identifier separated by a period and in that order.

general format is:

{record ident)>.<{component ident>

The base type of a component may be

have nested records.

a record so it is possible to

Example 1:
TYPE pername =
RECORD
first : STRING[10]
midinitial CHAR;
last : STRING[15]
END;
person =
RECORD
name pername;
address : STRING[25]
END;
VAR people person;
Example 2:
TYPE person =
RECORD
name: RECORD
first : STRING(10};
midinitial : CHAR;
last : STRING[1S]
END;
address : STRING([25]
END;
VAR people : person;

Jan. '82

SECTION 8 - STRUCTURED DATA TYPES

In both cases, the last name of the person would be accessed by:

people.name.last

This is an obvious extension of the general form displayed above.

Accessing a field is even easier using the WITH statement. This

statement is defined in the usual format on the next page.

Packed Records
It is also possible to define PACKED RECORDS. If one or more of the
record's fields has a base type with an internal representation that

does not require an integral number of words, such as character type,
then the field can be packed into less space in memory. Although
this saves space, a conversion is required each time the field is

used.

Examgle:

TYPE rec = RECORD

Al:0..255;
A2:CHAR

END;

prec = PACKED RECORD

Al:0..255;
A2:CHAR

END;

VAR normspace : rec;

savespace : prec;

Note that savespace will occupy 2 bytes in memory while normspace

needs 14 bytes.

Because of the way in which a field is accessed, each fieldname
within a record must be unique. However, a record's fieldname may be
the same as a variable or type identifier outside the record because

the record identifier differentiates them.

8-9 Jan. '82

SECTION 8 - STRUCTURED DATA TYPES

WITH Statement

Function:

Format:

Argument:

Note:

WITH

References a record once for one or more field

accesses.

WITH <record ident>|,record ident,...| DO

{statement>

The record identifier is any defined record name.
There may be more than one record identifier
separated by commas in a WITH statement. The

statement can be any simple or compound statement.

The WITH statement increases the efficiency with
which the same component of a record or different
components of the same record can be accessed
repeatedly. Within the statement section the
components can be refered to by only the field

names.

The WITH statement locates the record or records
involved. Then, all field references within the
statement are made directly - the record is not
relocated for each one. This greatly increases the
program's efficiency when there are multiple

accesses.

Since the compiler assumes that a reference in the
statement part of a WITH statement is to the
specified record, the record identifier is not
necessary in field references. Used properly, this
can save both the programmer and the computer a

great deal of time.

8-10 Jan. '82

|

SECTION 8 - STRUCTURED DATA TYPES

It can also create confusion if there is a variable
name that is the same as a field name in the
specified record. If so, the variable cannot be
referenced inside a WITH statement involving the
record because the record's field will be assumed
instead. Therefore, great care must be exercised
if duplicate identifiers are used in conjunction
with WITH statements.

Example:
TYPE money =
RECORD
quarter, dime, nickel, penny : INTEGER
END;
VAR change : money;
total : REAL;
BEGIN

Jan.

WITH change DO
total := quarter * 0.25 +
dime * 0.10 +
nickel * 0.05 +
penny * 0.01;
END

'82 8-11 WITH

SECTION 8 - STRUCTURED DATA TYPES

Record Assignment

A record, as a structure, cannot be used as an operand for any
operator. This is because there is no ordering associated with
records and because the operator may not be compatible with all the
record's fields. However, a field in a record may be used with any

operator that is compatible with its base type.

A record cannot be assigned a value because of the ambiguity with the
fields and their types. If two records are declared exactly the same
type then one may be assigned to the other using the assignment

symbol (:=). For example:

TYPE days = 1..31;
mo = l..12;
date =
ARECORD
day : days;
month : mo;
year : INTEGER
END;

VAR issuedate,todaysdate, expirationdate : date;
This:

issuedate := todaysdate;
is equivalent to the sequence:

issuedate.day := todaysdate.day;

issuedate.month := todaysdate.monthj;

issuedate.year := todaysdate.year;

Jan. '82 8-12

SECTION 8 - STRUCTURED DATA TYPES

A field can be assigned a value using the assignment symbol if the
value and the base type are compatible:

issuedate.day := 10;

A record may be passed in the parameter list of a function or a

procedure, but it may not be used as the return value of a function
because it does not represent a simple type.

Illustrated Example - Arrays, Records and WITH Statements

This program uses records, nested records, WITH statements, and

identical variable and field names.

PROGRAM records;
TYPE marry = (single, married, divorced, widowed);

money = (* record type for INCOME in PERSON *)
RECORD

salary, other : REAL
END;
person = (* record of the customers' data *)
RECORD

name : PACKED ARRAY[1..25] OF CHAR;
addr : PACKED ARRAY[l..30] OF CHAR;
marstatus : marry;

dependents : INTEGER;

income : money (* a record type *)
END;

VAR customer : ARRAY(1l..l10] OF person; (* records of all customers ¥*)
scratch : person; (* a workarea for the input *)
name : STRING[25]; (* used for string input *)
addr : STRING[30];
marstat,ans : CHAR;

I,J : INTEGER;
more : BOOLEAN;
BEGIN
WRITELN;
J := 0; more := true; (* initializing *)

8-13 Jan. '82

SECTION 8 - STRUCTURED DATA TYPES

WHILE more = true DO (* beginning of loop *)
BEGIN
J = J <+ 1; (* increment index *)
WRITELN('Customer''s name?');
READLN(name);
FOR I := 1 TO 25 DO (* assign the name %)

scratch.name[Il] := name[I];

WRITELN('Address?');

READLN(addr);

FOR I := 1 TO 30 DO (* assign address *)
scratche.addr[I] := addr [I];

WRITELN('Marital status? (M,S,D,W)');

READLN(marstat);
WITH scratch DO
CASE marstat OF (* assign the marital status *)
'M' : marstatus := married;

'S' : marstatus := single;
‘D' : marstatus := divorced;
'W' : marstatus := widowed
END; (* CASE *)
WRITELN('Number of dependants?');
READLN(scratch.dependents);
WRITELN('Salary and other income, in that order?');
WITH scratch, income DO
READLN(salary,other);

customer[J] := scratch; (* saving the workarea *)
WRITELN('Are there more customers?');
READ(ans);

IF (ans <> 'Y') AND (ams <> 'y') OR (J = 10) THEN more := false
END (* WHILE *)

END. (* records *)

Jan. '82 8-14

SECTION 8 - STRUCTURED DATA TYPES

Record Variants

Records declared to be the same type may sometimes vary in the number
and types of their components. This is done in the variant part of
the record declaration.

A record may contain a fixed part, a variant part, or both. If a
record contains both, the fixed part must come first.

The variant part is superficially like a case statement. It is of
the form:

RECORD
| fixed part|
CASE |tag field:|<type ident> OF
<case element>|;...|
{case label list>
END

Where <{case element> is:
{case lable list: (|field identifiers : field type |)

(Note: The above line may be repeated for as many case lists as
necessary.)

The tag field is an identifier that is defined by the type identifier
which must be a scalar type. It can be defined in the fixed part of
the record. The case label lists are the values of the type
identifier. The field identifiers are defined by the field types,
which can be any structured or simple type. Associated with one
field type there may be multiple case labels and field identifiers,
with commas acting as delimiters in each list. An example of a
variant part of a record is:

TYPE kind = (trout, catfish, goldfish, bluegill, salmon);
animals = (cats, dogs, fish, sheep, cows, pigs);
animate =

RECORD
CASE tag : animals OF
cats, dogs : (pets, inside : BOOLEAN);
sheep, cows, pigs : (food : INTEGER);
fish : (both : kind)
END;

8-15 Jan. '82

SECTION 8 - STRUCTURED DATA TYPES

The reserved word END is associated with the record declaratiom, not
the CASE statement. However, it operates as the terminator for both
since the variant part must appear last in the record declaration.

A field identifier may not be used more than once inside a record,
regardless of whether it is in the variant or fixed part. However,
it may replicate an identifier of a variable or type that is defined
outside the record.

A tag type identifier value is not required to appear in one of the
case label lists; however, it is recommended that all values be
represented for program security. If no action is associated with a
label, the field identifier and type are left blank. For example:

pigs : ();

There are two ways that the records in the variant part may be
nested. The field type may be a record, which is the natural
nesting:

TYPE color = (red, white, blue);
play = (fireengine, pail, ball);
material = (plastic, wood, metal, cloth);
test =
RECORD
CASE picture : color OF
red : (toys : RECORD
number : INTEGER;
CASE toys : play OF

fireengine, pail, ball:material

END);
white : (nothing : REAL)
END

The nesting can also occur by replacing the field identifiers and
type with either a fixed or a variant part of a record. The formats
are: fixed part:
{case label 1list)> : (<componment idents> : <base type>;
| component idents : base type;...|)

Jan. '82 8-16

SECTION 8 - STRUCTURED DATA TYPES

variant part:
<case label list)> : (CASE | tag field:|<type field> OF

<case label 1list)> : (|field idents : field type|);...|)

If the case label and field identifier parts have more than one
element, they are separated by commas. The formats are the same as
for non-nested fixed and variant parts of records. Note that the
reserved word RECORD does not appear in either case.

The following example demonstrates the nesting described above and

will be used in the discussion on accessing.

TYPE kind = (animal, plant);
sort = (mammal, reptile);
life = (caged, free);
outside = (dog, cat);
inside = (mouse, gerbil, guineapig, ferret);
locomotion = (slither, crawl);
plantinside = (nonflowering, flowering);
form = (tree, bus, flower);
creature =
RECORD
CASE kingdom:kind OF
animal : (CASE phylum:sort OF
mammal : (CASE care:life OF
free : (species : outside);
caged : (rodent : inside));
reptile : (snake, lizard : locomotion));
plant : (unprotected : form;
protected : plantinside)

END;

VAR pet : creature;

Note that there are three levels of variant parts and that “plant”

labels a fixed part of a record.

8-17 Jan. '82

SECTION 8 - STRUCTURED DATA TYPES

The purpose of the variant part of the record is to allow enough
flexibility that the record's construction can be developed as the
program is executed. This 1is done by setting the tab identifiers
equal to the label of the part of the record that is needed. As an
example to illustrate this, assume a program using the definitions
above needs to deal with the scalar "mouse”. The following sequence

of assignment statements would make it possible:

pet .kingdom := animal;
pet.phylum := mammal;
pet.care := caged;
pet.rodent := mouse;

The general form is:
{variable ident>.<{tab ident> := <case label>

The elements of rodent can now be accessed by pet.rodent throughout
the program. If, as the program progresses, a different element is
needed, say "flowering” plant, the same type of sequence would be

needed, i.e.

pet .kingdom := plant;

pet.protected := flowering;

Hcwever, once the record has been redefined, the earlier values may
be lost. If pet.rodent were accessed now, the value might be
incorrect. Because of this ambiguity, the record should be defined
once and all important values assigned to variables if a new form of

the structure is needed.

Jan. '82 8-18

SECTION 8 - STRUCTURED DATA TYPES

Variant Record Declarations

Variant record declarations are useful for selecting between various

types. For convenience, the following is a list of interchangable

types:

Declaration

ARRAY([1..X] OF INTEGER;

PACKED ARRAY([1l..X] OF 0..255;

PACKED ARRAY[1l..X] OF CHAR

PACKED ARRAY[1..X] OF BOOLEAN

STRING(X]

STRING

CHAR
INTEGER

REAL

Space Occupied

2 x bytes, each integer stores as
low, high byte.

X bytes, each element holding a
value 0-255.

X bytes, each element holding a
character.

X bits, each bit loading the value
TRUE or FALSE. '

X+1 bytes, each element holding a
character. STRING{O] holds the

dynamic length of the string.

The declaration STRING is equal to
STRING[80].

One byte holding a character.
Two bytes in low, high order.

Four bytes, the exponent and
mantissa will occupy bytes 1-3.

Note that each variable is assigned to the next 16-bit word boundary

if the variable does not fit into the current word.

8-19 Change A, May '82

SECTION 8 - STRUCTURED DATA TYPES

Examgle:
TYPE

BUFF=PACKED RECORD
A:0..255;
B:0..255;
C:INTEGER;

END;

“A" occupies the first byte, "B" the second byte and "C" byte 3 and
4-

PACKED RECORD
A:0..255;
C:INTEGER;

END;

Here variable "A" occupies the first byte. The integer C occupies
byte 3 and 4 since the variable is too large to fit into the last
byte of the first word.

Note that in variant records, the amount of storage space allocated

to the variant record will be the size of the largest variant among

the cases.

Change A, May '82 8-20

SECTION 9
POINTER DATA TYPES

SECTION 9
POINTER DATA TYPES

9.1 INTRODUCTION

Most variables are static, which means that they are allocated during
the execution of the procedure to which they are local. In countrast
to this, dynamically allocated variables can be created and destroyed

as needed. This allows space to be allocated as needed. It also
allows functions to return space as results.

Dynamic variables do not occur in an explicit variable declaration so
they do not have an identifier by which they can be referred.
Instead, they are accessed through a pointer variable that is used to

generate the dynamic variable.

A pointer type designates a very small amount of space (usually two
bytes) which is used to point to an object. It does not make space
for the object. Since a pointer can point to an object, it can be
accessed via the pointer once the object has been allocated. The
advantage of this is twofold. First, it is possible to switch a
pointer variable from one object to another very quickly. Second, it
is possible for one object to be referenced by more than one path.
This is important because it is a prerequisite for using linked
lists.

It is possible to generate new objects from an area called the heap.
This generation and manipulation is covered later.

9.2 FORMAT .
A pointer is declared by preceding the type with a caret. The format

is:

TYPE <pointer ident> = ~ <record ident>;

9-1 Jan. ! 82

SECTION 9 - POINTER DATA TYPES

Examgle:

TYPE pointer = ~ class;
class = RECORD
link : pointer;
data : STRING([25]
END;
VAR nextstudent ,firststudent,laststudent : pointer;

Note that the record does not define a variable so it cannot be
directly accessed. However, any of the identifiers with the pointer

identifier as a type can indirectly access the record.

Pointer Type Components

The pointer identifiers can be used to refer to the data they point
to and the pointer itself. Both can be assigned values using the
assignment statement. Assume the two variables, next and base, are
declared pointer types and are pointing to different records of the
same type. The statement, base := next, means that base now points
to the same record that next does. The statement "base ~ := next ™"
means copy the value in the record "base” points to into the record
“next” points to. These differences in the assignments must be

remembered.

Values within a record pointed to by ident may be assigned by:

~

<{ident> .{field> := <expression>

The field may be of any type and the expression may be anything that
returns a value that is valid for the field. For example, if the

record's data field is INTEGER:

base ~ .data := 10;
base ~ .link := next; (* link and next are pointer types *)

It is certainly possible for a pointer to point to amn empty list
(i.e. at the beginning of a program). The reserved word NIL

Jan. '82 9-2

SECTION 9 - POINTER DATA TYPES

represents this case. It may not be used in an arithmetic
expression. However, it operates as a value and can be assigned or
compared just as any other value can. For example, assign base equal
to NIL:

base := NIL

Lastly, as a list is being built, the new components must be
allocated. The predeclared procedure, NEW, does this. The format
is:

PROCEDURE NEW(<ident>:POINTER TYPE)

The identifier must be declared a pointer. When the statement is
executed, it points to the location of the new component. Hence,

NEW(base);
means that base ©~ can be used to access the newly allocated record.

The NEW procedure allocates space from an area in core called the
heap. This is a dynamic area which shares space with the program
stack (where global and local function and procedure variables are
allocated). This area can be viewed as a linear array with the stack
at one end, the heap at the other, and free space in the middle.

As a program executes and calls procedures, the stack grows and uses
some of the free space. As the procedures complete, they
automatically return the space and the stack contracts. When the
program executes the NEW procedure, the heap expands and the pointer
in the NEW statement points to the space just allocated to the heap.
The amount of space allocated is a function of the type that the
pointer is to point to. Assigning a new value to the pointer via
another NEW or assignment statement does not free the space - it must
be returned explicitly through the RELEASE or DISPOSE procedures.

9-3 Jan. '82

SECTION 9 - POINTER DATA TYPES

It is the programmer's responsibility to insure that the pointer data
is managed correctly. Also, the pointers initially contain a garbage
value and should be initialized by NEW or with NIL.

There are many applications that use dynamically allocated variables.
With one link field, stacks, queues, and rings can be formed. With
two link fields in each record, doubly linked lists and rings, and
trees can be formed. The following example generates a queue with a
First-In, First—Out (FIFO) structure:

Example:
PROGRAM Queue(Input,Qutput);

TYPE groceries = STRING[10];
_.% pointer =%list; (* pointer to record *)
list = RECORD
link : pointer;
food : groceries -

END;
VAR next,front,rear : pointer; (* pointers *)
BEGIN
WRITELN;

rear := NIL; front := NIL; (* initialize pointers ¥)
WRITELN('What is on the list?');
REPEAT

NEW(next); (* create next record *)

IF (front = NIL) (* assign links *)

THEN front := next

ELSE rear " .link :=next; (* link it onto the end *)
rear := next; (* assign rear pointer *)

READLN(rear " .food) “—

UNTIL (rear " .food = '');

WHILE (rear <> front) DO (* if rear = front, the whole *)
BEGIN (* 1list has been written out *)

WRITELN (fromt ~ .food);

front := front " .link‘’(* update link *)
END (* WHILE *) A
END. (* Queue *)

Jan. '82 9-4

SECTION 10
FILE DATA TYPES

SECTION 10
FILE DATA TYPES

10.1 TINTRODUCTION
Files are important variable types because they allow large

quantities of data to be accessed and retained in secondary memory.
Because of this, large data bases can be conveniently stored and
easily manipulated. Also, programs that are larger than main memory
may be left in files with only those sections being processed
residing in memory.

A file is a sequential collection of values that are all of the same
type. It is analogous to a tape in that all data is represented
sequentially and only one component of a file can be accessed at any
one time. A natural ordering is defined through the sequence.

A file is a unique variable type, partly because it is sequential,
and, more importantly, because it may exist before and after a
program is executed.

There are two standard files that represent the I/0 media: the input -
and output files. They are the default values in most places where a
filename is necessary, notably the READ, READLN, WRITE and WRITELN

statements.

10.2 REFERENCING FILES IN A PROGRAM

All names of files that are referenced in a program must be listed in

the program heading. The format is:
PROGRAM <ident>|(fd,...)|;

The standard files, input and output, should be included in the
variable filename list if READ, READLN, WRITE, WRITELN, EOF, or EOLN
is used without a filename. If a filename does not appear in the
list but is used in the program, then it is flagged as a local file
and as such becomes undefined after the program is completed. The
filename will remain in the directory listing, but its contents are
undefined and cannot be displayed.

10-1 Change A, May '82

SECTION 10 - FILE DATA TYPES

Declaration Format
A file's declaration format is:

TYPE <file ident> = FILE OF <type>;

The file identifier is user-defined. The type may be of any standard
or nonstandard type. Note that the number of components is not fixed
by the definition. A global variable, the file identifier, must be
declared for each file that is referenced in the program.

10.3 FILE TYPES
There are four predefined file types in PASCAL: textfiles, record
files, physical files and ISAM files. Their declaration formats are:

{file ident> = FILE OF <typé>; Record file
<file ident> = TEXT; - Text File
{file ident> = FILE; Physical File
{file ident> = ISAMFILE; ISAM File

The RESET or REWRITE statement is used to connect the actual file
name with the file identifier in the program.

All the files are sequential but the record lengths differ. Files of
user-defined types have a fixed record length that is defined by the
type. The GET, PUT, SEEK and EOF I/O-statements are used in
conjunction with these files.

A TEXT file is implicitly defined FILE OF CHAR but it has a variable
record length because it is subdivided into lines. READ, WRITE,
READLN, WRITELN, EOF, EOLN, GET, and PUT are the I/O-statements that

are available to access it.

A physical file is a special case of the record file. The record
length is 256 bytes. Several consecutive records may be read or
written using BLOCKREAD and BLOCKWRITE; refer to Appendix G (programs
Byteshape, Bytetest and Anbyte) for examples.

The I/0 statements used in conjunction with ISAM files are discussed
in Section 1l4.

Change A, May '82 10-2

SECTION 10 - FILE DATA TYPES

10.4 PASCAL INTRINSICS FOR FILES

Certain PASCAL intrinsics apply to files. The definition and
function of these intrinsics are summarized below. A complete
description including the format of each can be found in Section 12.

1.

Definition:

Function:

Examgle:

Definition:

Function:

Examgle:

Definition:

Function:

Examgle:

PROCEDURE RESET(<fd>:File|,title:STRING|)

Positions the pointer to the first element in the
file and prepares it for input. "title"” is a string
of the form: '<fd>'. 1If the title is included,
RESET opens for an existing but previously closed
file so that it can be read. In this case the
pointer is pointing to the first record. Without
the title, RESET moves the pointer to the beginning
of the file and reads the first record for the user.
Here, the pointer moves to the second record. If
the file is not open, it returns an error through
IORESULT and the file remains closed.

(Title is a string and DATA is the volume name.)

title := 'DATA:testfile';

RESET(testfile,title); (* opens file + points to
first record *)

PROCEDURE REWRITE(<fd>:text FILE,<title>:STRING)
Creates a new file on disk and opens the file.
Filename and title are of the same format as they

were for RESET:

title := 'DATA:testfile';
REWRITE(testfile,title)

PROCEDURE READ(<fd>:text FILE|,variable list|)
Reads the next value or values from the file. It
can only be used with TEXT files. If the variable

is a string, it will read up to the end=of-line
character.

READ(testfile,vall,val2)

10-3 Change A, May '82

SECTION 10 - FILE DATA TYPES

4, Definition:

Function:

Examgle:

S. Definition:

Function:

Examgle:

6. Definition:

Function:

7. Definition:

Function:

ExamEle:

PROCEDURE READLN(<fd>:text file|,variable list|)

Reads through the first character on the following
line of the file. It can only be used with TEXT
files.

READLN(testfile,vall,val2)

PROCEDURE WRITE(<Kfd>:text file|,item list])

Writes the value(s) to the file. It can only apply
to TEXT files.

WRITE(testfile,vall,val2)

PROCEDURE WRITELN(<fd>:text file|,item list|)

Writes the value(s) to the file and then inserts a
carriage return character. It is only used in
conjunction with TEXT files.

PROCEDURE GET(<Kfd>:file)

Reads the next record from the file into a file
buffer associated with that file. This buffer can
be accessed via a pointer variable whose name is the
same as the filename. The file buffer should be
assigned the value of the file pointer variable
before the GET is done (see example below). The
following are equivalent if the file is text.

READ(textfile,value) value := textfile ™;
GET(textfile)

Change A, May '82 10-4

SECTION 10 - FILE DATA TYPES

8. Definition:

Function:

Example:

9. Definition:

Function:

Example:

10. Definition:

Function:

PROCEDURE PUT(<Lfd>:file)

Places the value in the buffer variable into the

next available position in the file and updates the

pointer. If the file is text, the following are

equivalent:

WRITE(testfile,value) testfile ~ :=value;
PUT(testfile)

FUNCTION EOF(<fd>:file):BOOLEAN

Returns a Boolean value which represents whether or

not the end of the file has been reached.

IF EOF(filel) THEN WRITELN ('END OF FILEl');

FUNCTION EOLN(<fd>:file):BOOLEAN

Determines whether or not a carriage return

character has been encountered in a text file.

10-5 Change A, May '82

SECTION 10 - FILE DATA TYPES

10.5 CREATING AND USING FILES
The first time that a new filename is encountered in a REWRITE

statement, the new file is created and data may be stored in it.

However, if the same program is executed a second time, the file
already exists so the REWRITE statement returns as error through
IORESULT and the file is not opened. The following sequence will

create a new file or, if it already exists, destroy and recreate the
file:

title := '"test:sample';
REWRITE(sample,title);
IF (IORESULT <> 0) THEN
BEGIN
RESET (sample,title);
CLOSE(sample,PURGE);
REWRITE(sample,title)
END;

The user should provide the identifiers whose fields are encased in
brackets. If this sequence is followed, the program will execute
without the file being opened.

If a file exists and contains information needed by a program,
RESET(<fd>,<title>) should be used to open the file, set the pointer

to the first position, and prepare it to be read from.

There are two more advanced forms of files: external and segmented.

These are explained in Section 13.

Examining File Contents

It is often necessary to examine the file once the information has
been placed in it. The following sequence will display the file on

the screen one sector at a time:
-DISKDUMP

IN <fd>
DUH 0O

Change A, May '82 10-6

SECTION 10 - FILE DATA TYPES

The file descriptor <fd> is the name of the file in the format shown
in Section 1.2. “DUH 0" displays the sectors in hexadecimal starting
with Sector 0. The next sector can be displayed by depressing the
RET key. Type "END" to exit DISKDUMP. The utility cannot be called
from a PASCAL program.

A file appears as one or more sectors that consist of sixteen by
sixteen matrices of bytes. One byte is represented by one pair of
numbers in a row. Each number or unpacked character is represented
in exactly one byte.

Illustrated Examples

The following programs show how files are created and used.

Ex. 1
This program creates and loads a file with input entered at the

console.

PROGRAM writeletter (Input,Output,letter);
TYPE writing = TEXT;

VAR letter : writing; (* The TEXT file *)
name : STRING([20]; (* the title variable *)
nextline : STRING{80]; (* the input string *)
BEGIN
name := 'DATA:letter’; (* assign the filename ¥*)
REWRITE(letter,name); (* create & open the file *)
IF (IORESULT <> 0) THEN
BEGIN
RESET(letter,name);
CLOSE(letter ,PURGE);
REWRITE(letter ,name)
END;
READLN(Input ,nextline): (* receive the next line *)

WHILE(nextline <> 'end') DO (* test for end condition #*)
BEGIN
WRITELN(letter,nextline); (* write line to file *)
READLN(Input ,nextline)
END (* WHILE *)
END. (* writeletter *)

10-7 Change A, May '82

SECTION 10 - FILE DATA TYPES

Ex. 2

Program GRADEAVG creates a file of grade scores and then uses the
data in this file for various computations.

PROGRAM gradeavg (input,output,scores);

TYPE list = FILE OF INTEGER;
VAR sum,classavg : REAL;
gcores : list; (* file of scores %)
total,score : INTEGER;
title : STRING([20];
BEGIN
title := 'DATA:scores'; (* name of file *)
REWRITE(scores,title); (* open new file *) (* CREATE NEW FILE *)

IF (IORESULT <> 0) THEN (* close & open file if it existed*)
BEGIN '
RESET(scores,title);
CLOSE(scores ,PURGE);
REWRITE(scores,title)
END; (* IF *)
READ(input,score); (* first score *)
WHILE (score >= 0) DO
BEGIN
scores " := score; (* put the score in file *)
PUT(scores);
READ(input,score)
END; (* WHILE *)
sum := 0; (* initializing *)
total := 0;
RESET (scores);
score *)
(* then pointer points to second record ¥*)
WHILE NOT EOF(scores) DO (* continue until end of file *)
BEGIN
score
GET(scores);
sum := sum + score;
total := total + 1
END; (* WHILE *)
classavg := sum/total;
WRITELN('Class average
END. (* gradeavg *)

assigns the value ¥)
reads next record *)
add score *)

:= gcores "~ ; (*
(*
(*
(*

add to number of scores *)

(* calculate the average *)

Change A, May '82 10-8

(* moves pointer to beginning of file and reads lst

=' classavg:10:3,' Student count =',total)

SECTION 10 - FILE DATA TYPES

Ex. 3

Program FILETEST displays integers and then stores the integers in a
new file.

type
inarr=array[l..10] of integer;
var
starr:inarr;
ix:integer;
outfile:file of integer;
begin
rewrite(outfile, 'numfl');
1f(IORESULT <> 0) then
begin
reset (outfile,'numfl');
close (outfile, PURGE);
rewrite (outfile,'numfl')
end;
for ix:=1 to 10 do
begin
writeln('please input an integer value then press CR ');
read(starr[ix])
end;
for ix:=1 to 10 do
begin
writeln('integer value= ');
writeln(starr[ix])
end;
for ix:=1 to 10 do
begin
outfile:=starr(ix];
put(outfile)
end;
writeln('done');
close(outfile)
end.

10-9 Change A, May '82

SECTION 10 - FILE DATA TYPES

Ex. &4 ‘
Program FILENAMES builds a customer complaint file by prompting for
name, number, address, complaint and comment data.

program FILENAMES;
type

ptl= persons;

pointer='a'..'z';

person=record
name,ssnum,address: string[10];
comment:string

end; (* person *)

var
p:array('a'..'z'] of ptl;
gang:file of person;
index:pointer;
beginix,endix : char;
begin

REWRITE (GANG, "DATA:ABCD');
if (ioresult <> 0) then
begin
reset(gang, 'data:abed');
close(gang,purge);
rewrite(gang, 'data:abed')
end; .
beginix:='a';
endix:="c"';
for index:=beginix to endix do
begin
new(p[index]);
with p{index] do
begin
writeln('cust. name ? ');
readln(name);
writeln('ssnumber ? ');
readln(ssnum);
writeln('address ? ');
readln(address);
writeln('complaint ? ');
readln(comment);

end;
gang :=p[index] ;
put(gang)
end;
close(gang)

end.

Change A, May '82 10-10

SECTION 10 - FILE DATA TYPES

Ex. 5

Program TEST6 stores an array of integers on disk. It zeros all
elements in the array, GETS the integers from the file, and reloads
the array. Finally, the array values are displayed on the console.
A DISKDUMP follows the program listing.

PROGRAM TEST6 (SAMPLE);
VAR \
TITLE : STRING([9];
SAMPLE :FILE OF INTEGER;
J,IX,I : INTEGER;
INSAM:ARRAY[1..100] OF INTEGER;
BEGIN
TITLE:='SEAL:sample’;
REWRITE(sample,title);
IF (IORESULT <> 0) THEN
BEGIN
RESET (sample,title);
CLOSE(sample,PURGE);
REWRITE(sample,title)
END;
J:=200;
FOR I:=1 TO 40 DO
BEGIN
J:=J+1;
INSAM(I]:=J;
SAMPLE ~:=INSAM[I];
PUT (SAMPLE)
END; (* FOR *)
CLOSE (SAMPLE) ;
FOR I:= 1 TO 50 DO
INSAM([1]:=0;
I:=];
RESET (SAMPLE,TITLE);
GET (SAMPLE);
WHILE NOT EOF(SAMPLE) DO
BEGIN
INSAM[I]:=SAMPLE";
GET (SAMPLE) ;
I:=1+1
END; (* WHILE *)
FOR IX:=1 TO 50 DO
WRITELN(INSAM(IX]);
CLOSE (SAMPLE)
END. (* TEST6 *)

10-11 Change A, May '82

SECTION 10 - FILE DATA TYPES

-DISKDUMP

00.00.00 DI SKDUMP R3.01
IN SEAL:XXXX

DUH O

SECTOR #: 0.
C9 00 CA 00 CB 00 CC 00 CD 00 CE 00 CF 00 DO 00 I.J.K.L.M.N.O.P.
D1 00 D2 00 D3 00 D4 00 D5 00 D6 00 D7 00 D8 00 Q.R.S.T.U.V.W.X.
D9 00 DA 00 DB 00 DC 00 DD 00 DE 00 DF 00 EO 00 YZ.[o o]o o _o'e
E1 00 E2 00 E3 00 E4 00 E5 00 E6 00 E7 00 E8 00 a.b.c.d.e.f.g.h.
E9 00 EA 00 EB 00 EC 00 ED 00 EE 00 EF 00 FO 00 i.j.k.l.men.0.p.
29 00 2A 00 2B 00 2C 00 2D 00 2E 00 2F 00 30 00).*.+.,.=cs./.0.
31 00 32 00 00 00 00 00 00 00 00 00 Q0 Q0 00 00 le2cccecccoconcce
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO cccevcccoccccace
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ecececcoccccccccns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ececococosccccce
00 00 00 00 00 00 00 00 54 45 53 54 20 20 20 20 .ecse...TEST
4F 53 2E 38 20 50 61 73 63 61 6C 20 33 2E 30 31 MS.8 Pascal 3.0l
20 20 20 46 69 6C 65 3A 20 53 45 41 4C 3A 54 45 File: SEAL:TE
53 54 20 20 20 20 20 20 20 20 20 20 20 20 20 20 ST
20 20 20 20 20 20 20 20 20 20 31 39 38 31 2D 30 1981-0
38 2D 30 30 2F 30 30 2E 30 30 2E 30 30 20 20 20 8-00/00.00.00

Note that each integer has two bytes reserved per integer.

Change A, May '82 10-12

SECTION 10 - FILE DATA TYPES '

Ex. 6

Program TEST9 uses the SEEK command to move the file pointer to the

fifth record.
displayed on the comsole. -

PROGRAM TEST9 (INTG);
VAR
TEST:FILE OF INTEGER;
K,J:INTEGER;
BEGIN
J:=0;
RESET(TEST, 'SEAL: INTG');
K:=4;
WHILE NOTE EOF(TEST) DO
BEGIN
SEEK(TEST ,K);
GET(TEST);
J:=TEST";
WRITELN(J);
K:=K+1
END (* WHILE *)
END. (* TEST9 *)

10-13

The content of the file from that point on are

Change A, May '82

SECTION 11
PROCEDURES AND FUNCTIONS

SECTION 11
PROCEDURES AND FUNCTIONS

11.1 GENERAL FORM
There are two types of subroutines in PASCAL: procedures and

functions. Although they are designed to serve different functions,
both are declared with the same format:

<heading>;
|declaratiouns; |

{compound statement);

This exactly replicates the format for a program (see Section 2.1).
All the parts of a procedure or function are the same as those
described in the preceding sections except the heading. The headings
for procedures and functions are not the same so they will be
discussed in Sectioms 11.2 and 11.3 respectively. The END
statement for both is followed by a semicolon (;) instead of the
period that follows a program's END statement. The statement block
is a compound statement which can contain any sequence of simple or

compound statements.

When a procedure or functionm is called, the variables in the
declarations area are placed on the stack. These local variables
parameters (if any), and globally allocated variables are accessible
from the procedure or function. Upon exit, the space om the stack

that was allocated by the call is returned.

Since the stack is used for local variables and parameters, each new
call generates a new set of variables. Therefore, procedures and
functions can be called recursively. This means that each call
generates a new set of variables and that any subsequent call cannot
access the values of a previous call unless the values are global or

passed again as parameters.

11-1 Jan. '82

SECTION 11 - PROCEDURES AND FUNCTIONS

Subprogram Placement
All identifiers in a program must be defined before they can be used.

The same is true for functions and procedures. Therefore a
subprogram can only call procedures or functions that precede it in
the program. Those that follow it would be considered undefined and
would result in ‘a compile~time error if they were accessed. This

means that the order in which subroutines are defined is important.

FORWARD Directive
There are situations when a procedure or function must be accessed

before it is defined, such as when two subroutines call each other.
This can be done using the directive FORWARD. The word FORWARD is
not a reserved word but it has a special meaning in a heading.
Elsewhere it can be used as a user—defined identifier.

The format requires that the heading of the undefined subroutine be
followed directly with the directive. This is followed by the
procedure(s) and function(s) that invoke it. Later, the subroutine
is completely declared but the parameter list in the heading is not

repeated.
A skeleton example is:

PROCEDURE front (a,b : INTEGER); FORWARD;

PROCEDURE back (c,d : REAL);
BEGIN
a := 1;
b = 2
front (a,b) (* calling the procedure ¥)
END; (* back *)

PROCEDURE front;
BEGIN

back (1,2);
END; (* front *)

Jan. '82 11-2

SECTION 11 - PROCEDURES AND FUNCTIONS

There are many standard functions and procedures available in PASCAL.
They are summarized in Appendix A. They are considered to be
predeclared and operate in the same manner as user-defined
subroutines do.

11.2 PROCEDURES

Procedures affect programming situations and do not returnm an

explicit value. Functions, on the other hand, return a value.

Procedures are usually used for input and output or for manipulating
data structures.

A procedure must have a heading in the form:
PROCEDURE <procedure ident>|(parameter list)|;

Each element of the parameter list has the following format:
|VAR| <identifiers> : <type>;

The procedure identifier can be any user-defined identifier. The
parameter list is a series of formal parameters and their types
separated from each other by semicolons. If more than one parameter
is of the same type then they can be defined together (i.e. identl,
ident2, ident3 : REAL;). The parameter list and type format may be
repeated as many times as necessary to include all the parameters.
Only the last type is not followed by a semicolon (;).

The procedure is called by:
<{procedure ident>|(expression,...)]|
A list of expressions may be variables, values, or calculations that

return a value. The value must be the same type as the parameter
type declared in the procedure. If the parameter is a VAR parameter

(see Section 11.4), the expression must be a variable. There must be

11-3 Jan. '82

SECTION 11 - PROCEDURES AND FUNCTIONS

as many values as there are formal parameters and the parameters
should be in the same order as in the declaration. If there are no
formal parameters then the parentheses in the call and the heading

are omitted.

The formal parameters are used throughout the procedure as though
they are known values or variables with assigned values.

Examgle:

PROGRAM getword;
VAR word,buffer : STRING; (* the limit on buffer's size is 80 *)
number,index : INTEGER;
endofbuffer : BOOLEAN;
character : CHAR;

PROCEDURE writeword (word : STRING);
number : INTEGER);

BEGIN
WRITELN (' The ', number,' word is ', word)
END; (* procedure writeword *)

BEGIN
READLN(buffer); (* initialization *)
index := 0;

number := 0;
endofbuffer := FALSE;
WHILE (NOT endofbuffer) DO
BEGIN
first := index; (* keep the position of the first letter *)
character := buffer[index];
WHILE ((index <= 80) AND (character <> ' ') DO
BEGIN
index := index + l; (* check characters in buffer until *)
character := buffer[index]; (* a blank is found or the ¥*)

END; (* WHILE *) (* end of buffer found *)
word := COPY(buffer, first, index—-first-1)
number := number + 1; (* count number of words *)

writeword(word ,number);
IF (index >= 80) THEN endofbuffer = TRUE

END (* WHILE *)
END. (* getword *)

Jan. '82 11-4

SECTION 11 - PROCEDURES AND FUNCTIONS

11.3 FUNCTIONS
A function always has an associated type and returns a value of this

type. It is usually used to calculate a value that must be found in
several different places.

The format for a function is:
FUNCTION <function ident)>|(parameter list)|:<type>;

The function identifier can be any user-defined identifier. The
parameter list is a series of formal parameters in the same format as
a procedure's parameter list. Only the last type in the parentheses
is not followed by a semicolon. The value that is returned is sent
through the function identifier and is of the type given outside of
the parentheses. For this reason, the function identifier must be
assigned a value somewhere in the function. Its type must be scalar,
subrange or pointer.

The function is called by:

<function ident>(list of expressions)

The call may be placed anywhere a value of the function's type may
legally appear. There must be as many expressions or variables as
there are formal parameters. Also, if the parameter is a VAR
parameter, there must be a corresponding variable in the call. If
there are no parameters in the heading, the parentheses are omitted
in both the heading and the call.

Example:
PROGRAM power;
VAR mass,acceleration : REAL;

FUNCTION force(m,a : REAL) : REAL;
BEGIN
force (= m * a
END; (* mtimesa *)

11-5 Jan. '82

SECTION 11 - PROCEDURES AND FUNCTIONS

BEGIN
READ(mass,acceleration);
WRITELN (force(mass,acceleration))

END. (* power *)

11.4 GLOBAL AND LOCAL VARIABLES
A variable is defined in the routine in which its definition appears

and in any procedures or functions defined within the routine. For

example:

PROGRAM levell;
VAR a,b : INTEGER;

PROCEDURE level2A;
VAR c¢,d : CHAR;

FUNCTION level3;
VAR e,f : BOOLEAN;

BEGIN
END; (* level3 *)

BEGIN
END; (* level2A *)

FUNCTION levelZB;
VAR g,h : REAL
BEGIN
END; (* levelZB *)

BEGIN
END. (* levell *)

Jan. '82 11-6

SECTION 11 - PROCEDURES AND FUNCTIONS

This example is only a skeleton ot a program since all parameters and
statement blocks are missing. However, it will serve to illustrate
the point. The variables "a"” and "b" are called global variables and
can be accessed throughout the program and its subroutines. “c" and
"d" can be accessed in the procedure “"level2A” and in FUNCTION
level3d. "e" and "f" are local to "level3™, as "g" and "h" are to
"levelZB”. If PROCEDURE level2A called by FUNCTION level2B, "g" and
"h" could not be accessed within the procedure level2A even if they
were passed as parameters. ~g" and "h"” will be undefined when

levelZB is initially called and they must be initiated by levelZB.

If a procedure or function is passed a variable as the value for one
of its parameters, any changes to that value in the subroutine would
not affect the variable's value in the calling program. For example:

PROGRAM outer;

PROCEDURE called(value : INTEGER);
BEGIN

value := 10
END; (* called *)

PROCEDURE test;
VAR value : INTEGER;
BEGIN
value := 5;
called(value); (* call procedure *)
WRITE(value); (* write resultant value *)
END; (* test *)

BEGIN
test

END. (* outer *)

The number that would be written out when the program executes would
be 5", not "10", because the changes "called” effected would be lost

11-7 Jan. '82

SECTION 11 - PROCEDURES AND FUNCTIONS

after control left the procedure; however, if "value” in "called”

were a VAR parameter, the result would be "10".

Varying Parameters

There are times when changes that occur in a subprogram should affect
the corresponding values in the calling program. Therefore, it 1is
possible to declare a parameter varying, meaning that any changes to
it in the subprogram will be reflected in the calling routine. This
is done by preceding the variable name in the called routine's
parameter list with the reserved word VAR. The call to the routine
is not changed except that the corresponding value must be a

variable. Going back to the same example, if the heading:

PROCEDURE called(VAR value : INTEGER);

were used, the resultant value at the end of the program would be a

“10". A sample program is shown on the next page.

Jan. '82 11-8

SECTION 11 - PROCEDURES AND FUNCTIONS

Example:
PROGRAM bankstatement(Input,Qutput);

VAR id ,number : INTEGER;
balance : REAL;

FUNCTION newbalance(trans,bal : REAL):REAL;
BEGIN
newbalance := bal + trans (* calculate new balance *)

END; (* newbalance *)

PROCEDURE statement(identification,numbertrans : INTEGER;
VAR balance : REAL);
VAR counter : INTEGER;
transaction : REAL;
transtype : CHAR;
BEGIN
FOR counter := 1 TO numbertrans DO
BEGIN
WRITELN('Amount and type of transaction:');
READ(transaction,transtype);
IF (transtype='d') OR (transtype='D') (* write amount %)
THEN WRITE(transactiom:15:7,'
ELSE BEGIN
WRITE(transaction:30:7);
transaction := —transaction
END: (* ELSE *)
balance := newbalance(transaction,balance); (* call function *)
WRITELN(balance:20:7) (* write balance %)
END (* FOR *)
END; (* statement*)
BEGIN
REPEAT
WRITELN;
WRITELN('ID number, number, number of transactions, and balance');
READLN(id,number,balance);
statement (id ,number ,balance); (* call procedure %)
IF balance < 0.0 THEN WRITELN('Account overderawn by $',balance)

UNTIL id = O
END. (* bankstatement *)

11-9 Jan. '82

SECTION 12
PASCAL INTRINSICS

SECTION 12
PASCAL INTRINSICS

12.1 INTRODUCTION

Intrinsics in the context of Monroe PASCAL are built-in functions
always available with the system which perform specific mathematical,
string, input/output, character array manipulations or miscellaneous

operations. A user program can include a call to an intrinsic
whenever it requires the execution of any of these operations. These
functions can save a gréat deal of coding time. They enable the user
to include the function without having to know the details behind

them.
This section discusses five types of intrinsics:

1. String

2. Input/output

3. Character array manipulation
4. Mathematical

5. Miscellaneous

12.2 STRING INTRINSICS
PASCAL contains predefined functions and procedures that are designed
to manipulate strings. Table 12-]1 summarizes the string intrinsics

that are available.

Table 12-1. String Intrinsics

Heading Description

CONCAT Concatenates one or more strings together.

COPY Returns a string copied from another string.
DELETE Removes characters from a string.

INSERT Inserts one string into another.

LENGTH Returns the length of a given string.

POS Returns the position of the first occurrence of a

character sequence within a string.

12-1 Jan. '82

SECTION ‘12 - PASCAL INTRINSICS

CONCAT Function

Function: Returns a string which in the concatenation of all

the strings passed to it.

Definition: FUNCTION CONCAT(<stringl>|,string2,...

:STRING) : STRING
Calling Format: CONCAT (<stringl>|,string2,...|)
Arguments: All the arguments may be predefined string

variables or strings of characters enclosed in

single quotes. There may be two or more strings.

Use: This is used to join several strings into ome long
string.
Note: There must be at least two strings. All strings

are separated by commas. The concatenated string

must be smaller than 212 characters or a run—time

error will occur.

Examples: charstring := ' ABCDEFGHIJKLMNOPQRSTUVWXYZ ' ;
numstring := '1234567890';
otherstring := "#$,;*.:17/";

Ex. 1 WRITELN('The alphanumeric characters are ',CONCAT
(charstring,numstring));
output: The alphanumeric characters are ABCDEFGHI
JKLMNOPQRSTUVWXYZ 1234567890

Ex, 2 str := CONCAT(numstring,otherstring);
WRITELN(str);
output: 1234567890#$,;%.:17/

Jan. '82 12-2 CONCAT

SECTION 12 - PASCAL INTRINSICS

COPY Function

Function:

Definition:

Calling Format:

Arguments:

Note

Examgles:
Ex.

Ex.

COPY

1

2

Returns a string copied from a specified string
which contains all or part of that string.

FUNCTION COPY(<string>:STRING:<index>,
<size>:INTEGER):STRING

COPY(<string>,<{index>,<{sized)

The string may be any defined string variablé‘br
sequence of characters enclosed in single quotes.
The index is the position of the first character to
be copied. The size is the number of characters to

be copied. -

COPY is often used to copy portions of a string
into another one without using an index and manual

incrementing.

The index plus the size arguments must be less than

or equal to the length of the string.

person := 'Susan Smith';
firstname := COPY (person,l,5);
WRITELN(firstname);

output: Susan
address := 'l124 Drummond Avenue, Madisonville, NJ

07953"';
zip := COPY(address,LENGTH(address)=4,5);

12-3 Jan. '82

SECTION 12 - PASCAL INTRINSICS

DELETE Procedure

Function:
Definition:

Calling Format:

Arguments:

Examgle:

Jan. '82

Delete characters from a string.

PROCEDURE DEtETE((string):STRING;(index),(size>:INTEGER)
DELETE(<string>,<index>,<{size)

The string can be any defined string variable. Thr

index is the position of the first of value

characters to be deleted.

The procedure is used to save the programmer from
deleting portions of a string.

The string variable's length value is changed when
the characters are removed in the DELETE procedure.

The index plus the size should not be longer than
the length of the string.

overstuffed := 'This string is too long';
DELETE(overstuffed, POS('to',overstuffed),4);
WRITELN(overstuffed);

outpﬁt: This line is long.

12-4 DELETE

SECTION 12 - PASCAL INTRINSICS

INSERT Procedure

Function:

Definition:

Calling Format:

Arguments:

Note:

Examgle:

INSERT

Inserts characters into a string.

PROCEDURE INSERT(<source>:STRING;VAR<destination>
:STRING;<index>:INTEGER)

INSERT (<source string>,{destination string>,<{index>)

The source string can be either a defined string
variable or a series of characters enclosed in
quotes. The index is an integer number that
represents the position where the source string

will be inserted in the destination string.

This is the easiest way to insert characters into a
string.

A compile time error will occur if the destination
string is not a variable.

The character in the indexth position will appear

after the insertiom.

word := 'Fascinated.';
INSERT('ion unlimit',word,9);
WRITELN(word);

output: Fascination unlimited.

12-5 Jan. '82

SECTION 12 - PASCAL INTRINSICS

LENGTH Function

Function:

Definition:

Calling Format:

Argument:

Use:
Examgles:

Ex. 1

Ex. 2

Jan. '82

Returns the number of characters in a string.
FUNCTION LENGTH(<string):STRING):INTEGER
LENGTH(<string>)

The string may be a declared string variable or a
series of characters enclosed by single quotes.

It is used to determine a string's lemgth. It is
especially useful in working with buffers.

numberstring := '132479';
WRITELN(LENGTH(numberstring):10);
output: 6

IF(LENGTH(buffer) = maxbufferlength) THEN
WRITELN('Buffer overflow.');

12-6 LENGTH

SECTION 12 - PASCAL INTRINSICS

POS Function

Function:

Definition:

Calling Format:

Arguments:

Note:

Examples:

Ex. 1

Ex. 2

POS

Returns the position of the first character in the
first occurrence of a pattern in a string.

FUNCTION POS(<pattern>,<{string>:STRING):INTEGER

POS(<pattern>,<string>)

The pattern is a character or string enclosed in
quotes. <string> is the text that is being

scanned.

The position of a character in a string is required
for INSERT and DELETE.

If the pattern is not found, a zero will be
returned. The position of the first character is

one.

WRITELN(POS('tu','congratulations'));
output: 7

str := 'Keep something hidden.';
DELETE(str,POS('s',str),
POS('g',str)-POS('s',str) +2);
WRITELN(str); '

output: Keep hidden.

12=7 Jan. '82

SECTION 12 - PASCAL INTRINSICS

12.3 INPUT AND OUTPUT INTRINSICS

Almost every program performs some 1/0, often involving files. The

functions and procedures discussed in this section make it possible

to do so. Table 12-2 summarizes these intrinsics.

Table 12-2. Input/Output Intrinsics

Heading Description

BLOCKREAD Transfers blocks of data from a file to an array
and returns the byte count.

B LOCKWRITE Transfers blocks of data from an array to a file
and returns the byte count.

CLOSE Closes and deletes files.

EOF Returns a True value when the end of a file is
reached.)

EOLN Returns a True value when the end of a line is
reached.

GET Reads data from a file.

INP Reads a value from a port.

IORESULT Holds the result codes of I/0 operatioms.

ouT Writes a value to a port.

PAGE Sends a page carriage control to a text file.

PUT Writes data to a file.

READ Reads data from a file or the keyboard, but does
not search for an end-of-line.

READLN Reads a line of input until the first position of
the next line.

RESET Prepares a file to be read.

REWRITE Prepares a file to be written.

SEEK Changes the order in which data is accessed from a
file.

WRITE Outputs variables and strings but does not send the

cursor to a new line when it has completed.

WRITELN OQutputs a line and a carriage return.

Jan. '82 12-8

SECTION 12 - PASCAL INTRINSICS

BLOCKREAD Function

Function:

Definition:

Calling Format:

Arguments:

Note:

Examgle:

BLOCKREAD

Transfers data from a file into an array and return
the count on the number of bytes that were actually
read.

FUNCTION BLOCKREAD(<Kfd>:FILE;<array ident>
:ARRAY;<number of blocks>:INTEGER|,first block
: INTEGER |) : INTEGER

BLOCKREAD(<fd>,<array id>,<block count|,first
block|)

The fd is the file descriptor (see Section l.4).
It cannot be defined as TEXT, though it may be of
type CHAR. The array identifier is any
user—defined array with the same type as the file.
Its length should be an integer multiple of the
number of values per block, i.e. 128 for INTEGER
and CHAR files and 64 for REAL files. The <number
of blocks> is the integer number of blocks that
need to be transferred. Firstblock is an integer
that indicates the block relative to the start of
the file that should be read first. The file
always starts with block zero and is read
sequentially.

This function easily manipulates blocks of

‘unformatted data.

There is no automatic range checking performed omn
the array. If it is too large, it may be filled
with garbage. 1If it is too small, some of the
information will be lost.

I := BLOCKREAD(testfile,thenline,1l,1);

WRITELN(I);

output: 256

note: This would read the second block of
“testfile” and put it in the array
“thenline”.

12-9 Jan. '82

SECTION 12 - PASCAL INTRINSICS

BLOCKWRITE Function

Function:

Definition:

Calling Format:

Arguments:

Examgle:

Jan. '82

Transfers data from an array into a file and
returns the count of the number of bytes that were

actually transferred.

FUNCTION BLOCKWRITE(<Kfd>:FILE;<array ident>
:ARRAY;<number of blocks>:INTEGER|,firstblock
: INTEGER |) : INTEGER

BLOCKWRITE(<fd>,<array ident>|,<block count>|,
first block|)

The fd is the file descriptor (see Section 1l.4).
It cannot be defined as TEXT. The array identifier
is any user-defined array with the same type as the
file. 1Its length should be any integer multiple of
the number of values per block, i.e. 128 for
INTEGER and CHAR files and 64 for REAL files. The
<number of blocks> is the integer number of blocks
that need to be transferred. Firstblock is amn
integer that indicates the block relative to the
start of the file that should be written to first.
The file always starts with block zero and is read
sequentially.

This function easily manipulates blocks of
unformatted data.

There is no automatic range checking performed on
the array. If it is too large, not all the
information will be transferred. If it is too
small, garbage will be used as fill-in.

I := BLOCKWRITE(testfile,thenline,2);

WRITELN(I);

output: 512

Note: This would transfer "thenline™” into two
blocks of "testfile” starting wherever the
file pointer is positioned.

12-10 BLOCKWRITE

SECTION 12 - PASCAL INTRINSICS

CLOSE Procedure

Function:
Definition:

Calling Format:

Arguments:

Use:

Note:

Examgle:

CLOSE

Closes and deletes files.

PROCEDURE CLOSE(<fd>:FILE|,PURGE|)

CLOSE(<£d>| ,purge|)

The fd is the file descriptor (see Section 1l.4).

CLOSE closes files that have been opened in a

program or deletes files so they can be rewritten.

I1f the file is not open, the procedure will have no
effect. A closed file cannot be deleted by CLOSE.

PROGRAM testvalues(input,output,next);
VAR next:FILE OF INTEGER;

BEGIN

REWRITE(next,'PAS:next');

IF (IORESULT <> 0) THEN

BEGIN
RESET (next, 'PAS:next');
CLOSE(next ,PURGE) ; (* close and delete *)
REWRITE(next,'PAS: next')

END;

CLOSE(next) (* close *)
END:

12-11 Jan. '82

SECTION 12 - PASCAL INTRINSICS

EOF Function

Function:

Definition:

Calling Format:

Arguments:

Examgle:

Jan. '82

Returns a boolean value indicating whether the end
of specified file has been reached.

FUNCTION EOF(<fd>:FILE) :BOOLEAN

EOF(<£d>)

The fd is any user-defined file descriptor (see
Section 1.4).

EOF is used when a file is being read to avoid
errors. EOF is false immediately after file is

opened and true on a closed file.

WHILE NOT EOF(DATA:testfile) DO
BEGIN. o e

12-12 EOF

SECTION 12 - PASCAL INTRINSICS

EOLN Function

Function:

Definition:

Calling Format:

Arguments:

Note:

Examgle:

EOLN

Returns a boolean value indicating whether the
pointer for a specified text file in at end of a
line.

FUNCTION EOLN(<fd>:TEXT FILE):BOOLEAN

EOLN(<£d>)

The fd is the user~-defined file descriptor (see
Section l.4).

The EOLN function determines if the end of a line
has been reached in a textfile. EOLN returns a
false value immediately after the file is opened
and true on a closed file.

The file must be TEXT or the EOLN function will

have unexpected results.

chr := testfile;
WHILE NOT EOF (testfile) DO
BEGIN
IF EOLN(testfile)
THEN WRITELN
ELSE WRITE(chr);
GET (testfile);
chr := testfile
END; (* WHILE *)

12-13 Jan. "82

SECTION 12 - PASCAL INTRINSICS

GET Procedure

Function:
Definition:

Calling Format:

Argument:

Use:

Note:

Examgle:

Change A, May '82

Reads data from a file.
PROCEDURE GET (<£fd>:FILE)

GET (<£fd>)
The fd is the file descriptor (see Section 1.4).

The GET procedure is the only routine that can
retrieve a value from a file that is not of type
TEXT.

A pointer variable is associated with and
implicitly defined by the file. It is of the form:

<fd> "~

A buffer is assigned to the variable name into
which the value is being read. The buffer is
updated automatically by GET. Note that only one
buffer is allocated per file.

The procedure must be preceded by a RESET which

prepares the file to be read and initializes the

buffer.

RESET (out); (* Pointer moves to lst value and
reads it *)
(* then moves pointer to 2nd value *)
WHILE NOT EOF(out) DO
BEGIN
X := out”; (* assign value *)
GET(out); (* reads next record *)
WRITELN(X:10:5)
END;

12-14 GET

SECTION 12 - PASCAL INTRINSICS

IORESULT Function

Function: Returns the I/0 codes giving the results of the

last I/0 operations.
Definition: FUNCTION IORESULT:INTEGER

Calling Format: IORESULT

Arguments: None.
Use: This function tests for errors in I1/0 such as

during RESET and REWRITE.

Note: If the operation succeeds, IORESULI returns a zero.

Otherwise, it returns a positive integer.
Example: REWRITE(test,name);
sxamp_.€

IF IORESULT <> O
THEN BEGIN...

IORESULT 12-15 Jan. '82

SECTION 12 - PASCAL INTRINSICS

PAGE Procedure

Function:

Definition:

Calling Format:

Argument:

Jan. '82

Sends a top—of-form character to a file.

PROCEDURE PAGE(<fd>:TEXT FILE)

PAGE(<£d>)

The fd is the file descriptor of a TEXT file (see

Section 1.4).

PAGE is often used in text-editing programs and to

make output more readable.

e e T eaT AT ROT BRG Ze)e
VAR paper:TEXT;
word : STRING;
BEGIN . .., Y
READLN(word) ;
WHILE (word <> '') DO
BEGIN '

IF (word <> 'page')
THEN WRITELN (paper,word)
ELSE PAGE (paper);
READLN (word)
END; (* WHILE *)
END.

12-16

PAGE

"4

SECTION 12 - PASCAL INTRINSICS

PUT Procedure

Function: Writes a buffer to a file.
Definition: PROCEDURE PUT(<fd>:FILE)

Calling Format: PUT(K£d>)

Argument: The fd is the file descriptor (see Section 1.4).
Use: PUT is used to write to non-TEXT files.
Note: A pointer variable is associated with and

implicitly defined by the file. Its form is:

<fd>

This variable must be assigned a buffer from the
heap. The buffer is assigned a value and then it
is written to the file. The buffer's contents are
undefined after a PUT.

ez fmm, e
Example: READ(X); (* input from the screen *)
WHILE X <> 0 DO
BEGIN
outt:= X;
PUT(out); (* written to out *)
READ(X) (* input from the screem ¥)
END;
N SR PR EE A
.-C_/(:;f W4 s 5] -
| , TN
< T

PUT 12-17 Jan. '82

SECTION 12 - PASCAL INTRINSICS

READ Procedure

Function: Reads data from a file or the keyboard and assigns
it to a variable list.

Definition: PROCEDURE READ(|fd:TEXT FILE,|<variable list)>)

Calling Format: READ(Kfd>|,variable list|)

Argument: The fd is the TEXT file descriptor (see Section
1.4) from which the data will be read. If it is
omitted, the keyboard will be used. The variable
list may contain any standard or scalar data types.
They must be CHAR or STRING type if a filename is
used and must all be pfoperly disclosed in the
program block.

Use: The READ procedure reaas values from the keyboard
or from TEXT files.

Note: The READ statement will read only as many values as
there are parameters. Lf too few identifiers are
listed, not all of the desired input will be
received. 1If too few values are listed, the
computer will wait until the remaining values are

entered.

If an integer variable is assigned a REAL value,
the decimal part will be truncated. If a REAL
variable is assigned an INTEGER value then the
number will be comverted to a REAL value. Both
variable types assign zeroes if a character is read

where a number is expected.

Jan. '82 12-18 READ

SECTION 12 - PASCAL INTRINSICS

Examgle:

Ex. 2

Ex. 3

Ex. 4

READ

VAR charval: CHAR;
realnum: REAL;
integernum: INTEGER;
BEGIN
READ (realnumber, integernum, charval);

WRITE (realnumber, ' ', integernum, ' ' charval);

input: 13.5 98 Letter
output: 1.3E+01 98 L

input: 33 87.7 Character
output: 3.3E+01 87 C

input: champ letter 7.5
output: O0.0E+00 0 7

READ(LETTER, charval); (* LETTER is a TEXT file *)

12-19

Jan.

'82

SECTION 12 - PASCAL INTRINSICS

READLN Procedure

Function:

Definition:

Calling Format:

Arguments:

Note:

Examples:

Ex. 2

Ex. 3

Jan. '82

Reads a line of input.

PROCEDURE READLN| (fd:TEXTFILE) |
or
PROCEDURE READLN(| £d:TEXTFILE, |<variable list>)

READLN| (£d) |
or
READLN(<Kfd>|,variable list|)

The variable list identifier(s) may contain CHAR,
INTEGER, REAL OR STRING types. Integers and reals
must be terminated/separated by a space or { on
input.

READLN is used for reading in strings. It is
especially useful for text manipulations. The
first format will skip the rest of a line.

Caution must be used to insure that a REAL or
INTEGER variable does not appear among the
identifiers, or the system will either crash or

assign garbage to the variable.

VAR data:STRING;
READLN(data);
WRITELN(data);

input: 'The dog came home.'
output: 'The dog came home.'

input: Homeward.
output: Homeward.

READLN(LETTER,data); (* LETTER is a TEXT file *)

12-20 READLN

SECTION 12 - PASCAL INTRINSICS

RESET Procedure

Function: Prepares a file to be read. . P
D T Y TU UL B DELAELT
Definition: PROCEDURE RESET (<fd>:FILE|,title:STRING|)
v
Calling Format: RESET(<fd>){,title]|)
Arguments: The fd is the file descriptor (see Section l.4).

The title is a string or string variable of the

form:
T<EAD!
The two <fd's> should be the same.

Use: The file pointer is set to the first element in the
file and prepares it to be read from. If the title
is included, the file is opened before the pointer

is changed.

Note: RESET will only open a file if the title portion is
included. Also, if the file does not already
exist, RESET will not create or open it.

If the file is open and another RESET is attempted,

an error will be returned in IORESULT and the file

status will remain unchanged.

Examples:

Ex. 1 name := 'DATA:testfile’;
RESET(testfile,name);
Ex. 2 RESET(testfile);

READ(testfile,value);

RESET 12-21 Jan. '82

SECTION 12 - PASCAL INTRINSICS

REWRITE Procedure

Function:
Definition:

Calling Format:

Arguments:

Note:

Example:

Jan. '82

Create files and prepare them for writing.
PROCEDURE REWRITE(<Kfd>:FILE;<title>:STRING)
REWRITE(<fd>,<titled>)

The fd is the file descriptor (see Section 1l.4).
The title is a string variable of the form:

'fd'

The two <fd's> should be the same.

The file is created, its pointer is set to the
first position in the file, and it is prepared for
writing.

REWRITE will return an error in IORESULT if the
file already exists and the file will not be
opened. For this reason, REWRITE can only be used
once in a program in reference to a file unless it

is deleted in the program.

name := 'DATA:test';
REWRITE(test,name);
IF (IORESULT <> 0)
THEN BEGIN
RESET(test,name);
CLOSE(test ,PURGE);
REWRITE(test ,name)
END;

12-22 REWRITE

SECTION 12 - PASCAL INTRINSICS

SEEK Procedure

Function:

Definition:

Calling Format:

Arguments:

Use:

Note:

Examgle:
Ex. 1

SEEK

Changes the order that data is accessed from a
file,

PROCEDURE SEEK(Kfd>:FILE;<record number>:
INTEGER)

SEEK(<fd>,<record number>)

The fd is the file descriptor (see Section l.4).
The record number is the number of the record being
sought, relative to the start of the file. It must
be a positive integer. The first record number is

zero.

It is used either to read or write from a place

that is not the start of the file.

The file can be of any type except TEXT. A record
is defined as the structure (either simple or
complex) of the file type. For example, a single
value is a record in a file of REAL's, an array is

a record in a file with an array as its base type.

AR files : FILE OF REAL;

temp : REAL;

SEEK (files,l);
(* points to the second real valuerin "files" *)

12-23 Jan. '82

SECTION 12 - PASCAL INTRINSICS

Ex. 2 TYPE recks = RECORD
link : INTEGER;
data : REAL; -
END;
VAR filenamé : FILE OF recks;
tempreck : recks;
con : INTEGER;
BEGIN
(* put data in the file *)
con := 2; '
SEEK(filename, con);
GET(filename);
tempreck := filename ;
WRITELN (tempreck.link, tempreck.data);

END.

‘input: 1 1.5
2 3.1
4 5.7
0 -904

output: 4 5,7

Jan. '82 12-24 SEEK

SECTION 12 - PASCAL INTRINSICS

WRITE Procedure

Function:

Definition:

Calling Format:

Arguments:

(o]
n
M

WRITE

Outputs variabies and strings.
PROCEDURE WRITE(|fd:TEXT FILE,|<item list>
WRITE(<fd>|,item list|)

The fd is the file descriptor (see Section l.4).
The <item list> may be any INTEGER, REAL, or CHAR

identifier or a character string inclosed in
quotes. The items in the item list can be

represented as:

{item 1|,item 2,000 |2

An item can either be a -

{string expression> (a string variable or a char-
acter string inclosed in
quotes).

or

<expression>|:field width|:precision] |

which is used to format numeric output.

Field width is an integer constant that specifies
the number of character positions to use in
displaying the value. The default is the minimum

number needed to express the value.

Precision is an integer or constant from one to six
charcters that specifies the number of deé¢imal

places to be used. The default is one integer.

The WRITE statement is used to output a program's
results. It is also used to document output

through character strings.

12-25 Jan. '82

SECTION 12 - PASCAL INTRINSICS

Note: WRITE starts writing wherever the cursor is. To
start on a new line, refer to the WRITELN

statement. It does not leave spaces between

outputted values.

Examples: .
amount:= 55.347*10.0;
counter:= 455;

name:= 'Homer';
’

Ex. 1 WRITE(amount,' ' ,counter,’' ', name);
output: 5.5E+02 455 Homer

Ex. 2 WRITE(amount:15:6, amount:15:4);
output: 5.53470E+02 5.534E+02

Ex. 3 WRITE(counter:15, amount:15:3);
output: 455 5.53E+02
Ex. &4 WRITE(counter,' ', name);

output: 455 Homer

Ex. 5 WRITE(LETTER,name); (* LETTER is a TEXT file *)
Ex. 6 RESET (PN, 'PR:");
WRITE(PN,amount,' ', counter,' ',name);
WRITELN(PN);

5.5E+01 455 HOMER (Result on printer)

Change A, May '82 12-26 WRITE

SECTION 12 - PASCAL INTRINSICS

WRITELN Statement

Function:

Definition:

Calling Formact:

Arguments:

WRITELN

Qutputs a line and a carriage return.

PROCEDURE WRITELN|(fd:TEXT FILE)|
or

PROCEDURE WRITELN(|fd:TEXT FILE,|<item list>

WRITELN| (<£d>) |
or

WRITELN(<Kfd>|,item list]|)

The fd is the file descriptor (see Section l.4).
The <item list)> may be any INTEGER, REAL, or CHAR
ident{fier or a character string inclosed in
greater. The items in the item list can be

represented as:

ditem 1|, item 2,...[>

An item can either be a -

{string expression> (a string variable or a char-
acter string inclosed in
greater)

or

<expression>|:fileid width|:precision]||

which is used to format numeric output.

Field width is an integer constant that specifles
the number of character positions to use in
displaying value. The default is the miaimum

number needed to express the value.
Precision is an integer or constant from one to six

characters that specifies the number of decimal

places to be used. The default is one digit.

12=-27 Jan. '82

SECTION 12 - PASCAL INTRINSICS

Use: The first form of the statement skips to the next
line. It is used to skip a line or to begin output

on a new line.

The second form is used to output a series of
values and character strings. It is often used as

a prompt in interactive programs.

Note: WRITELN stops on the first space of the second
line. If a second line is being outputted, it will

start in the second print position.

Examples: :

amount:= 55.347;
~ counter:=455;

name:="Homer"';

°
L
®

Ex. 1 WRITE(amount);
WRITELN(counter);
WRITELN(name) ;

output: 5.5E+01455

Homer

—

Ex. 2 WRITE(name);
WRITELN;
WRITELN(amount ,counter);

output: Homer
5.5E+01455

Change A, May '82 12-28 WRITELN

SECTION 12 - PASCAL INTRINSICS

Ex. 3 WRITELN:
WRITELN ('His name is ',name,'.');

output:
His name is Homer.
Ex. 4 WRITELN(LETTER,name); (* LETTER is a TEXT file *)
Ex. 5 RESET(PN, 'PR:"');

WRITELN(PN, amount,' ',counter,' ', name);
5.5E+01 455 Homer (Result on printer)

WRITELN - 12-29 Jan. '82

SECTION 12 - PASCAL INTRINSICS

12.4 CHARACTER ARRAY MANIPULATION INTRINSICS
Character arrays are often difficult to manipulate, especially when

they are packed. The intrinsics in this section simplify array
manipulations. However, they require a thorough understanding of
arrays in PASCAL.

These intrinsics are all byte oriented. Use them with care as no

range checking is performed on the kpassed parameters.

The following table summarizes the procedures presented in this

section.

Table 12-3. Character Array Manipulation Intrinsics

Heading Description

FILLCHAR Places a character into an array a specified
number of times.

MOVELEFT Moves characters from the left end of one string
to the left end of another.

MOVERIGHT As MOVELEFT but in the opposite direction.

SCAN Finds the distance a character is from a

starting point.

Jan. '82 12-30

SECTION 12 - PASCAL INTRINSICS

FILLCHAR Procedure

Function:

Definition:

Calling Format:

Argggents:

Example:

FILLCHAR

Places a character into a packed array a specifiea
number of times.

PROCEDURE FILLCHAR(<array>:ARRAY;<length>:INTEGER;
<{character>:CHAR)

FILLCHAR(<Larray>,<{length>,<{character>)

The array must be a PACKED ARRAY of CHAR. The
character is a single character enclosed in quotes
or a variable of type CHAR. The length is the
number of characters to place in the array. It
must be an integer.

The procedure transfers a character with only one
memory reference.

The array may be subscripted. If it is, the
character will be placed in the array starting at

the indexed position.

PROGRAM FILL(OUTPUT);
TYPE
ARR=PACKED ARRAY(1l..50] OF CHAR;
VAR
ARR1 :ARR;
I : INTEGER;
BEGIN(*FILL*)
FOR I:=1 TO 10 DO
BEGIN
ARRI[I]:="A";
WRITELN(ARRLI[I]) (* PRINTS 10 A's *)
END;
WRITELN;
FILLCHAR(ARRL,S5,'B'); (* REPLACES FIRST FIVE
A's WITH B's *)
FOR I:=1 TO 10 DO
WRITELN(ARRLI([I]) (* PRINTS 5B's and 5
A's *)
END. (* FILL *)

12-31 Change A, May '82

SECTION 12 - PASCAL INTRINSICS

MOVELEFT Procedure

Function: Moves a specified number of characters from the

left end of one string to the left end of another.

Definition: PROCEDURE MOVELEFT (VAR<source),<{destination>:CHAR;
<length>:INTEGER)

Calling Format: MOVELEFT (<{source)>,{destination>,<length>)

Arguments: <{source> is in the source string and <destination>
is in the destination string. The length is the
number of characters to be moved. It must be a
positive integer.

Use: The procedure is used to transfer characters from
one part of a packed character array to another.

Note: <{source> and <destination> may be the same array.
I1f they are subscripted then the indexed positions

are assumed to be the left ends of the strings.

Example: using: VAR str: STRING(31l];
next : STRING([1ll];
str := 'This is the text in this string';
next := 'Programming'; (* ALL EXAMPLES ARE BUILDING *)

Ex. 1 MOVELEFT(str(1],str(3],10); WRITELN(str);
output: 'ThThThThThThtext in this string'

Ex. 2 MOVELEFT(str[17],str{3],9); WRITELN(str);
output: 'Th in this htext in this string'

Ex. 3 MOVELEFT(str{ll],str[1l2],1); WRITELN(str);
output: 'Th in this text in this string’
MOVELEFT (next,str,11); WRITELN(str);

output: 'Programming text in this string'

Jan. '82 12-32 MOVELEFT

SECTION 12 - PASCAL INTRINSICS

MOVERIGHT Procedure

Function:

Definition:

Calling Format:

Arguments:

Examples: using:

Ex. 1

Ex. 2

MOVERIGHT

Moves a specified number of characters from che
right end of one string to the right end of

another.

PROCEDURE MOVERIGHT (VAR<source>,{destination>:CHAR;
<{length)>:INTEGER)

MOVERIGHT (<source),<destination>,<length>)

{source> is in the source string and <destination>
is in the destination string. The length is the
number of characters to be moved. It must be a

positive integer.

The procedure is used to transfer characters from

one part of a packed character array to another.

{source> and <destination> may be in the same
array. If they are subscripted then the indexed
positions are assumed to be the left end of the
strings.
VAR str: STRING[31];
STRING[11];

str := 'This is the text in this string';

next

next

MOVERIGHT(str(l], str(3],10) ' WRITELN(str);
output: ThThis is thtext in this string
MOVERIGHT(str{17]),str[3],9); WRITELN(str);

output: Th in this htext in this string

12-33 Jan. '82

:= 'Programming'; (* ALL EXAMPLES ARE BUILDING *)

SECTION 12 - PASCAL INTRINSICS

Ex. 3 MOVERIGHT (next,str,11); WRITELN(str);
output: Programminghtext in this string

Ex. & MOVERIGHT (next[l],next[5],5); WRITELN(next)
output: ProgrProgrng

Jan. '82 12-34 MOVERIGHT

SECTION 12 - PASCAL INTRINSICS

SCAN Function

Function:

Definition:

Calling Format:

Arguments:

Use:

Note:

SCAN

Returns the distance a character is from a

specified starting point in a string.

FUNCTION SCAN(<length>:INTEGER;<partial expression>
;<array>:CHAR) : INTEGER

SCAN(<length)>,<{partial expression>,<array>)

The length is a positive or negative integer. The
partial expression is either an equal (=) or not
equal (<>) sign followed by a character expression.
The array should be a PACKED ARRAY of CHAR and may

be subscripted to denote the starting point.

SCAN determines the number of characters from the
starting position to a character expression. It is
often used in conjunction with MOVELEFT and
MOVERIGHT.

The value returned by the function will be either
the specified length or the number of characters
from the starting position to the first occurrence
of the character expression. The length will be
returned if the character is not in the array. If
it is in the starting position the resultant value

will be zero.
If the length is a negative integer, the function

will scan backward from the starting position and

the returned value will be negative.

12-35 Jan. '82

SECTION 12 - PASCAL INTRINSICS

Examples: Using the packed array, arr, with the value:

'"There he goes again.'

Ex. 1 SCAN(15, ='T',arr) = 0

Ex. 2 SCAN(10, <> 'T',arr) =1

Ex. 3 SCAN(10, 'g',arr[6]) = 4

Ex. &4 SCAN(100, = 'z',arr) = 100
Ex. 5 SCAN(-10, = 'e',arr[10]) = =2

Jan. '82 12-36

SECTION 12 - PASCAL INTRINSICS

12.5 MATHEMATICAL FUNCTIONS
Monroe PASCAL contains predefined functions that perform mathematical

functions. Table 12-4 summarizes the functions that are available.
A detailed description of each function follows this table.

Table 12-4. PASCAL Mathematical Functions

Function Description

ABS Returns the absolute value of a value.

ARCTAN Returns the arctangent of a value.

cos Returns the COS of a value.

EXP Returns the exponential function of a value
(i.e., e value).

LN Returns the material logarithm of a value
(i.e., log e value).

LOG Returns the common logarithm (base 10) of a
value.

MOD Returns the remainder when one integer is

divided by another.
oDD Returns a BOOLEAN value specifying whether an
integer is odd.

ROUND Returns the integer representation of a REAL
number (rounded).

SIN Returns the sine of a value.

SQR Returns the square of a number.

SQRT Returns the square root of a number.

TRUNC Returns the INTEGER representation of the

decimal portion of a REAL number

(truncated).

12=-37 Jan. '82

SECTION 12 - PASCAL INTRINSICS

ABS Function

Function:
Definition:

Calling Format:

Argument:

Note:

Jan. '82

Returns the absolute value of a number.
FUNCTION ABS(<value):REAL or INTEGER):REAL or INTEGER
ABS(<value>)

The value may be any constant, variable, or
expression that represents a number.

The ABS function is used when the value being
sought must be positive. It is often used in
conjunction with SQRT.

The type of the output will be the same as the
input type.
WRITELN(ABS(-1):10,ABS(-2.5):10,ABS(5.2):10);

output: 1 2.5 5.2

VAR length,X1,X2,Y1,Y2:REAL;

length := SQRT(ABS(SQR(X2-X1)+SQR(Y2-Y1)));

12-38 ABS

.

SECTION 12 - PASCAL INTRINSICS

ARCTAN Function

Function: Returns the value of the arctangent of a number.
Definition: FUNCTION ARCTAN(<value>:REAL):REAL

Calling Format: ARCTAN(<value)>)

Argument: The value may be a numeric constant, a number, a
variable with a numeric value or an expression.

Use: The ARCTAN function is used for trigonometric

calculations.

Note: The ARCTAN function acts on a radian value and

returns a REAL value in radians.

ExamEles:

Ex. 1 WRITELN(ARCTAN(0.5):13:4);
output: 4.636E-0

Ex. 2 VAR arctanY,Y:REAL;

arctanY := ARCTAN(Y);

ARCTAN 12-39 Jan. '82

SECTION 12 - PASCAL INTRINSICS

COS Function

Function:
Definition:

Calling Format:

Argument:

Note:

Examples:

Ex. 1

Ex. 2

Jan. '82

Returns the cosine of a value.

FUNCTION COS(<value>:REAL):REAL

COS(<value>)

The value may be a numeric constant, a number, a
variable with a numeric value or an expression.

The COS function is used for trigonometric

calculations.

The value is in radians, not in degrees.
that is returned is REAL and should be

for greater accuracy.

WRITELN(COS(0.5):13:4);
output: 8.776E-01

VAR X,tanX:REAL;

X = 3;
tanx := SIN(x)/COS(x);

12-40

The value
formatted

Cos

SECTION 12 - PASCAL INTRINSICS

EXP Function

Function:
Definition:

Calling Format:

Argument:

Use:

Note:

Examgles:
Ex. 1

Ex. 2

EXP

Returns the exponential function of a value.
FUNCTION EXP(<value>:REAL):REAL
EXP(<value>)

The value may be a number, a numeric constant, a
variable with a numeric value or an expression.

The EXP function is used in calculations that

involve the factor e.

The most common mathematical representation of
EXP(X) is e*.

WRITELN(EXP(.5):13:4);
output: 1.649E00

VAR E;X:REAL;

E := 5.0%EXP(X)+2%*x;

12-41 Jan. '82

SECTION 12 - PASCAL INTRINSICS

LN Function

Function: Returns the natural logarithm of a value.
Definition: FUNCTION LN(<value)>:REAL):REAL

Calling Format: LN(<value>)

Argument: The value must be a number greater than zero.
Use: The LN function is often used in calculations

involved in graphing.

Examgles:
Ex. 1 WRITELN(LN(0.5):13:4);

output: =-6.931E-01

Ex. 2 VAR X,Y:REAL;

Y := LN(2*X+5.0);

.

Jan. '82 12-42 LN

SECTION 12 - PASCAL INTRINSICS

LOG Function

Function:
Definition:

Calling Format:

Argument:

LOG

Returns the logarithm of a number.
FUNCTION LOG(<value):REAL):REAL
LOG(<value))

The value may be a number, a numeric constant, a
variable with a numeric value or an expression.

Logarithms are often used to simplify arithmetic on
very large or very small numbers.

The function returns a REAL value.
WRITELN(LOG(0.5):13:4);
output: -3.010E-01

VAR Y,X:REAL;

Y := 2*LOG(X+5);

12-43 Jan. '82

SECTION 12 - PASCAL INTRINSICS

MOD Function

* Function:

Definition:

Calling Format:

ExamEles:
Ex. 1

Jan,

'82

Returns the remainder when two integers are
divided.

FUNCTION(<value):INTEGER MOD <value):INTEGER):
INTEGER

{value> MOD <value>

Both values may be any constant, variable, or

expression that represents an INTEGER.

Since it finds the remainder after division, MOD is
often used to test if the division came out even.

The first value is divided by the second.
Therefore, the second number cannot be equal to
zero. Also, anything MOD one will always equal

zero.
If the first value is positive, the result is
positive. If it is negative, the result is

negative. This is regardless of the value of the

second value.
WRITELN(2 MOD 3:10,3 MOD 2:10 -4 MOD 3:10, -5 MOD-2
:10); '

output: 2 1 -1 -1

12-44 MOD

SECTION 12 - PASCAL INTRINSICS

Ex. 2 VAR I:INTEGER;
IVAL : STRING(S5];

IF(I MOD 2 = 0)
THEN IVAL := 'EVEN'
ELSE IVAL := 'ODD';

MOD 12-45

Jan.

'82

SECTION 12 - PASCAL INTRINSICS

ODD Function

Function:

Definition:

Calling Format:

Argument:

Use:

Examgle:

Jan. '82

Returns a BOOLEAN value specifying when an integer
is odd.

FUNCTION ODD(<value):INTEGER) :BOOLEAN

0ODD(<valued>)

The value may be any constant, variable, or

expression that represents an INTEGER value.

The ODD function is often used to determine if a
group has an even or odd number of elements. If
there are an odd number of elements this function
returns a true value. This is especially useful in

calculating medians and the like.

VAR counter: INTEGER;
truth:CHAR;

°
.

IF ODD(counter)
THEN truth := 'Y’

ELSE truth := 'N';

12-46 OoDD

SECTION 12 - PASCAL INTRINSICS

ROUND Function

Function: Returns the INTEGER representation of a REAL number
by rounding it to the closest integer.

Definition: FUNCTION ROUND(<value):REAL):INTEGER

Calling Format: ROUND(<value))

Argument: The value may be any constant, variable, or

expression that represents a REAL number.

Use: ROUND is often used to increase the accuracy when
converting a REAL to an INTEGER.

Note: If the REAL value has a five in the tenths place

and the value is positive, PASCAL will round up.
If it is negative, it will round down.

Examgles:

Ex. 1 WRITELN(ROUND(1.3):10,ROUND(1.6):10,ROUND(1.5):10,
ROUND(=-2.5):10);
output: 1 2 2 -3
Ex. 2 VAR X:REAL;

IF ROUND(X) = TRUNC(X) THEN ...

ROUND 12-47 Jan. '82

SECTION 12 - PASCAL INTRINSICS

SIN Function

Function: Returns the sine of a value.
Definition: FUNCTION SIN(<value>:REAL):REAL

Calling Format: SIN(<value>)

Argument: The value may be a numeric constant, a number, a
variable with a numeric value, or an expression.

Use: The SIN function is used in calculating

trigonometric functions.

Note: The value must be in radians, not in degrees. When
the value is outputted, it should be formatted for

greater accuracye.

Examgles:

Ex. 1 WRITELN(SIN(0.5):13:4)
output: 4.794E-01

Ex. 2 VAR X:REAL;

X =1,
WRITELN(SIN(x):13:4);
output: 8.415E-01

Jan. '82 12-48 SIN

SECTION 12 - PASCAL INTRINSICS

SQR Function

Function:

Definition:

Calling Format:

Examgles:
Ex. 1

Ex. 2

SQR

Returns the square of a value.

FUNCTION SQR(<value):REAL or INTEGER):REAL or
INTEGER

SQR(<value>)

The value may be a number, a numeric constant, a

variable with a numeric value, or an expression.
Numbers are often squared in calculations.
If the value that is squared is REAL, the result

will be REAL; if it is INTEGER, the result will be

an integer.
WRITELN(SQR(5.2):13:4,SQR(7):10);
output: 2.704E+01 49

VAR -X,Y,result: REAL;

result := SQR(X~-1)+SQR(Y-4);

12-49 Jan. '82

SECTION 12 - PASCAL INTRINSICS

SQRT Function

Returns the square root of a number.

Function:
FUNCTION SQRT(<value)>:REAL):REAL

Definition:

Calling Format: SQRT (<value>)

The value must be greater than or equal to zero.

Argument:
Many square roots of numbers are taken in
Perhaps the best-known example is in

Use:

calculations.
the formula for the distance between two points in
graphing.

Examples:

Ex. 1 WRITELN(SQRT(.5):13:5);

output: 7.071E-01
Ex. 2 VAR X,Y,dist:REAL;

dist := SQRT(SQR(X)+SQR(Y));

12-50 SQRT

Jan. '82

SECTION 12 - PASCAL INTRINSICS

TRUNC Function

Function:

Definition:

Calling Format:

Arggggnt:

Note:

Examgles:
Ex. 1

Ex. 2

TRUNC

Returns the INTEGER representation of the decimal
portion of a REAL number which has been truncated.

FUNCTION TRUNC(<value>:REAL):INTEGER

TRUNC(<value>)

The value may be any constant, variable, or

expression that represents a REAL number.

It is often used when converting REALs to INTEGERs
for further calculatiomns.

The input to the function is REAL but the output is
INTEGER. The result is not necessarily the integer

that is closest to the input.

WRITELN(TRUNC-0.2);10,TRUNC(2.6):10);
output: 0 2

VAR in:REAL;
out: INTEGER;

out := TRUNC(in*2);

12-51 Jan. '82

SECTION 12 - PASCAL INTRINSICS

12.6 MISCELLANEOUS ROUTINES

The functions and

procedures presented in this section are useful in

diverse applications of PASCAL. They are summarized in Tables 12-5

and 12-6.

Table 12=-5. Miscellaneous Intrinsics

Item
DATE

DISPOSE
EOLNCHR

EXIT
GOTOXY

HALT
MARK

NEW
OPTION
RELEASE

SIZEOF

STARTPAR
SvC

TIME
PWROFTEN

ouT
INP

Descrigtion
Gives the date.

Returns allocated memory to the heap.

Returns an integer value representing a
termination.

Results in an orderly exit.

Sends the cursor to specified positions on the
screen.

Terminates the execution of a PASCAL program.

Sets a pointer to the current top-of-heap of
available memory.

Allocates space from the heap.

Returns the starting switches.

Sets the top-of-heap pointer for the available
memory to the specified pointer.

Returns the number of bytes a variable or type
identifier represents.

Holds the starting parameters.

Executes Supervisor Calls.

Gives the time since the system was last booted.

Returns a REAL result of the number 10 raised to
the power of the integer parameter supplied.

Writes a value to a point.

Returns an integer value from an I/0 port.

Table 12-6. Logical Intrinsics

Item
IXOR
IOR
TAND
ISHIFT
ISWAP

Change A, May '82

Descrigtion

Performs exclusive OR operation.
Performs OR operatiomn.
Performs AND operation.

Returns an integer result from a shift operation.
Returns an integer with low and high byte swapped.

12-52

SECTION 12 - PASCAL INTRINSICS

DATE Function

Function:

Definition:

Calling Format:

Arguments:

Use:

Note:

Example:

DATE

Returns the date.
FUNCTION DATE:STRING
DATE

None.

The DATE function can be used to set switches or to

date program corrections.

The date is returned in a string in the format
"YYYY-MM-DD" where the Y's represent the year, the
M's represent the month, and the D's represent the

day.

i) b
N

The date must be set every day.

WRITELN(DATE);
output: 1981-09-04

12-53 Jan. '82

SECTION 12 - PASCAL INTRINSICS

DISPOSE Procedure

Function: Returns allocated memory to the heap.
Definition: PROCEDURE DISPOSE(<ptr>:POINTER)

Calling Format: DISPOSE(<ptr>)

Arguments: {ptr> is a dynamic pointer variable previously

allocated memory using NEW(<ptrd>).

Use: To return a linked list of free space to the heap.

Note: When the DISPOSE procedure is executed, the memory
is placed onto the linked list of available free
;pace. This list is then searched for a suitably
large space when a NEW is executed. The list is
cleared when a RELEASE is executed.

Example: TYPE pointer = into;

Jan.

into = RECORD
link : pointer;
data : STRING[25]

END;
VAR next : pointer;
BEGIN
NEW(next); (* allocate *)

DISPOSE(next); (* deallocate *)
END.

'82 12-54 DISPOSE

SECTION 12 - PASCAL INTRINSICS

EOLNCHR Function

Function:

EOLNCHR

Returns an integer which is a termination character
detected by READLN in the last line of input from
the console.

EOLNCHR

EOLNCHR is used to detect the CR character (13
decimal) as well as the value of the function keys
if they are pressed during the execution of the
READLN.

The console has eight function keys labelled F1/F9
through F8/Fl16.

A programmer can assign various functioms to the
function keys, e.g., cursor movenemts, write data,
read data, update data or a jump to a program
module.

The function keys can produce 32 different ASCII
values as shown in Table 12-6.

Table 12-7. Function Key ASCII Values

Key |Normal| Shift

	CTRL	Shift+CTRL		
F1/F9	128	136	144	152
P2/F10	129	137	145	153
F3/F11	130	138	l46	154
P4/F12	131	139	147	155
FS/F13	132	140	148	156
Fé/Fl4	133	141	149	157
F7/F15	134	142	150	158
F8/Fl6	135	143	151	159
RETURN	13		I I	
RUN	208	I l I		
LoaD	209	I	l	
CONTINUE	210]
HOME	199			
t	197	l I		
¢ | 198 | l | |

12-55 Change A, May '82

SECTION 12 - PASCAL INTRINSICS

In addition, the RETURN, RUN, LOAD, CONTINUE and

certain cursor keys act as terminators.

Example: program exp50(input,output); (* TEST EOLNCHR *)
CONST
CR="(:13:)"
Fl="'(:128:)'
var
index:integer;
letter:string;
(* program will detect CR or Fl keypress *)
begin
for index:=1 to 10 do
begin
readln(letter);
case eolnchr of
CR:writeln('CR pressed');
Fl:writeln('function key Fl
pressed');
end (*case¥)
end (*for¥*)

end. (*exp50%)

Change A, May '82 12-56 EOLNCHR

SECTION 12 - PASCAL INTRINSICS

EXIT Procedure

Function:

ExamEle:

EXIT

Results in an orderly exit from a brocedure,
function or main program.

EXIT(<identifier>)

Identifier is the name of a procedure, function,
program name or the word PROGRAM.

Following the execution of EXIT, processing
continues at the final end statement in the
procedure name. The procedure name need not be the
procedure currently under execution. If the
procedure has not been invoked when the EXIT 1is
executed, a run time error will occur. If the
procedure identifier passed to EXIT is a recursive
procedure, the most recent inovation of that
procedure will be exited. When an EXIT of a
function contains no assignment to the function
identifier, an undefined value will be returned.
EXIT brings the program to an orderly halt when the
program name or reserved word PROGRAM is used as
the parameter for EXIT.

program explO; (* test exit *)
var
index:integer;
procedure testexit;
begin
writeln('procedure testexit');
index:=10;
if index=10 then exit(testexit)
else writeln('noexit');
end;
begin
testexit;
end.

12-57 Jan. '82

SECTION 12 - PASCAL INTRINSICS

GOTOXY Procedure

Function: Sends the cursor to specified coordinates.
Definition: PROCEDURE GOTOXY(<x-coordinate),{y-coordinate>:
INTEGER)

Calling Format: GOTOXY(<x=coordinate>,{y-coordinate>)

Arguments: X-coordinate and Y-coordinate are both integers
such that
£ X-coordinate < 80
0 £ Y-coordinate < 22
Use: GOTOXY is used extensively in graphing.
Note: (0,0) is the top left cornmer of the screem. If

either coordinate goes out of range the edge
coordinate (0,22, or 80) will be used instead.
There is no window clipping.

Examples:
Ex. 1 I := 1;
READLN(X[I],Y[I];
WHILE X[I] > = 0 DO
BEGIN
I = I+1;
READLN(X[I],Y[I]) (* read in coordinate pairs *)
END; (* WHILE *)
FOR K := 1 TO I
DO BEGIN
GOTOXY(X[K],Y[K]);
WRITE('X'") (* mark the position *)
END; (* FOR *)

Ex. 2 GOTOXY(-5,27)
would go to position (0,22).

Jan. '82 12-58 GOTOXY

SECTION 12 - PASCAL INTRINSICS

HALT Procedure

Function:

'Examgle:

HALT

Terminates the execution of a PASCAL program.
HALT

The HALT statement is used to terminate the
execution of a PASCAL program. The statement is

normally used when a total error occurs.

When running in CSS-mode (see Section 14) an
internal error is generated when the HALT statement
is executed. If the CSS command $TEST has been
given, the CSS—processor continues to execute CSS
commands. If not, the CSS is stopped. It 1is
possible to detect the execution of a HALT
introduction by using the command "$SIF ERROR".
The IF command will obtain the value true if the
previous PASCAL program executed a HALT

instruction.

program expl; (* test halt *)
const
unit=10;
var
error:boolean;
item:integer;
begin
item:=10;
if item=unit then error:=true
else error:=false;
if error=true then halt
else writeln('continue');

end.

12-59 Jan. '82

SECTION 12 - PASCAL INTRINSICS

MARK Procedure

Function: Sets a pointer to the top-of-heap of the available
free memory. The address of the heap is stored in

the pointer.

Definition: PROCEDURE MARK(<pointer wvar):POINTER)

Calling Format: MARK(<pointer var>)

Arguments: The pointer variable must be declared pointer type.
See Section 10 for more details.

Use: MARK is used in conjunction with RELEASE to return
unneeded dynamically allocated memory to the
system.

Note: MARK should be followed by RELEASE.

Example:

Ex. 1 WHILE rear <> front DO
BEGIN

WRITELN(front .food);
heapptr := front;
front := front .link; (* update the queue's pointer *)
MARK(heapptr); (* set heapptr to the top of the stack *)
RELEASE (heapptr) (* release the record *)

END; (* WHILE *)

Jan. '82 12-60 MARK

SECTION 12 - PASCAL INTRINSICS

Ex. 2

program heaptest;
type
ptl="person;
pt2="integer;
person=record
name:string[10];
ssnum:string[10];
address:string[10];
end;
var
P, r:ptl;
heap:pt2;
heapcount:integer;
begin
mark(heap);
new(p);
p~.name:='john smith';
p~.ssnum:='132-46-846";
p~.address:='1234 104st';
writeln(p”.name,p~.ssnum,p”.address);
release(heap);
writeln(p".name,p ".ssnum,p ~.address);

end.

12-61 Jan.

'82

SECTION 12 - PASCAL INTRINSICS

NEW Procedure

Function:

Definition:

Calling Format:

Arguments:

Use:

Note:

Example:

Jan. '82

Allocates space from the heap.
PROCEDURE NEW(<ptr>:POINTER)
NEW(<ptr>)

<ptr> is a dynamic pointer variable.

NEW allocates space from the heap for dynamic

variables.

The pointer points to the free space in the heap
after the NEW procedure is executed. The amount of
space is determined by the type that the pointer
points to.

Executing a second NEW procedure does not return
old space. DISPOSE or RELEASE must be used for
this.

TYPE pointer = into;
into = RECORD
link : pointer;
data : INTEGER
END;
VAR first, next, last : pointer
BEGIN
NEW (first);
NEW (next);
NEW (last);
END.

12-62 NEW

SECTION 12 - PASCAL INTRINSICS

OPTION Function

Function:

Definition:

Calling Format:

Arguments:

Use:

Note:

Example:

OPTION

Returns the switches that represent the options
that were chosen when PASSYS or PASCAL was

executed.

FUNCTION OPTION:STRING

OPTION

None.

This function is often used when testing an option
against the current condition.

There are twenty-six switches, each ome bit long so
OPTION returns four bytes.. Each switch corresponds
to a letter in the alphabet and is a one if the
switch is set, zero if it is nct. The bytes may
not form a recognizable character so it usually

cannot be written out.

For the possible switches and their meanings, look

at the System programs' options in Section 13.
for : PASCAL,AK userprog

BIT O in OPTIONS[l] and Bit 2 in OPTIONS(2]
would be l's, the rest would be zeroes.

12-63 Jan. '82

SECTION 12 - PASCAL INTRINSICS

RELEASE Procedure

Function:

Definition:

Calling Format:

Arguments:

Note:

Examples:

Jan. '82

Sets the top-of-heap pointer to the memory location

of the pointer variable.

PROCEDURE RELEASE(<pointer var>:POINTER)

RELEASE(<pointer var>)

The pointer must be declared pointer type. See

Section 9 for more details.

RELEASE is used in conjunction with MARK to return
unneeded dynamically allocated memory to the

system.

RELEASE should always follow MARK. Also, all
objects allocated between the MARK and RELEASE are
deallocated and should not be referenced.

MARK(free);

NEW(X);

NEW(Y);

NEW(Z);

RELEASE(free); (* Return space from X, Y, and Z *)

12-64 RELEASE

SECTION 12 - PASCAL INTRINSICS

SIZEOF Function

Function: Returns the number of bytes in memory that are
assigned to an identifier.

Description: FUNCTION SIZEOF(<identifier>):INTEGER

Calling Format: SIZEOF(<identifier>)

Arguments: The identifier is a user-defined variable or type
identifier.
Use: SIZEOF is particularly useful for the FILLCHAR,

MOVELEFT and MOVERIGHT intrinsics.

Note: The result is in bytes, not characters.

Examples: TYPE rec:RECORD
link:INTEGER;

data:REAL
END;
VAR value: INTEGER;
next :REAL;
name : CHAR;

Ex. 1 WRITELN(SIZEOF(value):10,SIZEOF(name):10,SIZEOF(next):10);
output: 2 2 4

Ex. 2 WRITELN(SIZEOF(rec));
output: 6

SIZEOF 12-65 Jan. '82

SECTION 12 - PASCAL INTRINSICS

STARTPAR Function

Function: Returns the characters that are written after the

code-file name when a program is executed.
Definition: FUNCTION STARTPAR:STRING

Calling Format: STARTPAR

Arguments: None.
Use: It allows the user to access the parameters that

were appended to the filename.

Note: The function returns the characters as a STRING.
Examples: for PASCAL PASC:userprog,ABC123
WRITELN(STARTPAR);

output: ABC123

Jan. '82 12-66 STARTPAR

SECTION 12 - PASCAL INTRINSICS

SVC Function

Function:

Definition:

Callingg?ormat:

Argggents:

Note:

svcC

Eowus Tow duea ST Tes VLM o L

Executes Supervisor Calls and returns a false value
if the SVC was in error.

FUNCTION SVC(<n>:INTEGER;<parameter block>:PACKED
RECORD) : INTEGER

SVC(<n>,<{parameter block>)

n is the SVC-number. The list of SVC's and their
associated numbers are given below. The parameter
block formats may be found in the Monroe Operating
System Programmer's Reference Manual.

This function allows the execution of SVC's so the
operating system can be called to perform special
tasks.

The function returns a False value if the SVC was

in error. Otherwise, it returns a True value.

The Supervisor Calls and their associated numbers
are listed below. Each of the calls is discussed
in detail in the Monroe Operating System

Programmer's Reference Manual.

Function
General Purpose I/0 Requests
Memory Handling (2.1)
Log Message (2.2)
Pack File Descriptor (2.3)
Pack Numeric Data (2.4)

[SEC -]

Unpack Binary Number (2.5)
Fetch/Set Rate/Time (2.7)
Scan Mnemonic Table (2.8)
Open/Close Device (2.12)

12-67 Jan. '82

SECTION 12 - PASCAL INTRINSICS

Function
Timer Requests
Task Device
Loader Handling
Task Request
File Request

0 N v s Wwe

Resource Handling

Caution: Incorrect use of the SVC's can crash the

system.

Example: TYPE line =
RECORD
CASE BOOLEAN OF
TRUE : (I : INTEGER);
FALSE : (S : STRING)
'END; (* line *)
byte = 0..255; (* 1 byte *)
SVCIB = PACKED RECORD (* Parameter block *)
TS,LV,RS,FC : byte; "
BAD : line;
BSZ, BCNT, RND, RND2 : INTEGER;
END; (* SVCIB *)

VAR SVCl : SVCIB;
RESULT : BOOLEAN;
BEGIN
(* assign values to the various fields of SVCl *)

RESULT := SVC(1,SVCl);
(Refer to the actual parameter block in the Monroe

Operating System Programmer's Reference Manual for

a better understanding of SVCl.)

Jan. '82 12-68 SvC

SECTION 12 - PASCAL INTRINSICS

TIME Function

Function:

Definition:

Calliqg Format:

Arguments:

Note:

~ Example:

TIME

Returns the system time or if the system time was
not set, the elapsed time since the system was last
booted.

FUNCTION TIME:STRING
TIME
None.

The TIME function helps in detecting infinite
loops. It can also be used to store the time

associated with a particular data entry.

The function is returned in a string in the form
HH.MM.SS where "H's" represent the hour 01-23, M's
represent the minutes, and S's represent the

seconds.

The time is reset automatically to 00-00-00 each
time the computer is bootedgk Eﬁmfft the system
time, use the TIME Utility. ‘ Refer to the 8800
Series Utility Programs Programmer's Reference

Manual for details.

WRITELN(TIME);
output: 01.52.39

12-69 Change A, May '82

SECTION 12 - PASCAL INTRINSICS

INP Function

Function: ~
Definition:

Calling Format:

Arguments:

Use:

Examgle:

Change A, May '82

Returns the integer value from a port number.
FUNCTION INP(<KPORT>):INTEGER
INP(<KPORT>);

PORT is an I1/0 number. Refer to Table K-1 for the

port numbers.

INP is used to input an integer value from an 1/0

port, such as the communications interface.

J:=INP(164);

12-70 INP

SECTION 12 - PASCAL INTRINSICS

OUT Procedure

Function:

Definition:

Calling Format:

Arguments:

Use:

Examgle:

ouT

Writes a value to a port.
PROCEDURE OUT(<PORT>,<DATA>):INTEGER
OUT (<PORT> ,<DATA>);

PORT is an I/0. Refer to Table K-1 for the port

numbers.

This procedure is used to pass an INTEGER value to

an output port, such as the communications

interface.

OUT(164,DATA);

(]
O

12-71 Change A, May '82

SECTION 12 - PASCAL INTRINSICS

PWROFTEN Function

Function: Returns a REAL result of the number 10 raised to

the power of the integer parameter supplied.
Definition: FUNCTION PWROFTEN(<VALUE):INTEGER):REAL

Calling Format: PWROFTEN(<VALUE>);

Arguments: VALUE is type INTEGER.
Use: This function converts an integer parameter to its

exponential form.

Examgle: Declaration:
VAR
result:real;

value:integer;

Main Section:

value:=4;

result:=pwroften(value);
writeln(result)

end.

Output:
1.0E+04

Change A, May '82 12-72 PWROFTEN

SECTION 12 - PASCAL INTRINSICS

Logical Intrinsics

JAND Function

Function:

Definition:

Calling Format:

Arguments:

Use:

Example:
PROGRAM IANDC;

VAR

Performs a bitwise AND operation.

FUNCTION IAND(<VAL1>,<VAL2>:INTEGER):INTEGER

TAND(KVAL1>,<VAL2>);

VALl and VAL2 are type INTEGER.

IAND is used for bitwise ANDing of INTEGER values.

RESULT :INTEGER;

PN :TEXT;

BEGIN

RESET(PN,'PR:"');

RESULT:=IAND(1,2); (* BIT VALUE 1=00000001, 2=00000010 *)

(* 1 AND 2 = 00000000 = 0 *)

WRITELN(PN,RESULT); (* RESULT=0 *)
RESULT:=IAND(5,14); (* BIT VALUE 5=00000101, 14=00001110 *)

(* 5 and 14 = 00000100 = 4 *)

WRITELN(PN,RESULT); (* RESULT=4 *)
RESULT :=IAND(28,27);(* BIT VALUE 28=00011100,27=00011011 *)
WRITELN(PN,RESULT) (* RESULT=24 *)

END.

IAND

12-73 Change A, May '82

SECTION 12 - PASCAL INTRINSICS

IOR Function

Function: Performs a bitwise OR operation.

Definition: FUNCTION IOR(<KVAL1>,<VAL2>:INTEGER):INTEGER

Calling Format: IOR(KVAL1>,<VAL2>);

Arguments: VALl and VAL2 are type INTEGER.
Use: IOR is used for bitwise ORing of INTEGER values.
Examgle:
PROGRAM IORC;
VAR
RESULT :INTEGER;
PN :TEXT;
BEGIN
RESET(PN,'PR:');
RESULT :=IOR(1,2); (* BIT VALUE 1=00000001, 2=00000010 *)

. (* 1 or 2=00000011=3 *)

WRITELN(PN,RESULT);
RESULT :=IOR(5,14);

WRITELN(PN,RESULT);
RESULT:=I0R(28,27);

WRITELN(PN,RESULT)
END.

Change A, May '82

(* RESULT =3 *)

(* BIT VALUE 5=00000101, 14=0001110 *)
(* 5 OR 14=00001111=15 *)

(* RESULT = 15 *)

(* BIT VALUE 28=00011100, 27=00011011 *)
(* 28 OR 27=00011111=31 *)

(* RESULT = 31 *)

12-74 IOR

SECTION 12 - PASCAL INTRINSICS

ISHIFT Function

Function: Returns an integer result from the operation of
shifting a variable left or right.

Definition: FUNCTION ISHIFT(<value),<{directiond>:INTEGER):INTEGER

Calling Format: ISHIFT(<valued>,<{direction));

Arguments: Value is type INTEGER.

Direction steps to the left or right depending on
the sign of direction. The range is

-15 < direction < 15.

Positive direction is LEFT SHIFT.
Negative direction is RIGHT SHIFT.

Use: ISHIFT is used to shift the bit positions in the
positive or negative direction. The operation is

equivalent to:
2 raised to the power of 'direction' times 'value'.

Example:

PROGRAM ISHIFTC(OUTPUT);

VAR
(o} :INTEGER;
PN :TEXT;

BEGIN
RESET(PN,'PR:"');
C:=ISHIFT(5,2); (* 2 TO THE POWER OF 2 TIMES 5 *)
WRITELN(PN,C); (* C=20 *)
C:=ISHIFT(3,4); (* 2 TO THE POWER OF 4 TIMES 3 *)
WRITELN(PN,C); (* C=48 *)
C:=ISHIFT(2,6); (* 2 TO THE POWER OF 6 TIMES 2 *)
WRITELN(PN,C) (* C=128 *)

END.

ISHIFT 12-75 Change A, May '82 |

PROGRAM LOWAFC;

VAR
RESULT :INTEGER;
PN <TEXT;
BEGIN

RESET (PN, 'PR:');
RESULT :=ISWAP(1);

WRITELN(PN,RESULT);
RESULT :=ISWAP(3);

WRITELN(PN,RESULT);
RESULT :=ISWAP(2);

WRITELN(PN,RESULT)
END.

change A, May '82

(*
(*
(*
(*
(*
(*
(*
(*
(*

BIT VALUE 1=00000000000000001 *)

BIT VALUE FOR SWAP 1=0000000100000000=256 *)
RESULT=256 *)

BIT VALUE 3=0000000000000011 *)
BIT VALUE FOR SWAP 3=0000001100000000=768'*)‘
RESULT=768 *)

BIT VALUE 2=0000000000000010 *)

BIT VALUE FOR SWAP 2=0000001000000000=512 *)
RESULT=512 *)

12-76 LSWAP

SECTION 12 - PASCAL INTRINSICS

IXOR Function

Function: Performs a bitwise exclusive OR.

Definition: FUNCTION IXOR(<KVAL1>,<VAL2>:INTEGER):INTEGER;

Calling Format: IXOR(KVAL1>,<VAL2>);

Arguments: VALl and VAL2 are INTEGER;

Use: IXOR is used for bitwise exclusive oring of INTEGER
values.
Example:
PROGRAM IXORC;
VAR
RESULT :INTEGER;
PN :TEXT;
BEGIN

RESET (PN, 'PR:"');
RESULT:=IXOR(1,2);

WRITELN(PN,RESULT);
RESULT :=IXOR(5,14);

WRITELN(PN,RESULT);
RESULT:=1XOR(28,27);

WRITELN(PN,RESULT)
END.

LXOR

(* BIT VALUE 1=00000001, 2=00000010 *)

(* 1 XOR 2=00000011=3 *)

(* RESULT = 3 *)

(* BIT VALUE 5=00000101, 14=00001110 *)

(* 5 XOR 14=00001011=11 *)

(* RESULT = 11 *)

(* BIT VALUE 28 = 00011100, 27=00011011 *)
(* 28 XOR 27=00000111=7 *)

(* RESULT = 7 *)

12-77 Change A, May '82

SECTION 13
SYSTEM PROGRAMS AND CSS-FILES

SECTION 13
SYSTEM PROGRAMS AND CSS-FILES

13.1 INTRODUCTION
The PASCAL compiler generates a pseudo-machine code (called p-code).
An interpreter is needed to interpret the p~code into machine code so

the program can be executed. There are two interpreters available:

PASSYS - to execute PASCAL system programs. -4 |\, 2% B 27

PASCAL - to execute user programs. T RN IRES R

The following system programs, commands, and modes are also

available:

PASCOMP = to compile PASCAL text files. BInie< THL0O%L

PASCROSS - to create a cross-reference list. - " ~ ot

PASDEL - to delete files. o YT

PASDUMP - to dump files o e

PASLIB - to create and update a PASCAL P-code library. L

PASLINK = to link precompiled text files or library modules i*
into an executable ~rtput file.

PASOBJ - to interpret PASCAL P-code into object code. '

PASPRINT
< CSS Mode

to list text files (v

to instruct the interpreter to execute CSS commands

in a user-specified program file.

Each of the above is described in detail in this section.

13-1 Jan. '82

g

oA [P

.
Ry tes

A7

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

PASCAL Interpreter

Function: Interprets p-code user programs into machine code
and then executes these programs.

Format: PASCAL| ,options| | ,memory| <fd>

Arguments: Both fields of the arguments are optional. If
: either is used, a comma must separate it from the
word PASCAL. A second comma must precede the

memory field if it is used.

The options can be any letter of the alphabet. If
a system program is used, some letters have special
meaning depending on the program. If a user
program is executed, any letter may be used but its
meaning must be defined within the program. The

letters have no inherent meaning.

Extra memory may be needed if the program is very

large. It can be specified in bytes in the memory

field.

The fd is the file descriptor (see Section l.4).
Use: The PASCAL-interpreter is usually used to execute

user programs though it can execute all System

programs except the compiler.

Note: See the PASSYS-interpreter for the list of System

programs.

Jan. '82 13=2 PASCAL

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

Examples: PASCAL DATA:NEXTFILE
(Executes the program in the file NEXTFILE on the

DATA disk.)

PASCAL,A,1500 DATA:NEW
(Executes NEW with the Abort switch set and 1500

bytes of extra memory.)

PASCAL,,20000 DATA:SEGEXT
(Executes SEGEXT with 20000 bytes of extra memory.)

PASCAL 13-3 Jan. '82

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

PASSYS Interpreter

Function: Interprets p—code System programs into machine code

and then executes these programs.

Format: PASSYS|,options| |,memory| <system programs>
Arguments: Both fields of arguments are optional. If either

is used, a comman separates it from the word
PASSYS. A second comma must precede the memory
field if it is used.

The options that are available depend on the System
program being executed and are detailed with those
programs. The options are not separated from each

other by commas.

Extra memory may be needed if a program is very
large. It can be specified in the memory field.

The following System programs can be used. They
are detailed in the pages that follow:

.~ PASCOMP - PASCAL Compiler.
PASCROSS - PASCAL Cross Reference.
PASDEL - PASCAL Delete File.
PASDUMP - PASCAL Dump File.

- PASLIB - PASCAL P-code Library.
PASLINK - PASCAL P-code Linker.
PASPRINT - PASCAL Print File.

Use: PASSYS is usually used to execute the System

programs.

Jan. '82 13-4 PASSYS

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

Note: The PASCOMP, PASLIB and PASLINK programs will
probably be used the most. The other programs
replicate System commands that are unrelated to the
PASCAL package such as DEL which deletes files.

PASCOMP is the default program for PASSYS so it can

be executed using:
PASSYS ,<fd>
See PASCOMP for greater detail.
Example: PASSYS,LNI,1500 PASLIB,DATA:KWLIB
(Executes the Library program and adds 1500 bytes
of additional memory.)
PASSYS,,20000 ,DATA :PROGRAMFILE

(Executes PASCOMP by default with an additional
20000 bytes of memory.)

PASSYS 13-5 Jan. '82

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

PASCOMP System Program

Function:

Format:

Argggents:

Jan.

'82

Compiles a PASCAL text file and generates an
executable p-code file.

PASCOMP,<fd>| ,arguments |

The fd is the file descriptor of the source file to
be compiled. 1Its type should be "ASC" or "ASCPAS".

There are two possible arguments, both of which are
optional. A destination file can be specified for
the p-code that is generated. The default file is
the source file with filetype "BINPAS". Also, a
list file with "TEXT" filetype can be specified if
the "L" option is used. Its default value is
"PR:". A comma must follow the source file if
either argument is specified and a second always
precedes the list file.

PASCOMP is the default program for PASSYS so it
does not have to be specified.

The following options are available with PASCOMP:

L - generate a list file and output on the list
file descriptor.

E - generate a listing of syntax errors only.

G - allow GOTO statements in the source text.
Default wvalue is on.

0 - perform I/0 check.

R - perform range check.

D - insert line numbers in code file. This will
significantly increase the size of the output
file.

B - generates additional information for the
linker.

13-6 PASCOMP

-

SECTION 13 - SYSTEM PROGRAMS AND CSS—FILES

Examples:

Ex. 1 PASSYS PASCOMP,DATA :KWFILE
PASSYS ,DATA:KWFILE
(Both compile KWFILE.)

Ex. 2 PASSYS,LRD PASCOMP ,DATAT :KWINT,DATA:COMPINT ,CON:
(Compiles KWINT using "L","R", and "D" options,
places the p-code into COMPINT, and outputs the
listing to the console.)

Ex. 3 PASSYS,LRD ,DATA:KWINT,,CON:

(Does the same thing as Ex. 2 except that the
p-code is put into KWINT with file type 'BINPAS'.)

PASCOMP 13-7 Jan. '82

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

PASCROSS System Program

Function: Creates a cross-reference listing of all standard
functions and procedures in a program.

Format: PASCROSS,<£fd>| ,fd|
Arguments: The first fd (see Section 1.4) references an ASCIIL

source file. The second refers to the destination
file. 1Its default value is "PR:".

Use: PASCROSS is used to help locate a program's
standard functions and procedures. It is invoked
most often for debugging purposes.

Note: The entries in the listing are alphabetized with
the line numbers on which they appear listed at the
right. A line number appears at most once after
each entry regardless of the number of times it

appears on a line.

The “following options are available:

L - add a listing of the program (includes line
numbers) .

R - include reserved words in the cross reference
. listing.

F - force a list output in case of end-of-memory.

Example: PASSYS,LR PASCROSS,DATA:QUEFILE/A

(Will output the list with the reserved words and
the program listing.)

Jan. '82 13-8 PASCROSS

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

PASDEL System Program

Function:

Format:

Arguments:

Use:

Note:

Examples:
Ex. 1

Ex. 2

PASDEL

Deletes files.

PASDEL,<fd>
or

PASDEL ,CMD=<cfd>

The fd is the file descriptor (see Section l.4) of
the file to be deleted. The default type is
'BINPAS' and any other type may be specified.

The cfd is the file descriptor of the command file
that specifies the files to delete. See CSS files

in this section for more information.

The command is used to delete files from the Master
File Directory.

If the option "D" is placed in the PASSYS option
field the command file is deleted on exit.

PASSYS PASDEL,DATA:USELESS/A
(Deletes the ASCII type of the file USELESS on
volume DATA.)

The command file (CMDDEL) is:
DATA :USELESS
DATA:USELESS/A
DATA :USELESS&/A

SEXIT

PASSYS PASDEL,CMD=DATA :CMDDEL
(Deletes all three forms of the file USELESS.)

13-9 Jan. '82

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

PASDUMP System Program

Function: Dumps the contents of a file.
Format: PASDUMP ,<fd>|,fd|
Arguments: The first file descriptor (see Section l-4.) is the

source file. Its default file type is 'BINPAS'.
The second file descriptor is the destination file

whose default type is 'PR:'.

Use: The command is used to display the contents of a
file.
Note: The file is outputted in groups of two rows with

the character representations above each group. A

column in a group represents a byte.

The output is further divided into sets of 256
bytes which constitute a full record. Partial

records can also be outputted.

Example: PASSYS PASDUMP,DATA:QUEFILE
(Dumps file QUEFILE from volume DATA.)

Jan. '82 13-10 PASDUMP

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

PASLIB System Program

Function:

Format:

Note:

ArgumenCS:

PASLIB

Creates and updates a PASCAL p-code library that
holds pre-compiled functions and procedures.

PASLIB,<1ibfd>|,arguments |
{arguments> "=" <source>
or
<{source>,<{,1£d>

<source) :=: <fd>|/identifier|
or
CMD = <Cfd>

The procedures/functions must be writtem in the
main body of the program via a "PROGRAM EXTERNAL"
statement. The procedures/functions added to the
library must not contain references to external
variables or subroutine calls. Note that "source”

must be compiled using switch "B".

The libfd is the file descriptor (see Section 1=4)
of the p-code library. If it is being created, the
“N” option must be included in the PASSYS option
field. '

The 1fd is the file descriptor for the list file.
IT should be type TEXT and "PR:" is its.default

value.

The fd in source is the file descriptor of the file
where the procedure or function exists. The

identifier is the procedure/function name to be
added to the library. It can be at most eight
characters loug.

13-11 Change A, May '82

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

Use:

Jan.

'82

The Cfd is the file descriptor (see Section 1-4) of
the command file that lists the procedures/
functions to be added must be listed in the command
file in the file descriptor format specified in
Section l-4. Note type is optional.

There may not be any comments within the list of
additions. For more information about command

files, see CSS-files in this section.

The library contains subprograms that can be
accessed as external subroutines by many different

programs.

Note: If no source file is given, the current
contents of the library will be outputted to the
1£d.

The following options may be used immediately after
PASSYS (e.g., PASSYS,<option> PASLIB):

L - generate a listing.
N - create a new library.
I - insert two lines of general information after

each procedure is added.
A program can access a procedure in a library by
declaring it EXTERNAL. The procedure is then

linked with the main program using PASLINK. The
format for accessing the subprogram is:

LIB <1libfd>

Libfd is the file descriptor (see Section 1l-4) of
the p-code library.

13-12 PASLIB

e ‘

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

Examples:

Ex. 1 PASSYS,N PASLIB ,DATA:KWLIB ,DATA:KWPROC(ADD)
(Creates a new library, KWLIB, and inserts the
subroutine ADD from the file KWPROC. ADD is a
subroutine in KWPROC.)

Ex. 2 PASSYS PASLIB ,DATA:KWLIB,,CON:
(Outputs the contents of the library, KWLIB, to the
console.)

Ex. 3 DATA:CMDFILE is:

DATA :MATHFILE/SUBVARS
DATA :MATHFILE/AVERAGE
DATA :KWSTR/STRMANIP
SEXIT

PASSYS PASLIB ,DATA:KWLIB ,CMD=DATA :CMDFILE

(Adds the three subroutines in CMDFILE to the
library.)

PASLIB 13-13 Jan. '82

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

PASLINK System Program

Function:

Format:

Arguments:

Jan.

'82

Links pre-compiled PASCAL text files or library
modules into an executable output file.

PASLINK, | ,CMD=cfd |

Cfd is the file descriptor (see Section 1-4) of the
command file that contains the procedures and
segments to be linked together. The default

command file is the console.

PASLINK must be used to link programs that have

segments or external files.

A program can be broken up into segments, and the
segments into functions or procedures. These
segments are left on disk and brought into main
memory only when they are needed. Segments are
declared by inserting the word SEGMENT before a

procedure declaration.
Example:
SEGMENT PROCEDURE procname(....);

It is possible to declare segments or procedures/
functions external to a program. They are compiled
separately and linked into the main program. A
procedure or segment is declared external by
appending the word EXTERNAL to the procedure or

segment declared.

13-14 PASLINK

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

PASLINK

Examples:

PROCEDURE elsewhere(....);
EXTERNAL;

SEGMENT PROCEDURE onward(e.e.);
EXTERNAL;

The actual procedure is defined in another file;
only the heading appears in the main program.
However, the heading must appear exactly as it does
in the file in which the procedure is defined
except the words SEGMENT or EXTERNAL.

If the external procedure or segment performs any
I1/0, an output file must be passed to it from the

main file. The format is:

VAR <iofd> : TEXT

The I/0 file must be used for all output to the
console that is performed in the external

procedure/segment. For example:
WRITELN(<iofd>,'IN SEGMENT')

Iofd (see Section l=4) would be the same as the one
the hedefined in the heading. Failure to include
will the output file will result in errors when the

files are linked.

There are certain rules that must be followed when
functions, procedures and segments are declared
external:

l. The main program may contain external

segments and procedures.

13-15 Jan. '82

- SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

Jan.

'82

2. All segments must be declared in the main
programe.

3. . An external segment may contain external
procedures but an external procedure may not.

b Declarations must appear in the following

order:
External procedures and segments
Internal segments
Internal procedures
The procedures may be declared FORWARD if

necessarye.

Values are passed to external procedures and
segments through the parameters in the headings.

Procedures that are declared external must be
defined in a separate module, the general outlay of

which should be:

Program heading: The word PROGRAM should be

followed directly by the word EXTERNAL. There is

10 program name.

Global variable declaration: All global variables
used by the procedure(s) in the module should be
listed using the normal variable declaration

format. The global variables must be defined
exactly the same way in the main program.

External procedure and function declaration: Any

procedures or functions that are used by the
procedure(s) in the module but are external to the
module are listed in the same way they are in the

main program. Procedures that are in a different
segment must be declared as external segmented

procedures.

13-16 PASLINK

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

PASLINK

Procedure declaration: All local procedures are

then listed. All local variables are listed inside
of the specific procedures that use them. External
procedures can be declared within these procedures
and they are defined in a separate module. It is
important that all local procedures, external or
nonexternal, are defined, even if they are only

used by extermal procedures.

Empty main program: There is no real "body"” of the

program - only the words "BEGIN END".

Note that several external procedures may be
defined in the same module. Also, all procedures,
internal and external, and global variables must

have unique names.

13-17 Jan. '82

SECTION 13 - SYSTEM PROGRAMS AND CSS~FILES

Examgle:
PROGRAM EXTERNAL;

VAR G1,G2,G3 : SOME TYPE (* global vars *)

PROCEDURE GETCHAR(...);
EXTERNAL; (* external procedure %)

SEGMENT PROCEDURE GETTOK (...);
EXTERNAL; (* external segmented procedure *)

PROCEDURE TOKEN(...); (* local procedure *)

PROCEDURE PRINTOUT(...);
EXTERNAL; (* external procedure referenced by TOKEN *)

PROCEDURE LOCAL
BEGIN (* body of LOCAL *)
H
END;
BEGIN
GETCHAR(...);
GETTOK(...); (* body of TOKEN *)
LOCAL;

PRINTOUT;
- END;

BEGIN END. (f empty main body *)
Procedure GETTOK would look like this:

PROGRAM EXTERNAL;

(* global variables and external procedures *)

SEGMENT PROCEDURE GETTOK(...);
BEGIN (* body of GETTOK *)

END;

BEGIN END.

Jan. '82 13-18 PASLINK

SECTION 13 - SYSTEM PROGRAMS AND CSS—FILES

PASLINK

There are no restrictions as to where procedures,
segmented or non-segmented, may occur. However,
all procedure and global variable names must be

unique.

All modules must be compiled with the switch "B" so

that the compiler will generate information used by
the linker.

Linker Commands

Linker commands are executed in command (CSS)
files. The following commands are available to be

used with the linker:

Note: 1In the commands below, fdnama is the file
descriptor (see Section 1=4) for the PASCAL p-code
file containing the external segment or procedure

being linked:

1. INC, <fdname>
Includes all procedures found in "fdname".
Procedures in FNAME that are not currently

referenced in the program will be included as

global procedures.

2. LIB|,R| <fdname>
Includes only those procedures in “"fname”
that are currently referenced in the program
but have not yet been included. If the
option R (REPLACE) is used, any procedure in
future that is already included in the
program will be deleted and the new version
brought in from "fdname”. This command is
also used to collect procedures from a

library.

13-19 Jan. '82

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

3. TASK| ,B| <fdname>
Name the output file "fdname”. This command
can be given anywhere in the command stream.
If the option B is given the output file will

include linker information.

4. PRINT | ,M| <fdname>
A listing will be sent to "fdname”. ILf the
option M is given, a program layout of all
procedures will be included in the list file.

5. CHECK
Gives a list of all procedures which are
currently referenced but not yet included.

6. ABORT
Abort the linker.

7. END
Finish the linking session.

When linking the external modules the following
order of commands should be used:

1. Include the main program using the INC-command.

2. Include all global non-segmented procedures
declared in the main program.

3. Include all global sggmented procedures

declared in the main program.

Collect all procedures which are local to
procedures included so far. If the procedures
included comtain local extermal procedures the
INC-command should be used. If not the LIB-command
should be used. Repeat this procedure until all

external procedures have been included.

Jan. '82 13-20 PASLINK

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

Note that global procedures which are not
referenced in the main program need not be declared
provided these procedures are included, using the
INC-command, immediately following the INC-command
of the main program.

It is very important that the declaration heading
of the procedure being linked is absolutely
identical to the declaration heading where the
procedure is declared external.

Example: in DATA:MAINFILE:
PROGRAM mainprogram:

PROCEDURE procext(VAR io : TEXT);
EXTERNAL;

PROCEDURE printext(VAR io : TEXT);
EXTERNAL;

SEGMENT PROCEDURE segext(VAR io : TEXT);
EXTERNAL;

SEGMENT PROCEDURE segint;
BEGIN
WRITELN('IN segint')
END; (* segint *)

PROCEDURE procint;
BEGIN
WRITELN('IN procint')
END; (* procint *)

BEGIN
procext(OUTPUT); (* output file for an
external procedure *)
segint;
printext (OUTPUT);
segext (OUTPUT);
procint;
WRITELN('FINISHED')
END. (* mainprogram *)

PASLINK 13-21 Jan. '82

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

in DATA:PROCEXTFILE:
PROGRAM EXTERNAL;

PROCEDURE procext(VAR io : TEXT);

BEGIN
WRITELN(io, 'IN procext')
END; (* procext *)

PROCEDURE printext(VAR 1o : TEXT);
BEGIN
WRITELN(io, 'IN printext')
END

BEGIN
END. (* dummy *) 1

in DATA:SEGEXTFILE:
PROGRAM EXTERNAL;

SEGMENT PROCEDURE segext(VAR 1io : TEXT);
BEGIN
WRITELN(io, 'IN segext')
END; (* segext *)

BEGIN
END. (* dummy *)

in DATA:CMDFILE:

INC DATA :MAINFILE Include the main program
INC DATA : PROCEXTFILE Include the procedure

LIB DATA:SEGEXTFILE Get the segmented procedure
PRINT ,M LISTFD Define list file

TASK,B TASKFD Define output file

END End of commands

To execute the program:

1. compile:
PASSYS ,B DATA:MAINFILE
PASSYS ,DATA:MAINFILE
PASSYS ,DATA:PROCEXTFILE
PASSYS ,DATA:SEGEXTFILE

Jan. '82 13=-22 PASLINK

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

2. link:
PASSYS PASLINK, CMD=CMDFILE

PASSYS PASLINK,CMD=CON:

(type in all the statements in CMDFILE in
order)

AB

j. execute:
PASCAL DATA:LINKED

output: IN procext
IN segint
IN printext.
IN segext
IN procint
FINISHED

'INC DATA:MAINFILE' includes the main program.

"INC DATA:PROCEXTFILE' includes both procedures in
PROCEXTFILE.

“LIB DATA:SEGEXTFILE' brings in the segmented
procedure "segext”. INC could have been used
instead. Care should be taken when the
INC-command is used with a p-code library
since all procedures in the library will be

included. LIB 'should be used since this will
only bring in those procedures that have been

referenced.

PASLINK 13-23 Jan. '82

SECTION 13 - SYSTEM PROGRAMS AND CSS~-FILES

PASOBJ System Program

Function:

Format:

Arguments:

Jan.

'82

Interprets PASCAL P-code into object code.
PASOBJ <infd>|,outfd|

Both arguments are file descriptors (see Section
1-4): the first is the file descriptor that
contains the PASCAL P-code and the second is the
one into which the relocatable object code will be
placed. The default for outfd is infd with type
"OBJ".

PASOBJ is required for the user to create a task
file. Tasks are often preferred to P-code because

they execute extremely fast.

Note: PASOBJ is not executed in conjunction with
PASSYS.

Although the creation of the object code file is
crucial, it is only one part of the conversion from
a PASCAL program to a task. First, the file must
be compiled. Then it is converted into object code
using PASOBJ. Last, the task establisher, RLDR, is
called to perform the final conversion. Its format

is:

RLDR|,switches|,mem|| CMD = <commandfile>

The following switches are available:
R - Additional code for range checking 1is

generated.

0 - Additional code for I/O-checking is generated.

13-24 PASOBJ

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

PASGBJ

MEM is extra memory that may be allocated. The
commandfile may be a CSS-file or "CON:".
Regardless of whether or not the file is

interactive, it must consist of the following

commands :
| LOG CON: |
OPTION NOSTACK

| STACK XXX|
INC <PASOBJ fd>

(Displays each comand as it is
executed-not used in interactive
files.)

(No stack check is performed.)
(Expand the stack by XXX bytes.)
(Include as many object files as

needed.)

LIB PASRTL (Collects modules from the

PASCAL Runtime Library.)
Task <outfd> (Links the objectfiles into
outfile.)

END (Terminates RLDR.)

All variables in the program are pushed onto the
stack at run-time so the stack may need to be
expanded since it starts with only 256 bytes. 1f
the task terminates with an End-of-Memory error,
the program should be relinked with a larger

argument in the STACK-command.

The following limitations must be considered<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>