
10 -000000 3-4

MONROE UTILITY PROGRAMS

PROGRAMMER'S REFERENCE MANUAL

September 1981

MONROE SYSTEMS FOR BUSINESS

The American Rd.

Morris Plains, N.J. 0799

©1981, Litton Business Systems, Inc., All Rights Reserved. 2107-8

The material contained herein is supplied without

representation or warranty of any kind by Monroe

Systems For Business. Monroe assumes no

responsibili-gy relative for the use of this material

and shall have no liability, consequential or

otherwise arising from the use of this material or

any part thereof. Further, Monroe reserves the

right to revise this publication and to make changes

from time to time in the content hereof without

obligation to notify any person of such revision or

changes.

oe

VY

PURPOSE OF THIS DOCUMENT

This document is a Programmer's Reference Manual.

It is to be used by experienced programmers as a

reference tool. It is not intended for use as a

learning aid by non-programmers.

1ii

RECORD OF CHANGES

All

All

iv

Section

TABLE OF CONTENTS

Title

INTRODUCTION

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Overview

Type of Utilities

Disk Maintenance Utilities

Task Maintenance Utilities

Document Contents

How to Use This Manual

Text Symbols and Conventions

Command Syntax

File Naming Conventions

Kinds of Files

Wild-Card

1.10 Terminal Usage

1.11 Related Manuals

PART I — DISK MAINTENANCE UTILITIES

ALLOCATE: FILE ALLOCATION UTILITY.2-1

2.1 Introduction 2-1

2.2 ALLOCATE Command 2=2

BOOTGEN: DISK BOOTSTRAP GENERATOR 3-1

3.1 Introduction 3-1

3.2 BOOTGEN Command 3-2

3.3 Messages and Diagnostics 3-4

CLOSE: CLOSE DEVICE

4.1 Introduction

4.2 CLOSE Command

Section

10

ll

TABLE OF CONTENTS

Title

COMMAND FILE

5.1 Introduction

5.2 Command File Procedure

COPYA: ASCII COPY UTILITY

6.1 Introduction

6.2 COPYA Command

6.3 Messages and Diagnostics

COPYI: IMAGE COPY UTILITY

7.1 Introduction

7.2 COPYI Command

7.3 Messages and Diagnostics

COPYLIB: FILE COPY UTILITY

8.1 Introduction

8.2 COPYLIB Command

8.3 Messages and Diagnostics

COPYT: COPY TASK UTILITY

9.1 Introduction

9.2 COPYT Command

9.3 Messages and Diagnostics

CREINDEX: CREATE INDEX UTILITY

10.1 Introduction

10.2 CREINDEX Command

DELETE FILES COMMAND

11.1 Introduction

11.2 DELETE Command

11.3 Message and Diagnostics

vi

Page

Section

12

13

14

15

16

17

18

19

TABLE OF CONTENTS

Title

DISKCHECK: DISK INTEGRITY CHECK

12.1 Introduction

12.2 DISKCHECK Command

12.3 Messages and Diagnostics

DISKINIT: DISK INITIALIZER

13.1 Introduction

13.2 DISKINIT Command

13.3 Messages and Diagnostics

FORMAT: DISK FORMATTER

14.1 Introduction

14.2 FORMAT Command

14.3 Messages and Diagnostics

LIB: DIRECTORY LIST

15.1 Introduction

15.2 LIB Command

OPEN: OPEN DEVICE

16.1 Introduction

16.2 OPEN Command

OPTION: OPTION UTILITY

17.1 Introduction

17.2 OPTION Command

PRIORITY: PRIORITY UTILITY

18.1 Introduction

18.2 PRIORITY Command

RENAME: THE RENAME FILES COMMAND

19.1 Introduction

19.2 RENAME Command

vii

Page

12-1

12-1

12-2

12-4

13-1

13-1

13-2

13-10

14-1

14-1

14-2

14-6

L5=1

15-1

15-2

16-1

16-1

16-1

17-1

17-1

Ly=2

18-1

18-1

18-i

19-1

19-1

19-1

Section

20

21

22

23

24

25

26

27

TABLE OF CONTENTS

Title

SPACE: SPACE UTILITY

20.1 Introduction

20.2 SPACE Command

SET: SET AUTO UTILITY

21.1 Introduction

21.2 SET AUTO Command

SORT: SORT UTILITY .

22.1 Introduction

22.2 SORT Command

TIME: TIME UTILITY

23.1 Introduction

23.2 TIME Command

VOL: VOLUME UTILITY

24.1 Introduction

24.2 VOLUME Command

PART II ~ TASK MAINTENANCE UTILITIES

CANCEL: CANCEL TASK UTILITY

25.1 Introduction

25.2 CANCEL Command

CONTINUE: CONTINUE TASK UTILITY

26.1 Introduction

26.2 CONTINUE Command

DEVICES: DEVICES UTILITY

27.1 Introduction

27.2 DEVICES Command

viii

25-1

25-1

25-2

26-1

26-1

26-2

27-1

27-1

21-2

TABLE OF CONTENTS

Section Title

28 LOAD: LOAD UTILITY

28.1 Introduction

28.2 LOAD Command

29 PAUSE: PAUSE TASK UTILITY

29.1 Introduction

29.2 PAUSE Command

30 RUN: RUN TASK UTILITY

%+.1 Introduction

30.2 RUN Command

31 SLICE: SLICE TASK UTILITY

31.1 Introduction

31.2 SLICE Command

32 START: START TASK UTILITY

32.1 Introduction

32.2 START Command

33 TASK: TASK UTILITY

33.1 Introduction

33.2 TASK Command

APPENDIX A: COMMAND SUMMARY

APPENDIX B: ERROR CODES

APPENDIX C: LIST OF UTILITY EXAMPLES

GLOSSARY OF TERMS

INDEX

1x

SECTION 1

INTRODUCTION

SECTION 1

INTRODUCTION

1.1 OVERVIEW

This manual contains descriptions of the utility programs which can

be used on Monroe's 8800 series Computer Systems. The term “utility

program” as it is used in this manual means any Monroe supplied

program which is resident on a disk or which controls communication

to a disk and is not part of the operating system software proper.

Therefore COPYLIB, which is an assembly language program that allows

you to copy files between disks, and DIRECTORY LIST, which allows you

to open files, are both utility programs.

The utility programs allow you to perform maintenance and file

functions directly without having to write specialized systems.

1.2 TYPES OF UTILITIES

In this document a distinction is made between two types of

utilities, hence the manual is divided into two parts. Part I deals

with Disk Maintenance Utilities and Part II deals with Task

Maintenance Utilities.

Disk Maintenance Utilities

Disk Maintenance Utilities perform functions related to the creation,

maintenance, and overall housekeeping of ordinary disk files. They

consists of those programs and commands that will be most commonly

used by both Applications and System Programmers alike.

Task Maintenance Utilities

Task Maintenance Utilities perform functions related to the creation,

maintenance, and overall housekeeping of task files. Task

Maintenance Utilities will be most frequently used by System Level

Programmers who wish to gain a deeper understanding of how the

operating system functions and to exploit its capabilities.

1-1 Sept. '8l

SECTION 1 - INTRODUCTION

1.3 DOCUMENT CONTENTS

This manual is divided into an Introduction, Part I Disk Maintenance

Utilities, Part II Task Maintenance Utilities, three appendices, a

glossary, and an index. Utilities are listed in alphabetical order

in each part. All commands together with their format and function

are listed, in Appendix A. Appendix B contains error codes and

meanings. A helpful cross-reference in finding pertinent examples in

this text can be found in Appendix C. This appendix provides a

concise list of the examples presented for each utility. The

glossary is a quick reference for new or unfamiliar concepts.

1.4 HOW TO USE THIS MANUAL

Although the utilities are listed in alphabetical order this is not

to suggest that there is no common level of importance or sequence of

use. Clearly, some utilities will be more important than others in

the sense that they will be used most frequently (OPEN, CLOSE,

DIRECTORY LIST). Others will be more important in the sense that

they provide extended file handling capabilities (COPYA, COPYIL,

COPYLIB, and COPYT).

Moreover, there are utilities which almost always appear in sequence

with other utilities. FORMAT for example, must be run before

DISKINIT is used. DIRECTORY LIST can be used after ALLOCATE or any

of the COPY routines to verify whether file space has in fact been

allocated or that specific files have indeed been copied. Often

particular sequences of use are suggested in the manual and examples

are given; but once again, these are only suggestions.

No doubt you, the- user, will expand upon these, find new applications

of your own, and establish levels of importance in terms of what your

own priorities are. It must be emphasized that this is a

PROGRAMMER'S REFERENCE MANUAL and not a Tutorial. Hence it is

designed to be used primarily as a reference tool by experienced

programmers. Examples, however, are provided for all utilities to

facilitate their use and enhance your understanding of the operating

system.

Sept. ‘81 1-2

SECTION 1 -— INTRODUCTION

To this end a format has been chosen for all utility descriptions in

this manual. First, each utility program is briefly introduced and

its basic function is summarized. Then each command is reviewed with

respect to its Function, Mode, Format, Arguments, and Use. The

Function of a command or program is the specific task it is designed

to accomplish. The Mode of a command refers to the way (remote or

interactive) it is used during actual programming. The Format of a

Command refers to the structure of its syntax. The Arguments of a

Command refers to the variables or descriptors in the Commands format.

The Use of a Command describes the way in which the Command is applied

including available options that may be relevant to a particular

situation. Examples are then provided of each command together with

possible variations or other commands that may be used in conjunction

with it.

In the initial examples for each utility, the Signon from the Utility

program is included, however, this is dropped from later examples in

order to avoid repetition.

1-3 Sept. ‘81

SECTION 1 - INTRODUCTION

1.5 TEXT SYMBOLS AND CONVENTIONS

Throughout this manual specific documentation conventions are used to

describe formats for writing UTILITY commands, statements, and

functions. The following conventions are in effect:

Symbol Description and Use

1. CAPITAL LETTERS In the format under which each

utility is discussed, capital letters

are used for all keywords, commands,

functions, and statements that are to

be explicitly typed by the user. The

abbreviated form of each command is

used in each of the examples which

illustrate a utility.

Examples: COPYLIB MONT: ,PASC:

STA

R COPYA

2. Lower case letters Lower case letters represent

variables which can be supplied by

the user according to the rules

explained below and in this text.

They are optional and may or may not

be included in typing a command.

Examples: Lib,F PASC: ,BIGFILE

OPEn FPYO

3. < > Angle brackets indicate that the

fields they enclose are required for

valid syntax. They are not to be

typed.

Example: COPYLIB <fdl>,<fd2>

Sept. ‘81 1-4

SECTION 1 -— INTRODUCTION

(] Brackets enclose optional elements of

a command or indicate an optional

choice of elements.

Example: L,F [fd]

COPYI[,switch] ,[buffsize]

The symbol "“{" indicates the

depression of the RETURN key.

Example: L <fd>4

1-5 Sept. '8l

SECTION 1 - INTRODUCTION

1.6 COMMAND SYNTAX

The general command structure,

follows:

that is used in this manual, is as

MNEMONIC[,{ [switches][,buffsize]]{parameterl]},{parameter2],...]

Symbol

1. MNEMONICS

2. Switches

Sept. "81

Description and Use

Mnemonics are shown in this manual in

Uppercase letters. A mnemonic is a

command name and may be entered into

the system in its entirety or in an

abbreviated form. The minimum

abbreviations are indicated in this

manual by Uppercase letters. Any

Mumber of characters between the

’ minimum and the entire command may be

entered.

Examples:

The command TASK is given in the

manual as TASK. The following forms

of this command may be entered:

TA

TAS

TASK

Illegal forms of this command are:

T too short.

TAK misspelled.

TASKS too long

Switches follow the mnemonic

immediately, and are separated from

the mnemonic by a comma. The

SECTION 1 - INTRODUCTION

Symbol

2.

3.

4.

Switches (Cont.)

Buffsize

Parameters

Description and Use

switches provide the user with

ability to specify certain options in

the form of unseuenced alphabetic

characters related to the particular

mnemonic. These switches are

normally passed to the CPU registers

of the task.

Examples:

COPYLIB ,G

COPYLIB ,DG

Buffsize specifies the amount of

extra memory, in bytes, to be added

to a program. This memory expands

the working area, which normally

increases’ the execution speed of a

program. Specifying too much results

in a load error.

Example:

COPYLIB,G,14000 MONT: BASC , PASC : BASC

Parameters are separated from the

memonic and the switches by one or

more spaces. These parameters are

transferred to the CPU stack of the

task.

Example:

COPYA,A MONT:ASCI ,PASC:ASC2

1-7 Sept. '81

SECTION 1 -— INTRODUCTION

1.7 FILE-VOLUME-—DEVICE-NAMING CONVENTIONS

The file, volume, and device naming conventions that are used

throughout this manual are defined as follows:

A)

B)

c)

D)

E)

F)

A file is a program or a collection of data stored on a disk-type

storage medium. Files stay in the system permanently unless they

are explicitly removed.

A volume name is a name given by the user to a disk (e.g.,

MONT: ,PASC: ,FIX:). The system volume is the volume from which

the operating system is booted.

A device name is a name given to a physical device (e.g., CON for

the console, PR: for the printer, FPYO: for disk 0, FPY1: for

disk 1). These names cannot be changed by the user.

The file/device descriptor, referred to in this manual by <fd>,

may refer to any of the above (A, B or C) depending upon the

content of the utility command being discussed.

File/descriptors can be composed of four fields: vol, filename,

directory, and type, where vol can be either a volume or device

name. Device descriptors are composed of the device mnemonic

only.

The format can be expressed in four ways:

1. <vol:>

2. [vol:]<filename>[/type]

3. [vol:]<directory>

4. [vol:]<directory.filename>[/type]

where:

vol Name of the volume on which the file resides if the

file descriptor refers to a file, or the name of a

device if the file descriptor refers to a device.

It may be from one to four characters. The first

character must be alphabetic and the remaining

alphanumeric. If the volume is not specified, the

default volume is the SYSTEM volume.

Sept. '81 1-8

SECTION 1 -— INTRODUCTION

filename Name of the user's file directory (UFD). It may be

from one to twelve alphanumeric characters. If not

Specified, the directory defaults to the master file

directory.

directory Name of the user's directory file. It may be from

one to twelve alphanumeric characters. If not

specified, the directory defaults to the master

directory.

type Type of file, i.e., ASCII, Binary, etc.

G) Often task identifiers <tid> appear in a command. Task

identifiers are names of programs or utilities which are used by

other utility commands. For example:

-SETAUTO TA

Example: Examples of legal file/device descriptors are:

OPEN MONT: Opens the volume named MONT.

AL,C MONT: PASTOR/A Allocates a Contiguous ASCII

file named PASTOR on the volume

named MONT.

- L PACK: DIRC Lists the files in the

directory DIRC on the volume

named PACK.

- COPYLIB,D PACK:DIRC .LOOP/B Deletes the Binary file LOOP

from the directory DIRC on the

volume named PACK.

COPYA CON: ,PR: Copy ASCII data from the

console to the printer.

1-9 Sept. '8l

SECTION 1 - INTRODUCTION

1.8 KINDS OF FILES

With each file there is a type specification that describes, for the

system and the user, what kind of data is in the file. These appear

next to the filename for your files in your Master File Directory.

Table 1-1 lists these specifications and their meanings. The type of

the file is normally implied by the program, and does not need to be

specified. If the file type is not implied by the program, it must

be specified! Note you can also have file type combinations like Bin

Pas as well as abbreviations like ‘3? for Bin Pas.

Table 1-1. Type Specifications

Symbol Description and Use

Asm ASSEMBLER source code.

Bas BASIC source code, or data produced by

BASIC

Und Undefined data, which verifies to any other

type. '

Asc . ASCII data readable without any special

handling.

Lst List file, ASCII data together with position

information. ,

Obj Object code, readable by the Task

Establisher. Cannot be loaded and

executed.

Bin Binary data, which is unspecified.

Tsk | Task file, either relocatable or absolute.

Can be loaded and executed.

Ism , ISAM -index file.

Pas PASCAL source code, or data produced by

PASCAL.

Ufd User File Directory.

Mfd Master File Directory.

Sept. ‘8l 1-10

SECTION 1 -— INTRODUCTION

1.9 WILD-CARD

Some utility commands may handle generalized File Descriptors. These

are used to specify a searching key when scanning for one or several

files.

The following special formats are available:

Symbol

Examples:

ABC**

*BCR—

Description and Use

An asterisk * in a position indicates

that a character in that position is

to be ignored. It may be placed

anywhere except after a dash.

A dash indicates that all further

characters are to be ignored.

Any file that starts with ABC and has

five characters in its name.

Any file that starts with any

character, followed by BC, and is at

least four characters long. The

slash - indicates that remaining

characters are ignored.

SECTION 1 - INTRODUCTION

1.10 TERMINAL USAGE

The Terminal Management System is controlled by the user through a

terminal device. The name of the logical terminal device is always

CON for every user, and may be assigned to a task for ordinary 1/0

operations, just as any other device.

Utility Commands which reside on diskette are invoked by typing the

command followed by a carriage return. The system is ready to accept

the command when the CRT responds with a dash -.

Prompting

When the terminal operator is expected to enter data at the terminal,

a prompt is output. This prompt takes one of the following forms:

Prompt Type of Request

= Command Request

no prompt Data Request

The command request prompt is output whenever the system is ready to

accept another command.

The data request prompt is output whenever a task is attempting to

perform a read request to the terminal device. This request should

be satisfied as soon as practical, since messages are held in

abeyance until the data request is satisfied.

Control Characters

The control character conventions in effect for terminal devices are

described below.

Function Operation

Deleting a Line Depress and hold the CTRL-key while

striking the X-key (CTRL-X).

Deleting a Character Depress and hold the CTRL-key while

striking the H-key (CTRL-H).

Sept. '81 1-12

SECTION 1 -— INTRODUCTION

Function: Operation

Ending an Input Line If the input line is complete and ready

to be processed, depress the carriage

return key.

End-Of-File Function Simultaneously depress the CTRL-key and

the equals (=) key.

Attention Function If the data request prompt appears and

the user wishes to communicate with the

Command System rather than a task, the

CIRL-key should be depressed and held

while striking. The system responds

with the command request prompt, and is

ready to accept a command. To return

to the data request, just hit the

Return-key.

If an input or output to the terminal

is in progress, use of the CTRL-key and

the A-key will interrupt the process.

For example, if the TASK command has

been entered and the output is in

“progress, CTRL-A halts the output in
progress. The system is then ready to

accept a command.

Abort Some commands and programs recognize an

abort function, which aborts the

terminal transfer and cancels the task

execution. The abort function is

generated by depressing and holding the

“CTRL-key while striking the C-key.

1-13 Sept. ‘81

SECTION 1 - INTRODUCTION

Command Handling

The command is the basic unit of conversation between a terminal user

and the System. A command directs the MIM System to take a specific

action. In general, a single command results in a single action

being taken by the System.

A command consists of a memonic which normally describes the action

the user wishes to take place, and arguments which provide the

details necessary to perform the action.

Commands are accepted on line (i.e 80 characters) at a time. A

command may not spread over two or more lines. A command line is

terminated by a carriage return.

Unknown Commands

If an unknown command is entered, the System tries to load a program

with the same name. If found, it will be started as a primary task,

and the rest of the command line will be transferred as parameters to

that task.

1.11 RELATED MANUALS

Every attempt has been made to make this manual as self contained as

possible. Nevertheless, there are many sections where an

understanding of material from other reference manuals as either

implied or strongly recommended. Thus, an understanding of the

DEVICES and TASK, utilities discussed in Part II is greatly enhanced

by reviewing the material on Terminal Management in the MONROE

OPERATING SYSTEM PROGRAMMER'S REFERENCE MANUAL.

While a thorough understanding of the LOAD and RUN commands (also in

Part II) is greatly enhanced by a detailed understanding of task

establishment. All of these in turn imply a basic understanding of

the way programs are assembled and executed; hence beyond a certain

level of detail and understanding of assembly language and system

concepts is not only helpful but necessary. “

On the other hand, the utilities discussed in Part I are almost

completely self contained and no knowledge of assembly language or

system concepts is presupposed.

Sept. '81 1-14

PART I

DISK MAINTENANCE UTILITIES

SECTION 2

ALLOCATE: FILE ALLOCATION UTILITY

SECTION 2

ALLOCATE: FILE ALLOCATION UTILITY

2.1 INTRODUCTION

The ALLOCATE Command is used to create a direct-access file. It must

be emphasized that on an empty mini-floppy diskette there are 1280

free sectors. There are 256 bytes in each sector. Therefore, if you

want to allocate continuous sectors you must be certain that you in

fact have continuous sectors available to allocate; otherwise you

cannot create the file.

2-1 Sept. ‘81

Lille la
SECTION 2 —- ALLOCATE: FILE ALLOCATION UTILITY

2.2 ALLOCATE COMMAND

Function: Allocate either a contiguous or indexed direct

access file on a diskette.

Mode: Remote

Format: (a) ALlocate [I] <fd> [,rec length][,sectors]

[sectors/blk}

(b) ALlocate,C <fd> <sectors>

Arguments: Switch I indicates that an indexed file is going to

be allocated. Switch C indicates that a contiguous

file is being allocated. If I is not included in

the Command the system assumes an indexed file is

being allocated.

File descriptor fd indentifies the file to be

allocated where the file type must be specified if

the I option is chosen. If the file being

allocated is on disk drive FPYO, then the volume

Name must be included in the fd; otherwise, the

file being allocated will default to the system

volume.

Rec length is optional and specifies the logical

record length in bytes. It cannot exceed 65535

bytes. The default is 0 bytes (variable record

length). The file size operand <sectors> specifies

the total allocation size in sectors.

Sectors/blk specifies the principal physical block

size in sectors being allocated. If the switch C

is chosen, the file size operand <sectors> is

required, which specifies the total allocation size

in 256—-byte sectors. This may be any value up to

65,535* CLUSIZE (c.f. The DISKINIT Utility) or the

total number of contiguous free sectors existing on

the specified volume at the time the command is

entered. The size is specified as a decimal

number.

Sept. ‘81 2-2 ALLOCATE

“

SECTION 2 - ALLOCATE: FILE ALLOCATION UTILITY

Use:

Example:

ALLOCATE

Allocate can be used to create either BINARY or

ASCII files. After a file has been allocated, the

LIB Command can be used to check that the desired

file with the indicated characteristics has in fact

been created.

Ex. 1

Allocate, on the system volume, a binary indexed

file named THISFILE with a logical record length of

126 Bytes, and default preallocated.

-AL THISFILE/B,1264

Ex. 2

Allocate, on the Volume MIM a contiguous ASCII file

named BIGFILE/Asc whose size is 100 sectors.

~AL,C MIM:BIGFILE/A, 1001

2-3 Sept. ‘81

SECTION 3

BOOTGEN: DISK BOOTSTRAP GENERATOR

SECTION 3

BOOTGEN: DISK BOOTSTRAP GENERATOR

3.1 INTRODUCTION

In order for the computer to “boot up” from a disk it must know where

on that disk the operating system resides and how to load it into

memory. When you are creating a new disk this information must be

placed on it. The function of the BOOTGEN Command is precisely to

locate the operating system.

3~1 Sept. ‘81

SECTION 3 - BOOTGEN: DISK BOOTSTRAP GENERATOR

3.2 BOOTGEN COMMAND

Function:

Mode:

Format:

Arguments:

Example:

Sept. "81

Write a loader onto a disk.

The disk device to be written must be opened

NON-FILE-STRUCTURED before any write.

BOOTGEN ,B <fd>

The device descriptor <fd> is the name of the disk

drive together with the name of the file or program

to be located (normally the operating system). It

is not a volume name.

The switch B indicates that it is a mini floppy

disk that is to be booted up.

BOOTGEN is generally used with the utilities FORMAT

and DISKINIT. As such it is part of the disk

initialization sequence. Note the disk to be

“bootgened” must reside on disk drive FPYO.

The following procedure is recommended to write the

loader onto the disk:

Step 1: Open the disk.

Step 2: Start the program with the Command:

BOOTGEN,B <fd>

3-2 BOOTGEN

SECTION 4

CLOSE: CLOSE DEVICE

SECTION 4

CLOSE: CLOSE DEVICE

4.1 INTRODUCTION

There are many instances when it is necessary to take a device

off-line. For example, when dismounting a disk. This is the purpose

of the CLOSE command.

4-] Sept. ‘8l

SECTION 4 CLOSE: CLOSE DEVICE

4.2 CLOSE COMMAND

Function:

Mode:

Format:

Arguments:

Example:

Sept. ‘81

Take a device off-line.

It is assumed that the device is on-line before

being closed.

CLose <fd>

The device descriptor fd is the mnemonic name of

the device.

The CLOSE Command most commonly is used when the

mode under which a device is being operated is

changed or you are changing disks. For example, in

going from file-structured to non-file-structured

mode a device is first closed so it can be reopened

in non-file-structured mode. The Close Command is

rejected if it is directed to a device which is

currently assigned by a task. If the device being

closed is a direct~access device, then fd is not

the volume identifier but the actual device

mnemonic.

Close disk device 1.

~CL FPY1:4 This action removes the volume

MS8: from the system. The disk

may now be removed or changed. If

a direct-access device is dis-

mounted without being CLOSEd, it

may only be OPENed on line in the

write protect mode.

4-2 CLOSE

SECTION 5

COMMAND FILE

SECTION 5

COMMAND FILE UTILITY

5.1 INTRODUCTION

The COMMAND FILE UTILITY allows you to execute a special file, called

a Command File. This file's entries can consist of utility commands,

task files, and/or entire programs which you wish to run in a

specific sequence. For example, formatting, initializing, and

bootgening a disk involves executing the utility programs FORMAT,

DISKINIT, and BOOTGEN in that order. You can either execute these

programs separately or create and execute a command file to execute

the three programs in sequence. Obviously this latter procedure

would be more efficient when you have a large number of disks to

create.

More generally, it is not difficult to imagine situations where you

have a series of programs together with utilities involving tasks of

a repetitive nature that must be run frequently during specific time

of the day, week, or month. A weekly payroll, a daily check on

inventory, etc. all involve procedures that must be invoked

frequently and repetitively. If these programs need only minor

modification or maintenance, it makes much more sense to execute them

as a command file rather than tying up an operators time as well as

your computer.

Command Files can be created either with the editor or by using the

COPYA command (copying from the console to the Command File.fd).

They can consist of separate commands, tasks, and programs; or they

can invoke other Command Files.

After execution, Command Files are not automatically closed, hence

you must run a DISKCHECK before attempting to edit them.

5-1 Sept. '81

SECTION 5 — COMMAND FILE

5.2 COMMAND FILE PROCEDURE

Function:

Mode:

Format:

Arguments:

Examples:

Sept. ‘81

Execute one or more programs, tasks, and/or

commands which exist in either a single file or a

group of files.

Remote or interactive.

!<fd>

! indicates that the file <fd> is to be executed.

fd is the file descriptor for the Command File and

consists of the Command File's name.

Ex. 1

Create and execute a Command File which consists of

a FORMAT, DISKINIT, and BOOTGEN.

-COPYA CON: ,CMDSCOPY4

ASCII Copy Rx-yzq

New File

-CLOSE FPY1:4

“FORMAT DEV=M4 ,DR=FPY1:4

—OPEN,N FPY1:4

-DISKINIT DEV=M4 ,DR=FPY1: , VOL=MOS1 ,CLEARY

-~CLOSE FPY1:1

-OPEN FPY1: 4

~COPYLIB,G,24000 ALEX: ,MOS1:4

-CLOSE FPY1: 4

~-OPEN,N FPY1:4

-~BOOTGEN,B FPY1:MS84

-CLOSE FPY14

—CNTRL={4

12 record copied

End of task

—!CMDSCOPY4

5-2 COMMAND

SECTION 5 — COMMAND FILE

COMMAND

Ex. 2
——

Execute a sequence of nested Command Files.

Message/Command

=—COPYA CON: ,HOWARD1{4

ASCII copy Rx-yz

New file

—DEV1

-L1

-CNTRL*1

2 records copied

End of task 0

-COPYA CON: ,HOWARD24

ASCII copy Rx-yz

New file

-TA

-! HOWARD 14

-CNIRL={

2 records copied

End of task 0

-—COPYA CON: ,HOWARD314

ASCII Copy Rx-yz

New file

-!HOWARD24

-CNTRL =1

1 record copied

End of task 0

Description

Creates the ASCII file named

Howard] whose contents consist

of the DEVICES utility program

and the DIRECTORY LIST utility

program.

Creates the ASCII file named

Howard2 whose contents consist

of the TASKS utility program

and the command file program

'HOWARD1 .

Creates the ASCII file HOWARD3

whose contents consist of the

command file program !HOWARD2.

Sept. ‘8l

SECTION 5 — COMMAND FILE

Sept. "81

The nesting of the above sequence of programs

appears as follows:

| TA,HOWARD1

|_DEV,L

|
|_HOWARD 2 |

|
|

If you enter the command -! HOWARD 34 this will

cause the command file utility to execute the

commands in HOWARD 3 which in turn will cause the

execution of the commands in HOWARD2. Hence, the

TASKS utility will list the status of each task to

the console and then the utility programs DEVICEs

and DIRECTORY LIST in HOWARDI will output the

devices supported by the operating system, and the

Master File Directory on the System Volume, to the

terminal. Note, all messages that appear as a

result of executing the Command File Program are

just the individual messages output to the console

by the specific utilities in the file.

Ex. 3

Execute a Monroe BASIC program as part of a Command

File.

~COPYA,CON: ,NEWPGM

- ASCII COPY Rx-yz

New file

~BASIC SEARCHFILE

~COPYLIB,G,24000 ALEX: SEARCHFILE ,MOS1 : SEARCHFILE

-L,F MOS1: ,SEARCHFILE

-CNTRL=

3 records copied

End of task 0

Upon entering the command

-! NEWPGM

5-4 COMMAND

SECTION 5 - COMMAND FILE

COMMAND

The BASIC program SEARCHFILE will execute, after

which COPYLIB will copy SEARCHFILE from the system

volume named ALEX to the volume MOS1. Then

DIRECTORY LIST will output the relevent information

about SEARCHFILE to the console. Note when

executing SEARCHFILE as a Command File the

termination command “bye” must be included as the

last line of the BASIC program before the END

statement. This is generally true for all BASIC

programs which are to be executed as part of

Command Files.

5-5 Sept. ‘81

SECTION 6

COPYA: ASCII COPY UTILITY

SECTION 6

COPYA: ASCII COPY UTILITY

6.1 INTRODUCTION

Suppose you wish to transfer ASCII data between two devices and/or

files. This data can be either formatted (as in the case when you

create a file on the EDITOR which automatically compresses any spaces

between characters), or unformatted (as might be the case with ASCII

data obtained from another operating system). You may want to create

a new data file for the second device containing the data from the

first, or append that data to an already existing file. The COPY

ASCII UTILITY (COPYA) allows you to perform the above. If you have a

file with fixed length records, COPYLIB can also be used, however,

COPYA has the additiona capability of being able to copy between

devices as well as files. COPYLIB, although it can copy between all

files, cannot copy between devices. Lastly, COPYA can be used to

convert a variable record length file to a fixed record length file

provided that the output is preallocated with the AL Command.

6-1 Sept. '8l

SECTION 6 -— COPYA: ASCII COPY UTILITY

6.2 COPYA COMMAND

Function:

Mode:

Format:

Arguments:

Sept. ‘81

Copy ASCII date between two files.

Remote

COPYA[,switch] <fdl>,<fd2>

Switch is optional and can take on the

values A, and I.

Switch A is used to append the source file

to the destination.

Switch I indicates that data should be

transferred as ASCII image data. It is used

to copy a variable record length file to a

fixed record length file.

File/device descriptor fdl specifies the

source file or the device.

File/device descriptor fd2 specifies the

destination file or the destination device

(if it does not already exist). If fd2

already exists, the previous content will be

destroyed if switch A is not used.

6-2 COPYA

SECTION 6 - COPYA: ASCII COPY UTILITY

Examples: Ex. |

Consider the following file directories on the disk

devices whose volume names are MONT and PASC.

-LIB MONT:

Directory: MONT:MFDIR 42 of 180 entries used.

CMDSALDERE Tsk CMDSLIB Tsk CMDSSPACE Tsk

CMDSDEVICES Tsk CMDSTASK Tsk CMDSTIME Tsk

CMDSVOLUME Tsk CMDSLDST Tsk CMDSPOS Tsk

BOOTGEN Tsk DISKDUMP Tsk DISKINIT Tsk

3 . ® . MFDIR Mfd

FIX10 Asc

~ “LIB PASC
Directory: PASC:MFDIR 43 of 180 entries used.

BOOTGEN Tsk CMDSALDERE Tsk CMDSLIB Tsk

CMDSSPACE Tsk _CMDSDEVICES Tsk CMDSTASK Tsk

CMDSTIME Tsk CMDSVOLUME Tsk CMDSLDST Tsk

CMDSPOS Tsk DISKDUM? Tsk DISKCHECK Tsk

COPYLIB Tsk COPYA Tsk EDIT Tsk

° e e e e °

TEMP Asc $l Asc FLIXLEN Bac

Note that FIX10 is an ASCII file on

MONT: When you type the command.

—COPYA MONT: FIX10 , PASC: FIXXTEN4

The following message is displayed on the console:

ASCII copy Rx-yz

~ New file

40 records copied

End of task 0

This command has the effect of copying the contents

of FIX10 From MONT TO PASC and storing those

contents on PASC under the new file name FIXXTEN.

s

COPYA 6-3 Sept. ‘81

SECTION 6 -— COPYA: ASCII COPY UTILITY

Examing the directory for PASC shows that FIXXTEN

has been created as an ASCII file as seen below.

-LIB PASC:

Directory: PASC:MFDIR 44 of 180 entries used.

BOOTGEN Tsk CMDSALDERE Tsk CMDSLIB Tsk

CMDSSPACE Tsk CMDSDEVICES Tsk CMDSTASK Tsk

CMDSTIME Tsk CMDSVOLUME Tsk CMDSLDST Tsk

CMDSPOS Tsk DISKDUMP Tsk DISKCHECK Tsk

COPYLIB Tsk COPYA Tsk EDIT Tsk

FIXXTEN Asc « ° - .

Obviously, it is not necessary to change the

filename every time you wish to copy data, that is,

the filenames fdl and fd2 can both be the same.

Ex. 2 -

Copy the ASCII file ASC1 from the volume MONT to

PASC and append it to ASC2 on PASC.

—COPYA,A MONT:ASC1,PASC:ASC24
ASCII copy Rx-yz

14800 Records copied

End of task 0

Ex. 3 — *

Copy ASCII data —"“END OF JOB2" from the console to

the printer.

“COPYA CON: ,PR:]

~END OF JOB24

-CTRL4.

ASCII copy Rx-yz

20000 Records copied

End of task 0

Sept. ‘81 6-4 COPYA

SECTION 6 — COPYA: ASCII COPY UTILITY

COPYA

Ex. 4 -
— es

The following figures illustrate the COPYA Command both

without and with the A option.

| | | |
| COPYA | |

| £dl | e—W—Oosm-> | £d2 |

| | | |
| | | |

| |
| | | £42 |
| | COPYA,A | |

fdl	>	
		fdl

Ex. 5 -
Consider the following file, named INPFILE, created by the

editor, and whose contents consists of the following three

statements:

RECORD 1

RECORD 2

RECORD 3

Then INPFILE has variable record length. Now use the

ALLOCATE Command.

~AL OUTFILE/A, 104

To create an output file OUTFILE with fixed record length,

enter the Command:

-COPYA,I INPFILE,OUTFILE4

ASCII copy Rx-yz

New file

End of task 0.

6-5 Sept. ‘81

Sept.

SECTION 6 - COPYA: ASCII COPY UTILITY

"81

Ex. 6

Use COPYA to create a new file called NEWFILE.

Command /Message

-COPYA CON: ,NEW FILE

ASCII copy Rx-yz

New file

-CNTRL =

x records copied

End of task 0

Meanings

Copy the following text from

the console to the system

volume under the filename

NEWFILE.

Signon from the program.

Text for the file.

Exit from the program.

COPYA

“SECTION 6 - COPYA: ASCII COPY UTILITY

6.3 MESSAGES AND DIAGNOSTICS

The following messages will be output to the screen:

Message Definition

a) ASCII copy Rx-yz Signon by the program, where

the revision level is x, and

the update level is yz.

b) New file If the destination was

created.

c) End of tasks Where s is the SVC error

Status. Refer to Appendix

B.

Depending upon the error, the following diagnostics will be output to

the screen:

d) ‘Errors on input LU 0 Failed to
from, the

status is

e) Errors on output LU 1 Failed to

write to

The error

COPYA 6-7

assign to, or read

source. The error

Se

create, or assign/

the destination.

status is s.

Sept. ‘81

SECTION 7

COPYI: IMAGE COPY UTILITY

SECTION 7

COPYI: IMAGE COPY UTILITY

7.1 INTRODUCTION

The COPYI utility is used to copy and/or verify data between devices

and/or files. There are some switches to control the action of the

program. It can be used to copy both physical and logical files. It

can also be used to verify the integrity of a disk file by doing a

bit by bit comparison of that file with an identical file on a backup

disk. Lastly it is an excellent way to make back-up copies of master

and data disks.

7-1 Sept. ‘81

SECTION 7 ~— COPYI: IMAGE COPY UTILITY

7.2 COPYI COMMAND

Function:

Mode:

Format:

Arguments:

Note:

Sept. '81

Performs an image copy and/or verifies data between

devices and/or files.

Remote

1) COPYI <fdl>,<fd2>

2) COPYI[,switch][,buffsize] <fdl>,<fd2>

Switch is optional and can take on the values V or

VO. Switch V is used to verify the source file

with the destination during a copy. Switch VO-is

used when no copy shall be done; only a verify of

data between the source and destination.

Buffsize is optional and is used to add additional

memory to the copy buffer. The memory is specified

in bytes and serves to speed up the copy or

verification process. Note: If buffsize is used

without any switches, two commas are needed before

you enter the size of the buffer.

File/device descriptor fdl indicates the source

file or device (e.g., FPYO:).

File/device descriptor fd2 indicates the

destination file or device (e.g., PR:). If the

output file has not already been allocated before

the COPY routine, it is created at the time of the

COPY.

If fd2 already exists as a file, its previous

contents will be destroyed by the copy.

7-2 COPYI

SECTION 7 — COPYI: IMAGE COPY UTILITY

Examples:

COPYI

Ex. 1 -

Performs an imabe copy of the file

named ERRGEN on the Volume MIM

to a file named ERRGEN on the

Volume PASC.

-COPYI MTM:ERRGEN , PASC : ERRGENY

Image copy Rx-yz

New file.

Copy requested!

20 records copied.

End of task 0.

(The previous information displayed

on the screen indicates that 20

records were copied, and that the

file copied was a new file on

PASC:).

Ex. 2 -
Performs an image copy of the file named

PASTOR on the Volume MIM to a file named

PASTOR on the Volume named PASC and then

verify the two files.

~COPYI,V MIM: PASTOR, PASC : PASTOR

The following messages is displayed on the screen:

Image copy Rx-yz

New file.

Copy requested!

20 records copied.

Verify requested.

Verify o.k!

End of task 0.

7=3 Sept. '81

SECTION 7 — COPYI: IMAGE COPY UTILITY

Ex. 3 -

Perform verification of the file ERRGEN on MIM with

the file ERRGEN on PASC.

~COPYI,VO MIM: ERRGEN , PASC : ERRGEN

The following messages are displayed on the screen:

Image copy Rx-yz.

Verify requested! |

Verify o.k!

End of task 0.

Sept. '81 7-4 COPYI

SECTION 7 -— COPYL: IMAGE COPY UTILITY

7.3 MESSAGE AND DIAGNOSTICS

The program may output the following messages:

Message

a)

b)

The

has

c)

d)

e)

£)

g)

h)

1)

j)

Image copy Rx-yz

New file

Definition

Signon by the program, where the

revision level is x, and the

update level is yz.

If the destination has to be

created.

following diagnostics will be output to the screen if an error

occurred.

Errors on input LU 0

Errors on output LU 1

Copy requested

<nnnn> Records copied

Verify requested

Bytes s not equal to c

in record r at a

Verify ok

End of task 0

COPYI

Failed to assign to, or read from,

the source. The SVC error status

is s. Refer to Appendix 3B.

Failed to create, or assign/write

to the destination. The SVC error

status is s.

Indicates start of the copy phase.

Number of 256 bytes records

copied.

Indicates start of the verify

phase.

Verify mismatch between source

byte s and verified byte c in

record number r at relative

address a. Each record is 256

bytes, and the address is within a

record.

When no mismatch was found between

source and destination.

The program terminates.

7-5 Sept. ‘81

SECTION 8

COPYLIB: FILE COPY UTILITY

SECTION 8

COPYLIB: FILE COPY UTILITY

8.1 INTRODUCTION

COPYA allows you to transfer data between files when the records

have variable length. Obviously, there are many instances where you

would like to transfer ASCII data with fixed record length or

unformatted ASCII data. Furthermore, you may also want to copy or

delete files whose filenames share certain common characters.

COPYLIB is a utility that allows you to transfer data between all

files, formatted or unformatted, with fixed length or variable length

records. It is a fast method of copying files. In addition, the

COPYLIB program can be used to delete files under directory control,

and depending on the start switches, may be executed in either

interactive or remote mode. The interactive mode works in two

phases. The first is a query in which the user is asked what he

wishes done with each file. The second phase initiates the actual

data transfer. The transfer takes place without any regard to the

type of the file, or the content in the file, except transfer of

Ascii files to a printer. °

COPYLIB 8-1 Sept. '81

SECTION 8 ~ COPYLIB: FILE COPY UTILITY

8.2 COPYLIB COMMAND

Function:

Arguments:

Sept. ‘81

Copies data between all files.

Interactive Remote

1) COPYLIB[,switch][,buffsize] <fdl>[,,select

file]

2) COPYLIB[,switch][,buffsize] <fdl>, <fd2>

[,select file]

In format 1 switch can take on the values D or DG.

D indicates a delete in the interactive mode. DG

indicates a delete in the remote mode. To delete a

file with COPYLIB the file must be closed.

Otherwise, an error occurs.

Select file is the name of a file or device which

_ contains the names of the files to be deleted. It

is an ASCII-file containing either a filename or a

wild-card specification on each line. When a select

file is specified the program enters the remote

mode. :

The file descriptor fdl specifies the source delete

volume where ordinary filename specifications or

wild-card file~name specifications may be used.

In format 2 switch can take on the value G which

indicates a copy in the remote mode. When left out

the copy will be in interactive mode.

Buffsize is optional and specifies the amount of

extra memory (in bytes) needed to speed up the copy

operation.

The file descriptor fdl specifies the source copy

volume where ordinary filename specification may be

used.

8-2 COPYLIB

SECTION 8 - COPYLIB: FILE COPY UTILITY

Note:

COPYLIB

The file/device descriptor fd2 is the name of the

volume or device, or perhaps theUser-File-

Directory to which the input file or files will be

copied.

Select file is the name of a file or device which

contains the name of the file to be copied. As in

format 1 it is an ASCII-file containing either a

filename or a wild-card specification on each line.

When a select file is specified the program enters

remote mode.

If fd2 already exists as a file, its previous

contents will be destroyed by the copy. Ifbuff-

size is used without any switches, two commas are

needed before you enter the size of the buffer.

The interactive mode has two phases. In the first

phase all files which are to be copied or deleted

are collected. In the-second the actual copy or

delete takes place. When a program is entered in

the interactive mode, a series of options is

displayed. They are:

Option Meaning

Cc copy file.

C =file(.element) Copy, with using of a new

name.

D delete file.

A abort.

I ignore rest of library.

P pause.

8-3 Sept. ‘81

SECTION 8 -— COPYLIB: FILE COPY UTILITY

A series of question marks (???) is presented after

the name of each file in the directory asking you

which of the above options you wish to choose. If

you wish to copy the file, you type a C after the

question marks and the file will be copied. If you

wish to ignore the file, you simply press RETURN.

If you wish to delete the file, you simply type D

and the file will be deleted. If you wish to

ignore the presently queried file and all the

subsequent files in the directory, type "I".

Lastly, an "A" typed in response to a query will

abort the entire session, in which case no files

are copied or deleted.

Example: Ex. 1 -

Consider once again, the directories for the

devices whose volume names are PASC and MONT.

-LIB PASC:

Directory: PASC:MFDIR 43 of 180 entries used.

BOOTGEN Tsk CMDSALDERE Tsk CMDS$LIB Tsk

CMDS SPACE Tsk CMDSDEVICES Tsk CMDS TASK Tsk

CMDS TIME Tsk CMDS VOLUME Tsk CMDS LDST Tsk

CMDS POS Tsk DISKDUMP Tsk DISKCHECK Tsk

FIXXTEN Asc MFDIR Mfd

-LIB MONT:
Directory: MONT:MFDIR 42 of 180 entries used.

CMDS ALDERE Tsk CMDS LIB Tsk CMDS SPACE Tsk

CMDSDEVICES Tsk CMDS TASK Tsk CMDS TIME Tsk

CMDS VOLUME Tsk CMDS LDST Tsk CMDS POS Tsk

BOOTGEN Tsk DISKDUMP Tsk DISKINIT Tsk

DATALO Bac PASC Efd MFDIR Mfd

Sept. ‘81 8-4 COPYLIB

SECTION 8 - COPYLIB: FILE COPY UTILITY

If you issue the Command:

-COPYLIB PASC: ,MONT: {

you can interactively query all of the files on PASC

and copy those that you want onto MONT. At the

beginning of the interactive sessions the following

query appears on the screen:

BOOTGEN TSK ???

BOOTEN is the first file in the PASC directory.

Respond to this query. The list of PASC's directory

will appear sequentially as queried (CMDSSPACE,

CMDSTIME, etc). In response to each query type in

one of the commands previously outlined. For

example, suppose you want to delete the file FIXXTEN

from PASC. Then in responce to the query:

FIXXTEN ASC???D4

you type in aD. After you have finished the

program your file directory will look like this:

Directory: PASC:MFDIR 43 of 18 entries used.

BOOTGEN Tsk CMDSALDERE Tsk CMDSLIB Tsk

CMDSSPACE Tsk CMDSDEVICES Tsk CMDSTASK Tsk

CMDSTIME Tsk CMDSVOLUME Tsk CMDSLDST Tsk

CMDSPOS Tsk DISKDUMP Tsk DISKCHECK Tsk

TEMP Asc Sl. Asc FIXLEN Bac

MFDIR Mfd

with FIXXTEN deleted and MFDIR moved to its place

in the list.

COPYLIB 8-5 Sept. '81

SECTION 8 - COPYLIB: FILE COPY UTILITY

-LIB PASC:

Directory:

BOOTGEN

CMDS$SPACE

CMDSTIME

CMDSPOS

DATA10

Sept. ‘81

Ex. 2

Suppose you want to copy a file from one disk to

another under a new file name. For example, copy

the file DATAIO on MONT to PASC under the filename

HOWARD. Type:

~- COPYLIB MONT: ,PASC:{

CMDSALDERE TSK ?2?

Each file on MONTS directory will be listed for the

user to interrogate. Eventually the user must

respond to a query concerning the file DATAIO.

In response to the query-

DATAIO BAC 22?

enter:

C = PASC :HOWARD4

which has the effect of copying the

contents of DATA1O to PASC under the

filename HOWARD. The new file

directory for PASC now looks like:

PASC :MFDIR 43 of 180 entries used.

Tsk CMDSALDERE Tsk GMDSLIB Tsk

Tsk CMDSDEVICES Tsk CMDSTASK Tsk

Tsk CMDSVOLUME Tsk CMDSLDST Tsk

Tsk DISKDUMP Tsk DISKCHECK Tsk

Bac HOWARD Bac MFDIR Mfd

8-6 COPYLIB

SECTION 8 - COPYLIB: FILE COPY UTILITY

Ex. - Remote Copy from PASC to MONT.

Type in Command:

~COPYLIB,G, 14000PASC: ,MONT: ¢

Then all files from PASC will be copied to MONT

remotely.

The file directory for MONT now looks like:

-LIB MONT:

Directory: MONT:MFDIR 46 of 180 entries used.

BOOTGEN Tsk CMDSALDERE Tsk CMDSLIB Tsk

CMDS SPACE Tsk CMDSDEVICES Tsk CMDS TASK Tsk

CMDS TIME Tsk CMDS VOLUME Tsk CMDS LDST Tsk

CMDS POS Tsk DISKDUMP Tsk DISKCHECK Tsk

TEMP Asc Sl Asc FIXLEN Bac
MFDIR Mfd PASSYS Tsk PASTRL Obj

Compare this to the directory for MONT in the

previous example. Note that the task file,

PASSYS and object file PASTRL among others,

have been added.

Ex. 4 -

Delete all file three characters long and having the

characters A and T in the second and third positions, (*

indicates a missing character).

~COPYLIB,DG MONT: *ATY

COPYLIB Rx-yz

CAT Asc Deleted

End of task 0

COPYLIB 8-7 Sept. '81

SECTION 8 -— COPYLIB: FILE COPY UTILITY

Directory:
BOOTGEN
CMDS SPACE
CMDS TIME
MAT

MATT

Sept. '8l

Ex. 5 -

Delete all files having filenames of 3 characters

in length and the character A in the second

position, (* indicates a missing character).

-COPYLIB,DG MONT: *A*q

COPYLIB Rx-yz

RAY Asc Deleted

End of task 0

Ex. 6 -

Delete all files having the characters M and A in

the first and second positions, (- indicates all

remaining characters are ignored), using the

wild-card-specifications. :

-COPYLIB,DG MONT:MA-4

COPYLIB Rx-yz

MATT Asc Deleted

End of task 0

Ex. 7 -

Delete all files with filename of five characters

and having the characters I and D in the fourth and

fifth positions, using the wild-card

specifications.

-COPYLIB,DG MONT: *ATY

COPYLIB Rx-yz

DAVID Bac Deleted

End of task 0

Ex. 8 -

Consider the following directory for MONT:

MONT: MFDIR 45 of 100 entries used.
Tsk CMDSALDERE Tsk CMDS LIB Tsk

Tsk CMDS DEVICES Tsk CMDS TASK Tsk
Tsk CMDS VOLUME Tsk CMDSLDST Tsk

Asc FIXLEN Boc GAT Ase

‘ ; ‘ BAMAT Ase

Asc FIX10 Asc MFDIR MEd

8-8 COBYLIB

SECTION 8 - COPYLIB: FILE COPY UTILITY

-LIB MONT:

Directory:

BOOTGEN

CMDS SPACE

CMD$ TIME

CMDS POS

COPYLIB

Note MAT and GAT are the two filenames having three

characters in the directory for MONT. Note A and T

in the second and third positions in both cases.

After typing in

-COPYLIB,DG MONT: *AT4

the response

MAT Asc ‘Deleted.
GAT Asc Deleted.

appear on the screen indicating that the above

files in fact have been deleted.

The resulting directory now looks like:

MONT: MFDIR 43 of 100 entries used.

Tsk CMDSALDERE Tsk CMDS LIB Tsk

Tsk CMDS DEVICES Tsk CMDS TASK Tsk

Tsk CMDS VOLUME Tsk CMDS$LDST Tsk

Tsk DISKDUMP Tsk DISKCHECK Tsk

Ase MATT1 Asc FIX10 Asc

Mfd

Note also that although the file named GAMAT ends in

A and T it has not been deleted. This is because the

A and the T appear in the fourth and fifth positions

rather than the second and third, furthermore GAMAT

has five characters in its filename, not three.

If you wanted to delete GAMAT you would type:

-COPYLIB,DG MONT: *A*A*4q

which will delete all five character filenames having

A in the second and fourth character positions. The

response:

GAMAT Asc Deleted.

indicates that the file has been deleted.

8-9 Loe "81

SECTION 8 — COPYLIB: FILE COPY UTILITY

Ex. -

Copy all files on the volume named MONT having first

three characters BAS onto the volume named PASC.

-COPYLIB,G,14000 MONT: BAS-,PASC: 4

The response at the terminal is:

BASIC Tsk 33792 Bytes Copied

BASICERR Tsk 8192 Bytes Copied

The resulting file directory for PASC is:

“Lib PASC:
Directory: PASC:MFDIR 41 of 180 entries used.
BOOTGEN Tsk CMDSALDERE Tsk CMDSLIB Tsk
CMDSSPACE Tsk CMDSDEVICES Tsk CMDSTASK Tsk
CMDSTIME Tsk CMDS VOLUME Tsk CMDSLDST Tsk
CMDSPOS Tsk DISKDUMP Tsk DISKCHECK Tsk

HOWARD Asc MFDIR Mfd BASIC Tsk
BASICERR Asc

Ex. 10 =

Copy all User files from the User-File-Directory ASC on

the volume named MONT to the volume named PASC, and

expand these to ordinary files.

—COPYLIB,G,14000 MONT:ASC , PASC: 4

Although these files will be copied to PASC they will

not appear on PASC as User files. Only as ordinary

files in PASC's directory. In order for them to appear

as User files in PASC's UFD you have to type:

-COPYLIB,G,14000 MONT:ASC , PASC :ASC{

EX. ll ™

Copy each user file beginning with FIX in the User File

Directory ASC from the volume named MONT to the volume

named PASC.

-COPYLIB,G,14000 MONT:ASC .FIX-,PASC: 4

Sept. ‘81 8-10 COPYLIB

SECTION 8 -— COPYLIB: FILE COPY UTILITY

This creates

COPYLIB

EX. 12 -

Copy the files from the select file SELECTFILE on MONT

to PASC: Note SELECTFILE must be created as a select

file before the copy can be done. To do this type

- EDIT SELECTFILE

> RE

> IL

1. # GAMAT

2. # MATTI

3. # FIX10

4. ##

SELECTFILE as a select file. Then type in the command:

-COPYLIB MONT: , PASC: , PASTOR

8-11 Sept. '81

SECTION 8 - COPYLIB: FILE COPY UTILITY

8.3 MESSAGES AND DIAGNOSTICS

This program may display any of the following messages:

Message

a)

b)

Copylib Rx-yz

End of task s

Meaning

Signon by the program, where the

revision level is x, and the

update level is yz.

Where s is the SVC error status.

Refer to Appendix B.

Depending upon the error, the following diagnostic will be output to

the screen.

c)

d)

e)

£)

g)

h)

Not restartable,

reload program

Assign error

Input and output not

directory oriented

Table full

Error at read

Error at write

Sept. '81

It is impossible to restart the

program without reloading it

first.

Failed to assign input and output,

or end of media, or not enough

contiguous space.

Invoked device of wrong type.

The interactive response table is

full.

When failed to read.

When failed to write.

8-12 COPYLIB

COPYT:

SECTION 9

COPY TASK UTILITY

SECTION 9

COPYT: COPY TASK UTILITY

9.1 INTRODUCTION

Every system disk must contain at least one task file, namely, the

operating system; otherwise, your computer would be useless as a

problem solving device. Note that a task file can have one of two

designations, either as an absolute or relocatable task file. The

memory address of an absolute file is specified during the file

creation stage, hence task files can be assigned specific memory

locations.

A relocatable task file, on the other hand, can be loaded (relocated)

anywhere in memory (where there is space available). The COPY TASK

UTILITY, COPYT is used to copy both absolute or relocatable task

files between devices and/or files.

COPYT 9-1 Sept. ‘81

SECTION 9 -— COPYT: COPY TASK UTILITY

9.2 COPYT COMMAND

Function:

Mode:

Format:

Arguments:

Note:

Examples:

-LIB MONT:

Directory:

BOOTGEN

CMDSSPACE

CMDST IME

CMDSPOS

FIX10

Sept. '81

Copies task files between devices and/or files.

Remote

COPYT <fdl>,<fd2>

fdl is the file descriptor for the source file to

be copied.

fd2 is the file descriptor of the file which is to

contain the copied data.

If fd2 already exits, its previous contents will

be destroyed by the copy.

Ex. 1 -

Consider the following file directory for the

Volume named MONT.

MONT :MFDIR

Tsk CMDSALDERE

CMDS$DEVICES

CMD$VOLUME

DISKDUMP

MFDIR

9-2

38 of 180 entries used.

CMDSLIB

CMDSTASK

CMDSLDST

DISKCHECK

Tsk

Tsk

COPYT

SECTION 9 -— COPYT: COPY TASK UTILITY

-LIB MONT:

Directory:

BOOTGEN

CMDS SPACE

CMDS TIME

CMDS POS

DISKINIT

COPYI

COPYT

The Command:

-COPYT PASC: PASCAL,MONT: PASCAL4

has the effect of transferring the task file named

PASCAL from the Volume named PASC to the Volume named

MONT under the filename PASCAL. Note: Once you press

the return key the following message appears on the

console:

Copy task Rx-yz

68 Records

End of task 0

This indicates that 68 records have been copied.

Note: You do not need to copy a file under the

same filename. If you enter:

-COPYT PASC: PASSYS , MONT: HENRY{

the task file PASSYS on PASC is copied under the

filename HENRY to MONT. The directory for MONT now

looks like this:

MONT: MFDIR 40 of 180 entries used.

Tsk CMDSALDERE Tsk CMDS LIB Tsk

Tsk CMDSDEVICES Tsk CMDS TASK Tsk

Tsk CMDSVOLUME . Tsk CMDSLDST Tsk

Tsk DISKDUMP Tsk DISKCHECK Tsk

Tsk COPYLIB Tsk FORMAT - Tsk

° e . HENRY Tsk

Tsk PASCAL Tsk BASIC Tsk

with PASCAL and HENRY both resident

as task files.

9-3 Sept. '81

SECTION 9 ~ COPYT: COPY TASK UTILITY

9.3 MESSAGES AND DIAGNOSTICS

The COPYT program may display the following messages:

Messages

a) Copy task Rx-yz

Meaning

Signon by the program, where the

revision level is x, and the

update level is yz.

Where s is the SVC error status.

Refer to Appendix B.

following diagnostics will appear if an error has occurred:

b) End of tasks

The

c) Bad input file descriptor

d) Bad output file descriptor

e) Input assign error s

f) Input format error

g) Output assign error s

h) Output error

i) Input error

j) Record size error

k) (nnnnn) Records copied

Sept. ‘81

Syntax error in source name.

Syntax error in destination name.

Failed to assign the input file,

where s is the SVC error status.

Refer to Appendix B.

The input is not a task file.

Failed to create and assign the

output file, where s is the SVC

error status. Refer to Appendix C

in the MONROE OPERATNG SYSTEM

PROGRAMMERS REFERENCE MANUAL.

Failed to write to the output.

Expected more data, didn't find

end-of-file or timeout occurred.

Input data not module 256 bytes.

Number of records copied.

9-4 COPYT

CREINDEX:

SECTION 10

CREATE INDEX UTILITY

SECTION 10

CREINDEX: CREATE INDEX UTILITY

10.1 INTRODUCTION

Utility program CREINDEX is used to allocate and create an ISAM index

file and its associated data file. ISAM, Indexed Sequential Access

Method, is a technique used for indexed access to large data files.

It can be used for random access using a key string as the search

argument, or sequential access using the index.

The data in the data file is divided into RECORDS. The records have

a fixed, user definable length, and they are stored in a fixed record

length file, the DATA file. Each data file has an ISAM file

associated to it.

The ISAM file may contain up to ten indices into the data file. Each

index has a symbolic name. It contains one KEY for each data record.

The key consists of a key string, which also is a part of a data

record, and a pointer to that record. The keys are ordered within

the index to form a B-tree structure.

All record pointers are logical and file reference is symbolic. This

means that the data and ISAM files may be copied and utilized on any

random—access device supported by the operating system.

The ISAM file is initialized by this utility program. After

initialization, the ISAM and data files are built by the user using

ISAM-write operations. Since the index trees are built in a

well-structured way, there is no need for time consuming

reorganizations once the indices are established. The access times

will always be at an optimum.

CREINDEX 10-1 Sept. ‘81

SECTION 10 -— CREINDEX: CREATE INDEX UTILITY

10.2 CREINDEX COMMAND

Function:

Mode:

Format:

Arguments:

Use:

Sept. ‘81

Allocates ISAM index and data files.

Interactive.

CREINDEXY

None.

To create an ISAM Indexed File the user must type

in commands in response to queries from the

console. These queries concern the defining

Parameters of the file being created.

Five different formats are defined for the key

strings. The formats are:

B-Binary

This is a string of bytes of selectable length.

The string is interpreted as an unsigned binary

integer, most significant byte first.

A-ASCII

This is a string of bytes of selectable length.

The bytes are interpreted as 7-bit ASCII

characters. Upper and lower case characters have

the save value.

I-Integer

This is a string of two bytes, representing a

signed integer, least significant byte first.

Compatible with BASIC and PASCAL formats.

10-2 CREINDEX

SECTION 10 - CREINDEX: CREATE INDEX UTILITY

CREINDEX

F-Floating Point

This is a string of four bytes, representing a

single precision floating point number. Compatible

with BASIC and PASCAL formats.

D-Double Precision Floating Point

As above, but string length is eight bytes.

Compatible with BASIC format.

The ISAM file format is built on the B-tree

concept. This concept makes it possible to

maintain the search path through the tree at an

optimum through insertions and deletions of key

items.

The first record of an ISAM file is a header

record. It contains information about the

ISAM~file and the data file it indexes.

An ISAM file may contain up to ten separate indices

with symbolic names. All information about the

indices e.g. symbolic name, key type, key

positions, key length and the B-tree root pointer

is stored in the ISAM~file header. The ISAM~file

contains one B-tree for each index.

The Multi-Task ISAM facility makes it possible for

several users to use the same data base. Each user

may also use more than one data base. The facility

is added to the multi-task operating system by

loading and starting an ISAM task. Each user may

then assign to the ISAM task, and the ISAM task

will assign the selected ISAM/data files. All

input/output operations will then take place

through the ISAM task which will coordinate the

different users and their requests.

10-3 Sept. ‘81

SECTION 10 ~ CREINDEX: CREATE INDEX UTILITY

Examples:

Sept. ‘81

When the CREINDEX Utility is run the user is

prompted as follows.

Enter name of index file?

Enter name of data file?

Enter record length?

Enter key start position?

Enter key type (B,A,I,F or D)?

Ascending or Descending sequence (A/D)?

Are duplicate key values allowed? (Y or N)

Are there any more indices? (Y or N)?

Is information correct (Y or N)?

If there are any more, indices the user is returned

to the first query inputting the name of the index

file, the name of the data file, and so on, until

all indices have been entered. Then a table is

output to the console summarizing all of the

information entered during the session.

Ex. 1

Create an ISAM index file called FILE with one

index, a key start position at byte 10, and a key

length of 10 bytes.

—CREINDEX 4

Enter name of index file? FILE1

Enter name of data file? FILE

Enter record length? 8&4

Enter name of index? NAME4

Enter key start position? 104

Enter key length? 104

Enter key type (B,A,I,F or D)? Af

Ascending or descending sequence (A/D)?A{

Are duplicate key values allowed? (Y or N)?Y4

Are there any more indices? (Y or N)? N4

10-4 CREINDEX

SECTION 10 - CREINDEX: CREATE INDEX UTILITY

Index No.

The following information appears on the screen:

Create ISAM Files Ver. P-3.00 1981-07-15/00.26.12

Data and Index File Information.

Index File name: file

Data File name : file

Record size 80

Index Name Key Type Sort order Dupl. Key Start/Length

CREINDEX

name Ascii Descending Yes 10/10

Is information correct (Y or N)? Yq

Would you like a copy on the printer (Y or N)? Nf

The program ends with the message

Index file created!

Data file created!

End of task 0.

Ex. 2

Use the illustration in Ex. 1 to define an ISAM

index file with three indices.

Enter name of index file? INFILE{

Enter name of data file? DATFILE{

Enter record length? 804

Enter name of index? NAME14

Enter key start position? 104

Enter key length? 104

Enter key type (B,A,I,F or D)? Aq

Ascending or Descending sequence (A/D)? Aq

Are duplicate key values allowed? (Yor N)? Y4

10-5 Sept. '81

SECTION 10 — CREINDEX: CREATE INDEX UTILITY

Are there any more indices? (Y or N)? Yq

Enter name of index? NAME24

Enter key start position? 204

Enter key length? 104

Enter key type (B,A,I,F or D)? Aq

Ascending or Descending sequence (A/D)? Dq

Are duplicate key values allowed? (Y or N)? Yq

Are there any more indices? (Y or N)? Yq

Enter name of index? NAME34

Enter key start position? 304

Enter key length? 104

Enter key type (B,A4,I,F or D)? Iq

Ascending or Descending sequence (A/D)? Aq

Are duplicate key values allowed? (Y or N)? Nq

Are there any more indices? (Y or N)? NY

The following output appears on the console:

Create Isam Files Ver. P=3.00 1981-97-15/00.04.20

Data and Index File Information.

Index File name: infile

Data File name : datfile

Record size 80 ee

Index No. Index Name Key Type Sort order Dupl. Key Start/Length

1 name 1 Binary Ascending Yes 10/10

name 2 Ascii Descending No 20/10

3 name3 Integer Ascending Yes 30/10

Information correct (Y or N)? Yq

Would you like a copy on the printer (Y or N)? NY

Sept. ‘81 10-6 CRE INDEX

SECTION 10 - CREINDEX: CREATE INDEX UTILITY

Note:

CREINDEX

Suppose that you make a mistake during the

interactive session. You would then respond to the

query:

“Information correct (Y or N)?"

with an “N". A series of prompts will ask if you

want to change any of the information in the table,

i.e, the Index No., Index Name, Key Type, etc.

If you want to abort the entire session, type “A“

in response to the query:

Abort, modify file or index information

(A,F,1)?-Aq

Type “A” and the session will be aborted.

10-7 Sept ‘81

SECTION 11

DELETE FILES COMMAND

tied re

SECTION 11

DELETE FILES COMMAND

11.1 INTRODUCTION

The Delete Command is used to delete a file from a specified volume.

11.2 DELETE COMMAND

Function: Deletes a file.

Mode: Remote

Format: DELete <fdl>[,f£d2]....[,fdn]

Arguments: fdl, fd2, ..., fdn are the filenames of the files

to be deleted.

Examples: Ex. 1 -

Delete the ASCII file BIGFILE.

“DEL BIGFILE/A4

Ex. 2 -

Delete Binary files XRAY and ZRAY.

“DEL XRAY/B,ZRAY/B4

11.3 MESSAGES AND DIAGNOSTICS

Message Meanings

Name Error Failed to supply a file type in the fd.

I/O Error File is open.

DELETE li-1 Sept. '81

aS

DISKCHECK:

SECTION 12

DISK INTEGRITY CHECK

SECTION 12

DISKCHECK: DISK INTEGRITY CHECK

12.1 INTRODUCTION

The Disk Integrity Check, DISKCHECK, provides a means of recovering

open disk files following an operating system crash. The program

closes all files found to be assigned, and validates some control

information on the disk.

pon

DISKCHECK 12-1 Sept. ‘81

SECTION 12 - DISKCHECK: DISK INTEGRITY CHECK

12.2 DISKCHECK COMMAND

Function: Checks the integrity of an open disk file.

Mode: Remote.

Format: DISKCHECK <fd1>[{,fd2}

Arguments: The device descriptor fdl is the device name of the

dise drive on which the disk resides.

The device descriptor fd2 is an optional mnemonic

for one or more output devices (PRINTER, or

TERMINAL, etc.) to which your output is the result

of the check. If the above options are not used,

the results of the DISKCHECK default to the

console.

Use: In order to use DISKCHECK you have to OPEN the

device you want to check. This is normally done in

non-file-structured mode.

Examples: "Ex. 1 - Diskcheck In Non-file-structured Mode

-CLOSE FPY1:4 Close drive FPY1l.

-OPEN,N FPY1:4 OPEN drive FPY1 in

non~file-structured

mode.

-DISKCHECK FPY1:,PR: 4

~CLOSE FPY1:{

-OPEN FPY1: 4

Sept. ‘81 12-2 DISKCHECK

SECTION 12 - DISKCHECK: DISK INTEGRITY CHECK

Note:

DISKCHECK

You will get a return message on the Printer

(for example)-

COPYI was assigned for Read

BASIC was assigned for Read

FIX10 was assigned for Read

which means that all of the above files had

previously been assigned to be Read.

After the DISKCHECK you must CLOSE and OPEN the

drive FPYl again for normal use before

continuing processing. This insures that FPY1

has the structure of a file-structured device so

you can continue processing.

12-3 Sept. '81

SECTION 12 ~ DISKCHECK: DISK INTEGRITY CHECK

12.3 MESSAGES AND DIAGNOSTICS

This program may output the following messages:

Messages Meaning

a) Diskcheck Rx-yz Signon by the program, where the

revision level is x, and the update

level is yz.

b) Please reload program, The program must be loaded prior to |

not restartable each new session. —

c) End of task s Where s is SVC the error status.

Be “™N Refer to Appendix een,

d) No param. Start parameter missing.
a

e) Inv. name Syntax error in file-descriptor or

device name missing. oy A

/
f) Disk-asgn Failed to assign the device s. jm

b

g) Disk-Re/Wr Directory read/write error. |

h) Error in hash key Invalid data in a type t

sector in tFD directory directory. =
. eed

i) Re/Wr error in tFD Read/write error in type t ~

directory. : !
Lk

j) (filename) has no first A file only existing as a name in |

index sector, is deleted the directory is deleted.

k) (filename) was assigned for An open file is closed.

read/write

DISKCHECK 12-4 Sept. ‘81

SECTION 13

DISKINIT: DISK INITIALIZER

SECTION 13

DISKINIT: DISK INITIALIZER

13.1 INTRODUCTION

The Disk Initializer, DISKINIT, initializes a disk for use with the

Monroe Operating System. Initialization includes placing the Volume

Name as well as a pointer to the Bit Map and Master File Directory on

the Volume Descriptor, which is located on the first sector of the

disc.

The Volume Name consists of one to four characters, the first of

which must be alphabetic. This name identifies the disk to the

system. The DISKINIT allows a disk to be named or renamed.

The Master File Directory describes all files on the disk, while

filenames and the starting sector address identify each file.

DISKINIT allows the user to clear the Directory and Bit Map in order

to delete all files. DISKINIT also provides a facility for clearing

a new disk.

Note: The new disk must be formatted (FORMAT) before it is

initialized.

DISKINIT 13-1 Sept. ‘81

SECTION 13 - DISKINIT: DISK INITIALIZER

13.2 DISKINIT COMMAND

Function: Initializes a new disk.

Mode: Interactive and Remote.

Format: DISKINIT.

Arguments: None.

Use: Seven options are available with the DISKINIT

program: CLEAR, NOREADCHECK and READCHECK,

CLUSIZE, BLOCKSIZE, DEFAULT and DIRECTORY.

Whenever command CLEAR is specified, a READCHECK

operation checks the disk for bad sectors, unless

the command NOREADCHECK is given. These sectors

are marked as unavailable in the Bit Map. If the

first sector on the disk fails the read check

operation, the disk camnot be used and a message to

that effect is printed. Because media degradation

May occur at any time, there are instances in which

sectors not flagged at format time are flagged as

bad sectors during initialization. In such

instances, it is recommeded that the disk be

backed-up, re-formatted and re-initialized. The

data can then be restored.

The command NOREADCHECK could be given to speed up

initialization, and the disk will not be checked

for bad sectors. This command should not be used

if the disk is not known to be in “top shape", and

is primarily used for test purposes.

Sept. ‘81 13-2 DISKINIT

Ts
;

e
e

A

SECTION 13 - DISKINIT: DISK INITIALIZER

DISKINIT

The command READCHECK tests the integrity of each

sector on the disk and flags off all bad sectors so

they cannot be used. If the CLEAR option is used,

READCHECK is automatically invoked.

The CLUSIZE command is used to specify the smallest

allocatable element on the disc, and is given in

sectors. The value must be a power of 2. e.g. 1,

2, 4, 8, 16 etc. Maximum value is 128.

The BLOCKSIZE command is used to specify the

default blocksize in sectors, at SVC7 allocate,

(refer to SVC7 FILE HANDLING in the MONROE

OPERATING SYSTEM PROGRAMMER'S REFERENCE MANUAL).

The value given is rounded off to a multiple of the

CLUSIZE. The value may range from 1 to 255.

The DEFAULT command is used to specify the number

of blocks specified in BLOCK SIZE to be allocated

as default, if not given in the SVC7 Block. The

value given may range from 1 to 65535.

The DIRECTORY command may be used to locate the

Master File Directory (MFD) at some location other

than the default location on the disk. A second

parameter is used to specify the directory size in

blocks of 16 sectors. Currently only a directory

size of 1 is supported.

13-3 Sept. ‘81

SECTION 13 - DISKINIT: DISK INITIALIZER

Sept. "81

All information required by the DISKINIT is
specified within the DISKINIT command or if no
Start parameters are given in Interactive Mode.
The following information appears on the screen:

Diskinit Rx~-yz

Enter nondefault parameters

Devtype = M4

Drive = Dev Device name:

Volume = Name Volume name:

The following keywords which are required must be
entered at the terminal in the specified order.

1) DEVtyp =t

The type of device, which is presented in a

menu by the program.

2) DRive = fd

Where fd is the name of the disk device.

3) Volume = xxx

Where xxxx is the volume name to be given to
the disk pack.

The following commands are optional, and may be

entered in any order:

-PARameters

Will display the actual setting of initialization

parameters. This command will not affect any

parameters.

-STart

Will start the initialization.

13-4 DISKINIT

SECTION 13 - DISKINIT: DISK INITIALIZER

—ENd

Terminates the program execution.

-CLEar

Specifies a clear disk and read check operation.

When entered, all files are deleted from the disk.

A read check of the entire disk is performed and

bad sectors are flagged in the Bit Map. All

flagged sectors are identified in a message by

their decimal sector addresses on the disk.

-NOreadcheck

Specifies whether the disk should be checked for

bad sectors or not. If given, no read check will

be performed. Should be used with care.

—REadcheck

Similar to NOreadcheck, but will turn readcheck on.

In addition there are three more interactive

commands:

CLUsize=n

Specifies clustersize in sectors where n must be a

power of 2. This command will affect the size of

the Bit Map.

Blocksize=n

This parameter specifies the default block size in

a file, and is given in sectors. The number of

sectors is, if not a multiple of clustersize,

rounded off at SVC7 allocate. N may be in the

range from 1 o 255.

DISKINIT 13-5 Sept. '81

SECTION 13 ~ DISKINIT: DISK INITIALIZER

Sept. "81

DEFault=n

The parameter given will specify the number of

blocks to be preallocated at allocation time. The

value n is the number of blocks ranging from 1 to

65535.

DIRectory=lsa/n

This command is used to change the default

location/size of the Master File Directory. This

command should be used when any of the system

sectors is found to be bad. The starting sector

should be chosen so it will not interfere with any

bad starting sector. The size in sectors is

calculated as (n*16+1+bitmapsize) divided by

(CLUSIZE*CLUSIZE+CLUSIZE).

13-6 DISKINIT

Seat

SECTION 13 - DISKINIT: DISK INITIALIZER

DISKINIT

Ex. l

This is an example of an initialization of a disk.

Command /Message

“CLOSE FPYO: 4

—OPEN ,N” FPYO : {

-DISKINITY

Disxinit Rx-yz

~DEV M44

-DR FPYO:{4

—-V=FIXX4

—CLEAR1

-STart{

No sectors flagged

—-END{1

~CLOSE FPYO :{

~OPEN FPYO:4

13-7

Meanings

Close the drive if it is opened,

then mount the disk to be

initialized.

Open the drive non-file-struc-

tured.

Load and start the DISKINIT

program.

Signon by the program, followed

by a menu of the possible device

types.

Device type is Mini-Floppy.

The drive where the disk is.

Gives the disk the name.

Clear and readcheck of the disk.

Start the initialization.

When finished, the program

presents a table of disk

characteristics.

Terminate the program.

Close the drive.

Open the drive file-

structured if you want to use

the disk immediately.

Sept. ‘81

SECTION 13 - DISKINIT: DISK INITIALIZER

After the initialization the following information will

be output to the screen:

No sectors flagged.

Diskinit completed.

==INITIALIZATION PARAMETERS==

Volume name = FIXX:

Master file directory = 1 Segments.

Directory start loc. = 32

Allocation table size = 1 Sectors.

Cluster size = 1 Sectors.

Default blocksize = 4 Sectors.

Default allocation = 1 Blocks.

Ex. 2 ;

Initialize a Disk doing a CLEAR but not a READCHECK.

~CLOSE FPY0: 4

.-OPEN,N FPYO:4 *

-DISKINITY

Diskinit Rx-yz

-DEV M4q_

-DR’ FPYO:{

~V=MOS2¢

—-CLEAR{

~NOREADCHECK

-ST

No sectors flagged

~END{

-CLOSE FPYO:4

-OPEN FPYO:4

Sept. ‘81 13-8 DISKINIT

SECTION 13 — DISKINIT: DISK INITIALIZER

Ex. 3

Initialize a disk using the PARAMETERS option and

specifying a cluster size of 2 (e.g. initialize the

1280 sectors 2 at a time).

CLOSE FPYO:]

-OPEN FPYO: 4

-DISKINITY

Diskinit Rx-yz

-DEV M44

-DR FPYO :{

-V=DEN21

-CLEAR1

—PARY

-CLU48 4

-ST{

No sectors flagged

—END{

-CLOSE FPYO :4

-OPEN FPYO :

DISKINIT 13-9 Sept. "81

SECTION 13 - DISKINIT: DISK INITIALIZER

13.3 MESSAGES AND DIAGNOSTICS

DISKINIT may display the following messages:

Message

a)

b)

c)

d)

e)

f)

8)

h)

Diskinit Rx-yz

More than 65535 sectors

flagged, format disk

Missing nondefault

parameter

Sequence

No sectors flagged

Directory write error

System sector flagged

in readcheck

Readcheck error! local

sector oann(10) flagged

off

Sept. '81

Meaning

Signon by the program, where the

revision level is x, and the

update level is yz.

Readchecks finds an extremely bad

disk. The disk should be

formatted prior to use.

The START command was given and

any of the commands DEVICE, DRIVE

or VOLUME was not given.

The non-—default commands are not

given in proper order.

No sectors on the disk were found

bad.

s

The program has failed to write on

the disk. Write protect switch

should be checked.

The program should be rerun, and

the DIRectory command should be

used to locate the directory at

another starting position.

One sector is found to be bad and

is marked busy in the Bit Map.

mnn is the logical sector address

on the disk.

nnn is a decimal value.

10 indicates that

13-10 DISKINIT

SECTION 13 - DISKINIT: DISK INITIALIZER

Message a Meaning

i) Diskerr er=ffQ return An unexpected error has occurred

at disk read or write. FF is the

SVC function code in octal; Q is

the SVC error status in octal.

See Appendix B.

j) Cmd-err, type=tttt A command was not recognized or

was in bad format.

tttt is the error specification as:

k) Dev-type Device type not found in the

default table.

1) Invalid parameter Bad format or can't be accepted

due to range.

_ Invalid fd Bad format or device not found.

n) Unknown command Command not recognized.

0) Vol-name Bad format on volume name.

p) Too many arguments Expected comma or end, found

another parameter.

q) Missing nondefaulted The START command was given and

‘parameter any of the commands DEVICE, DRIVE

or VOLUME was not given.

r) Cat out of disc The start position given in

DIRECTORY command will not give

sufficient space for the Bit Map

sectors.

s) Sequence The nondefault commands are not

given in proper order.

DISKINIT 13-11 Sept. ‘81

SECTION 14

FORMAT: DISK FORMATTER

SECTION 14

FORMAT: DISK FORMATTER

14.1 INTRODUCTION

In order to read from or write on a disk it must be formatted, that

is, appropriate sectors and tracks must be designated using magnetic

codes. The Disk Formatter (FORMAT) generates the magnetic structure

on the disk, such as the pre-amble with the address mark, a data

section with dummy data, the post-amble containing the checksum and

the inter-record gap.

FORMAT 14-1 Sept. ‘81

SECTION 14 — FORMAT: DISK FORMATTER

14.2 FORMAT COMMAND

Function: Prepares a disk for initialization.

Mode: Interactive and remote.

Format: FORMAT

Arguments: None

Use:

Sept. '81l

To format a disk, first set the disk off-line using

the CLOSE command, then start the program by the

command :

-FORMAT

When started, the program displays a menu of

available prompts, which appear on the screen. They

are:

DEvtype M4-Minifloppy quad.

DRive Device name.

Fill no Fill number.

Interval x~(y) Format cyl. x to y.

Parameter Types the parameters

Start Starts the formatting.

Help Types this text.

End Exits.

In the above menu of prompts some require

Tesponses and some are optional when doing a

format.

14-2 FORMAT

SECTION 14 ~ FORMAT: DISK FORMATTER

Required Responses

Prompt Meaning

DEVtype The type of disk-device; in this

case a Minifloppy quad, Enter:M4

DRive The name of the disk drive on

which the disk being formatted

resides (Enter: FPYO or FPY1).

After entering FPYO or FPY1, the user must start

the program. Enter: STY

The program is terminated by entering: End

Optional User Entries:

Command Meaning

Fill n Fill the decimal value n into all

sectors. The default is 299

(E5H).

Interval x-[y] Specifies the interval to be

formatted on the disk. Formatting

begins on the track containing

sector x and ends on the track

containing sector y (if included).

On a minifloppy you cannot format

just one sector. For example, if

you enter interval 10, the program

will not just format sector 10 but

rather will format the entire

track containing sector 10.

Help Will display the available

commands.

Parameter Will display the actual setting of

the formatting parameters.

FORMAT 14-3 Sept. ‘81

SECTION 14 - FORMAT: DISK FORMATTIER

Ex. 1 ~

The following commands will FORMAT a disk.

-CLOSE FPY0:4

—FORMAT{ Load and start the program.

Disk Formatter Signon by the program, then the

command menu is displayed on the

terminal.

-DEV M4q Specify device.

-DR FPYO:4 Specify drive.

—STq Start formatting all the tracks.

~END{ Terminate the task.

End of task 0 The program terminates.

Ex. 2 -

Format a disk filling in all sectors with the decimal

value 10 (OAH).

-CLOSE FPY04

~FORMAT4

Disk Formatter

-DEV m4q

-DR FPYO¥

-FILL=104

-ST4

-END

End of task 0

Sept. ‘81 14-4 FORMAT

SECTION 14 - FORMAT: DISK FORMATTER

Ex. 3 -

Format all tracks containing sectors 10 through 20 on a

disk.

~CLOSE FPY04

-FORMATY

Disk Formatter

-DEV M44

-DR FPYO4

-Interval 10-204

~STq

-END4

End of task 0

FORMAT 14-5 Sept. ‘81

SECTION 14 - FORMAT: DISK FORMATTER

14.3 MESSAGES AND DIAGNOSTICS

The FORMAT program may display the following messages:

Message

a)

b)

c)

d)

e)

f)

8)

h)

1)

j)

Disk formatter

Command error

Assign error

Not implemented in

the version

Interval out of disk

Undefined drive

Undefined device

Disk not ready

I/O error

End of task s

Sept. '81

Meaning

Signon by the program.

When an unknown command is entered.

Failed to assign the device specified

in the DRIVE command.

The device type specified in the

DEVIYPE command is not supported.

The interval specified within command

INTERVAL command is outside the disk.

The required command DRIVE has not been

entered.

The required command DEVTYPE has not

been entered.

Timeout on the disk drive.

.When an error is detected during disk

read or disk write, the return status

is s. The Return Status Code is the

same as found under SVCl.

The program terminates where s is the

SVC error status. Refer to Appendix B.

14-6 FORMAT

LIB:

SECTION 15

DIRECTORY LIST

SECTION 15

LIB: DIRECTORY LIST

15.1 INTRODUCTION

The LIB command is used to display the contents of a volume. Suppose

you create a file and you want to examine its size, record length,

the time it was created, the last time it was updated, or the last

time it was used. You can use the LIB Command to display this (and

other) information to the console or printer.

LIB 15-1 Sept. ‘81

15.2 LIB COMMAND

Function:

Mode:

Format:

Arguments:

Note:

Sept. '81

SECTION 15 - LIB: DIRECTORY LIST

Displays the contents of a volume to the terminal

or printer.

Remote

L{ ,F]((£d1],[£d2][,£d3]]

Switch F is used to display all information about

each file, such as its length, creation date, and

so on.

The file descriptor fdl is an optional file

descriptor which contains the name of the volume

and or the directory from which the display will be

done. If omitted, the system volume will be used.

The file descriptor fd2 is the filename of a unique

file, or a wild card specification of a group of

files to be displayed. If omitted, all files will

be displayed.

The file/device descriptor fd3 is the name of the

device or the file where the listing should be

directed. If omitted, the terminal device is

assumed.

If fdl, fd2 and fd3 are omitted in the above

format, information on all files on the system

volume will be displayed on the console. If you

want to stop the output of Lib to the console press

CNTRL~A. To resume the output again press RETURN.

15-2 LIB

SECTION 15 - LIB: DIRECTORY LIST

Examples: Ex. 1

List all file names on “MSTM™ to the printer.

-L MSTM:,,PR:4

Ex. 2

Display the name, file modifier, type, record length,

size, and other relevent information about BIGFILE on

volume PASC on the console.

-L,F PASC: ,BIGFILE1

Directory: PASC:MFDIR 48 of 180 entries used. 1981-04-15 00 .00 .54

Name Mod RW Type Recl Size Time Created

BIGFILE Asc co 0 2560 81-03-05 00.09.00

Time Last updated Time Last used

00-00-00 00 .00 .00 00-00-00 00 .00 .00

Ex. 3

Print out the same information as above.

-L,F PASC:, BIGFILE,PR: {

Ex. 4

Use the wild-card option to display the above

information for all files having first three characters

CMD (where the remaining characters are ignored).

-L,F PASC: ,CMD-4

Ex. 5

Do the same for all ASCII files having A and C in the

second and third positions (the remaining files being

ignored).

-L,F PASC: ,*AC-/A4q

LIB 15-3 Sept. ‘8l

SECTION 16

OPEN: OPEN DEVICE

SECTION 16

OPEN: OPEN DEVICE

16.1 INTRODUCTION

The OPEN channel is used to bring on-line a device that was

previously off-line.

16.2 OPEN COMMAND

Function:

Mode:

Format:

Arguments:

OPEN

Brings on-line a device that was previously off

line.

Remote

1. OPEn <fd>:

2. OPEn[,N] <fd>:

3. OPEn[,P] <fd>:

The device descriptor fd is the mnemonic name of

the physical device. After opening a direct-access

device, the volume name associated with it is

output to the console device.

If the optional switch P is specified, the device

is opened as write protected. If the device is

hardware write protected, it will be automatically

opened as protected.

The optional switch N is used to open a

direct-access device non-file-structured. This

means that no directory is present and that no

volume name will be established at open.

While a device is off-line, it cannot be assigned

to any task.

16-1 Sept. '81

SECTION 16 - OPEN: OPEN DEVICE

Examples:

Sept. '81l

If the device being OPENed is a direct-access

device, the <fd> used in the command is not the

volume identifier, but the actual device mnemonic.

For example, to make the new volume known to the

system, the operator enters:

-OPEN FPY1:4

-FPY1 MOS1{

To open the device write protected the operator

enters:

-OPEN,P FPY1:4

~FPY1 ALEX]

16-2 OPEN

SECTION 17

OPTION: OPTION UTILITY

SECTION 17

OPTION: OPTION UTILITY

17.1 INTRODUCTION

Every task file has associated with it certain options which will

determine its status after it has completed execution. For example,

a task can be an exclusive resource; it can be resident in memory,

nonresident in memory, abortable, or protected. When a task is

loaded into memory it is given the status of an abortable task, i.e.,

it is cancellable from other tasks, unless that status is changed.

The OPTION Utility is used to change the options of a specified task.

OPTION 17-1 Sept. '81

SECTION 17 -— OPTION: OPTION UTILITY

17.2 OPTION COMMAND

Function: Change the options of a task.

Mode: Remote.

Format: OPTION, optl[opt2...]<tid>

Arguments: optl, opt2.,...can be any of the following options:

R = resident in memory; the task remains in memory

after execution.

N = nonresident in memory; the task is removed

after end of task.

A = abortable; the task can be cancelled by other

tasks.

P = protected; the task cannot be cancelled by

other tasks.

Use: The OPTION command can be used in conjunction with

the TASK command to check on a task's status with

regards to the options that are in effect.

Sept. '81l 17-2 OPTION

SECTION 17 - OPTION: OPTION UTILITY

Examples: Ex. 1 - LOAD COPYLIB and give it the option P.

-LOAD COPYLIBY

-OPT, P COPY{

~TAY

which results in the following output to the

console:

Task Nr Stat Type Prio

MTCM 1 W ERN 20

COMO 2 W EN 90

COPY 3 Dorm N 128

UTLO 4 E 90

Note that in the above task block COPY has the type

designated by N which means nonabortable (c.f. the

TASK utility in Part II). This is equivalent to an

option of P.

Ex. 2 - In Ex. 1 change the P option for COPYLIB to

A.

-OPT, A COPY4

“TAY

The task block for COPY now looks like

Task Nr Stat Type Prio

MTCM i N ERN 20

- COMO 2 W EN 90

COPY 3 Dorn 128

UTLO 4 E 90

OPTION 17-3 Sept. ‘81

SECTION 18

PRIORITY: PRIORITY UTILITY

18.1 INTRODUCTION

SECTION 18

PRIORITY: PRIORITY UTILITY

The PRIORITY Utili

task.

ty is used to change the priority of a specified

18.2 PRIORITY COMMAND

Function:

Arguments:

Use:

Example:

PRIORITY

Change the priority of a task.

Remote.

PRIority <tid>,n

The task identifier tid is the name of the task

whose priority is being changed. The number n is

the new priority which is to be assigned to the

task identifier. It is a decimal number from 10 to

255 inclusive.

PRIORITY can be used in conjunction with the TASK

utility to examine the priority of a given task

once it has been set.

Ex. 1 - Load COPYA into memory - check its

priority, then change its priority to 0.

“LOAD COPYA4
-TAY

18-1 Sept. ‘81

SECTION 18 ~ PRIORITY: PRIORITY UTILITY

The task block for COPYA looks like:

Task Nr Stat Type Prio

MTCM OolOW ERN 20
como 2 WwW EN 20
COPY 3 Dorm 128
UTLO 4 E 90

Then enter:

-PRI COPY, 304

-TAY

The task block for COPY now looks like

Task Nr Stat Type Prio

MTCM 1 W ERN 20

COMO 2 W EN 20

COPY 3 Dorm 30

UTLO 4 E 90

and COPYA's priority has been lowered to 30.

Sept. ‘81 18-2 PRIORITY

SECTION 19

RENAME: THE RENAME FILES COMMAND

19.1 INTRODUCTION

SECTION 19

RENAME: THE RENAME FILES COMMAND

The RENAME Command is used to change the name of a file.

19.2 RENAME COMMAND

Function:

Mode:

Format:

Arguments:

Examples:

RENAME

Changes the name of a file. This command cannot be

used to rename a volume. DISKINIT must be used for

that function. If the volume is the system volume

you can also use the Volume Utility.

Remote

REName <fdl>,<fd2>

fdl is the file descriptor of the file to be

renamed, as well as the type.

fd2 is the file descriptor of the renamed file.

Here only the filename is required. If type on the

destination is omitted, the destination file type

will be the same as the source file type.

Ex. 1

Rename the file Henry to file George.

“REN HENRY/A, GEORGE

Ex. 2

Rename the ASCII file MASTERID in directory

DIRECTORYA to NEWMAST.

-REN DIRECTORYA: MASTERID/A,NEWMASTY

Ex. 3

Rename the old directory DIRECTID to the new

directory named NEWDIRECT.

~REN DIRECTID/D,NFWDIRECTY

19-1 Sept. ‘81

SECTION 20

SPACE: SPACE UTILITY

SECTION 20

SPACE: SPACE UTILITY

20.1 INTRODUCTION

The SPACE Utility is used to examine the space available on a

volume.

20.2 SPACE COMMAND

Function:

Mode:

Format:

Arguments:

Example:

SPACE

Examines the space available on a direct-access

volume.

Remote

SPace <fd>

fd is a file descriptor containing the volume name

of the disk. If omitted, the System Volume is

assumed.

Examine the space available on the volume MONT.

-SP MONT {4

20-1 Sept. '81

SECTION 21

SET: SET AUTO UTILITY

SECTION 21

SET: SET AUTO UTILITY

21.1 INTRODUCTION

The SET AUTO Utility is used to automatically execute task files.

The SET AUTO program maps any task file from its address at the

sector of the disk it occupies to byte 178 of sector 0. If you then

take out the disk and boot it up again the task file will execute

automatically. Obviously this is an efficient way of executing

programs which must run repetitively and at certain fixed intervals

of time. SETAUTO can be used to load and execute individual

programs, or command and select files consisting of many programs

and/or commands.

SET 21-1 Sept. ‘81

SECTION 21 - SET: SET AUTO UTILITY

21.2 SETAUTO COMMAND

Function:

Mode:

Format:

Arguments:

Sept. '81

Loads a task file into sector 0 of a disk and

execute it automatically.

Interactive and remote.

1) SETAUTO [fd1l]

2) SETAUTO <fdl> <tid> [switch] [Parameters]

In format 1, fdl is an optional volume or device

descriptor which represents the volume or device on

which will reside the program (or programs) to be

auto set. If omitted the program defaults to

interactive mode. If included the program still

defaults to interactive mode but without the volume

or devices query during the interactive session.

If format 2 the program executes in remote mode.

fdl is a volume or device descriptor which

represents the volume or device on which will

reside the program (or programs) to be auto set.

tid is the task identification name of the program

or utility (i.e. Monroe BASIC or COPYLIB for

example) which is to be loaded into sector 0 of

fdl.

Switch and parameters represent any optional

switches and parameters associated with the tid the

user wishes to include. Note that the syntax of

the tid must be consistent with the program or

utility being SETAUTO'd (See examples).

21-2 SET

SECTION 21 - SET: SET AUTO UTILITY

Use: Suppose you have a task file which occupies sector

k of a disk. If this is a file that you would like

to have executed automatically SETAUTO will load

that file into byte 178 of sector 9 (c.f. the

figure below).

Sectors k, k+tl

Note that if the task file consists of a Monroe

BASIC program SETAUTO must first load the Monroe

BASIC system followed by a space and the program

name,

SETAUTO is executed in interactive mode. The user

enters the command.

~SETAUTO4

to which the system responds with the message

Set Auto l.xy

Device?-

asking for the name of the disk drive FPYO or FPY1

which contains the disk that is to be auto set.

SET 21-3 Sept. '8l

SECTION 21 - SET: SET AUTO UTILITY

If, for example, the drive is FPYO, and no prior

tasks have been auto set to sector 0, entering

Device?-FPY0{

produces the response

No Auto line

New line (y/n)?

which asks if you would like to auto set a new task

file (yes or no). If you enter

New line (y/n)?-Nq

the system responds with the message

End of task 0.

If you enter

New line (y/n)?-Y{

it responds with the massage

Enter newline:-

Suppose you want to auto set the utility program

DIRECTORY LIST. You type in

Enter new line:~L{

and the system responds with the message

End of task 0.

21-4 SET

SECTION 21 - SET: SET AUTO UTILITY

Example:

SET

Then you take out the disk, reenter it into drive

FPYO, boot up the system, and the utility program

LIB will automatically list the files contained in

the Master File Directory for the volume on FPYO.

If you do not enter a device name but hit a

carriage return instead the program will terminate.

If you do not enter a new line but hit a carriage

return instead the previous line will be erased and

you will get the "“SETAUTO Removed" message.

If you hit the carriage return and enter a new line

prompt and if there is no previous line the “no

entry” message will appear.

If you want to execute a series of programs and/or

commands you can enter into a command file and type

in the format SETAUTO! <fd> where fd is the

filename. Of the command file, and the programs or

commands run automatically when you boot up the

disk.

Ex. 1 - Auto set the utility program TASKS.

~-SETAUTO{

Set auto l.xy

Devices ?-FPY04

No Auto line

New line (y/n)-Yq

Enter new line:-TA

End of task 0

21-5 Setp. ‘81

SECTION 21 - SET: SET AUTO UTILITY

Ex. 2 ~ Auto set the Monroe BASIC program

SEARCH FILE

~SETAUTO4

Set auto l.xy

Device?-FPY04

No auto line

New line (y/n)?-Yq

Enter new line:BASIC SEARCHFILEY

End of task 0

Ex. 3 - Auto set COPYLIB in remote mode with a

buffer size of 14,000.

~SETAUTO FPYO:COPYLIB,G,14000 MONT: , PASC4

Sept. ‘81 21-6 SET

SECTION 22

SORT: SORT UTILITY

SECTION 22

SORT: SORT UTILITY

22.1 INTRODUCTION

The SORT Utility is used to sort the contents of a file. The input

file can be either of fixed record length or variable record length,

depending upon the key which is input to the command. Temporary

files can also be allocated by this utility on the system volume.

SORT 22-1 Sept. '81

SECTION 22 -— SORT: SORT UTILITY

22.2 SORT COMMAND

Function:

Mode:

Format:

Arguments:

Sept. "81

Sorts the contents of a file.

os

Remote.

SORT [,,buffsize] <fdl>, [<fd2>,<keyl>,<key2>,...,

<keyn>]

Buffsize is an optional parameter which specifies

additional memory to speed up the SORT when this is

desired. If no extra memory is needed the SORT

buffer is fixed at approximately 4KB.

‘The file descriptor fdl specifies the input file

which is to be sorted. This may be either of fixed

record length (which is mandatory if a fixed length’

key is used) or variable record length.

The file descriptor fd2 specifies the output file

containing the sorted data. This is created if it

does not already exist. The file attributes of the

created file will be the same as those of the input

file.

The key variables (keyl, key2, ...) indicate the

types of data that are to be sorted. Each key

variable has a fixed format which is more fully

described below.

22~2 SORT

SECTION 22 — SORT: SORT UTILITY

Use:

SORT

The key format is ss[-ee]/t/s where ss is the start

position of the key, ee is an optional parameter

giving the end position of the key, T is the type

of key, and s is the collating sequence (A or D for

ascending or descending). If the end position is

not specified on a variable length key, it is set

to the same value as the start position. The end

position is ignored on a fixed length key. Keys

may be of the following types:

A=ASCII Format key.

All control characters are treated as spaces, and

upper/lower case letters have the same value.

Space-compress information is recognized. Record

length of the input file may be fixed or variable.

B=Binary Format key.

This key is evaluated as an unsigned binary

integer. The record length of the input file must

be fixed.

I = signed integer.

This key is evaluated as a signed two-byte integer

with the least significant byte first, compatible

with Monroe BASIC and PASCAL formats. The key

‘length is always two bytes. -

F=zsingle-precision floating-point number.

This key is evaluated as a floating point number,

compatible with Monroe BASIC and PASCAL formats.

The key length is always two bytes.

22-3 Sept. ‘81

SECTION 22 - SORT: SORT UTILITY

Examples:

Sept. "81

D=Double-precision floating-point number.

This key is evaluated as a floating point number

compatible with the Monroe BASIC format. The key

length is always eight bytes.

The A and B type keys are of variable length and

may be specified left to right or right to left. If

the end position of the key is not specified the

key length will be one byte. The I,F, and D type

of keys are of fixed length, and any end position

given for the key is ignored. Input file record

length must be fixed.

The collating sequence may be

A-Ascending or

D-Descending

for each key. Multiple keys of different types may

be used in the same SORT session.

Ex. 1 - SORT an input file named INFILE using a

single character ASCII key located in the first

position of each record. Deposit the sorted data

on an output file named OUTFILE. The input file

may be of fixed or variable record length.

-SORT INFILE, OUTFILE, 1/A/Aq

Ex. 2 - SORT an input file named INFILE using an

additional buffer of 10,000 bytes and two keys.

The first is an ASCII key which uses position 10-15

of. each record in backward order and a DESCENDING

collating sequence. The second is a double-

precision floating-point key located in position 20

of each record using an ASCENDING collating

sequence. Deposit the sorted data on

22-4 SORT

SECTION 22 ~ SORT: SORT UTILITY

an output file named OUTFILE. The input file must

be of fixed record length.

-SORT,,10000 INPUT, OUTFILE, 15-10/A/D,20/D/Aq

Ex. 3 - Consider the first 20 entries in the

following file, called RANDOM 1

1158.22 abcde 100

1088.34 abcde 101

2530.53 abcde 102

2955.14 abcde 103

1415.95 abcde 104

1724.97 abcde 105

1147.6 abcde 106

2232.23 abcde 107

1421.78 abcde 108

2775.36 abcde 109

1176.29 abcde 110

1253.93 abcde lll

1917.36 abcde 112

2987.35 abcde 113

1508.7 abede 114

2468.7 abcde 115

2583.69 abcde 116

2767.87 abcde 117

1839.83 abcde 118

2999.16 abcde 119

1071.19 abcde 120

which consists of 400 decimal numbers which are

randomly listed, the characters abcde, and the

indexes 100-500 which appear in their natural

arithmetic order. If you enter the command

-SORT RANDOM1,SEQ,1/F/D4

SORT 22-5 Sept. ‘81

SECTION 22 - SORT: SORT UTILITY

the entries in the left-most column of RANDOM! will

be sorted in descending order and output to a file

named SEQ. The first 20 entries of the sequenced

file now look like

2999.75 abcde 195

2999.57 abcde 264

2999.16 abcde 119

2990.92 abcde 417

2990.15 abcde 234

2987.35 abcde 113

2985.26 abcde 130

2980.64 abcde 384

2977.27 abcde 386

2966.36 abcde 406

2964.25 abcde 316

2959.08 abcde 320

2955.14 abcde 103

2949.8 abcde 303

2942.25 abcde . 222

2935.98 abcde 498
2930.74 abcde 436

2921.84 abcde 212

2915.02 abcde 321

2908.76 abcde 433

° ° °

where the indexes in the right-most column are now

randomized as a result of the SORT procedure. Note

we could have easily sorted the decimal numbers in

ascending order by typing an A instead of a D in

the SORT command: .

~SORT RANDOM1, SEQ, 1/F/Aq

Sept. '81l 22-6 SORT

SECTION 23

TIME: TIME UTILITY

SECTION 23

TIME: TIME UTILITY

23.1 INTRODUCTION

The TIME Utility should be entered when the system is booted. It may

be entered at any other time that the system clock is incorrect. The

day, month and year are automatically updated by the system, even

during leap years.

23.2 TIME COMMAND

Function: Enters the day, month, year, and time.

Mode: Remote

Format: Time <yyyy—mm-dd,hh.mm.ss>

Arguments: yyyy = year

mm = month

dd = day

hh = hours, 24-hour clock

minutes

ss = seconds

If yyyy-mm—dd, hh.mm.ss is omitted, the current

time will be displayed.

Example: -TI 1981-05-04, 08.30.004

TIME 23-1 Sept. '81

SECTION 24

VOL: VOLUME UTILITY

SECTION 24

VOL: VOLUME UTILITY

24.1 INTRODUCTION

The VOLUME Utility is used to set or change the name of the system

volume. Alternatively, it is used to interrogate the system for the

current name associated with the system volume.

VOL 24-1 Sept. '81

SECTION 24 - VOL: VOLUME UTILITY

24.2 VOLUME COMMAND

Function: Sets or changes the name of the system volume.

Mode: Remote

Format: Volume [fd]

Arguments: The file descriptor fd is optional and specifies

the new system volume identifier.

Use: No test is made to ensure that the volume is

actually on-line at the time the command is

entered. If fd is not specified, the name of the

currently default system volume is output to the

console.

Examples: Ex. 1

Sept. '81

Interrogate the system for the current volume name.

-v{

(The following information appears on the

console:)

SYSTEM (SYSTEM Indicates that system volume

MSTM MSTM is the current name.)

Ex. 2

Change the above system volume name to ACCT.

~VOL ACCT: 4
SYSTEM
ACCT

24-2 VOL

S
e
e

PART II

TASK MAINTENANCE UTILITIES

SECTION 25

CANCEL: CANCEL TASK UTILITY

SECTION 25

CANCEL: CANCEL TASK UTILITY

25.1 INTRODUCTION

The CANCEL Utility is used to terminate a task. The cancel takes
place exactly as if the task had executed an SVC-6 with cancel as

function code and 255 as cancel code (c.f. MONROE OPERATING SYSTEM

PROGRAMMER'S REFERENCE MANUAL). CANCEL may be used to cancel a

current task or cancel a task that is dormant, i.e., one that has

been loaded but not executed. If the task is nonresident, it is

removed from system memory. When a task is cancelled all outstanding

I/O requests are terminated with the termination of the task and all

of the task's logical units are closed. This command may be entered

even when the specified task is dormant. It has no effect ona

resident task that has already gone to an End of task.

CANCEL 25-1 Sept. '81

SECTION 25 ~ CANCEL: CANCEL TASK UTILITY

25.2 CANCEL COMMAND

Function:

Example:

Sept. '81

Terminates a task.

Remote

Cancel [tid]

tid is an optional task identifier (e.g. Monroe

BASIC, PASCAL, etc.)

Ex. l-

Cancel COPYLIB

-COPYLIB MONT: , PASC{ Copy MONT to PASC

a | Additional Key Ins

CTRL A Return Curser to Screen

-CAY Cancel COPYLIB

Ex. 2 -
Cancel LIB

-LIB,F MONT: q

CTRL A

~CAY

25-2 CANCEL

SECTION 26

CONTINUE: CONTINUE TASK UTILITY

SECTION 26

CONTINUE: CONTINUE TASK UTILITY

26.1 INTRODUCTION

Often you must pause in the middle of execution of some task in order

to make a decision or review new information that may effect the

outcome of the task. For example, one of the terminal options

allowed by COPYLIB is a pause in response to the terminal query about ~

a particular file. The CONTINUE utility allows a task which has been

paused by an- SVC or the operator to continue operation.

CONTINUE 26-1 Sept. '81

SECTION 26 — CONTINUE: CONTINUE TASK UTILITY

26.2 CONTINUE COMMAND

Function: Resumes operation of a task.

Mode: Remote

Format: COntinue [tid]

Arguments: tid is the task identifier (e.g. Monroe BASIC,

PASCAL, etc.) which is optional.

Examples: Ex. 1 — Continue COPYLIB

~COPYLIB MONT: , PASCY Copy files from MONT

* to PASC.

* Additional Key Ins.

CTRL A Return Curser to Screen.

-PA Pause.

-COT Continue.

Ex. 2 -— Continue LIB

~LIB,F PASC:4 List files on PASC.

CTRL A Return Curser to Screen.

-PAY Pause.

-CO Continue.

~CAYT Cancel LIB.

Sept. ‘81 26-2 CONTINUE

SECTION 27

DEVICES: DEVICES UTILITY

SECTION 27

DEVICES: DEVICES UTILITY

27.1 INTRODUCTION

The DEVICE Utility allows the user to obtain the name, number,

status, type, volume name, current request, channel number, and the

address of the Device Control Block (DCB) of all devices in the

operating of system. (See the MONROE OPERATING SYSTEM REFERENCE

MANUAL for a complete discussion of DCB's.)

DEVICES 27-1 Sept. '81

SECTION 27 - DEVICES: DEVICES UTILITY

27.2 DEVICES COMMAND

Function:

Mode:

Format:

Arguments:

Sept. '81

Lists the devices in the operating system.

Remote

DEVices [fd]

The device descriptor fd is optional and is the

device name of an output device (terminal or

printer). If no output device is specified, the

display of device in the system will go to the

terminal.

The DEVICES command will display the following

information:

Mnem - Contains the symbolic

mame of the device.

Nr - , “Contains the system

device number.

Stat - Contains information about

the status of the device.

This can be:

- OFFL - Off-Line

« PROTL - On-Line (Write

Protected)

Type - Contains information about the type

of device, i.e, is it:

- DIR ~- Directory Oriented

- TASK - Task Oriented

Voln - Contains the Volume Name of a

Directory Oriented Device or the

name of the Symbiont task that owns

the device.

27-2 DEVICES

SECTION 27 -— DEVICES: DEVICES UTILITY

Deb-addr - Contains the address of the DCB

for each device.

Req - Contains the name of the task

currently accessing the device.

Sve~blk - Contains the address to the

involved parameter blocks.

e NULL - Dummy Device

PR - Printer

- FPYO - Disk Drive 0

FPY1 - Disk Drive 1

TRMO - Terminal

CON - Console

Example: Ex. 1 - List the devices on the console.

-DEV{ ; Display the devices to

the console.

(The following is displayed on the console:)

-DEV

Mnem

NULL

PR

FPYO

FPY1

TRMO

DEVICES

Nr Stat

OFFL

Type Voln Deb—Addr Req Sve=blk

275:034

DIR DOS8 267:030

266: 266

265: 342

275:162

27-3 Sept. '81

SECTION 27 -— DEVICES: DEVICES UTILITY

Sept. "81

Ex. 2 -— List the devices on the printer.

-DEV PR: q Will display the same

= information as Ex. 1

to the printer.

27-4 DEVICES

SECTION 28

LOAD: LOAD UTILITY

SECTION 28

LOAD: LOAD UTILITY

28.1 INTRODUCTION

In order for a task to be executed its subprograms must first be

“established" by the Assembly Language Utility Program ESTAB. Once

a task has been established it can then be loaded into memory using

the LOAD Command. One of the unique features of the Monroe Operating

System is that is allows you to load and execute more than one

program. This is called “multi-programming” and is described in more

detail in the MONROE OPERATING SYSTEM PROGRAMMER'S REFERENCE MANUAL.

All utility programs can be used in either a single programming or

multi-programming mode. Note: programs can be loaded and executed

either under their own name or under a temporary name used during a

specific programming sequence. It must be emphasized that LOAD can

only be used with task files. A task is loaded into the first memory

segment large enough to accommodate it.

LOAD 28-1 Sept. '8l

SECTION 28 - LOAD: LOAD UTILITY

28.2 LOAD COMMAND

Function:

Use:

Sept. '81

Loads one or more tasks into memory.

Interactive

1) LOad <fdl>

2) LOad <fdl>,[fd2],[size]

The file descriptor fdl is the name of the file or.

utility program to be loaded.

Thé file descriptor fd2 is the name under which the

file or program is to be known during program

execution. If fd2 is omitted, it defaults to the

first four characters in fdl. The size is the

amount of area in the tasks impure memory segment

(c.f., MONROE OPERATING SYSTEM PROGRAMMER'S

REFERENCE MANUAL). It is specified as the decimal

number if the decimal number is bytes, and if

omitted, the default if 0. If LOAD is performed

from a device, the logical record length must be

256.

LOAD is most useful in a multi-programming setting

when you have several programs to execute

simultaneously. You load your programs in sequence

into memory and then use the START Command to

execute them. The procedure is interactive in so

far as you can use the various utilities to key in

or out of programs from the terminal and output

data to one or more devices, even while a program

is running. For example, you may use one COPY

routine to output ASCII data to the printer while

using another (or even the same) COPY routine to

copy files to a disk device. Hence the PRINTER

28-2 LOAD

SECTION 28 - LOAD: LOAD UTILITY

Examples:

LOAD

will operate in “background mode” printing the

ASCII file at the same time that the console is

operating in “foreground mode”, i.e, transferring

disk files from one disk device to another disk

device. In using LOAD, the error message output to

the screen are those of the task file or utility

being loaded. Hence you should consult the

appropriate manuals before loading a particular

program or utility. If a task file has been

improperly loaded, a LOAD ERROR will appear on the

screen.

Ex. 1 Copy an ASCII file to the console.

-LO COPYA,A{ Load COPYA under the task

identification name A.

-ST A ASCI,CON: 44 Copy the ASCII file ASCI to

the console.

Ex. 2 Copy an ASCII file to the Printer.

-LO COPYA, BY Load COPYA under the task

identification name B.

-ST B ASC2, PR:44 Copy the ASCII file ASC2

to the printer.

28-3 Sept. ‘81

SECTION 28 — LOAD: LOAD UTILITY

Ex. 3 - Load and execute a Monroe BASIC, COPYLIB and

COPYA programs.

~LO BASIC,Aq

-LO COPYLIB,Bq

-LO COPYA,CY

-ST ATT (41 = Two
returns)

tae |

-PAUSE{
CTRL A

. ~ST B MONT: , ALEX: {{

(14 = Two returns)

= eee]

CTRL A

~ST C PMCMD, CON: 11

-CTRL A

-CO Aq

~BYE{

-CNTRL A

-LO COPYA,Aq

-ST A ASC7, CON: 44

"81

Load Monroe BASIC under the

task identification move A.

Load COPYLIB under the

task identifier move B.

Load COPYA under the task

identification name c.

Start Monroe BASIC.

Execute a Monroe BASIC

Program.

Pause Monroe BASIC.

Return to console.

Start COPYLIB; copy from

MONT to ALEX.

Execute COPYLIB.

Start COPYA; copy the

ASCII file PMCD to

console.

Return to console.

Continue Monroe BASIC.

End Monroe BASIC.

Return to console.

Load COPYA under the task

identification name.

Copy the ASCII FILE ASCI

to the console.

LOAD

SECTION 28 — LOAD: LOAD UTILITY

x

Note: You can either hit 2 returns (PP) after each ST

statement (to execute the LOADS in sequence), or you can

hit two returns after the last ST statement (in which

case the three programs are executed in reverse order).

After the last program has been executed, CNTRL A returns

the curser to the console.

Ex. 4 - Copy an ASCII file to the Console, another

ASCII file to the printer, and a third file

from one disk device to another.

-LO COPYA,A Load COPYA under the task

identification name A.

~LO COPYA,BY Load COPYA under the task

identification name B.

~LO COPYLIB,C4 Load COPYLIB under the

task identification name C.

~ST A RKDISKDUMP,CON: 4{ Copy the ASCII file

RKDISKDUMP to the console.

-ST B CEDIRREA, PR{{ Copy the ASCII file
CEDIRREA to the printer.

-ST C MONT: PMCMD,ALEX: PMCMD4¢ Copy the file PMCMD on the

volume MONT to the volume

ALEX under the name PMCMD.

If you wish to cancel any (or all) of the above

programs you simply type:

-CA Aq

-CA BY

-CA CY

LOAD 28-5 Sept. ‘81

SECTION 29

PAUSE: PAUSE TASK UTILITY

SECTION 29

PAUSE: PAUSE TASK UTILITY

29.1 INTRODUCTION

The PAUSE Utility will cause a specified task to pause. Any ongoing

I/O is allowed to complete itself at the time a task is paused. If a

task is in a Wait state at the time it is paused, then all external

wait conditions have already been satisfied. The PAUSE Utility is

rejected if a task is dormant or paused at the same time it is

entered. Note that a number of utilities (e.g. COPYLIB) have their

own pause built into the command while for others CNTRL A has the

effect of interrupting the task. In such cases typing PA after CNTRL

A will cause a sequence error since the task is already interrupted.

The PAUSE Utility is most useful when pausing a program which is

outputting data to an I/O device other than the console.

PAUSE 29-1 Sept. ‘81

SECTION 29 -— PAUSE: PAUSE TASK UTILITY

29.2 PAUSE COMMAND

Function: Pauses a task file.

Mode: Interactive

Format: PAuse <tid>

Arguments: None

Example: Cansider a Monroe BASIC program XBAS which outputs

data to the printer. The following commands will

cause the program to pause, and the output to the

printer will stop until the program is continued.

~BASICY

BASIC

“LOAD XBAS4

—-RUNG

CNTRL A

"~PAT{

PAUSED

Sept. '81 29~2 PAUSE

e
e

SECTION 30

RUN: RUN TASK UTILITY

SECTION 30

RUN: RUN TASK UTILITY

30.1 INTRODUCTION

One problem with the LOAD Utility is that the LOAD and START Commands

must be entered independently and that each task file must be loaded

and started separately. The RUN Utility allows the user to LOAD and

START a program with the single command of RUN. After the task has

been loaded it is given a system name consisting of the first four

entries of its filename. (See the section on Terminal Management in

the MONROE OPERATING SYSTEM PROGRAMMER'S REFERENCE MANUAL). Because

the system uses the first four letters of a task's filename as its

system name you cannot run more than one COPY Utility ina

Multi-Program.

RUN 30-1 Sept. ‘81

SECTION 30 - RUN: RUN TASK UTILITY

30.2 RUN COMMAND

Function:

Examples:

Sept. ‘81

Loads and starts a program.

Interactive

RUn [switches] <fd>[, parameters]

Switches are optional and consist of any required

or optional switches that you wish to use in the

program you are running. For example, the F switch

in LIB, or the A switch in COPYA.

The file descriptor fd is the name of the program

being run.

Parameters which is also optional consists of any

additional parameters in the programs syntax that

must be included in the RUN statement. For

example, the volume name of the source and

destination files.

Ex. 1 --Load and start Monroe BASIC.

-RU BASICY Loads and starts Monroe

BASIC BASIC.

Ex. 2 - Run Monroe BASIC and a Monroe BASIC

' program.

-RU BASIC XBAS4 Loads and starts Monroe

BASTC BASIC: then executes the

program XBAS.

30-2 RUN

SECTION 30 - RUN: RUN TASK UTILITY

RUN

Ex. 3 - Do a RUN, PAUSE, and another RUN.

-RU COPYLIB,G MONT: , ALEX]

“—seaewe

-CNTRL Af

-RU BASIC

BASIC

es |

-CNTRL A

-RU PASCALY

(Pascal sign-on)

Load and start

Pause COPYLIB.

Load and start

BASIC.

Load and start

COPYLIB.

Monroe

PASCAL.

Note: From the last example in a multi-programming mode,

you do not need to pause after each RUN before you load and

start a new task file, but you do need to press CNTRL A.

The program being RUN is loaded from the file descriptor fd

and the task is given the first four characters in fd as

its name, In example 1, the system will give the name BASI

to Monroe BASIC, in Example 3 the names COPY, BASIL, and

PASC will be given to COPYLIB, Monroe BASIC and PASCAL.

Then the task is started and the switches and parameters

are passed to the task.

30-3 Setp. "81

SECTION 31

SLICE: SLICE TASK UTILITY

SECTION 31

SLICE: SLICE TASK UTILITY

31.1 INTRODUCTION

The Monroe Operating System allows tasks to be scheduled in two ways.

A task can be scheduled on a strict priority basis (c.fe, MONROE

OPERATING SYSTEM PROGRAMMER'S REFERENCE MANUAL), or a task can be

“time sliced” within a given priority.

In the first case each task has a fixed priority with respect to

every other task. This in turn dictates how long a task must wait

before it gains control of the processor. If two tasks are in queue,

and one has a higher priority than the other, the task with highest

priority will get all of the processor time it needs before control

is relinquished to the second task. If the two tasks have equal

priority, the task which is first in queue will remain active until

it relinquishes control to the second. This can occur in one of

three ways. Either the task is paused or cancelled by the console

operator or some other task, or a higher priority task suddenly

becomes ready because of some external event, or the active task

executes an SVC that places it ina Wait, Paused, or Dormant state.

Therefore, tasks which do not frequently give up control of the

processor can lock out other tasks which do.

With time slicing, two tasks having equal priority both will receive

equal shares of processor time. It must be emphasized that time

slicing does'not change the priority basis of the scheduling queue.

It does not reassign priorities or give a task of lower priority

higher priority. In order for two tasks to be time sliced they must

have the same priority within a particular queue. When they are

sliced, each will receive the same amount of processor time. The

time-slice utility is initiated when the operating system is

generated.
,

SLICE 31-1 Sept. ‘81

SECTION 31 - SLICE: SLICE TASK UTILITY

31.2 SLICE COMMAND

Function:

Mode:

Format:

Arguments:

Sept. ‘81

Time-slices two tasks.

Remote

SLice [t]

t is optional. It specifies the time slice in

milliseconds as a decimal number. If t is omitted

the current slice value is displayed. If <t> is 0

the time-slice mode of scheduling is disabled. The

time slice represents the maximum time, in

milliseconds, any task can remain active if another

task of equal priority is ready.

Specify 100 milliseconds as the maximum time any

task can remain active if another task of equal

priority is ready.

-SL 1004

Current slice is 100 milliseconds

31-2 SLICE

SECTION 32

START: START TASK UTILITY

SECTION 32

START: START TASK UTILITY

32.1 INTRODUCTION

The START Utility initiates task execution and is used after the task

has been loaded. A task can be started only if it is dormant.

32.2 START COMMAND

Function: Starts a task.

Mode: Remote

Format: 1) STart <fdl>

2) STart <fdl>,{switches] [parameters]

Arguments: The file descriptor fdl is the task identification

name of the task file and may consist of from one

to four alphanumeric characters.

Switches are optional and consist of any required

or optional switches or variables that you wish to

use in the utility you are starting. For example,

D and G in COPYLIB, or F in LIB, or BUFFSIZE in

COPYI. .

Parameters are also optional and consists of any

additional parameters in a utility syntax that are

necessary to START that utility. For example, the

volume name of the SOURCE and destination files etc.

Example: Start COPYLIB under the G option.

-ST COPYLIB,G, 14000 FIX: ,NULL:4

Start task with task identifier A and display file

RKDISKDUMP on the printer. :

-ST A RKDISKDUMP, f

-PR:

START 32-1 Sept. ‘81

SECTION 33

TASK: TASK UTILITY

SECTION 33

TASK: TASK UTILITY

33.1 INTRODUCTION

The TASK Utility causes a listing of the status of each task to be

output to either the console or the printer.

33.2 TASK COMMAND

_— Function:

Mode:

Format:

Arguments:

TASK

Lists the status of each task.

Remote

Task [,F] [fd]

F is an optional switch. When included, a list of

the TCB-ADR fields for each task will be output.

These contain the address of the TCB's for each

task (c.f. MONROE OPERATING SYSTEM PROGRAMMER'S

REFERENCE MANUAL). Also, the memory size of each

task, and each task default address (ENTRY) will be

output as well.

The device descriptor fd is a device, either the

console or printer to which the information is to

be output.

The TASK Command is commonly used during multi-

programming when loading and executing a number of

programs. The information output is in a table

whose entries have the following meaning:

Task - Contains the symbolic name of the task.

Nr - System task number.

Stat - Contains the current status of the task.

Type - Indicates the type of task.

Prio - Indicates the tasks current priority.

33-1 Sept. ‘81

SECTION 33 - TASK: TASK UTILITY

Examples:

Sept. "81

A task can have any of the following as a status:

DORM Dormant, not started.

Cc Cancel pending, on its way to terminate.

P Paused.

Ss Suspended.

W Waiting.

It can be of any one of the following types:

Exclusive task

Non-abortable

Pure code (fuller reentrant)

Resident-task nA

Wy

2

Ex. 1. Load three programs and use TASK without

the F switch.

~LOAD COPYA,Aq

-LOAD COPYA,Bf

-LOAD COPYLIB,CY

~TAY

The Following information is output to the

terminal:

Task Nr Stat. Type Prio

MTCM 1 N ERN 20

COMO 2 N E 90

A 4 DORM 120

B 5 DORM 120

Cc 6 DORM 128

UTLO 7 90

The tasks MTCM,COMO, and UTLO are the Multi-

Terminal Console Motor, Command Handler, and

Utility Program, respectively (c.f. the section on

Terminal Management in the MONROE OPERATING SYSTEM

PROGRAMMER'S REFERENCE MANUAL).

33-2 TASK

-SECTION 33 - TASK: TASK UTILITY

Note that A,B,C COMO and UTLO do not have the same

priority (c.f. Section 28). Note also that the

TCB<Addr fields do not appear in the output.

- Ex. 2.

-TA,F PR:f

(This command will print the following table to the

printer:)

Task Nr Stat Type Prio Tcb-Addr Size Entry

MTCM 1W RN 20 2844 Okb 4000

coMO 2W 30 1035 Okb 426D

UTLO 3 128 1B4t 8kb E000

Note that by including “F", the TCB-Addr, Size and

Entry fields will also be output to the printer.

TASK 33-3 Sept. ‘81

APPENDIX A

COMMAND SUMMARY

Command

ALLOCATE

BOOTGEN

CANCEL

CLOSE

COMMAND FILE

CONTINUE

COPYA

coPYI

COPYLIB

APPENDIX A

COMMAND SUMMARY

Format

ALlocate, [switch] <fd>

{,record length][,size]

[blk]

BOOTGEN,B <fd>

CAncel

CLose <fd>

! <fd>

COntinue

COPYA[,switch] <fd1l>,<fd2>

COPYI <fdl>,<fd2> or

COPYL[, switch] [,buffsize]

<f£dl>,<£d2>

COPYLIB[,switch][,buffsize]

<fdl>[{,select file] or

COPYLIB[,switch] [,buffsize]

<fdl>, <fd2> [,select file]

A-1

Function

Allocates either a

contiguous or indexed

direct access file

on a diskette.

Writes a loader onto

a diskette.

Terminates a task.

Takes a device off

line.

Executes one or more

programs, tasks,

and/or commands

which exist in

either a single file

or a group of files.

Resumes operation of

a task.

Copies ASCII date

between two files.

Performs an image

copy and/or verifies

data between devices

and/or files.

Copies data between

all files.

Sept.

26-1

6-1

"81

APPENDIX A - COMMAND SUMMARY

Command

COPYT

CREATE INDEX

DELETE

DEVICES

DISKCHECK

DISKINIT

FORMAT

LIB

LOAD

OPEN

OPTION

Sept. '81

Format

COPYT <fd1l>,<fd2>

CREINDEX

DELete <fd>[,fd2]....[,fdn]

DEVices [fd]

DISKCHECK <fd1>[,fd2]

DISKINIT

FORMAT

Lib [,F] [[fd1],[fd2][{,£43]]

LOad <fdl>

LOad <fd1>,[(fd2] [size]

OPEn <fd>:

OPEn[,N] <fd>:

OPEn[,P] <fd>:

OPTION,optli[opt2...]<tid>

Function

Copies task files

between devices

and/or files.

Allocates ISAM Index

and data files.

Deletes a direct-

access file.

Lists the devices in

the operating system.

Checks the integrity

of an open disc file.

Initializes a new

disk.

Prepares a disk for

initialization.

Displays the contents

of a volume to the

terminal or printer.

Loads one or more

task into memory.

Brings on-line a

device that was

previously off line.

Changes the options

of a task.

10-1

11~1

27-1

12-1

13-1

14-1

15-1

28-1

16-1

17-1

APPENDIX A - COMMAND SUMMARY

Command

PAUSE

PRIORITY

RENAME

RUN

SET AUTO

SLICE

SORT

SPACE

Format

PAuse

PRIority <tid>,n

REName [fd] <fdl>,<fd2>

RUn [switches] <fd>

{, parameters]

SETAUTO

SLice [t]

SORT [,,buffsize] <fdl>

[<f£d2>,<key1l>,<key2>,...-,

<keyn>]

SPace <fd>

Function

Pauses a task file.

Changes the priority

of a task.

Changes the name of

an unassigned direct -

access file. This

command cannot be

used to rename a

direct-access Volume.

DISKINIT must be

used for that

function. If the

direct-access volume

is the system volume

you can also use

Volume.

Loads and starts a

program.

Load a task file into

section 0 of a disk

and execute it

automatically.

Time-slices two

tasks.

Sorts the contents

of a file.

Examines the space

available on a

direct-access volume.

Sept.

19-1

30-1

21-1

31-1

22-1

20-1

"81

APPENDIX A - COMMAND SUMMARY

Command

START

TASK

TIME

VOLUME

Sept. "81

Format

STart <fdl>

STart <fdl>, [switches]

[parameters]

TAsk [F] [fd]

TIme <yyyy-mm—dd,hh.om.ss>

Volume <fd>

A-4

Function

Starts a task.

Lists the status

of each task.

Enters the day,

month, year, and

time.

Sets or changes the

name of the system

volume.

33-1

23-1

24-1

APPENDIX B

ERROR CODES

COMMON ERRORS

APPENDIX B

ERROR CODES

o
n
a
n
u
r

W
N
e

CO

A
 SYMBOLIC

SOS .OK

SOS.EON

SOS. IFC

SOS. PRO

SOS.OFFL

SOS.PRES

SOS.NYET

SOS.CAN

S0S.SVC

ERROR TEXT

No error.

End of nodes.

Invalid function code.

Can't connect at unconditional

Off line.

Not present in this system.

Not yet implemented function.

Request is cancelled.

Invalid SVC function.

SVC~1 I/0 ERROR CODES

8

10

11

12

13

14

15

16

17

18

19

SYMBOLIC

$1S.LU

$1S.AM

$1S.TOUT

$1S.DWN

S1S.EOF

S1S.EOM

S1S.RER

S51S.UNR

S1S.RND

$1S.NRND

ERROR TEXT
Illegal LU, LU not assigned.

Invalid access modes.

Time-out.

Device down.

End-of-file.

End-of-media.

Recoverable error.

Unrecoverable error.

Invalid random address.

Non-existent random address.

SVC-2 SUBFUNCTION ERRORS

SYMBOLIC

20 S2S.ISB

ERROR TEXT

Illegal sub-function number.

proceed.

Sept. "81

APPENDIX B - ERROR CODES

SVC-3 TIMER ERRORS

s SYMBOLIC ERROR TEXT

30 S3S.PAR Invalid timer parameter.

SVC-4 DEVICE ERRORS

8 SYMBOLIC ERROR TEXT

40 S4S.ASGN Not assigned.

41 S4S.TYPE Invalid device type.

SVC~5 LOADER ERRORS

s SYMBOLIC ERROR TEXT
50 S5S.TID Illegal task-id.

51 S5S.PRES Task present.

52 S5S.PRIO Illegal priority.

53 S5S.OPT [Illegal option.

54 S5S.CODE Illegal code/item at load.

55 S5S.SIZE Overlay doesn't fit.

SVC-6 TASK ERRORS

8 SYMBOLIC ERROR TEXT

60 S6S.TID Illegal task~id.
61 S6S.PRES Task present.

62 *S6S.PRIO Illegal priority.

63 S6S.OPT Illegal ‘option.
64 S6S.EQUE Event queue disabled.
65 S6S.STAT Invalid task status.

SVC-7 FILE ERRORS

} SYMBOLIC ERROR TEXT

70 S7S.ASGN Assignment error, double assign.

71 S7S.AM Illegal access modes.

72 S7S.SIZE Size error.

73, S7S.TYPE Type error.

74 $S7S.FD Illegal file descriptor.

75 S7S.NAME Name error.

76 S7S.KEY Invalid key.

77 S7S.FEX File exist error.

Sept. '8l B-2

APPENDIX B - ERROR CODES

SVC-8 RESOURCE ERRORS

s

80

81

82

83

84

85

86

SYMBOLIC

S$8S.ID

58S.CLAS

S8S.PRES

S8S.PRNT

S8S.DUAL

S8S.RCB

S8S.EOM

ERROR TEXT

Illegal resource-id.

Invalid resource class.

Resource already present.

Parent not present.

Dual DCB not present.

Invalid RCB-type.

End-of-memory.

Sept. "81

APPENDIX C

LIST OF UTILITY EXAMPLES

Utility

ALLOCATE

BOOTGEN

CLOSE

COMMAND

FILE

COPYA

APPENDIX C

LIST OF UTILITY EXAMPLES

Example Description

1.

l.

1.

l.

3.

l.

Allocate, on the system volume, a binary

indexed file named THISFILE with a logical

record length of 126 bytes and default

preallocated.

Allocate, on the volume MIM, a contiguous

ASCII file named BIGFILE/ASC whose size is

100 sectors.

Write a loader onto a disk.

CLOSE disk device 1.

Create and execute a Command File which

consists of a FORMAT, DISKINIT, and BOOTGEN.

Execute a sequence of nested Command Files.

Execute a MONROE BASIC program as part of a

Command File.

Copy the ASCII file FIX10 from the volume

PASC under the new name FIXXTEN.

Copy the ASCII file ASCI1 from the volume MONT

to PASC and append it to ASC2 on PASC.

Copy ASCII data - “END OF JOB2” from the

console to the printer.

Illustration.

Sept.

6-3

6-4

"81

APPENDIX C — LIST OF UTILITY EXAMPLES

Utility

COPYI

COPYLIB

Sept.

_ Example Description

"81

5.

6.

3.

Use COPYA to create an output file having

fixed record length.

Use COPYA to create a new file called NEWFILE.

Perform an image copy of the file named

ERRGEN on the volume MIM to a file named

ERRGEN on the volume PASC.

Perform an image copy of the file named PASTOR

on the Volume MIM to a file named PASTOR on

the volume named PASC and then verify the two

files.

Perform verification of the file ERRGEN on

MIM with the file ERRGEN on PASC.

Copy files from one disk to another in

interactive mode.

Copy a file from one disk to another under a

new file name.

Copy files from one disk to another in remote

mode.

Delete all files three-characters long and

having the characters A and T in the second

and third positions.

Delete all files having filename of three-

characters in length and the character A in

the second position.

Page

7-4

8-4

APPENDIX C - LIST OF UTILITY EXAMPLES

Utility Example Description

6.

8.

10.

ll.

12.

COPYT l.

CREINDEX l.

Delete all files having the characters M and

A in the first and second positions using the

wild-card specifications.

Delete all files with filenames of five-

characters and having the characters I and D

in the fourth and fifth positions using the

wild-card specifications.

Delete all five-character filenames having A

in the second and fourth character positions.

Copy all files on the Volume named MONT

having first three characters BAS onto the

Volume named PASC.

Copy all User files from the User-File-

Directory ASC on the Volume named MONT to the

Volume named PASC, and expand these to

ordinary files.

Copy each user file beginning with FIX in the

User File Directory ASC from the volume named

MONT to the volume named PASC.

Copy the files from the select file SELECTFILE

on MONT to PASC. :

Copy the task file named PASCAL from the

volume named PASC to the volume named MONT

under the filename PASCAL.

Create an ISAM index file called FILE with

one index, a key start position at byte 10,

and a key length of 10 bytes.

c=3 Sept.

Page

8-10

8-10

8-10

8-11

10-4

"81

APPENDIX C - LIST OF UTILITY EXAMPLES

Utility

DELETE

DISKCHECK

DISKINIT

FORMAT

LIB

Sept. "81

Example Description

2.

l.

1.

2.

3.

Use the illustration in Ex. 1 to define an

ISAM index file with three indices.

Delete the ASCII file BIGFILE.

Delete BINARY files XRAY and ZRAY.

DISKCHECK in Non-file-structured Mode.

Initialize a disk.

Initialize a disk doing a CLEAR but not a

READCHECK.

Initialize a disk using the PARAMETERS option

and specifying a cluster size of 2 (e.g.

initialize the 1280 sectors 2 at a time).

FORMAT a disk.

FORMAT a disk filling in all sectors with the

decimal value 10 (OAH).

FORMAT all tracks containing sector 10

through 20 on a disk.

List all files on the system volume “MSTM™ to

the printer.

Display the name, file modifier, type, record

length, size, and other relevant information

about BIGFILE on the volume PASC to the

console.

C-4

Page

10-5

13-9

14-4

14-4

14-5

15-3

15-3

APPENDIX C - LIST OF UTILITY EXAMPLES

Utility

OPEN

OPTION

PRIORTY

RENAME

Example Description

3.

4.

Print out the same information as in

example 2.

Use the wild-card option to display the

information in example 2 and 3 for all files

having first three characters CMD (where the

remaining characters are ignored).

Do the same for all ASCII files having A and

C in the second and third positions (the

remaining files beging ignored).

OPEN a direct-access device.

OPEN a direct-access device write protected.

LOAD COPYLIB and give it the option P.

In Ex. 1 change the option P for COPYLIB to

A.

In Ex. 2 change the option to RP.

Load COPYA into memory. Check its priority,

then changle its priority to 30.

Remove the file Henry to file George.

Rename the ASCII file MASTERID in directory

DIRECTORYA to NEWMAST.

Rename the old directory DIRECTID to the new

directory named NEWDIRECT.

Sept.

15-3

15-3

16-2

17-3

17-3

17-4

18-1

19-1

19-1

19-1

"31

APPENDIX C — LIST OF UTILITY EXAMPLES

Utility

SPACE

SETAUTO

SORT

TIME

VOLUME

Sept. ‘81

Example Description

l.

3.

1.

2.

2.

Examine the space available on the volume

MONT.

Auto set the utility program TASKS.

Auto set the BASIC program SEARCHFILE.

Auto set COPYLIB in remote mode with a buffer

size of 14,000 bytes.

Sort an input file named INFILE using a

Single character ASCII key located in the

first position of each record. Deposit the

sorted data on an output file named OUTFILE.

The input file may be of fixed or variable

record length.

Sort an input file named -INFILE using an

additional buffer of 10,000 bytes and two

keys. The first is an ASCII key which uses

position 10-15 of each record in backward

order and a DESCENDING collating sequence.

The second.is a double-precision

floating-point key located in position 20 of

each record using an ASCENDING collating

sequence. Deposit the sorted data on an

output file named OUTFILE. The input file

must be of fixed record length.

Sort a file named RANDOMI consisting of

decimal numbers.

Display current day, month, year, and time.

Interrogate the system for the current volume

name.

Change the system volume name to ACCT.

C-6

21-5

21-35

21-6

22-4

22-4

22-5

23-1

24-2

24~2

APPENDIX C ~ LIST OF UTILITY EXAMPLES

Utility

CANCEL

CONTINUE

DEVICES

LOAD

PAUSE

RUN

SLICE

START

TASK

Example Description

l.

1.

l.

2.

Cancel COPYLIB

Cancel LIB

List the system devices on the console.

Continue LIB

List the system devices on the console.

List the system devices on the printer.

Copy an ASCII file to the console.

Copy an ASCII file to the printer.

Load and execute a MONROE BASIC, COPYLIB, and

COPYA programs.

Copy an ASCII file to the console, another

ASCII file to the printer, and a third file

from one disk device to another.

Pause the MONROE BASIC program XBAS.

Load and start MONROE BASIC.

Run the MONROE BASIC program XBAS.

Do a RUN, PAUSE, and another RUN.

Set the current time slice to 100

milliseconds.

Start COPYLIB under the G option.

Start a task with task indentifier A and

display file RKDISKDUMP on the printer.

Load thre eprograms and use TASK without the

F switch.

Output the task table to the printer.

29-2

30-2

30-2

30-3

31-2

32-1

-32-1

Sept.

33-2

33-3

81

GLOSSARY OF TERMS

Abortable Task

Absolute Task File

Bit - Map - Directory

Command-File

Contiguous —- File

User-File-Directory

Elementary ~ File

Seelomyve Resource

FILE-STRUCTURED-DEVICE

Fixed Record Length File

Formatted - Data

GLOSSARY OF TERMS

An abortable task is a task that can be

cancelled from another task. A task

that cannot be aborted from another task

is nonabortable.

A Task File which has information

consisting of absolute machine code.

A directory of information concerning

what parts of the disk are occupied.

A file which consists of individual

programs and/or commands.

A file which is stored on contiguous

sectors of a diskette.

A sub-directory of the Master-File-

Directory.

An element or file in the Element-File~

Directory.

An exclusive resource cannot be used by

any other resource. A resource that is

not exclusive is called nonexclusive.

Any device which contains a directory.

A file, all of whose records have the

same length.

Data that must be manipulated by either

a program or by the operating system to

be used.

Glossary-1 Sept. ‘81

GLOSSARY OF TERMS

Indexed - File

NON-FILE-STRUCTURED Device

Non-resident in memory

Logical - File

Master-File-Directory

Physical - File

Resident in Memory

Relocated-Task-File
.

Select - File

Variable Record Length File

Sept. '8l

A file which is distributed over many

non-contiguous sectors of a diskette.

There is a pointer to each sector

occupied by the file which indexes the

file.

Any device that does not contain a

directory.

A task is non-resident in memory when it

is removed from memory after execution.

A file consisting of logical records.

A directory consisting of information

concerning all disk files.

A file consisting of physical records.

A task is resident in memory when it

remains in memory after execution.

Any Task File file that must be

Telocated by the Relocatable - Loader

before it can be used. A

Relocatable-File has information

consisting of relocatable machine code.

A file which consists of individual

commands.

Any file consisting of records whose

lengths vary.

Glossary~2

INDEX

A

ALLOCATE Command, 2-2

ALLOCATE: FILE ALLOCATE UTILITY,

2-1

ALLOCATE Command, 2-2

Angle <> Brackets, 4

B

BOOTGEN Command, 3-2
BOOTGEN: DISK BOOTSTRAP GENERATOR,

3-1
BOOTGEN Command, 3-2
Messages and Diagnostics, 3-4

Brackets [], 1-5

Buffsize, 1-7

C

Command, 3-1

CANCEL:CANCEL TASK UTILITY, 25-1

CANCEL Command, 25-2

CANCEL Command, 25-2

CAPITAL LETTERS, 1-4
CLOSE Command, 4-2

CLOSE:CLOSE DEVICE, 4-1

CLOSE Command, 4-2

Command File Procedure, 5-2

COMMAND FILE, 5-1
Command File Procedure, 5-2

Commands, 1-14

COMMAND SUMMARY, A-1

Command Syntax
Buffsize, 1-7

MNEMONICS, 1-6

Parameters, 1-7

Switches, 1-6

CONTINUE Command, 26-2

CONTINUE: CONTINUE TASK UTILITY,

26-1
CONTINUE Command,

Control Characters,

COPYA Command, 6-2

COPYA:ASCII COPY UTILITY, 6-1

COPYA Command, 6-2
Messages and Diagnostics, 6-7

COPYI Command, 7-2

COPYI: IMAGE COPY UTILITY, 7-1

COPYL Command, 7~2

26-2

1-12

INDEX

INDEX-1

Messages and Diagnostics, 7-5

COPYLIB Command, 8-2

COPYLIB:FILE COPY UTILITY, 8-1

COPYLIB Command, 8-2

Messages and Diagnostics, 8-12

COPYT Command, 9-2
COPYT:COPY TASK UTILITY, 9-1

COPYT Command, 9-2
Messages and Diagnostics, 9-4

CREINDEX Command, 10-2
CREINDEX:CREATE INDEX UTILITY,

10-1
CREINDEX Command, 10-2

D

DELETE Command, 11-1

DELETE FILES COMMAND,

DELETE Command, 11-1

Messages and Diagnostics, 11-1

Device Name, 1-8

DEVICES Command, 27-2

DEVICES:DEVICES UTILITY, 27-1

DEVICES Command, 27-2

Directory, 1-9, 1-10

DISCHECK Command, 12-2

DISKCHECK: DISK INTEGRITY CHECK,

12-1
DISKCHECK Command, 12-2

Messages and Diagnostics, 12-4
DISKINIT Command, 13-2
DISKINIT: DISK INITIALIZER, 13-1

DISKINIT Command, 13-2

Messages and Diagnostics, 13-3
DISKINIT Options,

CLEAR 13-1, 13-5

NO READCHECK, 13-2

READCHECK, 13-3

CLUSIZE, 13-3, 13-5

BLOCKSIZE, 13-3, 13-5

DEFAULT, 13-3, 13-5

DIRECTORY, 13-3, 13-5

Disk Maintenance Utilities,

Document Contents, 1-2

ll-1

1-1

E

Error Codes, B-l

Sept. ‘81

F

File/device Descriptor <fd>, 1-8
File Volume - Device Naming
Conventions,

File, 1-8, 1-9

Volume Name, 1~8
Device name, 1-8

File/device Descriptor <fd>, 1-8
Directory, 1-9

Type, 1-9

Task Identifier <tid>, 1-9

Foreground Mode, 28-3

FORMAT Command, 14-2

FORMAT: DISK FORMATTER, 14-1

FORMAT COmmand, 14-2

Messages and Diagnostics, 14-6

G

Generalized File Descriptors,
1-11 ‘

H

How to Use This Manual, 1-2

I

INTRODUCTION, 1-1
ISAM, 10-1

K

Key Strings

Binary, 10~2

ASCII, 10-2

Integer, 10-3

Floating Point, 10-3

Double Precision, 10-3
Kinds of Files

Asm, 1~10

Bas, 1-10
Und, 1~10

Asc, 1-10

Lst, 1-10

Obj, 1-10
Bin, 1-10

Sept. ‘81

INDEX (Cont .)

Kinds of Files (Cont.)

Tsk, 1~10

Ism, 1-10

Pas, 1-10

Ufd, 1-10

Mfd, 1-10

L

LIB Command, 15-2

LIB: DIRECTORY LIST, 15-1

Lib Command, 15-2

List Devices, 27-2

Load & Start Program, 30-1

LOAD Command, 28-2

LOAD: LOAD UTILITY, 28-1

LOAD Command, 28-2

Lower Case Letters, 1-4

M

MNEMONICS, 1-6
Multi-programming, 28-1

0

INDEX~2

OPEN Command, 16-1

OPEN: OPEN DEVICE, 16-1

OPEN Command, 16-1

OPTION Command, 17-2

OPTION: OPTION UTILITY, 17-1

OPTION Command, 17-2

P

Parameters, 1-7

PART 1 -— DISK MAINTENANCE

UTILITIES, 2-1 to 27-2

PART II - TASK MAINTENANCE

UTILITIES, 25-1 to 33-3
PAUSE Command, 29-2

PAUSE: PAUSE TASK UTILITY, 29-1

PAUSE Command, 29-2

PRIORITY Command, 18-2

PRIORITY: PRIORITY UTILITY, 18-1

PRIORITY Command, 18-1

R

Related Manuals, 1-14

RENAME Command, 19-1

RENAME: RENAME FILES COMMAND,

19-1

RENAME Command, 19-1
Return Key, 1-5

RUN Command, 30-2
RUN: RUN TASK UTILITY, 2-1

RUN Command, 30-2

)

Select File, 8-2

SET AUTO Command, 21-2

SET: SET AUTO UTILITY, 21-1

SET AUTO Command, 21-2

SLICE Command, 31-2

SLICE: SLICE TASK UTILITY, 31-1
SLICE Command, 31-2

SORT Command, 22-2
Sort Keys

ASCII (A), 22-3
Binary (B), 22-3
Single Integer (I), 22-3
Single Precision (F), 22-3
Double Precision (D), 22-4

SORT: SORT UTILITY, 22-1

SORT Command, 22-2

SPACE Command, 20-1

SPACE: SPACE UTILITY, 20-1

SPACE Command, 20-1

START Command, 32-1

START: START TASK UTILITY, 32-1

START Command, 32-1

Switches, 1~6

System Crash, 12-1

T

TASK Command, 33-1

Task File, 9-1, 14-4

Task Identifier <tid>, 1-9

Task Maintenance Utilities, 1-1,

2-1 to 24-2

INDEX (Cont.)

TASK: TASK UTILITY, 33-1

TASK Command, 33-1

Terminal Prompting, 1-12
Terminal Usage

Prompting, 1-12

Control Characters; 1-12
Commands, 1-14

Terminate Task, 23-1

Text Symbols and Conventions

CAPITAL LETTERS, 1-4

Lower Case Letters, 1~4

< > Angle Brackets, 1-4
{] Brackets, 1-5

{ Return Key, 1-5

TIME Command, 23-1

TIME: TIME UTILITY, 23-1

TIME Command, 23-1
Type, 1-9

Type of Utilities, 1-l

Disk Maintenance Utilities,

1-1

Task Maintenance Utilities,
1-1

V

VOLUME Command, 24-2

Volume Name, 1-8

VOL: VOLUME UTILITY, 24-1

VOLUME Command, 24-2

W

Wild—Card

* (Asterisk), 1-11
- (Dash), 1-11

INDEX-3 Sept. ‘81

READER COMMENT FORM DATE

Your comments and suggestions help to Improve this publication.

Please complete the questionaire. Fold, staple, and mail it to Monroe.

Name Title

Organization

Street State Zip

Publication Title

Publication No. Revision Letter Date

CIRCLE YOUR RESPONSES TO THE STATEMENTS BELOW. IF YOU RESPOND "NO" TO A STATEMENT, ENTER THE

STATEMENT NUMBER AND THE PAGE ANDO PARAGRAPH IN THE PUBLICATION THAT PROMPTED YOUR RESPONSE.

1. The publication was used for 2. The user/reader was

Learning Instailing ‘ High=!evel Programmer

Reference Maintaining Occasional Programmer

Sales Programming Student Programmer

Data Entry Operator

Other (speci fy)

3. The material is accurate. YES NO 4. The material is clear. YES NO

5. The material is complete. YES NO 6. The material is well organized. YES NO

ENTER DETAILED INFORMATION FOR STATEMENTS 3=6.

Statement No. Page No. Paragraph No. Comments

7. The overall rating for this pubilcation is

Very Good Good Fair Poor Very Poor

Briefly explain your rating.

8. Additional comments

3JNI1
S
N
O
T

L
N
D

No Postage

Necessary

if Mailed in the

United States

] Software Publications Dept. , | | | |

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 731 MORRISTOWN, N. J.

POSTAGE WILL BE PAID BY ADORESSEE

MONROE SYSTEMS FOR BUSINESS, a Div. of
! Litton Business Systems, Inc.

Box 9000R
Morristown, NeJ. 07960

Mdv1is TidVLs

SECTION 3 - BOOTGEN: DISK BOOTSTRAP GENERATOR

This is the normal sequence to bootgen a disk:

“CLOSE FPYO] Close the drive if it is opened

file-structured. Then mount the

disk upon which you wish to

write the loader.

“OPEN, FPYO] Open the drive non-file-

structured.
a

— -BOOTGEN,B FPYO :MS8q

Load and start the program, and -
-

pass start parameters to it.

~Bootgen Rx-yz Signon from the program.

Doing one- Tells the type of boot written
Board floppy down.

boot!

é

-End of task 0 Good task termination.

“CLOSE FPYO4 Finish up by closing the disk
—

drive. It is now possible to
-

boot from the disk.

BOOTGEN 3-3 Sept. '81

c)

d)

e)

£)

g)

h)

I)

Sept. '81

gnd of task §

Please reload program,

not restartable

No parm

Inv. name

Disk - asgn

Disk - read

Not found

Disk - write

3-4

= eda eo - dix ine

appe he erfoly

output to the screen:

It is impossible to restart the

program without reloading it

first.

The start parameter is missing.

You have a Syntax error, OF the

device/filename is missing.

You failed to assign the disk

device.

There is a READ error either on

sector 0 or in the directory.

Your filename has not been found

in the directory.

There is a WRITE error on one of

the sectors 0-4.

BOOTGEN

