
‘MONROE PASCAL
PROGRAMMER'S REFERENGE MANUAL

. June. 1982

Rev. 1

MONROE. SYSTEMS) FOR BUSINESS
‘The Amevigan Rd.

Morris Plains, X.J. 07950

1L0=cacceus--5

' -@Copyright’ 1982, Liteon Business Systems, Inc., All Rights Reserved.”

2139S (Rev. 1)

Except as stated in the license agreement for this

software, Monroe does not warrant this software or its

documentation, . either expressly, by iaplication or in

relation to merchantability ‘Or fitness for’a particular
eo

purpose. .

Monroe shall not be liable for any incidental, indirect,

special, consequential, or punitive damages arising out of

or in any way connected with the use, furnishing of or any

failure to furnish software or any related materials,

including, but not limited to, claims for lost profits,

increased expenses or costs, loss of good will, or damage

to property. This exclusion of liability shall apply

without regard to whether such damages were foreseeable or

foreseen or are claimed to arise by reason of breach of

contract, breach of warranty, misrepresentation,

negligence, strict liability, or other legal theory.

Monroe reserves the right to make changes in the content of

this software or its documentation without obligation to

notify customer of such changes.

ii

mele

PURPOSE OF THIS DOCUMENT

* o 4 4

a a

: This document is a Programmer’ 8 Reference ‘Manual.

It is ta be used by experienced programmers as a

reference tool. It is not intended for use ag a

learning aid by non~programmers.

~

1ii

RECORD OF CHANGES

F
T

—
—
—

m
e

e
e

m
e

o cy)
uv 1)

a
(2)

a]
Cs]

°
ie]

a
of

<
oO

w 4

a
YH

ae]
fe}

°o
tx}

A

fa
ty

v
w

ahh
om

=
od

i)
=

A

©
he

vw
a

°
Sk

A
4

a)
BO

o@
Me

tt
H

ra)
rl

i)
o

K 3
Vv

a]
OY

a

Ay
x

ae]
~

rT)
—“

4
a

'
oo

V}
+

@
“4

w
f
“

my
5
,
 0

uw
<

n
VY

<
o
e
r

rr
o
v

ap
of

r
h
,

Ot
wv

ae
Y
j

bo}
Oo A
g
:

0
o
o

Pu

—
j
—

—

3

i
.

oe
ot

a
wi

rT)
-
“

o
w

w
w

rw)
og.

oO,
0]

™
~
!

~

(=)
al

w

—)

—
 e

fo)
z
 wo

<
boy
=] 6

fo}
oO

Manual reprinted

e
r
t
y

n
r

a
n

a
e
r
a

a
e

e
s
a

e
e
e

e
e

e
e
e

e
e
e

e
e
e

C
e
]

(includes Change A)

h
i

remem
e
m

e
e

e
e

e
e

ar

n
a
s

e
e
e

a
e

a
e
s

aa
ees

aa
e
s
a

e
s
a

eee
c
a
e

a
e

a
e

e
e
e

e
e
e

e
e
e

e
e
e

e
e
e

e
e
e

e
e

E
C

iv

TABLE OF CONTENTS

Penta a amet ea Se ee ~

-Section-- or Tithe ES oe Page

1 INTRODUCTION

- A *@ 1.1 Introduction to PASCAL 1-1
1.2 About the Manual 1-1

Text “Symbols and ‘Conventions 1-2

: Organization of the Manual 1-3

Abbreviations 1-4

1.3 File-Volume-Device-Naming Conventions 1-5

“ 1.4 Related Manuals 1-7

2 WORKING WITH PASCAL

2.1 Overview 2-1

2.2 Disk Handling ond

2.3 Word Lengths for File and Program 2-2

Identifiers

2.4 PASCAL Program Syntax 2-3

2.5 Writing a Program 2-4

2.6 Compiling a Program 2-6

2.7 Running a Program 2-7

2.8 Baud Rate Selection 2-8

3 SPECIAL SYMBOLS AND CONSTANTS

3.1 Identifiers 3-1

Reserved Words/Special Symbols 3-1

User-Defined Words 3-2

3.2 Numbers 3-3

Integers 3-3

Reals 3-3

3.3 String Constants 3-4

3.4 Comments 3-4

4 PROGRAM HEADINGS AND DECLARATIONS

4.1 Program Heading 4-1

mere sn cae 4.2 Label Declarations 4-1

v Change A, May '82

Section

Change A, May '82

TABLE OF CONTENTS (Cont.)

Title rE a

4.3 Constant Definitions

4.4 Type Definitions

4.5 Variable Declarations

4.6 Procedure and Function Definition

CONTROL STATEMENTS © -

5.1 Introduction

5.2 Compound “Statement

5.3 Assignment Statement

5.4 Repetitive Statements

WHILE Statements

REPEAT Statements

FOR Statements *

5.5 Conditional/Unmconditional Statements

IF Statement

CASE Statement

GOTO Statement

DATA TYPES hee

6.1 Introduct
ion

6.2 INTEGER ” _

6.3 REAL
or

6.4 BOOLEAN
“°° in 4

6.5 CHAR
bi

Pa a &y

USER DEFINED TYPES! ~*:
7.1 Introduction ~*~ °

7.2 Scalar

Restrinctions on Scalar Constants

7.3 Subrange aa

7.4 Set

vi

5-1

5-2

5-3

5-5

5-6

5-8

5-10

5-13

5-14

5-17

5-21

6~1

6-1

6-3

6~7

7-1

7-2

7-2

7-4

7-6

4

TABLE OF CONTENTS (Cont.)
=)

brs

Section Title

race

8 STRUCTURED DATA TYPES

8.1

8.2

8.3

Introduction

Array

Packed Arrays .

Arrays with BOOLEAN Base Type

s tring, Arrays

Record . .

Packed Records

WITH Statement

Record Assignment ©

Record Variants

Variant Record Beclarations

9. POINTER DATA TYPES

9.1

9.2

Introduction

Format

Pointer Type Components

10 FILE DATA TYPES

10.1

10.2

10.3

10.4

10.5

Introduction

Referencing Files in a Program

Declaration Format

File Types

Pascal Intrinsics for Files

Creating and Using Files

11 1 PROCEDURES AND FUNCTIONS
11.1

11.2

11.3

11.4

General Form

Subprogram Placement

FORWARD Directive

Procedures

Functions

Global and Local Variables

Varying Parameters

8-1

8-1

8-4

8-5

8-5

8-7

8-9

8-10

8-12

8-15

8-19

9-1

9-2

9-2

10-1

10-1

10-2

10-2

10-3

10-6

ll-1

11-2

11-2

11-3

11-5

11-6

11-8

vii Change A, May '82

Section

12

Change A, May '82

TABLE OF CONTENTS (Cont.)

Title

PASCAL INTRINSICS

12.1

12.2

12.3

12.4

Introduction *

String Intrinsics

CONCAT Function
COPY Function

DELETE Procedure

INSERT Procedure
LENGTH Function

POS Function :

Input and Output Intrinsics

BLOCKREAD Function

BLOCKWRITE Function

CLOSE Procedure ©

EOF Function

EOLN Function

GET Procedure

IORESULT Function

PAGE Procedure

PUT Procedure

READ Procedure __

READLN Procedure

RESET Procedure

REWRITE Procedure
SEEK Procedure

WRITE Procedure

WRITELN Statement
Character Array Manipulation

Intrinsics

FILLCHAR Procedure
MOVELEFT Procedure
MOVERIGHT Procedure

SCAN Function

viil

“mJ Q]

12-1

12-2

12-3

12-4

12-5

12-6

12-7

12-8

12-9

12-10

12-11

12-12

12-13

12-14

12-15

12-16

12-17

12-18

12-20

12-21

12-22

12-23

12-25

12-27

12-30

12-31

12-32

12-33

12-35

4c

TABLE OF CONTENTS (Cont.)

Section Title - Page

12.5 Mathematical Functions 12-37

ABS Function | 12-38

ARCTAN Function 12-39

COS Function _ 12-40
EXP Function - 12-41

LN Function ~ 12-42

LOG Function 12-43
MOD Function 12-44

ODD Function . 12-46

ROUND Function 12-47

SIN Function 12-48

SQR Function 12-49

SQRT Function 12-50

TRUNC Function 12-51

12.6 Miscellaneous Routines 12-52

~ DATE Function 12-53

DISPOSE Procedure 12-54

EOLNCHR Function 12-55

EXIT Procedure 12-57

GOTOXY Procedure 12-58

HALT Procedure 12-59.
MARK Procedure 12-60

NEW Procedure 12=62
OPTION Function 12-63

; RELEASE Procedure 12-64

““" “si EOF Function 12-65
STARTPAR Function 12-66

SVC Function 12-67

TIME Function 12-69

INP Function . 12-70
OUT Procedure 12-71

PWROFTEN Function 12-72

ix Change A, May '82

TABLE OF CONTENTS (Cont.)

Section Title

12.7 Logical Intrinsics

IAND Function

IOR Function

ISHIFT Function

ISWAP Function ©

IXOR Function’

13 SYSTEM PROGRAMS AND CSS-FILES

13.1 PASCAL System Programs and CSS Files

PASCAL Interpreter

PASSYS Interpreter

PASCOMP System Program

PASCROSS System Program

PASDEL System Program

PASDUMP System Program

PASLIB System Program

PASLINK System Program

PASOBJ System Program

PASPRINT System Program

13.2 CSS-Mode net

$ - Commands

$$ — Commands.

13-1

13-2

13-4

13-6

13-8

13-9

13-10

13-11

13-14

13-24

13-27

13-28

13-30

13-31

Flow of Control and Execution Commands 13-31

Taskfile Commands

Creation of Permanent Files

$$ Commands in Interactive Mode

14 ISAM STATEMENTS

14.1 Introduction

ISAM Error Handling

14.2 ISAM Create Procedure

Loading the Data File

Sample Program

14.3 ISAM Delete Statement

Change A, May '82 x

13-34

13-36

13-37

14-1

14-1

14-2

14-4

14-5

14-7

Section

15

16

TABLE OF CONTENTS (Cont.)

Title

14.4 ISAM Read Statement

Readlast

Readfirst

Readprevious

Readnext

Readkey

14.5 ISAM Update Statement

14.6 ISAM Write Statement

LOW RESOLUTION BUSINESS GRAPHICS

15.1 Introduction

15.2 Graphics Characters

15.3 Graphics Modes

15.4 Graphics Attributes

15.5 Control Characters

15.6 Graphics Display Format

15.7 Illustrated Examples

° Program 1: Text Graphics

Program 2: Block Graphics

LOW RESOLUTION COLOR GRAPHICS

16.1 Introduction

16.2 Printable ‘Characters

2:16.3 Text Color Selection

16.4 Graphic Character Color Selection

16.5 Height Selection

16.6 Flashing Mode Selection

16.7 Separate Mode Selection

16.8 Background Color Selection

16.9 Graphics Fill Mode

16.10 Graphics Hide Mode

16.11 Illustrated Examples

16.12 Low Resolution Color Graphic

Statement and Function

TXPOINT Statement

TXFPOINT Function

15-1

15-1

15-3

15-4

15-5

15-6

15-6

15-9

15-10

16-1

16-4

16-5

16-7

16-9

16-11

16-13

16-16

16-18

16-21

16-23

16-25

16-26

16-28

xi Change A, May '82

Section

17

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

Change A, May '82

TABLE OF CONTENTS (Cont.)

Title

HIGH RESOLUTION COLOR GRAPHICS

17.1

17.2

17.3

17.4

17.5

17.6

17.7

17.8

17.9

17.10

17.11

17.12

17.13

17.14

17.15

17.16

Introduction

Animation Mode

Declaring Buffers

Format 1

Format 2. _

FGCIRCLE Statement
FGCTL Statement

FGDRAW Statement

Moves and Color Selection

FGERASE Statement

FGFILL Statement

FGFPOINT Statement

FGGET Statement

FGLINE Statement

FGPAINT Statement

FGPOINT Statement

FGPUT Statement

FGROT Statement

FGSCALE Statement

QUICK REFERENCE SUMMARY

COMPILE TIME OPTIONS

COMPILER ERRORS

RUN TIME ERRORS

SUMMARY OF OPERATIONS

xii

Page

17-1

17-3
8174

17-4

17-5

17-6

17-8

17-10

17-15

17-24

17-26

17-27

17-28

17-34

17-36

17-38

17-39

17-41

17-44

TABLE OF CONTENTS (Cont.)

Section Title Page

APPENDIX F ASCII CHARACTER SET F-1

APPENDIX G SAMPLE PROGRAMS

G.l ISAM Program ISAMDEMO G-1

G.2 FGDRAW Programs - DRAWGRAPHICS and G-8

PUT &GET SHAPE

G.3 Animation Program - ANIMATESTICK G-13

G.4 Running Assembly Language Programs G-14

Under PASCAL

G.5 Multi-tasking Example G-17

APPENDIX H LOW RESOLUTION COLOR GRAPHICS CHARACTER SET H-1l

APPENDIX I HIGH RESOLUTION COLOR SELECTION CHART I-1

APPENDIX J OVERLAYING HIGH AND LOW RESOLUTION GRAPHICS J-1l

APPENDIX K PORT NUMBER ASSIGNMENTS K-1

APPENDIX L RLDR - RELOCATABLE LOADER

L.l Introduction L-1

L.2 RLDR Invocation L-2

L.3 Commands L-2

L.4 Messages L-7

L.5 Illustrated Example L-8

GLOSSARY OF TERMS GLOSSARY~1

INDEX INDEX-1

xiii Change A, May '82

Tables

8-1

12-1

12-2

12-3

12-4

12-5

12-6

12-7

15-1

16-1

Change A, May '82

LIST OF TABLES

Title

PASCAL Statements

Restrictions on I/O with Arrays

String Intrinsics

Input and Output Intrinsics

Character and Array Manipulation Intrinsics

PASCAL Mathematical Functions

Miscellaneous Intrinsics

Logical Intrinsics

Function Key ASCII Values

Block Graphics Character Images

Low Resolution Color Graphics Control

Characters and Keywords

High Resolution Graphics Statements

Low Resolution Color Graphics Character Set

High Resolution Color Selection Chart

Resulting Text Color on High Resolution

Background

xiv

12-1

12-8

12-30

12=37

12-52

12-52

12=55

15-2

16-3

17-1

H-2

I-2

SECTION 1

INTRODUCTION

ae,

SECTION 1

INTRODUCTION

1.1 INTRODUCTION TO PASCAL

PASCAL is a relatively new language that has been accepted and

implemented worldwide. It was first published in 1971, yet already

it is considered one of the most promising problem-solving languages

available.

PASCAL has two powerful strengths that account for its popularity.

The first is that it is one of the few languages that was designed

for structured programming, a method of writing programs that is

sequential and well-ordered. It permits the programming of extremely

large and complex projects while minimizing the debugging time.

The second strength is that PASCAL has a small but very powerful set

of commands that makes it a relatively easy language to learn and to

use. It was also designed to be completely machine-independent so

PASCAL programs are transportable and maintainable. It is even more

flexible because it facilitates the defining of complex data

structures specifically for each application.

PASCAL is a compiled language. This means that a PASCAL program is

completely translated into object code before it can be executed.

Therefore, it is not interactive in the sense that BASIC and other

interpreted languages are.

Monroe's PASCAL language described in this manual is standard PASCAL.

It is available on Monroe's educational and occupational 8800

computer series.

1.2 ABOUT THE MANUAL

The PASCAL PROGRAMMER'S REFERENCE MANUAL is designed to be just that:

a reference manual for an experienced programmer, not a tutorial.

Although it is not designed for those learning PASCAL, many examples

are included to help you understand and implement the language.

k=] Jan. '82

SECTION 1 - INTRODUCTION

Text Symbols and Conventions

This manual uses specific “documentation conventions to describe all

PASCAL statement, function, procedure, and command formats. These

conventions are as follows:

Symbol Description and Use

1. CAPITAL LETTERS Capital letters are used for all

keywords, standard functions and

procedures, and commands that are to be

explicitly typed.

Examples: BEGIN

WRITELN

2. Lower case Lower case letters specify variables to

be supplied by the user according to the

rules explained below and in this text.

Examples: <identifier>: = <constant>;

WHILE <boolean expression>

3. Angled brackets enclose fields that are

required for valid syntax. The brackets —

are never to be typed.

Examples: IF <boolean expression>

THEN <statement>;

4. | | Vertical lines enclose optional elements

of a statement. When a statement

contains more than one optional element,

each may be underlined to clarify any

resulting ambiguities. (See item 6.)

Examples: REPEAT

IF <condition>

THEN <statement block>

|ELSE statement: block|

Jan. "82 1-2

SECTION 1 — INTRODUCTION

Symbol Description and Use

Se []QOs0% : Square brackets and parentheses enclose

required elements or keywords of a

statement. Commas are separators.

Periods and semicolons are delimiters.

They must all be typed exactly as shown.

Examples: ARRAY[<const>..<const>]

would be: ARRAY[1..10];

Ge wee Ellipses (3 dots) indicate that multiple

arguments are allowed.

Example: READ (|fd|,<ident>|,ident,...|)

Organization of the Manual

This manual is organized into 17 sections and twelve appendices.

Section 1 gives a general overview of this document.

Section 2 gives machine-specific information about running PASCAL.

All programmers should read this section carefully.

Sections 3 through 5 contain information regarding some of the more

basic identifiers in the PASCAL language.

Sections 6 through ll describe individual commands, more advanced

identifier definitions, and program and function definitions. The

statements will each be explained and summarized in the following

format:

1. Function -Summarizes the purpose of the statement.

2. Format -Shows the statement syntax.

3. Arguments -Defines the format variables.

4. Use -Describes where and under what

circumstances the statement would be

used.

5. Note ” -Important exceptions and limitations.

6. Example -Illustrates various uses of the command.

1-3 Change A, May '82

SECTION 1 -— INTRODUCTION

Section 12 describes the PASCAL intrinsics.

Section 13 details PASCAL's system commands and the options that are

available to the user.

Section 14 describes the statements used to load and modify ISAM data

files.

Section 15 describes low resolution business graphics.

Sections 16 and 17 deal with low and high resolution color graphics,

respectively.

Appendix A summarizes the standard functions and procedures that are

available.

Appendix B explains the possible compile-time options.

Appendices C and D list the compile-time and run-time errors,

respectively.

Appendix E summarizes the operators, their uses, and their operands,

while Appendix F lists all the legal characters.

Appendix G contains sample programs.

Appendix H shows the low resolution color graphics character set.

Appendix I contains the high resolution color selection chart.

Appendix J shows the resulting background color when high and low

resolution color graphics are displayed on the screen simultaneously.

Appendix K lists the port numbers and associated devices.

Appendix L describes the RLDR Utility which is used to build an

executable program (i.e., Task).

Change A, May '82 1-4

SECTION 1 - INTRODUCTION

Abbreviations

The following abbreviations are used in this manual:

1.3

cfd File descriptor of the command file

const Constant

fd File descriptor

ident Identifier

infd File descriptor that contains the PASCAL p-code

lfd File descriptor for the list file

libfd File descriptor for the p-code library

outfd File descriptor that contains the relocatable

object file

stmt Statement

tid Name assigned to the task (four letters) when it

is loaded into memory

var Variable

FILE-VOLUME-DEVICE-NAMING CONVENTIONS

The Monroe Operating System file, volume, and device naming

conventions are defined as follows:

A)

B)

Cc)

D)

A file is a program or a collection of data stored ona

disk-type storage medium. Once saved files stay on the disk

permanently unless they are explicitly removed.

A volume name is a name given by the user to a disk. Filenames

must be preceded by their volume name unless they reside on the

system volume. The system volume is the volume from which the

operating system is booted. It can be reset by the user.

A device name is a name given to a physical device (e.g., CON:

for the console, PR: for the printer, FPYO: for drive 0

(lower drive), FPYl: for drive 1 (upper drive). These names

cannot be changed by the user.

File descriptors, hereafter referred to as "fd" in this manual,

can be composed of four fields: vol, filename, directory, and

type, where vol can be either a volume or when used alone as a

device name. Device descriptors are composed of the device

mnemonic only. fac wai ul

I=5 Change A, May '82

SECTION 1 - INTRODUCTION

E) The format can be expressed in four ways:

1. <device:>

2. [vol:]<filename>[/type]

3. [vol:]<directory>

4. [vol:]<directory.filename>[/type]

where:

vol/

device

filename

directory

type

Vol is the name of the disk on which the file

resides it the file descriptor refers to a file,

or the name of a device if the file descriptor

refers to a device. It may be from one to four

characters. The first character must be

alphabetic and the remaining alphanumeric. If the

volume is not specified, the default volume is the

SYSTEM volume.

Name of the file. It may be from one to twelve

alphanumeric characters.

Name of the element file directory. [It may be

from one to twelve alphanumeric characters. If

not specified, the directory defaults to the

Master File directory.

Type of file, i.e., A=ASCII, B=Binary, etc.

Example: Examples of legal file/device descriptors are:

—-EDIT MONT: REPORT Edits file REPORT on the volume

MONT.

PROGRAM HELP(tst50,tst60) Files tst50 and tst60 will be

used in the PASCAL program

named HELP.

-PASSYS PASCOMP, VOLA:HELP Compiles file HELP on volume

VOLA.

~PASCAL VOLA:HELP Executes the compiled program

HELP on volume VOLA.

PROCEDURE WRITELN Writes the value to the file

(TESTPRG:text file) TESTPRG and then inserts a

Change A, May ‘82

carriage return character.

SECTION 1 - INTRODUCTION

1.4 RELATED MANUALS

This manual is as self-sufficient as possible. However,

instructional information about the Utilities and the Text Editor may

be required to effectively use the PASCAL package. For additional

information, refer to the following 8800 Series Programmer's

Reference Manuals:

o Utility Programs

eo Text Editor

o Monroe Operating System

1-7 Jan. '82

SECTION 2

WORKING WITH PASCAL

SECTION 2

WORKING WITH PASCAL

2.1 OVERVIEW

Monroe Pascal software for the 8800 Series Computers is delivered on

a disk containing a compiler PASCOMP, two interpreters PASSYS and

PASCAL, and supplementary system programs. (Each is described in

detail in Section 13.)

The following Pascal system programs are written in native code for

the Monroe computer: PASSYS, PASCAL, PASOBJ, RLDR, and PASRTL. All

others consist of “psuedo-code” which can be interpreted by the

PASSYS interpreter; PASSYS thus constitutes the basis for most

Pascal-related operations. User written application programs can be

translated by the PASCAL system either to pseudo-code or to the

native code of the computer. PASCAL is used to interpret user-

written programs which have been translated to pseudo-code; altern-

atively, PASRTL and RLDR (see Appendix L) can be used to convert

programs which have been translated to native code into directly

executable task files.

2.2 DISK HANDLING

In order to use your Pascal disk, certain procedures must be

followed. Shown below is one method that can be used. However,

there are other methods which may be more efficient, depending on

your knowledge of the system.

Dual Drive OC System Procedure:

l. Boot from your MS8 disk in drive 0 (lower drive).

2. Put PASCAL disk in drive 1 (upper drive), and open the

drive--OPEN FPY1:.

3. Copy necessary utilities and system programs from your

MS8 disk to the PASCAL disk (PASC:) which may be needed

later. Copy, for example: EDIT, CMDSVOLUME, CMDSLIB,

ISAM, COPYLIB, etc. Once this has been done, there is no

need to do this in subsequent sessions.

2-1 Change A, May '82

SECTION 2 - WORKING WITH PASCAL

4. Change system volume to PASC: (PASCAL disk) using the

volume utility-—-V PASC:.

5. Remove MS8 disk and insert and open a data disk

previously initialized.

The text editor - EDIT can now be used to create a PASCAL source

program. (See Seccion 2.5.)

NOTE: If you want your source program to be stored on the data disk,

prefix the filename with the volume name, e.g., DATA:SOURCEFILE.

Single Drive EC System Procedure:

1. Boot from your MS8 disk.

2. Execute COPYF Utility (refer to the 8800 Series Monroe

Utility Programmer's Reference Manual) to copy necessary

utilities and system programs from your MS8 disk to the

PASCAL disk-PASC:. Copy, for example: EDIT, CMDSVOLUME,

CMDSLIB, ISAM, COPYLIB, etc. Once this has been done,

there is no need to do this in subsequent sessions.

3. Remove System disk (assume step 2 has been done). Insert

and open PASCAL disk--OPEN PASC:.

4. Change system volume to PASCAL disk--PASC:V PASC:.

You are now ready to use the Editor to create a source program.

2.3 WORD LENGTHS FOR FILE AND PROGRAM IDENTIFIERS

Identifiers are alphanumeric words that have specific meanings much

like words in informal languages. They are used to define constants,

types, variables, procedures and functions, and files. PASCAL allows

identifiers of any length provided that they do not span more than

one line. This allows meaningful names to be used for all

identifiers, hence, the program can be read much easier. It is

important to note that only the first eight characters are

significant, i.e., “newgraphx” and “newgraphy” are both valid

identifiers but are indistinguishable to the compiler; “xnewgraph”

and “ynewgraph” might be used instead.

Change A, May '82 2-2

SECTION 2 - WORKING WITH PASCAL

The first character in an identifier must be a letter; the remaining

characters may be either letters or digits. All other ASCII

characters are illegal. Also, no reserved words (see Section 3.1 for

a list) may be used.

Examples:

The following identifiers are all legal:

abc, time2, C8915, Idname

The following identifiers are illegal for the reasons stated:

4aname does not start with a letter.

btc . + is not a legal character.

the name a blank is not a legal character.

var VAR is a reserved word.

2.4 PASCAL PROGRAM SYNTAX

PASCAL programs consist of a heading and a block section. The

general format is:

PROGRAM<name>|(fd,...)|;

|Declarations |

<compound statement>.

<name> is the identifier for the program. The optional list of

filenames designates the files to be used in the program. They must

be declared in the Variable Declarations section.

The Declarations section is composed of the following parts:

|label declarations|

|constant definitions |

|type definitions |

|variable declarations |

| procedure and function declarations |

These parts must exist in the order that they are listed above. They

will be described in greater detail in Sections 2 through ll.

2-3 Change A, May '82

SECTION 2 ~ WORKING WITH PASCAL

2.5 WRITING A PROGRAM

Since PASCAL programs must exist in text files, all programs are

created and manipulated through the Text Editor--Edit. Enter the

following command to invoke the Editor:

EDIT <fd>

The fd is the file descriptor as defined in Section 1.4. Each time

this command is entered with a new filename, a file is created and

the name is placed in the disk's file directory. If an existing

filename is used, the Editor is invoked and the existing file is

opened.

Next, the contents of the file must be read into the buffer where it

can be manipulated. This is done by executing the Read (RE) command.

This command should be used exactly once each time the editor is

invoked or else the file and the buffer will be lost. If the file is

just being created, the RE command will return a length of zero.

Otherwise, it will give the length of the program existing in the

file.

It is often a good idea to look at the file even if it was just

created to be sure that it has not accidentally been used before.

The Print (PR) command accomplishes this. If the listing is longer

than the CRT display, the first section is displayed and the lines

that follow may be seen by hitting the space bar. To exit the Print

command, press the RETURN key.

The Insert Line (IL) is used to begin entering the program. A line

number will appear at the left of the screen with the cursor

following it. To exit the Insert Line command, type a "#" in the

first position on the line.

The Output and READ (OR) command can be used to load the next section

of a large program file until the end of the file is reached.

Change A, May '82 2-4

SECTION 2 - WORKING WITH PASCAL

The following Text Editor commands are available:

Command Function

AB Abort session.

BT Set tab stops.

CV Change variable.

DL Delete line(s).

ED Edit line.

EN Normal termination.

IL Insert line(s).

KI Kills the buffer, the file, and the backup file.

LC Enable lower case input.

NU Renumber.

OR Output, kill the buffer, and read.

PR Print.

RE Kill the buffer and read. ;

SV Search for string variable.

UC Force input to upper case.

WR Write current buffer.

For a more complete description of the uses and parameters of these

commands, refer to the 8800 Series Text Editor Programmer's Reference

Manual.

When an editing session is completed the End (EN) command will

terminate the session, write the buffer to the disk file, and exit

the Editor.

2-5 Change A, May '82

SECTION 2 - WORKING WITH PASCAL

2.6 COMPILING A PROGRAM

Once the program has been written and the editing session is ended,

the program must be interpreted into a pseudo code program so that it

can be executed. To do this, the compiler routine must be called.

The simplest forms cf this command are:

PASSYS PASCOMP,<fd> Compiles program and displays

information on the console indicating

when a block is being compiled and error

messages if any.

PASSYS, ,100006,<fd>, ,CON: Displays complete program with line

($6 = required blank) numbers as is being compiled to the

console including error messages if any.

There are a series of options that may be set if necessary. Refer to

Section 14 for the more complex versions.

. mt wm EPL
The compiler stores the p-code program it produces in a file it

creates using the same filename but with a file type of BP-BINPAS.

The source program ‘its A-ASCII.

The compiler will flag all syntactic and semantic errors, known as

compile time errors. After compilation, the programmer must return

to the Editor to correct these errors. Refer to Appendix C for the

list of compile time errors and their codes.

Note: It is important to remember that the program must be

recompiled after each editing session for the changes to be

reflected in the object file.

Change A, May '82 2-6

SECTION 2 - WORKING WITH PASCAL

2.7 RUNNING A PROGRAM

Once the program has been successfully compiled, the program is ready

for execution. The format for the simplest version of this command

is:

PASCAL <fd>

There are switches and other options available for more advanced

users which are discussed in Section 13.

An error will be displayed if no p-code file with the given filename

is found.

Run time errors will be displayed if there are inconsistencies in the

logic of the program. See Appendix D for the list of these error

codes and their meanings. Once again, the Editor must be invoked to

correct run time errors in the program. To see run time errors with

the number, a compile option must be set. (See D switch option,

Appendix B.)

The program may be manually interrupted using the CONTROL-A which is

executed by holding down the Control key and typing an “A”. It will

be cancelled if the CONTROL-A command is followed by the Cancel (CA)

command. The “End of Task” appears to signal that the termination

route has been completed.

2-7 Change A, May '82

SECTION 2 — WORKING WITH PASCAL

2.8 BAUD RATE SELECTION

The system default printer baud rate is 1200 Bd. The baud rate is

selectable at run time by defining a file-descriptor beginning with

“PR:Rx"” where “x” defines the baud rate, as follows:

0 = 75 Bd

l= 110 Bd

22 300 Bd

3 = 600 Bd

4 = 1200 Bd

5 = 2400 Bd

6. = 4800 Bd

7 = 9600 Bd

8 = 19200 Bd

Example: To specify a baud rate of 2400 for example, a PASCAL source

program must include the following statements:

“<variable name>:='PR:R5';”

"RESET(<text filename>,<variable name>);"

This program must be executed to set the baud rate.

Note: The baud rates specified must be compatible with the speed of

the printer; otherwise, erroneous results will occur.

Change A, May '82 2-8

SECTION 3

SPECIAL SYMBOLS AND CONSTANTS

SECTION 3

SPECIAL SYMBOLS AND CONSTANTS

3.1 IDENTIFIERS

The PASCAL vocabulary is made up of basic symbols categorized as

letters, digits, and special symbols. Special symbols are operators,

delimiters, and reserved words. Delimiters and reserved words are

interpreted as single symbols with specific meanings.

Although identifiers may be 32 characters long, only the first eight

are significant.

Identifiers are combinations of letters and digits that define

constants, types, variables, and procedures and programs. They were

introduced in Section 2.1.

Reserved Words/Special Symbols

There are some identifiers and symbols that

PASCAL and cannot be used in any other way.

of reserved words:

have specific meanings in

The following is a list

AND EXTERNAL NEW REPEAT

ARRAY FILE NIL RETURN

BEGIN FOR NOT SEGMENT

BOOLEAN FORWARD OF SET

CASE FREE OR STRING

CHAR FUNCTION OVERLAY TEXT

CHR GOTO PACKED THEN

CONST GOTOXY PROCEDURE TO

DIV IF PROGRAM TYPE

DO IN PUT UNTIL

DOWNTO INCLUDE READ VAR

ELSE INTEGER READKEY WHILE

END ISAMF ILE READLN WITH

ENTRY LABEL REAL WRITE

EXIT MOD RECORD WRITELN

In addition all standard function and procedure names are reserved

(see Sections 11 and 12). Incorrect usage of reserved words will

Change A, May '82

SECTION 3 — SPECIAL SYMBOLS AND CONSTANTS

cause errors. Hence, the meaning and function of each should be

checked before use.

The following symbols and groups of symbols have special meanings and

cannot be used as part of user-defined identifiers.

+ ; > \
> ae <= }

* : >= nm

/ , (ss
-) (*

‘ > [*)

, <]

The meanings and uses of these are detailed in Appendix E.

User-Defined Words

All constants, types, variables, procedures, programs, and files must

be defined and an identifier associated with it so that it may be

used. These are called user-defined identifiers. When a command

format in this manual contains an identifier field, it refers to a

user-defined identifier.

These identifiers must follow certain rules:

1. They may be any length but must be able to fit on one line.

2. Only the first eight characters are significant when

differentiating between identifiers.

3. They must begin with a letter of the alphabet.

4. The remaining characters may only be letters or digits. All

other symbols are illegal.

5. No reserved words may be used.

Refer to Section 2.1 for examples of valid and invalid identifiers.

Jan. '82 3-2

SECTION 3 - SPECIAL SYMBOLS AND CONSTANTS

3.2 NUMBERS

PASCAL has the facility to represent base ten numbers as either

integers or reals. They may be positive, negative, or zero.

Integers

Integers may be thought of in the everyday sense. 93 and -245 are

integers while 1.92 and -3.1417 are not. The integers may range from

-32768 to +32767. The positive number 32767 is kept as a system

identifier under the name maxint. Maxint may be referred to directly

in a program. For example:

CONST max = maxint;

FOR counter := 1 TO maxint DO WRITELN(counter);

Real numbers have an integer part and a decimal part. They can be

represented the way they usually are in mathematics (i.e., 345) or

using exponential notation. Exponential notation has a decimal

number portion and a scale factor. The letter E precedes the scale

factor and means “times ten to the power of”. If the decimal portion

contains a decimal point, at least one digit must precede and one

succeed the point. The scale must be between 2.93874E-39 and

1.70141E+37 or the value defaults to zero. There is seven-digit

accuracy for default.

Some valid examples are:

L1E4 110000.0

-1.35 -135.0

21.55E-3 0.02155

1.93 1.93

Some invalid ones are:

-92E1 no digit preceding the decimal point.

1.El no digit following the decimal point.

E5 no mantissa.

2.3E no exponent.

5.1E1.5 fraction in the exponent.

3-3 Change A, May '82

SECTION 3 — SPECIAL SYMBOLS AND CONSTANTS

3.3 STRING CONSTANTS

Strings are sequences of characters enclosed in single quotes. They

are often used for text and for titles, headings and comments in

output. Any character may appear within the string. However, if a

single quote is needed, two single quotes in a row must be used.

Examples:

‘Age! 'Title' '405 Makalapa Drive’ 'c'

3.4 COMMENTS

It is always important to document any program so that it can be read

and easily understood. This is especially important if it may be

used by others, or even if it may be used by the programmer a long

time after it was written.

Comments may be included anywhere in a program, though they usually

appear to the right of the line of code they discuss. They may be

removed from the program anytime without affecting the program.

A comment has the following structure:

(* <any sequence of characters/symbols except '*)'> *)

The (* and *) may be replaced by { and i respectively.

Comments may be inserted or deleted from a source program without

affecting the P-code, unless the comment contains executable source

codes requiring the user to recompile the source program.

(*X:=7;*) This line is not translated to P-code:

X:=7; Removing the (*and*) will require a new

compilation. This method is useful for debugging

a PASCAL program.

Change A, May '82 3-4

SECTION 4

PROGRAM HEADINGS AND DECLARATIONS

SECTION 4

PROGRAM HEADINGS AND DECLARATIONS

4.1 PROGRAM HEADING

All programs in PASCAL must have a heading and a block. The heading

gives the program its name and lists all the files it uses. The

general format for a program is:

PROGRAM <name>|(fd,...)|; (*";" is a statement separator.*)

| Declarations |

<Compound Statements>. (*"." marks the end of the program.*)

<name> is the program name. The optional list of filenames

designates the files to be used.

The Declaration section is composed of the following sequence:

|label declarations |

[constant definitions |

|type definitions |

|variable declarations |

|procedure and function declarations |

Note: Sequence errors will result if this order is not followed.

The Compound Statement is:

‘BEGIN

<statement>;

|statements;...

END.

Example: PROGRAM getchr (readline,printline) ;

4.2 LABEL DECLARATIONS

Referring back to Section 2.1, a program consists of a heading and a

block. The block contains a declaration part where all identifiers

local to the program are defined. The first section of this part is

where the labels are declared.

4-1 Change A, May '82

SECTION 4 - PROGRAM HEADINGS AND DECLARATIONS

A label is a prefix to a statement so that it can be referenced

elsewhere in the program by a GOTO statement. Any statement except

the conditional parts of IF and CASE statements may be labeled. The

label must be defined as an unsigned integer consisting of at most

four (4) digits. The format is:

LABEL <label>|,label,...|;

Example: LABEL 4, 931, 4444;

A statement is labeled according to the following format:

<label>: <statement>;

Example: 5% READ (testvalue);

If no labels are needed the LABEL declaration part is completely

omitted.

4.3 CONSTANT DEFINITIONS

A program sometimes uses a value that remains unchanged throughout

its execution, such as Pi or MAXINT. These values are defined as

constants and assigned to identifiers so they may be referenced

throughout the program. This makes a program more readable and is

considered a good documentation practice. The format for the

definition is:

CONST <ident>=<const>;

|ident=const;...

The identifiers may be any legal user-defined identifier. The

constant values may be numbers, constant identifiers, or strings. As

many constants as the program needs can be defined. If none are

needed, the CONST definition part is completely omitted.

If an identifier that has been defined as a constant is assigned a

new value in the program, then a compile time error will occur. Once

the identifier has been defined, it can only refer to that value.

Jan. '82 4-2

SECTION 4 - PROGRAM HEADINGS AND DECLARATIONS

Some examples of constant definitions are:

Ex. 1 CONST valint=MAXINT;

maxnumpeople = 500;

feed = '(:12:)'

Ex. 2 CONST pi = 3.14;

cardlen = 80;

linelen = 132;

4.4 TYPE DEFINITIONS

There are some standard data types which have already been mentioned.

These are INTEGER, REAL, CHAR, STRING and BOOLEAN. However, PASCAL

has the capability of declaring more abstract types with the user

defining the properties associated with them. These types may be

scalar, subrange, set, array, record, file, and pointer enumerated

types. Each of these types will be discussed in depth in Sections 7

through 10. However, the general form of the TYPE definition part

is:

TYPE <ident> = <type declaration>;

|ident = type declaration;...

The identifiers may be any legal PASCAL user-defined identifier. The

format and legal elements of the type declaration field varies with

different types so they will be discussed later where appropriate.

If no user-defined types are needed, the TYPE definition section is

omitted. If included, it must be placed in the correct sequence

(i.e., before VAR).

Examples:

These examples show enumerated type.

Ex. l TYPE days = (Sunday, Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday);

Ex. 2 TYPE text = (True, False, Undecided);

digit = 0..9;

4-3 Change A, May '82

SECTION 4 - PROGRAM HEADINGS AND DECLARATIONS

4.5 VARIABLE DECLARATIONS

Every variable that occurs in a program must first be defined in the

variable declaration part. The format for the variable declarations

is:

VAR <ident>|,ident,...

|ident,... : type;|

: <type>;

The identifiers may be any legal PASCAL identifier. The types may be

INTEGER, REAL, CHAR, BOOLEAN, STRING or any type defined in the TYPE

definition part. These variables may be assigned new values within

the program. If no variables are needed, the section is completely

omitted. If included, it must be placed in the appropriate sequence

(i.e., before procedures or functions).

Examples:

Ex. 1 VAR count, intval : INTEGER;

sum, realval : REAL;

Ex. 2 VAR answer ;: test;

number : digit;

counter,index : INTEGER;

4.6 PROCEDURE AND FUNCTION DEFINITION

Programs often require that sections of the code appear in more than

one place in the program. If, for example, a twenty-five line

section was needed in five different places, there would be one

‘ hundred lines of redundant code. Instead, the code could be put into

procedures or functions that would then be called by the program.

Procedures and functions are like subroutines in that they can be

called by the main program and by each other. However, before they

can be called, they must be declared and defined. This section comes

after the variable declaration part of the block of the main program.

Change A, May '82 4-4

SECTION 4 - PROGRAM HEADINGS AND DECLARATIONS

The composition of functions and procedures is the same as a program.

They have headings and blocks that are of the form:

PROCEDURE <name>|(parameter list)|;

| declarations |

BEGIN

<statement block>

END;

FUNCTION <name>| (parameter list)|:<type>;

|declarations |

BEGIN

<statement block>

END;

This is covered in more detail in Section 11 but there is one

important fact to remember: procedure or function must be declared

before it is used. For example, if the main program calls FUNCTION

A, which in turn calls PROCEDURE B and PROCEDURE C, the B and C must

be defined before A is. The correct order is:

PROGRAM main;

VAR val : INTEGER;

PROCEDURE B;

BEGIN

END; (*B*)

PROCEDURE C;

BEGIN

END; (*C*)

4-5 Change A, May ‘82

SECTION 4 - PROGRAM HEADINGS AND DECLARATIONS

FUNCTION A;

BEGIN

B; (* call B *)

C; (* call C *)

END; (*A*)

BEGIN

val:2A; (* call A *)

END. (* main *)

Forward references are covered in Section ll.

Jan. "82

SECTION 5

CONTROL STATEMENTS

5.1 INTRODUCTION

SECTION 5

CONTROL STATEMENTS

Control statements describe the actions that a program is to perform

on its defined data.

part of a program.

Together these statements form the statement

Between every two statements there must be a

semicolon that acts as a statement separator and that is not

considered to be part of either statement.

Monroe PASCAL statements that are available to a user are summarized

in Table 6-1. Each is explained in greater detail in this section.

Table 5-1. PASCAL Statements

Statement

<a>: =<e>

BEGIN

END

WHILE

REPEAT

FOR

IF

CASE

GOTO

Description

Assigns values to variables.

Sets off a compound statement.

Terminates a compound statement.

Executes a statement or compound statement

repeatedly using a leading decision.

Executes a loop repeatedly using a trailing

decision.

Executes a loop a predetermined number of times.

Evaluates an expression and performs one of two

possible actions.

Transfers control to one of several statement

labels depending on the variables value.

Unconditionally transfers control from one

portion of a program to another.

5-1 Jan. '82

SECTION 5 — CONTROL STATEMENTS

5.2 COMPOUND STATEMENT

A compound statement is a sequence of statements that are set off by

the reserved word BEGIN before the first statement and by END after

the last. Simple statements may be extended with additional

instructions using a compound statement structure. This structure

allows nested compound statements. The format for a compound

statement is:

If A=4 THEN

BEGIN

statement];

statement2

END;

The WHILE and FOR statements discussed in this section contain

examples of compound statements.

Change A, May '82 5=2

SECTION 5 - CONTROL STATEMENTS

5-3 ASSIGNMENT STATEMENT

Function:

Format:

Arguments:

Note:

To assign values to variables.

<identifier>:=<expression>;

The identifier may be any user-defined identifier.

The expression may be a user-defined identifier

that has an assigned value, a constant, or a

mathematical expression using arithmetical,

relational or logical operators. The identifier

type must match the expression type.

Note: The identifier takes on the value of the

expression.

Although it is used simply to assign a value to a

variable, it is used more often as a way to

evaluate an expression and retain the result as the

value associated with the user-defined identifier.

The convention of evaluating expressions from left

to right using operator precedence is observed

within the expression. The operators below are

ranked according to precedence with NOT having the

highest and the relational operators having the

lowest. Those on the same line have equal

precedence values.

()

NOT

*, /, DIV, MOD, AND

+, -, OR

=, <>, <, <3, >=, >, IN

If an expression is enclosed in parentheses it is

evaluated independently of the preceding and

succeeding operators.

5-3 Change A, May '82

SECTION 5 - CONTROL STATEMENTS

Examples:

Change A, May '82

Expression Equivalent Result

16 DIV 3 * 9 = (16 DIV 3) * 9 = 45

4*9-8* 4 = (4 * 9) = (8 * 4) = &

All data types in an expression must be compatible.

Declaration:

VAR value, count, nextletter, length,

sidel, side2 : INTEGER;

character : CHAR;

Main Section:

BEGIN

value := 1;

count := count+l;

character := chr(nextlettertl);

length := 2*(sidel + side2);

END. (* END PROGRAM *)

5-4 ASSIGNMENT

SECTION 5 - CONTROL STATEMENTS

5.4 REPETITIVE STATEMENTS

Some programs require a set of statements be executed more than once.

These statements form what is called a loop or iteration. Since the

loop must be executed a finite number of times, a decision whether or

not to continue executing the statements inside the loop must be made

during each execution of the loop. This decision can be made at the

beginniing of the loop, called a leading decision (WHILE statement),

or at the end of the loop, called a trailing decision (UNTIL

statement). The FOR statement is used when the number of repetitions

is a numeric value that can be computed. It also allows the program

to keep an index variable available to the user.

The following repetitive statements are discussed in detail in this

section:

WHILE

REPEAT

FOR

5-5 Change A, May '82

SECTION 5 - CONTROL STATEMENTS

WHILE Statement

Function:

Format:

Arguments:

Note:

Jan. "82

Executes a statement or compound statement

repeatedly until the condition being tested becomes

false.

WHILE <conditional expression> DO

<statement>

The conditional expression is any expression that

returns a BOOLEAN value. Statement may be either a

simple or a compound statement.

The WHILE statement is a well-structured method of

repeatedly executing a statement block with a

leading decision.

Since the WHILE statement has a leading decision,

the statement will not be executed if the

conditional expression is false when it is first

encountered. Theref-re, the condition must have a

well-defined value before it is first executed or a

run time error will occur.

The condition being tested for must be changed

somewhere in the loop. Otherwise, control will

never exit the loop and an infinite loop will

result.

5-6 WHILE

SECTION 5 - CONTROL STATEMENTS

Examples:

Ex. 1 oldval := 100;

newval := 1;

WHILE newval < oldval DO

newval:=sqr(newval);

WRITELN (newval:10);

Ex. 2
PROGRAM = gradeavg;

VAR score, sum, classavg : REAL;

total : INTEGER;

done : BOOLEAN;

BEGIN

sum := 60; (* initializing *)

total := 0;

done :=2 FALSE;

WHILE (NOT done) DO

BEGIN

WRITE ('score: ');

READ(score);

IF score < 0

THEN done := TRUE

ELSE

BEGIN

sum := sum + score; (* add score *)

total := total + 1; (* increment total number of scores *)

END (* ELSE *)

END; (* WHILE *)

IF total > 0

THEN

BEGIN

classavg := sum/total; (* calculate the average *)

WRITELN (' Class average = ', classavg:10:3, ' Student count =’,

total)

END (* IF *)

END. (*gradeavg *)

WHILE 5-7 Jan. ‘82

SECTION 5 - CONTROL STATEMENTS

REPEAT Statement

Function:

Format:

Arguments:

|=
 a @

Note:

Jan. '82

Executes a statement or list of statements

repeatedly until a desired condition is met.

REPEAT

|statement|;statement;...| |

UNTIL <conditional expression>

The statements may be any simple or compound PASCAL

statement.

Conditional expression is any Boolean expression

that returns a TRUE/FALSE value.

The REPEAT statement is used to execute the list of

statements with a trailing decision ina

well-structured format.

The statement(s) between the REPEAT and UNTIL

reserved words will be executed at least once.

This can cause unexpected results if it is not

planned for. If a leading decision is desired,

refer to the WHILE statement.

The condition that is being tested must be changed

somewhere in the statement block; otherwise,

control will never exit the REPEAT statement (an

infinite loop).

There is no semicolon (;) following the last

statement. A semicolon may or may not follow the

conditional expression, depending on the succeeding

statement, i.e. never before an END or an ELSE.

5-8 REPEAT

SECTION 5 — CONTROL STATEMENTS

Examples:

Ex. 1 Sample REPEAT-UNTIL Block of Code

IF number > 0

THEN

REPEAT

number: = number + 1; (* increment counter *)

output: = number*10; (* calculate value *)

WRITELN(output)

UNTIL output > maximum; (* test *)

Ex. 2 Sample Program Using REPEAT-UNTIL

PROGRAM testing;

CONST maxlength = 50; (* the maximum number of

questions *)

VAR answersheet : ARRAY(1..maxlength] OF CHAR; (* list of

inputted answers *)

key : STRING[maxlength] ; (* list of correct answers *)

response: CHAR; (* response to a question *)

totquest, wrong, totquest : INTEGER; (* counters *)

BEGIN

wrong := 0; totquest := 0; (* initializing *)

key := 'TFFTFTTTFTFFTFTFFTFT.'; (* correct answers *)

WRITELN ;

REPEAT

totquest := totquest + 1; (* increment index *)

WRITELN('answer number ' totquest) (* write the question number *)

READ(response) ; (* read the answer *)

answersheet[totquest] := response; (* record answer *)

IF key{totquest] <> response;

THEN wrong := wrong + l (* keep track of number wrong *)

UNTIL key[totquest+l] = '.'; (* the end of the test *)

WRITELN('wrong = ',wrong); (* output *)

FOR totquest:=l1 TO totquest DO

WRITELN(answersheet[totquest],' ' ,key[totquest])

END. (* testing *)

REPEAT 5-9 Jan. '82

SECTION 5 - CONTROL STATEMENTS

FOR Statement

Function:

Format:

Arguments:

Note:

Jan. '82

Executes a simple or compound statement a

predetermined number of times.

1) FOR <control variable>:=<initial value>

TO <final value> DO <statement>

2) FOR <control variable>:=<initial value>

DOWNTO <final value> DO <statement>

The control variable is a user-defined identifier.

The initial and final values define the range of

values the control variable takes on. The conrol

variable and value limits must all be of the same

scalar type. They cannot be REAL. The statement

may be either simple or compound.

The FOR statement is used to execute a simple or a

compound statement repeatedly when the number of

repetitions is known beforehand instead of being

dependent on the results of the loop. Although the

same results could be achieved using a WHILE

statement, the FOR statement gives the reader more

information.

The initial and final values are evaluated only

once so the limits of the control variable cannot

be changed in the loop. After the control variable

exits the loop, its value is undefined. Also, its

value should never be altered inside of the loop.

The first form of the FOR statement assigns the

- initial value to the control variable and then

increments it by one after each loop. The loop

exits when the index value is greater than the

final value. If the initial value is larger than

the final value the loop will not be executed.

5-10 FOR

SECTION 5 - CONTROL STATEMENTS

The second form assigns the initial value to the

control variable and decrements it by one after

each iteration. The loop is exited when the

control variable is less than the final value. If

the initial value is smaller than the final value,

the loop will not be executed.

Examples:

Ex. 1 Example using FOR...TO

PROGRAM dates;

TYPE weekdays = (Sunday, Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday);

VAR days : weekdays;

date : INTEGER;

BEGIN

READ(date);

FOR days := Sunday TO Saturday DO

date := date +1;

WRITELN (next Sunday's date is ', date);

END. (* dates *)

Ex. 2 Example using FOR...DOWNTO

PROGRAM takeoff;

VAR countdown : INTEGER;

error : STRING;

BEGIN

FOR countdown := 100 DOWNTO 0 DO

BEGIN

READLN (error);

IF error <> 'ON'

THEN WRITELN(countdown, 'seconds')

ELSE WRITELN('ERROR!');

END (* FOR *)

END. (* takeoff *)

FOR ; 5-11 Jan. '82

SECTION 5 - CONTROL STATEMENTS

Ex. 3 Sample program using both forms of the FOR statement.

PROGRAM getgrades (input,output);

(* This program gets grades as input and keeps them in gradeslist.

It demonstrates the use of both forms of the FOR statement. *)

CONST numgrades = 10;

VAR grade : REAL;

gradelist : ARRAY{1..numgrades] OF REAL;

students : INTEGER;

BEGIN

WRITELN;

FOR students := 1 TO numgrades DO (* get the grades *)

BEGIN

WRITE('Next grade: ');

READ(grade) ;

gradelist([students] := grade

END; (* FOR *)

WRITELN('The grades are :'); (* write the list of grades *)

FOR students := numgrades DOWNTO 1 DO WRITELN(gradelist[students])

END. (* getgrades *)

Jan. '82 5-12 FOR

SECTION 5 - CONTROL STATEMENTS

5.5 CONDITIONAL/UNCONDITIONAL STATEMENTS

It is often necessary to have more than one possible course of action

and have the program choose from among them depending on the

situation when it is executed. This means that the program must

evaluate a condition and select the correct portion of code to

execute. In PASCAL this is done through the IF and the CASE

conditional statement.

Unconditional transfer of control from one part of a program to

another is performed by the GOTO statement.

The following statements are discussed in detail in this section:

IF

CASE

GOTO

5-15 Jan. '82

SECTION 5 - CONTROL STATEMENTS

IF Statement

Function:

Format:

Arguments:

Note:

Jan. "82

Evaluates an expression and chooses between two

possible actions.

IF <conditional expression>

THEN <true statement>

|ELSE <false statement>|

The conditional expression is any expression that

returns a BOOLEAN value (true or false). All

statements may be simple or compound.

When the IF statement is executed, the conditional

expression is evaluated. If the result is TRUE,

the true statement is executed and control passes

to the statement following the IF statement. If

the result is FALSE, the false statement is

executed and control passes to the statement

following the IF statement. If the false statement

is omitted then no operation is performed.

The true statement and false statement can be any

valid PASCAL statement.

It is incorrect to have a semicolon immediately

preceding either the THEN or the ELSE.

It is possible to have an IF statement as the

statement following either the THEN or the ELSE.

This can create confusion as this example shows:

5-14 IF

SECTION 5 - CONTROL STATEMENTS

Examples:

Ex. 1

IF

IF <conditional expression>

THEN IF <conditional expression>

THEN <statement>

ELSE <statement>

Which IF is the ELSE associated with? To clear up

the ambiguity, there are two things to remember.

First, the ELSE is always associated with the

closest IF statement that does not already have an

ELSE clause. Second, proper indenting makes it

easier to read and makes the nesting levels more

obvious. An example of a properly indented nesting

of IF statements is:

IF <conditional statement>

THEN IF <conditional statement>

THEN <statement 1>

ELSE <statement 2>

ELSE <statement 3>

It is important to remember that the indenting is

meaningless to the computer. If the first ELSE

clause were removed, PASCAL would associate the

ELSE clause containing statement 3 with the nested

IF statement, regardless of how the indenting was

formatted.

IF ODD(number)

THEN oddnum:=oddnum + 1

ELSE

BEGIN

evennum := evennum + 1;

IF ((number/4) = 1.0 * (number DIV 4))

THEN div4 := div4 + 1

END; (* ELSE clause *)

5-15 Jan. '82

SECTION 5 - CONTROL STATEMENTS

Ex. 2 IF state <> 0

THEN pointer := pointer + 1;

Ex. 3

PROGRAM order;

(* THIS PROGRAM READS TWO REAL NUMBERS, PUTS THEM INTO ASCENDING

ORDER, AND PRINTS THEM OUT. IT USES AN IF STATEMENT. *)

CONST precision = 5;

field = 10;

VAR vall, val2,tempval : REAL;

BEGIN

WRITELN;

WRITE('Give two real values :');

READ(vall,val2); (* READ TWO REAL VALUES *)

IF (vall > val2)

THEN

BEGIN

tempval := vall; (* SWITCH THE TWO NUMBERS IF *)

vall := val2; (* THEY ARE NOT IN THE CORRECT *)

val2 :+ tempval (* ORDER *)

END; (* IF *)

WRITELN(vall: field: precision,val2: field: precision)

END. (* order *)

Jan. '82 5-16 IF

SECTION 5 =- CONTROL STATEMENTS

CASE Statement

Function:

Format:

Arguments:

Note:

CASE

Transfers control to one of several statement

labels depending on the variable's value.

CASE <expression> OF

| |case label|:statement;...

END;

NOTE: Optional groups of elements are underlined

to indicate what each contains.

The expression must evaluate to a user-defined

identifier of either scaler or subrange type. The

statement associated with the case label that

equals the expression is executed. Control then

passes to the statement following the CASE

statement.

The case label contains one or more constants of

the expression type. A case label is equal to the

expression if the value of the expression is a

constant in the case label.

The CASE statement is used when the value of a

variable determines which of more than two actions

should be taken. It is like a generalized IF

statement that is more readable.

Each value of the case selector must be represented

in exactly one of the label lists. If no action is

to be taken, the statement field should be left

blank.

5-17 Change A, May '82

SECTION 5 -— CONTROL STATEMENTS

There must be at least one value in each case

label. Multiple values separated by commas mean

that the same action is taken for each of the

values. If all the values of a type are not ina

case label then the results of executing the CASE

statement with the unlisted values is undefined by

standard PASCAL. In this case a null statement is

assumed.

Examples:

Ex. 1 Example of a CASE Statement with Simple, Compound, and Empty

Fields

PROGRAM work;

TYPE reoms = (livingroom, diningroom, bedroom, kitchen, garage);

VAR chores : rooms;

PROCEDURE vacuum;

BEGIN

END;

PROCEDURE dust;

BEGIN

END;

PROCEDURE settable;

BEGIN

END;

BEGIN

CASE chores OF

Livingroom : BEGIN

vacuum;

dust

END;

diningroom : settable;

garage, bedroom : ; (* do nothing *)

kitchen : cook ~

END; (* CASE *)

END. (* work *)

Jan. '82 5-18 CASE

SECTION 5 - CONTROL STATEMENTS

Ex. 2 A sample program using a CASE statement

_ PROGRAM writing(input,output);

CONST cola = 0.40; fries = 0.45; burg = 0.60; dog = 0.50;

TYPE value = 1..4; (* value is a subrange type *)

VAR cost ;: REAL;

food : STRING;

what : value;

number : INTEGER;

BEGIN

cost :=* 0.0;

WRITELN;

REPEAT

WRITELN('HOW MANY OF 1-COKE,2-FRIES , 3-8 URGER,4-HOTDOG?');

READ(number ,what); 7

CASE what OF

0: 3

1 : BEGIN

cost :* number * cola + cost; (* calculate the cost *)

food := 'coke' (* assign the name of the ordered food *)

END;

2 : BEGIN

cost :* number * fries + cost;

food := 'frenchfries'

END;

3 : BEGIN

cost :* number * burg + cost;

food := 'burger'

END;

4 ; BEGIN

cost := number * dog + cost;

food := ‘hotdog’

END

END; (* CASE *)

WRITELN (number, ' ',food) (* write the order *)

UNTIL number = 0;

WRITELN ('TOTAL IS $', cost:6:5)

END. (* writing *)

CASE 5-19 Jan. '82

SECTION 5 = CONTROL STATEMENTS

Ex. 3 A CASE Statement with Simple, Compound, and Empty Fields

TYPE rooms = (livingroom, diningroom, bedroom, kitchen) ;

VAR chores : rooms;

CASE chores OF

livingroom : BEGIN

vacuun;

dust

END;

diningroom : settable;

bedroom : ;

kitchen : cook

END; (* CASE *)

Jan. ‘82 5-20 CASE

SECTION 5 - CONTROL STATEMENTS

GOTO Statement

Function:

Format:

Arguments:

GOTO

Unconditionally transfers control from one portion

of the program to another.

GOTO <label>

The label may be any positive number with one to

four digits. All labels must be defined in the

label definition part of the program.

The GOTO statement is usually used to exit from a

loop or in cases of error detection.

The GOTO statement is not usually used in

structured programming. The readability of a

program tends to decline with the increase in GOTO

statements. This is because the flow of control is

not linear as it is in truly structured

programming.

A GOTO statement may jump forward or backward

within a level or from an inner to an outer level.

However, it may not be used to jump from an outer

to an inner level. For example, it may be used to

jump from a procedure to its calling program but

not the reverse. Another example is that it cannot

jump into a WHILE loop but can jump out of one.

5-21 Change A, May '82

SECTION 5 -— CONTROL STATEMENTS

Examples:

Ex. 1 PROGRAM

LABEL 1,2;

BEGIN

1: statement;

WHILE (condition)

BEGIN

GOTO 2;

:
2: statement 2;

GOTO 1

END; (* WHILE *)

°
e

END.

Change A, May '82 5-22 GOTO

SECTION 5 - CONTROL STATEMENTS

Ex. 2

PROGRAM fakefor (input ,output);

LABEL 100,200;

VAR index : 1..100;

initial,final : INTEGER;

BEGIN

WRITELN;

WRITE('initial and final values: ');

READ(initial,final); (* get limits for the FOR *)

index := initial;

100 : IF index > final THEN GOTO 200; (* leave loop if

condition is satisfied *)

WRITELN(index) ;

index := index + 1; (* update counter *)

GOTO 100; (* jump to the top of the loop *)

200 : WRITELN('next statement')

END. (* fakefor *)

GOTO 5-23 Change A, May '82

SECTION 6

STANDARD DATA TYPES

"4

SECTION 6

STANDARD DATA TYPES

6.1 INTRODUCTION

All programs act on data either in the form of variables or

constants. The main difference is that a variable's value can change

during the execution of the program. Every variable in a program has

an associated type which determines the values it can have and the

operations that can be performed on it. PASCAL has four standard

types: INTEGER, REAL, BOOLEAN, and CHAR. Each of these will be

discussed in turn in this section.

6.2 INTEGER

The word “integer” is used in the normal mathematical sense: an

integer can be any positive or negative whole number. Since all

computer representations of numbers must be finite, the maximum

representable integer in PASCAL, called maxint, is 32767. The

smallest possible number is the negative of maxint. Any variable

that is assigned a value outside that range during execution will

cause a run-time error. Some examples of integers are: 3, 0, -52l.

There are five operators associated with INTEGER types: +, -, *,

DIV, and MOD. The first three are the usual addition, subtraction,

and multiplication, respectively, used in everyday arithmetic. DIV

is the INTEGER divide which divides two integer numbers and then

truncates the remainder so that the result is an integer. Special

’ care should be exercised when DIV is used because if the first number

is smaller than the second the result will be zero. The operator "/"

can also be used for division but the result is a real number rather

than an integer. The last operator, MOD, finds the remainder when

two integers are divided together. The result will always be an

integer. Some examples of these operators are:

5+32 8 4 DIV 2 =2 4/2 = 2.0 4 MOD 2 = 0

5-322 7 DIV 6=1 7/6 = 1.16667 7 MOD 62 1

3-5 3 -2 2 DIV 4 =0 2/4 = 0.5 2 MOD 4 = 2

5 * 4 = 20 13 DIV 3 = 4 13/3 = 4.33333 13 MOD 3 = 1

6-1 Jan. '82

SECTION 6 - STANDARD DATA TYPES

The subtraction operator, "-", can be a unary minus and act as the

negation sign, i.e. -45.
.

All the relational operators, <, <#, #, >™, >, <>, can be applied to

INTEGER variables. The results of these expressions are always

BOOLEAN. Examples:

(3 < 5) = True (3 >= 5) = False (5 <> 5) = False

See Appendix E for a summary description of all operators and their

operands.

There are also some important standard functions that give INTEGER

results:

abs(x) If x is an INTEGER variable, the outcome will be

the absolute value of x.

round (x) x must be a REAL variable, the result is the value

x rounded off to the nearest integer.

trunc(x) x is a REAL variable, the result is the whole

number part of x.

None of the above functions assign the computed value to x.

Note: Type INTEGER will reserve two bytes per value.

Examples:

Ex. 1 x = ~4.8;

val:= trunc(x);

WRITELN(x:10:3,val:10);

output: —4.80E+00 -4

Ex. 2 x = -4.8;3

val:= round(x);

WRITELN(x:10:3,val:10);

output: —4.80E+00 ~5

Change A, May '82 6-2

SECTION 6 - STANDARD DATA TYPES

Ex. 3 ix:= -45;

val:= abs(ix);

WRITELN(ix:10,val:10);

output: —45 45

6.3 REAL

REAL values are rational numbers. PASCAL represents REAL numbers

either in fixed point or scientific notation (e.g., 452.39 or

4.5239E+02 respectively).

The E in the second format means “the first value times ten to the

power of the second number," i.e.,

4.5239E+02 = 4.5239 x 10% = 452.39

The computer can only represent a finite number. Hence, all REAL

variables, R, must be within the range 2.93874E-39<R<1.70141E+37. If

a variable goes outside of this range during the execution of a

program, a run-time error will occur.

Another important property of REAL numbers is their precision.

Calculations involving REAL values will be correct to six places.

This is also the maximum number of digits that can be written out

using the formatting described in Section 2.1. It is important to

remember that precision errors can accumulate when many calculations

are performed and can result in gross errors. These errors must be

trapped for by the programmer.

There are four operators that can take REAL variable operands. They

are addition, subtraction, multiplication, and division, (+, -, *, /)

respectively. All expressions are evaluated from left to right using

standard operator precedence, i.e. going from the highest priority

level to the lowest:

(,) - Highest priority
*,/

+,- - Lowest priority

6-3 Change A, May '82

SECTION 6 — STANDARD DATA TYPES

Since all of the operators can take both INTEGER and REAL operands,

it is important to note that an operator that has both a REAL and an

INTEGER operand will always produce a REAL result. This is

; especially important because it is not possible to assign the result

of a REAL expression to an INTEGER variable.

All of the relational operators can be used with REAL numbers.

However, there is a certain risk involved because of variances in

precision. If a variable has gone through many calculations, the

accumulated errors may make a theoretically correct expression such

as a=b incorrect. Also, two numbers with the seventh significant

digit different will be treated as though they were equal. For

example, 1000000.0 = 1000000.1 because both are represented as

1.0E+06 in memory. It is more accurate to test equality of REAL

variables by abs(a-b)<errorrange where errorrange is the amount of

precision that is significant to the problem.

Refer to Appendix E for a summary of the operators, their operands,

and the resultant types.

The standard function abs(x) produces the absolute value of x which

is REAL if x is REAL. TYPE REAL reserves four bytes per value.

6.4 BOOLEAN

BOOLEAN variables may have one of two logical values: true or false.

Their primary use is for controlling loop and statement execution.

There are three logical operators that can be applied to BOOLEAN

operands.

NOT X logical negation

X AND Y logical conjunction

X OR Y logical disjunction

They are listed according to their precedence, with NOT always being

applied first unless parentheses alter the order. The truth table

Change A, May ‘82 6-4

SECTION 6 - STANDARD DATA TYPES

below shows the result that each operator produces according to the

values of its operands. The operands are shown as Al and A2 and the

outcome of each expression, depending on the values of Al and A2, are

read across the table.

x x X AND Y X OR Y 4 NOT Z

true true true true true false

true false false true false true

false true false true

false false false false

As this shows, both variables must have true values for an AND

expression to be true, but only one must be true for an OR to be

true.

The following are examples of compound expressions using the logical

operators. If the following variables were declared:

VAR big, small, empty, full: BOOLEAN;

then some expressions might be:

NOT big OR empty

small AND big OR empty AND full

The first expression would be executed as though it had been

written:

(NOT big) OR empty

because NOT is always performed first. The second would be

calculated like:

(small AND big) OR (empty AND full)

6-5 Change A, May '82

SECTION 6 — STANDARD DATA TYPES

because AND has precedence over OR. Had the expression included a

NOT, such as

small AND NOT big OR NOT empty AND Full

it would have produced the same result as

(small AND (nor big)) OR ((NOT empty) AND full)

Once again because of NOT's precedence over AND and OR.

There are also seven relational operators that may have any type of

scalar operand that has an order such as INTEGER or REAL. They

always return BOOLEAN results. They are:

< less than

<= less than or equal to

= equal to

>= greater than or equal to

> greater than

<> not equal to

IN include

For example, the following are true statements:

3 < 5 = true

7 >= 20 = false

If relational expressions are used with logical operators, the

relational expressions must be surrounded by parentheses. For

example, using these declarations,

VAR count, max : INTEGER;

velocity, distance, miles : REAL;

next, character: CHAR;

last: BOOLEAN;

Jan. '82 6-6

SECTION 6 ~- STANDARD DATA TYPES

the following expressions could be formed:

count < max

(distance < miles * velocity) OR (next = character) AND last

Refer to Appendix E for a summary of the uses, legal operands, and

results of the operators. Note that the PASCAL type BOOLEAN is

defined so that (false < true).

6.5 CHAR

A variable of the type CHAR has a character value. This can be any

symbol from the ASCII set (American Standard Code for Information

Interchange). A list of the characters and their numberic codes can

be found in Appendix F. The ordinal values range from zero to 255.

All CHAR literals are enclosed in apostrophes:

'A' represents a letter A

' ' represents a blank

'''! represents a single apostrophe

'3' represents the character 3

Every symbol is ordered and has an ordinal value. The only operators

that may be used with CHAR variables are the standard relational

ones:

Ky SM Sy Os Ay O

When a relational compare is performed, the operators are actually

comparing the ordinal values of the two characters rather than the

'a' < 'b' = true because the symbols themselves. For example, ‘a

'a' is smaller than the ordnal value of 'b'. ordinal value of

There are two standard functions that operate on CHAR variables:

ord(ch) Gives the decimal ordinal value of the character

ch. The result is an INTEGER value.

6-7 Jan. '82

SECTION 6 — STANDARD DATA TYPES

chr(i) Gives the character whose ordinal value is the

integer iif 0 < i < 255. Any i that is outside of

this range or is not an integer will cause either

an incorrect response or an execution-time error.

The result of the function is of type CHAR.

The ordinal values can be used as character constants. The general

form of a character constant is:

"<character>'

'C!<INTEGER constant>:)'

Since the ordinal value of 'E' is 69, using the declaration:

VAR charac : CHAR;

the following are equivalent:

charac := 'E';

charac := '(:69:)';

These ordinal values are the decimal values shown in Appendix F.

They may be used anywhere in the program. Some examples using the

standard functions and 'E':

ord('E') = 69 and chr(69) = 'E'

Change A, May '82 6-8

SECTION 7

USER DEFINED TYPES

SECTION 7

USER DEFINED TYPES

7.1 INTRODUCTION

Many of the concepts basic to PASCAL have already been presented.

The beginning programmer knows all that is needed to write simple

programs. More advanced programmers will find that this section and

those that follow present concepts that can increase a program's

sophistication and flexibility. A complete understanding of Sections

2 through 6 will be needed for these sections.

Each of the variable types declared in this section are declared in

the TYPE definition part of a program. This was previously described

in Section 2.1. The TYPE definitions are placed between the CONST

and the VAR declarations in program declarations. The general format

is:

TYPE <type identifier> = (<type description>);

| type identifier = (type description);...

A type describes a template, not actual storage.

After they are defined, the type identifiers are used to define

variables in the VAR declaration section. Once a type identifier is

defined, it operates the same way that the standard types - REAL,

INTEGER, CHAR, and BOOLEAN — do. So the following could be used as

part of a program:

TYPE cowfoods = (milk, cheese, meat);

VAR food : cowfoods;

Now the identifier food can only be assigned one of the three values

from the enumerated type list.

7-1 Change A, May '82

SECTION 7 — USER DEFINED TYPES

7.2 SCALAR

A scalar type declaration is the set of constant values that a

variable may assume. The general format for the type descriptor is:

) (<constant>|,...

The type identifier can be any user-defined identifier. The constant

list is the ordered ascending list of values. The list consists of a

series of constants separated by commas. The constants are not

declared in the CONST declaration field because their values are

defined by their order in the list. For example:

TYPE days = (Sun, Mon, Tues, Wed, Thurs, Fri, Sat);

Days is the type identifier; the enumerated types are the values Sun

through Sat. They can be used almost anywhere constants can, i.e.,

FOR whatday := Sun TO Sat DO...

The order in which the constants are listed defines their ordinance

values. Going back to the example above, Sun < Sat and Wed < Thurs.

Therefore, succ, pred, or ord may be used with enumerated types to

operate on these constant values.

For example:

IF succ (Tues) = Wed then WRITELN ('PAYDAY');

Restrictions on Scalar Constants

There are only a few restrictions on scalar constants:

1) They may not exist in more than one type list.

2) They can be assigned to variables but the variable must be

declared the same type as the scalar constant.

3) They cannot be read or written directly.

Change A, May '82 7~2

SECTION 7 - USER DEFINED TYPES

Scalar variables may be operated on only by the logical operators, <,

<™, ™, >=, >, <>, which return BOOLEAN values. Both operands in an

expression must be of the same type. There are three standard

functions designed specifically for scalar type arguments: succ(Y),

pred(Y), and ord(Y). They find the element in the list succeeding Y,

the preceding value, and the ordinal value of the constant, Y,

respectively. Some examples of each are:

5 _ 7 { ; y
TYPE days = (Sun, Mon, Tues, Wed, Thurs, Fri, Sat);

pred(Tues) = Mon

succ(Tues) = Wed

ord(Tues) = 2

ord(Sun) = 0

There are several things to note about these standard functions. The

first element in the constant list has no predecessors and the last

element has no successors. Also, the ordinal value of the first

element in the list is zero, not one.

Examples:

TYPE meals = (breakfast, coffeebreak, lunch, dinner, snack);

animals = (dog, cat, hamster, mouse, fish, snake);

courses = (math, English, biology, philosophy,

computerscience) ;

VARS pet : animals;

eat : meals;

homework : courses;

Main Section:

IF succ(homework) = biology then ...;

IF ord(homework) = O then ...;

IF pred(eat) = dinner ...;

WHILE (succ(pet) > hamster) DO ... END;

WHILE (pred(eat) < lunch) DO ... END;

7-3 Change A, May ‘82

SECTION 7 - USER DEFINED TYPES

7.3 SUBRANGE

A type may be defined as a subrange of any other defined scalar type,

which is called its associated scalar type. It is defined by two

constants - a minimum and a maximum value where the minimum must be

smaller than the maximum and both must be of the same type. The

variable has the same type as the two constants that define it.

Subrange variable types may be INTEGER or CHAR but not REAL.

The format for defining a subrange type is:

TYPE <type identifier> = <constant>..<constant>;

|type identifier = constant..constant;...

Subrange variables may then be declared in the usual way in the

variable declaration section:

TYPE date = 1..31;

VAR day : date;

A variable can define its type directly using the general form:

VAR <identifier> : <constant>..<constant>

Both of the following produce the same definition for counter, but

the first is more explicit and therefore is used more often.

TYPE index = 1..100;

VAR counter : index;

and:

VAR counter : 1..100;

Although counter could have been defined as INTEGER type (since both

constants are integers) the subrange definition allows range-checking

and gives the reader more information. If the range checking switch

is set, the compiler will produce code to check all assignments to

Change A, May '82 7-4

SECTION 7 - USER DEFINED TYPES

subrange type variables for values outside of the legal range. The

format for the switch option si:

(*$R+*)

The default value is R+, the switch being on. To turn it off,

exchange the plus sign with a minus sign (-) and place the “dollar

sign comment” near the top of the program code. See Appendix B for

more information.

Any operator that can operate on a scalar type can operate on its

subrange variable. Therefore, if variables are defined as the same

type but with different subranges, they may be used in the same

expression.

Example:

VAR people : 1..300;

drinks : 1..10000;

hour,counter : INTEGER;

counter := hour*people*drinks;

Subrange variables may be found on both sides of the assignment sign.

However, if an assignment is made that is outside of a variable's

range and range checking is enabled, a run time error will occur.

Some more examples of subranges are:

TYPE alphabet = ‘'a'..'z'; (* CHAR subrange *)

digit = '0' .. '9'; (* CHAR subrange *)

weekday = (Sunday, Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday);

workweek = Monday .. Friday;

number = 1 .. 25; (* INTEGER subrange *)

7-5 Change A, May '82

SECTION 7 - USER DEFINED TYPES

7.4 SET

A set is a collection of values that are all of the same type. Any

scalar type may be an element in a set provided they are both of the

same type.

A set type is defined using the following format:

TYPE <set type identifier> = SET OF <base type identifier>;

Although other definitions may be dispersed between these

declarations, the order must be as stated. The constant list can be

any series of scalar values as described in Section 7.l. All

identifiers are user-defined. If the set type is a standard type —

INTEGER or CHAR - the base type identifier is not defined and the

appropriate reserve word for the type is used to define the set type

identifier. For example:

TYPE gradevals = SET OF INTEGER;

VAR grades : gradevals;

completely defines grades if it is INTEGER type, but

TYPE title = (professor, associateprof, assistantprof,

lecturer);

teachers = SET OF title;

VAR faculty : teachers;

is needed to define faculty using the non-standard type.

A set may be described by a list of its values enclosed in square

brackets, i-e. [1, 3, 7, 8] might be the members of a set defined by

the INTEGER subrange 0..9. If the values are consecutive, only the

first and the last elements need to be shown after it is first

defined. For example, if the set fruits contains the following

elements,

apples, oranges, bananas, strawberries, peaches, pears

Change A, May '82 7-6

SECTION 7 - USER DEFINED TYPES

it can be written

{apples..pears]

or a part of it can be used:

[oranges..strawberries] = [oranges, bananas, strawberries]

A set may be empty, in which case it is written: [].

There are four operators used exclusively for sets. The first three

are:

+ set union

* set intersection

- set difference

The union of two sets forms a set containing the elements from each.

For example:

{[apples, oranges, peaches] + [strawberries, peaches]

equals:

{apples, oranges, strawberries, peaches]

The intersection of two sets forms a set containing only those

elements found in both sets.

For example:

[apples, oranges, peaches] * [strawberries, peaches]

equals:

{ peaches]

The difference of two sets is those elements of the first set that

are not members of the second set:

For example:

[apples, oranges, peaches] - [strawberries, peaches]

equals:

{apples, oranges]

7-7 Change A, May ‘82

SECTION 7 - USER DEFINED TYPES

The relational operators are also used with sets, but their meanings

are different. The following operators all return BOOLEAN values.

“ set equality

<> set inequality

<= is contained in

>= contains

Two sets are equal only if every element in one is in the other. The

order does not matter. A set contains another only if every element

in the second set is in the first set. Some examples of these

operations are:

{apples, oranges] = [oranges, apples] “4

[apples, pears] <> [apples, oranges]

[apples] <= [apples, oranges, pears]

[apples, oranges, pears, peaches] >= [oranges, peaches]

Each of these expressions would return a true value.

There is also a reserved word, IN, that tests for set inclusion. It

returns a BOOLEAN value by testing if the first value in the

expression, a scalar, is in the set described. An example is:

{oranges] IN fruit

or:

{oranges} IN {apples, pears, oranges]

As fruit was declared earlier, the results are both true.

The assignment sign is used in the usual way when it is used in

conjunction with sets. All -sets must be assigned to declared set

variables.

lunchfruit := [apples, oranges, pears, peaches];

dinnerfruit := [strawberries] + lunchfruit;

scratchpaper := [];

Change A, May '82 7-8

SECTION 7 ~ USER DEFINED TYPES

A set cannot be read in or written out using the READ or WRITE

commands.

Some further examples:

TYPE

VAR

space = (house, apartment, condominium, townhouse, tent,

trailerhome);

siblings = (Karen, Cathy, Debbie, Holley, Michael, John,

David);

livingplace = SET OF siblings;

alphaset = SET OF CHAR;

family : kids;

home, setting : livingspace;

alpha : alphabet;

7-9 Jan. '82

SECTION 8

STRUCTURED DATA TYPES

SECTION 8

STRUCTURED DATA TYPES

8.1 INTRODUCTION

Section 7 discussed unstructured or simple types while those in this

and the next two sections are structured types. Structured types are

different from simple types because they are compositions of other

types. The types of the components and the structuring methods are

what characterize the different structured types.

8.2 ARRAY

An array type has a fixed number of ordered components referenced by

the same identifier name. The name, the number of components, and

the component type are specified when the array is defined. This is

done by specifying a base, or component, type and an index type. The

component type may be any structured or unstructured type. The index

must be either a scalar or a subrange type. It may not be REAL.

The format for an array type is:

TYPE <array identifier>= ARRAY[<scalar>] OF <base type>

The array identifier may be any user-defined identifier. The index

must be in one of two forms:

1) The identifier name of a defined scalar type:

TYPE numbers = (one, two, three);

codenames = (owncar, children, spouse, pets);

matrix = ARRAY[numbers] OF REAL;

questionnaire = ARRAY[codenames] OF CHAR;

2) A subrange of a defined type:

TYPE answers = (Yes, No);

codenames = (owncar, children, spouse, pets);

questionnaire = ARRAY[children..pets] OF answers;

matrix = ARRAY[1..10] OF REAL;

8-1 Jan. '82

SECTION 8 - STRUCTURED DATA TYPES

The base type may be any legal type. If it is other than a standard

type, it must be defined before it appears in the array type

definition.

The array type is then used to define variables in the VAR section in

the same way that simple types are used.

An element of an array is accessed using the array identifier name

followed by the index enclosed in square brackets. An array element

may be used anywhere that a simple variable of the same type may be

used.

Example:

TYPE -class = (John, Mary, Sue, Karen, Debbie, Mike

Dave, Alan);

classcores = ARRAY(class] OF REALS;

VAR grades : classcores;

who : class;

who := Karen;

grade[who] := 100;

grade[Alan] := 90;

Since the base type of an array may be any legal type it is possible

to have a base type that is a structured type such as am array:

TYPE matrix = ARRAY[{1..10] OF ARRAY(1..5] OF REAL;

This defines a two-dimensional array. It is customary to use the

following abbreviated form:

TYPE matrix = ARRAY[1..10,1..5] OF REAL;

Jan. '82 8-2

SECTION 8 — STRUCTURED DATA TYPES

These two definitions are equivalent, but the second is easier.

The form can be generalized for an array of n-dimensions by:

TYPE <ident> = ARRAY[indexl,index2,...,indexn]

OF <base type>

Each of the indices must be explicitly defined and included in the

array definition.

When a two-dimensional array, matrix (i,j), is being referenced, “i”

refers to the rows and "j" to the columns. So, matrix (2, 3) is the

element in the second row and the third column of the matrix. It

would be in the position marked by the X:

|_[ij2{3}4} |
jst tt tt |
[21 | ix} | |
sE it tt |
Jttit ||

Some multidimensional arrays are:

TYPE square = (' ', 'X', '0');

board = ARRAY[{1..3,1..3] OF square;

board3d = ARRAY[1..3,1..3,1..3] OF square;

“board” is a three by three matrix that may contain blanks, X's and

O's. This might be used to represent a normal tictactoe gameboard.

“board3d" represents three matrices like “board” put together. It

could be the gameboard for a three dimensional tictactoe game.

8-3 Jan. '82

SECTION 8 - STRUCTURED DATA TYPES

There are several types of arrays that warrant special attention.

These are:

1) PACKED arrays

2) Arrays with BOOLEAN base types

3) STRINGS

They will each be discussed in turn.

Packed Arrays

Often there are times when the array being manipulated is composed of

a type that is not an integral number of words such as characters.

The standard ARRAY definition places one character in each word in

memory. However, a character representation does not require a full

word so the extra space is wasted. This waste could be significant

if the array is very large. A packed array minimizes the waste by

packing more than one character into each word in memory.

The packed array does have a drawback. The word a character is

stored in must be unpacked before the correct character can be

accessed. Although the conversion is done automatically, it does

require additional processor time.

The relative importance of the minimized waste and conversion time

must be determined by analyzing each project separately.

The format for a packed array is:

TYPE <array ident> = PACKED ARRAY([<scalar>] OF <base type?

The array identifier, index, and base type are the same as those

explained for unpacked arrays.

Jan. '82 8-4

SECTION 8 -— STRUCTURED DATA TYPES

Arrays with BOOLEAN Base Type

An array with a BOOLEAN base type can be used like a set. Each

element has a value of either true or false, which can be used to

represent inclusion in the “set”. Programs that use BOOLEAN array

representation are slower so a set should be used whenever possible.

The advantage of the BOOLEAN array representation is that it can be

packed so that it can hold more elements in less space. This would

be important if the set were very large.

String Arrays

A STRING is one form of a packed array of characters. It is declared

using the following format:

VAR <string ident> = STRING(maxlength];

As the format shows, the string's maximum length must be declared.

This length is stored in the first word of memory that is assigned to

the string. Then, if it is assigned a string of characters that is

shorter than maxlength, the length value in memory is changed to the

new length. However, if it is assigned a string that is longer than

maxlength, a compile time error will result. This is true of all

arrays.

As with other variables, it must be possible to assign a value to an

array element and to assign one array to another. In PASCAL, the

assignment symbol (:=) performs these functions. However, there is

one restriction: only like types may be assigned to each other.

Although an array, a packed array, and a string may all have the base

type CHAR, these array types are not represented the same way in

memory. Therefore, none of the following would work:

TYPE chr = ARRAY[{1..10] OF CHAR;

pcked = PACKED ARRAY[1..10] OF CHAR;

VAR charray : chr;

pekdarray : pcked;

str : STRING(10];

index : INTEGER;

8-5 Jan. '82

SECTION 8 - STRUCTURED DATA TYPES

charray := str; FEL

pekdarray := str; (o —

* charray :=* pekdarray; 7ouW

str := pckdarray; er

pekdarray := charray; °C!

str := charray; cc |

However, since they all have base type CHAR, each of the following

would compile and run if the same declarations were used:

charray[index] := str[index];

pekdarray(index] := str[index];

charray[index] := pckdarray[index];

str[index] := pckdarray[index] ;

pekdarray[index] := charray[index] ;

str[index] := charray[index];

Each assignment statement is valid because a CHAR variable

(str[index], char[index], or pckdarray[index]) is being assigned a

character value.

There are also restrictions on the array types that may be read in or

written out. The non-standard scalar and the BOOLEAN array types

cannot have I/O performed on them at all. PACKED arrays of

characters can only be written out because of the problems that

conversions entail. Standard scalar type arrays can only be read in

or written out one character at a time, i.e. using an index. A

string can be read in or written out one character at a time or all

at once. Table 8-1 summarizes these results.

Jan. '82 8-6

SECTION 8 — STRUCTURED DATA TYPES

Table 8-1. Restrictions on I/O with Arrays

ARRAYS PACKED ARRAYS

INTEGER/ non- SERENGS
standard

REAL character]! scalar character BOOLEAN

READ I I N N N DI

READLN I I N N N DI

WRITE I I N I N DI

WRITELN I I N I N DI

Key

I - Only using an index, i.e. 1 character at a time.

N - Not at all.

DI - Done directly.

8.3 RECORD

A record is a type with a user-defined structure that incorporates

several components, each of which have distinct properties. The

different components are called fieids and are accessed by name

rather than with an index.

The record is defined as a variable type. The format is:

TYPE <record ident>=

RECORD

<component identifier>|,... :<base type>

| component identifiers : base type; |

|CASE section|

END;

The record identifier is any user-defined variable name. The

component definitions must be enclosed by the reserved words RECORD

and END; the identifiers are user-defined and separated by commas.

The base types may be any structured or simple type, but must be

defined before they appear in the record definition. A semicolon (;)

8-7 Jan. '82

SECTION 8 - STRUCTURED DATA TYPES

separates the components, but one does not appear between the last

component's base type and the reserved word END.

A field in a record is accessed using the record identifier and the

component identifier separated by a period and in that order. The

general format is:

<record ident>.<component ident>

The base type of a component may be a record so it is possible to

have nested records.

Example 1:

TYPE pername =

RECORD

first : STRING([10]

midinitial : CHAR;

last : STRING[15]

END;

person =

RECORD

Name : pername;

address : STRING[25]

END;

VAR people : person;

Example 2:

TYPE person =

RECORD

name: RECORD

first : STRING[(10];

midinitial : CHAR;

last : STRING[15]

END;

address : STRING(25]

END;

VAR people : person;

Jan. '82 8-8

SECTION 8 - STRUCTURED DATA TYPES

In both cases, the last name of the person would be accessed by:

people.name.last

This is an obvious extension of the general form displayed above.

Accessing a field is even easier using the WITH statement. This

statement is defined in the usual format on the next page.

Packed Records

It is also possible to define PACKED RECORDS. If one or more of the

record's fields has a base type with an internal representation that

does not require an integral number of words, such as character type,

then the field can be packed into less space in memory. Although

this saves space, a conversion is required each time the field is

used.

Example:

TYPE Tec = RECORD

Al:0..255;

A2:CHAR

END;

prec = PACKED RECORD

Al:0..255;

A2:CHAR

END;

VAR normspace : rec;

sSavespace : prec;

Note that savespace will occupy 2 bytes in memory while normspace

needs 14 bytes.

Because of the way in which a field is accessed, each fieldname

within a record must be unique. However, a record's fieldname may be

the same as a variable or type identifier outside the record because

the record identifier differentiates them.

8-9 Jan. '82

SECTION 8 ~- STRUCTURED DATA TYPES

WITH Statement

Function:

Format:

Argument:

Note:

WITH

References a record once for one or more field

accesses.

WITH <record ident>|,record ident,...| DO

<statement>

The record identifier is any defined record name.

There may be more than one record identifier

separated by commas in a WITH statement. The

statement can be any simple or compound statement.

The WITH statement increases the efficiency with

which the same component of a record or different

components of the same record can be accessed

repeatedly. Within the statement section the

components can be refered to by only the field

names.

The WITH statement locates the record or records

involved. Then, all field references within the

statement are made directly - the record is not

relocated for each one. This greatly increases the

program's efficiency when there are multiple

accesses.

Since the compiler assumes that a reference in the

statement part of a WITH statement is to the

specified record, the record identifier is not

necessary in field references. Used properly, this

can save both the programmer and the computer a

great deal of time.

8-10 Jan. '82

SECTION 8 - STRUCTURED DATA TYPES

It can also create confusion if there is a variable

Name that is the same as a field name in the

specified record. If so, the variable cannot be

referenced inside a WITH statement involving the

record because the record's field will be assumed

instead. Therefore, great care must be exercised

if duplicate identifiers are used in conjunction

with WITH statements.

Example:

TYPE money =

RECORD

quarter, dime, nickel, penny : INTEGER

END;

VAR change : money;

total : REAL;

BEGIN

WITH change DO

total := quarter * 0.25 +

dime * 0.10 +

nickel * 0.05 +

penny * 0.01;

END

Jan. '82 8-11 WITH

SECTION 8 - STRUCTURED DATA TYPES

Record Assignment

A record, as a structure, cannot be used as an operand for any

operator. This is because there is no ordering associated with

records and because the operator may not be compatible with all the

record's fields. However, a field in a record may be used with any

operator that is compatible with its base type.

A record cannot be assigned a value because of the ambiguity with the

fields and their types. If two records are declared exactly the same

type then one may be assigned to the other using the assignment

symbol (:=). For example:

TYPE days = 1..31;

mo = 1..12;

date =

_ RECORD

day : days;

month : mo;

year : INTEGER

END;

VAR issuedate,todaysdate, expirationdate : date;

This:

issuedate := todaysdate;

is equivalent to the sequence:

issuedate.day := todaysdate.day;

issuedate.month := todaysdate.month;

issuedate.year := todaysdate.year;

Jan. '82 8-12

SECTION 8 — STRUCTURED DATA TYPES

A field can be assigned a value using the assignment symbol if the

value and the base type are compatible:

issuedate.day := 10;

A record may be passed in the parameter list of a function or a

procedure, but it may not be used as the return value of a function

because it does not represent a simple type.

Illustrated Example - Arrays, Records and WITH Statements

This program uses records, nested records, WITH statements, and

identical variable and field names.

PROGRAM records;

TYPE marry = (single, married, divorced, widowed) ;

money = (* record type for INCOME in PERSON *)

RECORD

salary, other : REAL

END;

person = (* record of the customers' data *)

RECORD

name : PACKED ARRAY{1..25] OF CHAR;

addr : PACKED ARRAY[1..30] OF CHAR;

Marstatus : marry;

dependents : INTEGER;

income : money (* a record type *)

END;

VAR customer : ARRAY(1..10] OF person; (* records of all customers *)

scratch : person; (* a workarea for the input *)

mame : STRING([25]; (* used for string input *)

addr : STRING[30];

Marstat,ans : CHAR;

I,J : INTEGER;

more : BOOLEAN;

BEGIN

WRITELN; »

J := 0; more := true; (* initializing *)

8-13 Jan. '82

SECTION 8 - STRUCTURED DATA TYPES

WHILE more = true DO (* beginning of loop *)

BEGIN

J:= J+1; (* increment index *)

WRITELN('Customer''s name?');

READLN(name) ;

FOR I := 1 TO 25 DO (* assign the name *)

scratch.name[{I] := name[(I];

WRITELN('Address?');

READLN(addr);

FOR I := 1 TO 30 DO (* assign address *)

scratch.addr[I] := addr [I];

WRITELN('Marital status? (M,S,D,W)');

READLN(marstat);

WITH scratch DO

CASE marstat OF (* assign the marital status *)

'M' : marstatus := married;

'S' : marstatus := single;

'D' : marstatus := divorced;

'W' : marstatus := widowed

END; (* CASE *)

WRITELN('Number of dependants?');

READLN(scratch.dependents) ;

WRITELN('Salary and other income, in that order?');

WITH scratch, income DO

READLN(salary,other) ;

customer[(J] := scratch; (* saving the workarea *)

WRITELN('Are there more customers?');

READ(ans);

IF (ans <> 'Y') AND (ans <> 'y') OR (J = 10) THEN more := false

END (* WHILE *)

END. (* records *)

Jan. '82 8-14

SECTION 8 - STRUCTURED DATA TYPES

Record Variants

Records declared to be the same type may sometimes vary in the number

and types of their components. This is done in the variant part of

the record declaration.

A record may contain a fixed part, a variant part, or both. If a

record contains both, the fixed part must come first.

The variant part is superficially like a case statement. It is of

the form:

RECORD

|fixed part|
CASE |tag field:|<type ident> OF

<case element>|;...

<case label list>

END

Where <case element> is:

<case lable list: (|field identifiers : field type |)

(Note: The above line may be repeated for as many case lists as

necessary.)

The tag field is an identifier that is defined by the type identifier

which must be a scalar type. It can be defined in the fixed part of

the record. The case label lists are the values of the type

identifier. The field identifiers are defined by the field types,

which can be any structured or simple type. Associated with one

field type there may be multiple case labels and field identifiers,

with commas acting as delimiters in each list. An example of a

variant part of a record is:

TYPE kind = (trout, catfish, goldfish, bluegill, salmon);

animals = (cats, dogs, fish, sheep, cows, pigs);

animate =

RECORD

CASE tag : animals OF

cats, dogs : (pets, inside : BOOLEAN);

sheep, cows, pigs : (food : INTEGER);

fish : (both : kind)

END;

8-15 Jan. '82

SECTION 8 - STRUCTURED DATA TYPES

The reserved word END is associated with the record declaration, not

the CASE statement. However, it operates as the terminator for both

since the variant part must appear last in the record declaration.

A field identifier may not be used more than once inside a record,

regardless of whether it is in the variant or fixed part. However,

it may replicate an identifier of a variable or type that is defined

outside the record.

A tag type identifier value is not required to appear in one of the

case label lists; however, it is recommended that all values be

represented for program security. If no action is associated with a

label, the field identifier and type are left blank. For example:

pigs : ();

There are two ways that the records in the variant part may be

nested. The field type may be a record, which is the natural

nesting:

TYPE color = (red, white, blue);

play = (fireengine, pail, ball);

material = (plastic, wood, metal, cloth);

test =

RECORD

CASE picture : color OF

red : (toys : RECORD

number : INTEGER;

CASE toys : play OF

fireengine, pail, ball:material

END);

white : (nothing : REAL)

END

The nesting can also occur by replacing the field identifiers and

type with either a fixed or a variant part of a record. The formats

are: fixed part:

<case label list> : (<component idents> : <base type>;

|component idents : base type;...|)

Jan. ‘82 8-16

SECTION 8 - STRUCTURED DATA TYPES

variant part:

<case label list> : (CASE | tag field:|<type field> OF

<case label list> : (|field idents : field type|);...|)

If the case label and field identifier parts have more than one

element, they are separated by commas. The formats are the same as

for non—nested fixed and variant parts of records. Note that the

reserved word RECORD does not appear in either case.

The following example demonstrates the nesting described above and

will be used in the discussion on accessing.

TYPE kind = (animal, plant);

sort = (mammal, reptile);

life = (caged, free);

outside = (dog, cat);

inside = (mouse, gerbil, guineapig, ferret);

locomotion = (slither, crawl);

plantinside = (nonflowering, flowering);

form = (tree, bus, flower);

creature =

RECORD

CASE kingdom:kind OF

animal : (CASE phylum:sort OF

mammal : (CASE care:life OF

free : (species : outside);

caged : (rodent : inside));

reptile : (snake, lizard : locomotion));

plant : (unprotected : form;

protected : plantinside)

END;

VAR pet : creature;

Note that there are three levels of variant parts and that “plant”

labels a fixed part of a record.

8-17 Jan. '82

SECTION 8 - STRUCTURED DATA TYPES

The purpose of the variant part of the record is to allow enough

flexibility that the record's construction can be developed as the

program is executed. This is done by setting the tab identifiers

equal to the label of the part of the record that is needed. As an

example to illustrate this, assume a program using the definitions

above needs to deal with the scalar “mouse”. The following sequence

of assignment statements would make it possible:

pet.kingdom := animal;

pet.phylum := mammal;

pet.care := caged;

pet.rodent := mouse;

The general form is:

<variable ident>.<tab ident> := <case label>

The elements of rodent can now be accessed by pet.rodent throughout

the program. If, as the program progresses, a different element is

needed, say “flowering” plant, the same type of sequence would be

needed, i.e.

pet.kingdom := plant;

pet.protected := flowering;

However, once the record has been redefined, the earlier values may

be lost. If pet.rodent were accessed now, the value might be

incorrect. Because of this ambiguity, the record should be defined

once and all important values assigned to variables if a new form of

the structure is needed.

Jan. '82 8-18

SECTION 8 - STRUCTURED DATA TYPES

Variant Record Declarations

Variant record declarations are useful for selecting between various

types. For convenience, the following is a list of interchangable

types:

Declaration

ARRAY[1..X] OF INTEGER;

PACKED ARRAY(1..X] OF 0..255;

PACKED ARRAY[1..X] OF CHAR

PACKED ARRAY[1..X] OF BOOLEAN

STRING[X]

STRING

CHAR

INTEGER

REAL

Space Occupied

2 x bytes, each integer stores as

low, high byte.

X bytes, each element holding a

value 0-255.

X bytes, each element holding a

character.

X bits, each bit loading the value

TRUE or FALSE. :

X+l bytes, each element holding a

character. STRING[O] holds the

dynamic length of the string.

The declaration STRING is equal to

STRING[80].

One byte holding a character.

Two bytes in low, high order.

Four bytes, the exponent and

mantissa will occupy bytes 1-3.

Note that each variable is assigned to the next l6—bit word boundary

if the variable does not fit into the current word.

8-19 Change A, May ‘82

SECTION 8 - STRUCTURED DATA TYPES

Example:

TYPE

BUFF=PACKED RECORD

A:0..255;3

B:0..255;

C: INTEGER;

END;

"A" occupies the first byte, "B“ the second byte and "C" byte 3 and

4.

PACKED RECORD

A:0..255;

C: INTEGER;

END;

Here variable “A” occupies the first byte. The integer C occupies

byte 3 and 4 since the variable is too large to fit into the last

byte of the first word.

Note that in variant records, the amount of storage space allocated

to the variant record will be the size of the largest variant among

the cases.

Change A, May '82 8-20

SECTION 9

POINTER DATA TYPES

SECTION 9

POINTER DATA TYPES

9.1 INTRODUCTION

Most variables are static, which means that they are allocated during

the execution of the procedure to which they are local. In contrast

to this, dynamically allocated variables can be created and destroyed

as needed. This allows space to be allocated as needed. It also

allows functions to return space as results.

Dynamic variables do not occur in an explicit variable declaration so

they do not have an identifier by which they can be referred.

Instead, they are accessed through a pointer variable that is used to

generate the dynamic variable.

A pointer type designates a very small amount of space (usually two

bytes) which is used to point to an object. It does not make space

for the object. Since a pointer can point to an object, it can be

accessed via the pointer once the object has been allocated. The

advantage of this is twofold. First, it is possible to switch a

pointer variable from one object to another very quickly. Second, it

is possible for one object to be referenced by more than one path.

This is important because it is a prerequisite for using linked

lists.

It is possible to generate new objects from an area called the heap.

This generation and manipulation is covered later.

9.2 FORMAT ‘

A pointer is declared by preceding the type with a caret. The format

is:

TYPE <pointer ident> = ~ <record ident>;

9-1 Jan. ‘ 82

SECTION 9 — POINTER DATA TYPES

Example:

TYPE pointer = ~ class;

class = RECORD

link : pointer;

data : STRING[25]

END;

VAR nextstudent ,firststudent,laststudent : pointer;

Note that the record does not define a variable so it cannot be

directly accessed. However, any of the identifiers with the pointer

identifier as a type can indirectly access the record.

Pointer Type Components

The pointer identifiers can be used to refer to the data they point

to and the pointer itself. Both can be assigned values using the

assignment statement. Assume the two variables, next and base, are

declared pointer types and are pointing to different records of the

game type. The statement, base := next, means that base now points

to the same record that next does. The statement “base ~ := next ~* "

means copy the value in the record “base” points to into the record

“next” points to. These differences in the assignments must be

remembered.

Values within a record pointed to by ident may be assigned by:

<ident> ~ .<field> := <expression>

The field may be of any type and the expression may be anything that

returns a value that is valid for the field. For example, if the

record's data field is INTEGER:

base ~ .data := 10;

base ~ .link := next; (* link and next are pointer types *)

It is certainly possible for a pointer to point to an empty list

(i.e. at the beginning of a program). The reserved word NIL

Jan. '82 9—2

SECTION 9 — POINTER DATA TYPES

represents this case. It may not be used in an arithmetic

expression. However, it operates as a value and can be assigned or

compared just as any other value can. For example, assign base equal

to NIL:

base := NIL

Lastly, as a list is being built, the new components must be

allocated. The predeclared procedure, NEW, does this. The format

is:

PROCEDURE NEW(<ident>:POINTER TYPE)

The identifier must be declared a pointer. When the statement is

executed, it points to the location of the new component. Hence,

NEW(base);

means that base ~ can be used to access the newly allocated record.

The NEW procedure allocates space from an area in core called the

heap. This is a dynamic area which shares space with the program

stack (where global and local function and procedure variables are

allocated). This area can be viewed as a linear array with the stack

at one end, the heap at the other, and free space in the middle.

As a program executes and calls procedures, the stack grows and uses

some of the free space. As the procedures complete, they

automatically return the space and the stack contracts. When the

program executes the NEW procedure, the heap expands and the pointer

in the NEW statement points to the space just allocated to the heap.

The amount of space allocated is a function of the type that the

pointer is to point to. Assigning a new value to the pointer via

another NEW or assignment statement does not free the space - it must

be returned explicitly through the RELEASE or DISPOSE procedures.

9-3 Jan. '82

SECTION 9 = POINTER DATA TYPES

It is the programmer's responsibility to insure that the pointer data

is managed correctly. Also, the pointers initially contain a garbage

value and should be initialized by NEW or with NIL.

There are many applications that use dynamically allocated variables.

With one link field, stacks, queues, and rings can be formed. With

two link fields in each record, doubly linked lists and rings, and

trees can be formed. The following example generates a queue with a

First-In, First-Out (FIFO) structure:

Example:

PROGRAM Queuve(Input ,Output) ;

TYPE groceries = STRING[10];

_-~» pointer =tlist; (* pointer to record *)

list = RECORD

link : pointer;

food : groceries: ~

END;

VAR next,front,rear : pointer; (* pointers *)

BEGIN

WRITELN;

rear :* NIL; front := NIL; (* initialize pointers *)

WRITELN('What is on the list?');

REPEAT

NEW(next); (* create next record *)

IF (front = NIL) (* assign links *)

THEN front := next

ELSE rear ~*~ .link :=next; (* link it onto the end *)

rear := next; (* assign rear pointer *)

READLN(rear ~ .food)' “«~

UNTIL (rear ~ food = '');

WHILE (rear <> front) DO (* if rear = front, the whole *)

BEGIN (* list has been written out *)

WRITELN (front ~ .food);

front := front ~.link*:(* update link *)

END (* WHILE *) OK
END. (* Queue *)

Jan. '82 9-4

SECTION 10

FILE DATA TYPES

SECTION 10

FILE DATA TYPES

10.1 INTRODUCTION

Files are important variable types because they allow large

quantities of data to be accessed and retained in secondary memory.

Because of this, large data bases can be conveniently stored and

easily manipulated. Also, programs that are larger than main memory

may be left in files with only those sections being processed

residing in memory.

A file is a sequential collection of values that are all of the same

type. It is analogous to a tape in that all data is represented

sequentially and only one component of a file can be accessed at any

one time. A natural ordering is defined through the sequence.

A file is a unique variable type, partly because it is sequential,

and, more importantly, because it may exist before and after a

program is executed.

There are two standard files that represent the I/O media: the input

and output files. They are the default values in most places where a

filename is necessary, notably the READ, READLN, WRITE and WRITELN

statements.

10.2 REFERENCING FILES IN A PROGRAM

All names of files that are referenced in a program must be listed in

the program heading. The format is:

PROGRAM <ident>|(fd,...)|;

The standard files, input and output, should be included in the

variable filename list if READ, READLN, WRITE, WRITELN, EOF, or EOLN

is used without a filename. If a filename does not appear in the

list but is used in the program, then it is flagged as a local file

and as such becomes undefined after the program is completed. The

filename will remain in the directory listing, but its contents are

undefined and cannot be displayed.

10-1 Change A, May ‘82

SECTION 10 — FILE DATA TYPES

Declaration Format

A file's declaration format is:

TYPE <file ident> = FILE OF <type>;

The file identifier is user-defined. The type may be of any standard

or nonstandard type. Note that the number of components is not fixed

by the definition. A global variable, the file identifier, must be

declared for each file that is referenced in the program.

10.3 FILE TYPES

There are four predefined file types in PASCAL: textfiles, record

files, physical files and ISAM files. Their declaration formats are:

<file ident> = FILE OF duypeys Record file

<file ident> = TEXT; = = = “ Text File

<file ident> = FILE; Physical File

<file ident> = ISAMFILE; ISAM File

The RESET or REWRITE statement is used to connect the actual file

name with the file identifier in the program.

All the files are sequential but the record lengths differ. Files of

user-defined types have a fixed record length that is defined by the

type. The GET, PUT, SEEK and EOF I/O-statements are used in

conjunction with these files.

A TEXT file is implicitly defined FILE OF CHAR but it has a variable

record length because it is subdivided into lines. READ, WRITE,

READLN, WRITELN, EOF, EOLN, GET, and PUT are the I/O-statements that

are available to access it.

A physical file is a special case of the record file. The record

length is 256 bytes. Several consecutive records may be read or

written using BLOCKREAD and BLOCKWRITE; refer to Appendix G (programs

Byteshape, Bytetest and Anbyte) for examples.

The I/O statements used in conjunction with ISAM files are discussed

in Section 14.

Change A, May '82 10-2

SECTION 10 - FILE DATA TYPES

10.4 PASCAL INTRINSICS FOR FILES

Certain PASCAL intrinsics apply to files. The definition and

function of these intrinsics are summarized below. A complete

description including the format of each can be found in Section 12.

1. Definition:

Function:

Example:

2. Definition:

Function:

Example:

3. Definition:

Function:

Example:

PROCEDURE RESET(<fd>:File| ,title:STRING|)

Positions the pointer to the first element in the

file and prepares it for input. “title” is a string

of the form: ‘'<fd>'. If the title is included,

RESET opens for an existing but previously closed

file so that it can be read. In this case the

pointer is pointing to the first record. Without

the title, RESET moves the pointer to the beginning

of the file and reads the first record for the user.

Here, the pointer moves to the second record. If

the file is not open, it returns an error through

IORESULT and the file remains closed.

(Title is a string and DATA is the volume name.)

title := 'DATA:testfile';

RESET(testfile,title); (* opens file + points to

first record *)

PROCEDURE REWRITE(<fd>:text FILE,<title>:STRING)

Creates a new file on disk and opens the file.

Filename and title are of the same format as they

were for RESET:

title := "DATA:testfile';

REWRITE(testfile,title)

PROCEDURE READ(<fd>:text FILE|,variable list|)

Reads the next value or values from the file. It

can only be used with TEXT files. If the variable

is a string, it will read up to the end-of-line

character.

READ(testfile,vall,val2)

10-3 Change A, May '82

SECTION 10 - FILE DATA TYPES

4. Definition:

Function:

Example:

5. Definition:

Function:

Example:

6. Definition:

Function:

7. Definition:

Function:

Example:

PROCEDURE READLN(<fd>:text file|,variable list|)

Reads through the first character on the following

line of the file. It can only be used with TEXT

files.

READLN(testfile,vall,val2)

PROCEDURE WRITE(<fd>:text file|,item list|)

Writes the value(s) to the file. It can only apply

to TEXT files.

WRITE(testfile,vall,val2)

PROCEDURE WRITELN(<fd>:text file|,item list|)

Writes the value(s) to the file and then inserts a

carriage return character. It is only used in

conjunction with TEXT files.

PROCEDURE GET(<fd>:file)

Reads the next record from the file into a file

buffer associated with that file. This buffer can

be accessed via a pointer variable whose name is the

same as the filename. The file buffer should be

assigned the value of the file pointer variable

before the GET is done (see example below). The

following are equivalent if the file is text.

READ(textfile,value) value := textfile ~;

GET(textfile)

Change A, May '82 10-4

SECTION 10 -— FILE DATA TYPES

8. Definition:

Function:

Example:

9. Definition:

Function:

Example:

10. Definition:

Function:

PROCEDURE PUT(<fd>:file)

Places the value in the buffer variable into the

next available position in the file and updates the

pointer. If the file is text, the following are

equivalent:

WRITE(testfile, value) testfile ~*~ :=value;

PUT(testfile)

FUNCTION EOF(<fd>:file) :BOOLEAN

Returns a Boolean value which represents whether or

not the end of the file has been reached.

IF EOF(filel) THEN WRITELN ('END OF FILE1"');

FUNCTION EOLN(<fd>: file) :BOOLEAN

Determines whether or not a carriage return

character has been encountered in a text file.

10=5 Change A, May '82

SECTION 10 — FILE DATA TYPES

10.5 CREATING AND USING FILES

The first time that a new filename is encountered in a REWRITE

statement, the new file is created and data may be stored in it.

However, if the same program is executed a second time, the file

already exists so the REWRITE statement returns as error through

IORESULT and the file is not opened. The following sequence will

create a new file or, if it already exists, destroy and recreate the

file:

title := 'test:sample';

REWRITE(sample,title);

IF (IORESULT <> 0) THEN

BEGIN

RESET(sample,title) ;

CLOSE(sample , PURGE) ;

REWRITE(sample,title)

END;

The user should provide the identifiers whose fields are encased in

brackets. If this sequence is followed, the program will execute

without the file being opened.

If a file exists and contains information needed by a progran,

RESET(<fd>,<title>) should be used to open the file, set the pointer

to the first position, and prepare it to be read from.

There are two more advanced forms of files: external and segmented.

These are explained in Section 13.

Examining File Contents

It is often necessary to examine the file once the information has

been placed in it. The following sequence will display the file on

the screen one sector at a time:

-DISKDUMP

IN <fd>

DUH 0

Change A, May '82 10-6

SECTION 10 — FILE DATA TYPES

The file descriptor <fd> is the name of the file in the format shown

in Section 1.2. “DUH 0” displays the sectors in hexadecimal starting

with Sector 0. The next sector can be displayed by depressing the

RET key. Type “END” to exit DISKDUMP. The utility cannot be called

from a PASCAL program.

A file appears as one or more sectors that consist of sixteen by

sixteen matrices of bytes. One byte is represented by one pair of

numbers in a row. Each number or unpacked character is represented

in exactly one byte.

Illustrated Examples

The following programs show how files are created and used.

Ex. 1

This program creates and loads a file with input entered at the

console.

PROGRAM writeletter (Input,Output,letter);

TYPE writing = TEXT;

VAR letter : writing; (* The TEXT file *)

name : STRING[20]; (* the title variable *)

nextline : STRING(80]; (* the input string *)

BEGIN

name :* 'DATA:letter'; (* assign the filename *)

REWRITE(letter,name); (* create & open the file *)

IF (IORESULT <> 0) THEN

BEGIN

RESET(letter,name) ;

CLOSE(letter,PURGE);

REWRITE(letter,name)

END;

READLN(Input ,nextline): (* receive the next line *)

WHILE(nextline <> 'end') DO (* test for end condition *)

BEGIN

WRITELN(letter,nextline); (* write line to file *)

READLN(Input ,nextline)

END (* WHILE *)

END. (* writeletter *)

10-7 Change A, May '82

SECTION 10 — FILE DATA TYPES

Ex. 2

Program GRADEAVG creates a file of grade scores and then uses the

data in this file for various computations.

PROGRAM gradeavg (input,output,scores);

TYPE list = FILE OF INTEGER;

VAR sum,classavg : REAL;

scores : list; (* file of scores *)

total,score : INTEGER;

title : STRING(20];

BEGIN

title := "DATA:scores'; (* name of file *)

REWRITE(scores,title); (* open new file *) (* CREATE NEW FILE *)

IF (IORESULT <> 0) THEN (* close & open file if it existed*)

BEGIN
RESET(scores,title);

CLOSE(scores ,PURGE);

REWRITE(scores ,title)

END; (* IF *)

READ(input,score); (* first score *)

WHILE (score >= 0) DO

BEGIN

scores ~:= score; (* put the score in file *)

PUT(scores) ;

READ(input ,score)

END; (* WHILE *)

sum := 0; (* initializing *)

total := 0;

RESET(scores); (* moves pointer to beginning of file and reads lst

score *)

(* then pointer points to second record *)

WHILE NOT EOF(scores) DO (* continue until end of file *)

BEGIN

score :™ scores ~ ; (* assigns the value *)

GET(scores) ; (* reads next record *)

sum := sum + score; (* add score *)

total := total + 1 (* add to number of scores *)

END; (* WHILE *)
classavg := sum/total; (* calculate the average *)

WRITELN('Class average =',classavg:10:3,' Student count =',total)

END. (* gradeavg *)

Change A, May ‘82 10-8

SECTION 10 - FILE DATA TYPES

Ex. 3

Program FILETEST displays integers and then stores the integers in a

new file.

type

inarr=array[1..10] of integer;

var

Starr:inarr;

ix:integer;

outfile:file of integer;

begin

rewrite(outfile,'numfl');

if(IORESULT <> 0) then

begin

reset (outfile,'numfl');

close (outfile, PURGE);

rewrite (outfile,'numfl')

end;

for ix:=l1 to 10 do

begin

writeln('please input an integer value then press CR ');

read(starr[ix])

end;

for ix:=l to 10 do

begin

writeln('integer value= ');

writeln(starr[ix])

end;

for ix:=1 to 10 do

begin

outfile:=starr[ix];

put(outfile)

end;

writeln('done');

close(outfile)

end.

10-9 Change A, May '82

SECTION 10 — FILE DATA TYPES

Ex. 4
———e t

Program FILENAMES builds a customer complaint file by prompting for

name, number, address, complaint and comment data.

program FILENAMES;

type
ptl= persons;

pointer='a'..'z';

person=record

name ,ssnum,address: string[10];

comment : string

end; (* person *)
var

p:array({'a’..'z'] of ptl;
gang:file of person;

index: pointer;

beginix,endix : char;

begin

REWRITE(GANG, 'DATA:ABCD');
if (ioresult <> 0) then

begin

reset (gang, 'data:abcd');

close(gang, purge);

rewrite(gang, 'data:abed')

end; °

beginix:='a';

endix:='c';

for index:=beginix to endix do

begin

new(p[index]);

with p[index] do

begin

writeln('cust. name ? ');

readin(name) ;

writeln('ssnumber ? ');

readln(ssnum) ;

writeln('address ? ');

readln(address);

writeln('complaint ? ');

readln(comment);

end;

gang :=p[index] ;

put (gang)

end;

close(gang)

end.

Change A, May '82 10-10

SECTION 10 — FILE DATA TYPES

Ex. 5

Program TEST6 stores an array of integers on disk. It zeros all

elements in the array, GETS the integers from the file, and reloads

the array. Finally, the array values are displayed on the console.

A DISKDUMP follows the program listing.

PROGRAM TEST6 (SAMPLE);
VAR

TITLE : STRING[9];

SAMPLE :FILE OF INTEGER;

J,IX,I : INTEGER;

INSAM:ARRAY[1..100] OF INTEGER;

BEGIN

TITLE:='SEAL:sample';

REWRITE(sample,title);

IF (IORESULT <> 0) THEN

BEGIN

RESET(sample,title);

CLOSE(sample , PURGE) ;

REWRITE(sample,title)
END;

J:=200;

FOR I:=1 TO 40 DO

BEGIN

J:=J+1;

INSAM[I] :=J;

SAMPLE ~:=INSAM[I];
PUT (SAMPLE)

END; (* FOR *)
CLOSE (SAMPLE) ;

FOR I:= 1 TO 50 DO

INSAM[I] :=0;

I:=1;

RESET (SAMPLE , TITLE) ;

GET (SAMPLE) ;

WHILE NOT EOF(SAMPLE) DO

BEGIN

INSAM[I] :=SAMPLE*;

GET (SAMPLE) ;

I:=I+l

END; (* WHILE *)
FOR I[X:=1 TO 50 DO

WRITELN(INSAM[IX]);

CLOSE (SAMPLE)

END. (* TEST6 *)

10-11 Change A, May '82

SECTION 10 — FILE DATA TYPES

~DISKDUMP

00.00.00 DIS KDUMP R3.01

IN SEAL: XXXX

DUH O

SECTOR #: QO.

s

C9 00 CA 00 CB 00 CC 00 CD 00 CE 00 CF 00 DO 00 I.J.K.L.M.N.O.P.

Dl 00 D2 00 D3 00 D4 00 DS 00 D6 00 D7 00 D8 00 Q.R.S.T.U.V.W.X.

D9 00 DA 00 BB OO DC 00 DD OO DE 00 DF 00 EO 00 Y.Z.[. «.]- -_-'-

El 00 E2 00 E3 00 E4 00 ES 00 E6 00 E7 00 E8 00 a.b.c.d.e.f.geh.

E9 00 EA 0O EB OO EC 00 ED 00 EE 00 EF 00 FO 00 i.j.k.1.m.n.o-p.

29 00 2A 00 ZB 00 2C 00 2D 00 2E 00 2F 00 30 00).*.+.,.-- 00/0.

31 00 32 00 00 00 00 00 00 00 00 00 00 00 00 00 Le2.cceeeseeeeee

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 wocccccccccccoce

00 00 00 00 00 00 00 00 00 00 00 00 00

00

20

00

00 00 00 cecccccccccccess

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 cecccccccccccces

00 00 00 00 00 00 00 00 54 45 53 54 20 20 20 ...+ee-TEST..

4F 53 2E 38 20 50 61 73 63 61 6C 20 33 2E 30 31 MS.8 Pascal 3.01

20 20 20 46 69 6C 65 3A 20 53 45 41 4C 3A 54 45 File: SEAL:TE

53 54 20 20 20 20 20 20 20 20 20 20 20 20 20 20 ST

20 20 20 20 20 20 20 20 20 20 31 39 38 31 2D 30 1981-0

38 2D 30 30 2F 30 30 2E 30 30 2E 30 30 20 20 20 8-00/00.00.00

Note that each integer has two bytes reserved per integer.

Change A, May '82 10-12

SECTION 10 -— FILE DATA TYPES '

Ex. 6

Program TEST9 uses the SEEK command to move the file pointer to the

fifth record. The content of the file from that point on are

displayed on the console. °

PROGRAM TEST9 (INTG);

VAR

TEST:FILE OF INTEGER;

K,J: INTEGER;

BEGIN

J:=0;

RESET (TEST, 'SEAL: INTG');

K:=4;

WHILE NOTE EOF(TEST) DO

BEGIN

SEEK(TEST ,K);

GET(TEST);

J:=TEST*;

WRITELN(J);

K: =K+1

END (* WHILE *)

END. (* TEST9 *)

10-13 Change A, May '82

SECTION 11

PROCEDURES AND FUNCTIONS

SECTION 11

PROCEDURES AND FUNCTIONS

11.1 GENERAL FORM

There are two types of subroutines in PASCAL: procedures and

functions. Although they are designed to serve different functions,

both are declared with the same format:

<heading>;

|declarations; |

<compound statement>;

This exactly replicates the format for a program (see Section 2.1).

All the parts of a procedure or function are the same as those

described in the preceding sections except the heading. The headings

for procedures and functions are not the same so they will be

discussed in Sections 11.2 and 11.3 respectively. The END

statement for both is followed by a semicolon (;) instead of the

period that follows a program's END statement. The statement block

is a compound statement which can contain any sequence of simple or

compound statements.

When a procedure or function is called, the variables in the

declarations area are placed on the stack. These local variables

parameters (if any), and globally allocated variables are accessible

from the procedure or function. Upon exit, the space on the stack

that was allocated by the call is returned.

Since the stack is used for local variables and parameters, each new

call generates a new set of variables. Therefore, procedures and

functions can be called recursively. This means that each call

generates a new set of variables and that any subsequent call cannot

access the values of a previous call unless the values are global or

passed again as parameters.

1ll=-1 Jan. '82

SECTION 11 - PROCEDURES AND FUNCTIONS

Subprogram Placement

All identifiers in a program must be defined before they can be used.

The same is true for functions and procedures. Therefore a

subprogram can only call procedures or functions that precede it in

the program. Those that follow it would be considered undefined and

would result in a compile-time error if they were accessed. This

means that the order in which subroutines are defined is important.

FORWARD Directive

There are situations when a procedure or function must be accessed

before it is defined, such as when two subroutines call each other.

This can be done using the directive FORWARD. The word FORWARD is

not a reserved word but it has a special meaning in a heading.

Elsewhere it can be used as a user-defined identifier.

The format requires that the heading of the undefined subroutine be

followed directly with the directive. This is followed by the

procedure(s) and function(s) that invoke it. Later, the subroutine

is completely declared but the parameter list in the heading is not

repeated.

A skeleton example is:

PROCEDURE front (a,b : INTEGER); FORWARD;

PROCEDURE back (c,d : REAL);

BEGIN

a := 1;

b := 2;

front (a,b) (* calling the procedure *)

END; (* back *)

PROCEDURE front;

BEGIN

back (1,2);

END; (* front *)

Jan. '82 11-2

SECTION 11 - PROCEDURES AND FUNCTIONS

There are many standard functions and procedures available in PASCAL.

They are summarized in Appendix A. They are considered to be

predeclared and operate in the same manner as user-defined

subroutines do.

11.2 PROCEDURES

Procedures affect programming situations and do not return an

explicit value. Functions, on the other hand, return a value.

Procedures are usually used for input and output or for manipulating

data structures.

A procedure must have a heading in the form:

PROCEDURE <procedure ident>|(parameter list)|;

Each element of the parameter list has the following format:

|VAR| <identifiers> : <type>;

The procedure identifier can be any user-defined identifier. The

parameter list is a series of formal parameters and their types

separated from each other by semicolons. If more than one parameter

is of the same type then they can be defined together (i.e. identl,

ident2, ident3 : REAL;). The parameter list and type format may be

repeated as many times as necessary to include all the parameters.

Only the last type is not followed by a semicolon (;).

The procedure is called by:

<procedure ident>|(expression,...)|

A list of expressions may be variables, values, or calculations that

return a value. The value must be the same type as the parameter

type declared in the procedure. If the parameter is a VAR parameter

(see Section 11.4), the expression must be a variable. There must be

113 Jan. "82

SECTION 11 -— PROCEDURES AND FUNCTIONS

as many values as there are formal parameters and the parameters

should be in the same order as in the declaration. If there are no

formal parameters then the parentheses in the call and the heading

are omitted.

The formal parameters are used throughout the procedure as though

they are known values or variables with assigned values.

Example:

PROGRAM getword;

VAR word,buffer : STRING; (* the limit on buffer's size is 80 *)

number,index : INTEGER;

endofbuffer : BOOLEAN;

character : CHAR;

PROCEDURE writeword (word : STRING);

number : INTEGER);

BEGIN

WRITELN (' The ', number,' word is ', word)

END; (* procedure writeword *)

BEGIN .

READLN(buffer) ; (* initialization *)

index := 0;

number := 0;

endofbuffer := FALSE;

WHILE (NOT endofbuffer) DO

BEGIN

first := index; (* keep the position of the first letter *)

character := buffer[index] ;

WHILE ((index <= 80) AND (character © ' ') DO

BEGIN

index := index + 1; (* check characters in buffer until *)

character := buffer[index]; (* a blank is found or the *)

END; (* WHILE *) (* end of buffer found *)

word := COPY(buffer, first, index-first-1)

number := number + 1; (* count number of words *)

writeword(word,number) ;

IF (index >= 80) THEN endofbuffer = TRUE

END (* WHILE *)

END. (* getword *)

Jan. '82 11-4

SECTION 11 - PROCEDURES AND FUNCTIONS

11.3 FUNCTIONS

A function always has an associated type and returns a value of this

type. It is usually used to calculate a value that must be found in

several different places.

The format for a function is:

FUNCTION <function ident>|(parameter list)|:<type>;

The function identifier can be any user-defined identifier. The

parameter list is a series of formal parameters in the same format as

a procedure's parameter list. Only the last type in the parentheses

is not followed by a semicolon. The value that is returned is sent

through the function identifier and is of the type given outside of

the parentheses. For this reason, the function identifier must be

assigned a value somewhere in the function. Its type must be scalar,

subrange or pointer.

The function is called by:

<function ident>(list of expressions)

The call may be placed anywhere a value of the function's type may

legally appear. There must be as many expressions or variables as

there are formal parameters. Also, if the parameter is a VAR

parameter, there must be a corresponding variable in the call. If

there are no parameters in the heading, the parentheses are omitted

in both the heading and the call.

Example:

PROGRAM power;

VAR mass,acceleration : REAL;

FUNCTION force(m,a : REAL) : REAL;

BEGIN

force :=m*a

END; (* mtimesa *)

11-5 Jan. '82

SECTION 11 - PROCEDURES AND FUNCTIONS

BEGIN

READ(mass ,acceleration) ;

WRITELN (force(mass,acceleration))

END. (* power *)

11.4 GLOBAL AND LOCAL VARIABLES

A variable is defined in the routine in which its definition appears

For and in any procedures or functions defined within the routine.

example:

PROGRAM levell;

VAR a,b : INTEGER;

PROCEDURE level2A;

VAR c,d : CHAR;

FUNCTION level3;

VAR e,f : BOOLEAN;

BEGIN

END; (* level3 *)

BEGIN

END; (* level2A *)

FUNCTION level2B;

VAR g,h : REAL

BEGIN

END; (* level2B *)

BEGIN

END. (* levell *)

Jan. '82 11-6

SECTION 11 - PROCEDURES AND FUNCTIONS

This example is only a skeleton ot a program since all parameters and

statement blocks are missing. However, it will serve to illustrate

the point. The variables “a“ and "b” are called global variables and

can be accessed throughout the program and its subroutines. “ce” and

"d" can be accessed in the procedure “level2A” and in FUNCTION

level3. “e" and “f" are local to “level3”, as “g" and “h” are to

“level2B”. If PROCEDURE level2A called by FUNCTION level2B, “g"

"h" could not be accessed within the procedure level2A even if they

and

were passed as parameters. “g” and “h" will be undefined when

level2B is initially called and they must be initiated by level2Z.

If a procedure or function is passed a variable as the value for one

of its parameters, any changes to that value in the subroutine would

not affect the variable's value in the calling program. For example:

PROGRAM outer;

PROCEDURE called(value : INTEGER);

BEGIN

value := 10

END; (* called *)

PROCEDURE test;

VAR value : INTEGER;

BEGIN

value := 5;

called(value) ; (* call procedure *)

WRITE(value) ; (* write resultant value *)

END; (* test *)

BEGIN

test

END. (* outer *)

The number that would be written out when the program executes would

be "5", not "10", because the changes “called” effected would be lost

11-7 Jan. "82

SECTION 11 -— PROCEDURES AND FUNCTIONS

after control left the procedure; however, if “value” in “called”

were a VAR parameter, the result would be “10”.

Varying Parameters

There are times when changes that occur in a subprogram should affect

the corresponding values in the calling program. Therefore, it is

possible to declare a parameter varying, meaning that any changes to

it in the subprogram will be reflected in the calling routine. This

is done by preceding the variable name in the called routine's

parameter list with the reserved word VAR. The call to the routine

is not changed except that the corresponding value must be a

variable. Going back to the same example, if the heading:

PROCEDURE called(VAR value : INTEGER);

were used, the resultant value at the end of the program would be a

"10". A sample program is shown on the next page.

Jan. '82 11-8

SECTION 11 - PROCEDURES AND FUNCTIONS

Example:

PROGRAM bankstatement (Input ,Output);

VAR id,number : INTEGER;

balance : REAL;

FUNCTION newbalance(trans,bal : REAL):REAL;

BEGIN

newbalance := bal + trans (* calculate new balance *)

END; (* newbalance *)

PROCEDURE statement(identification,numbertrans : INTEGER;

VAR balance : REAL);

VAR counter : INTEGER;

transaction : REAL;

transtype : CHAR;

BEGIN

FOR counter := 1 TO numbertrans DO

BEGIN

WRITELN('Amount and type of transaction:');

READ(transaction,transtype);

IF (transtype='d') OR (transtype='D') (* write amount *)

THEN WRITE(transaction:15:7,'

ELSE BEGIN

WRITE(transaction: 30:7);

transaction := -transaction

END: (* ELSE *)

balance := newbalance(transaction,balance); (* call function *)

WRITELN(balance:20:7) (* write balance *)

END (* FOR *)

END; (* statement*)

BEGIN

REPEAT

WRITELN;

WRITELN('ID number, number, number of transactions, and balance');

READLN(id,number, balance) ;

statement(id,number, balance) ; (* call procedure *)

IF balance < 0.0 THEN WRITELN('Account overderawn by $',balance)

UNTIL id = 0

END. (* bankstatement *)

11-9 Jan. '82

SECTION 12

PASCAL INTRINSICS

SECTION 12

PASCAL INTRINSICS

12.1 INTRODUCTION

Intrinsics in the context of Monroe PASCAL are built-in functions

always available with the system which perform specific mathematical,

string, input/output, character array manipulations or miscellaneous

operations.

whenever it requires the execution of any of these operations.

A user program can include a call to an intrinsic

These

functions can save a great deal of coding time. They enable the user

to include the function without having to know the details behind

them.

This section discusses five types of intrinsics:

l.

2.

3.

4.

5.

12.2 STRING

String

Input/output

Character array manipulation

Mathematical

Miscellaneous

INTRINSICS

PASCAL contains predefined functions and procedures that are designed

to manipulate strings.

that are available.

Table 12-1. String Intrinsics

Concatenates one or more strings together.

a string copied from another string.

characters from a string.

one string into another.

the length of a given string.

Heading Description

CONCAT

COPY Returns

DELETE Removes

INSERT Inserts

LENGTH Returns

POS Returns

Table 12-1 summarizes the string intrinsics

the position of the first occurrence of a

character sequence within a string.

12-1 Jan. "82

SECTION 12 - PASCAL INTRINSICS

CONCAT Function

Function: Returns a string which in the concatenation of all

the strings passed to it.

Definition: FUNCTION CONCAT(<stringl>|,string2,... : STRING) : STRING

Calling Format: CONCAT (<stringl>|,string2,...|)

Arguments: All the arguments may be predefined string

variables or strings of characters enclosed in

single quotes. There may be two or more strings.

Use: This is used to join several strings into one long

string.

Note: There must be at least two strings. All strings

are separated by commas. The concatenated string

must be smaller than 212 characters or a run-time

error will occur.

Examples: charstring := *ABCDEFGHIJKLMNOPQRSTUVWXYZ ' ;

numstring := '1234567890';

otherstring := '#S,;*.:!27/';

Ex. 1 WRITELN('The alphanumeric characters are ',CONCAT

(charstring ,numstring));

output: The alphanumeric characters are ABCDEFGHI

JKLMNOPQRSTUVWXYZ 1234567890

Ex. 2 str := CONCAT(numstring,otherstring);

WRITELN(str);

output: 1234567890#S,;*.:!2/

Jan. '82 12=2 CONCAT

SECTION 12 - PASCAL INTRINSICS

COPY Function

Function:

Definition:

Calling Format:

Arguments:

Note:

Ex. 2

COPY

Returns a string copied from a specified string

which contains all or part of that string.

FUNCTION COPY(<string>:STRING:<index>,

<size>: INTEGER) : STRING

COPY(<string>,<index> ,<size>)

The string may be any defined string variable or

sequence of characters enclosed in single quotes.

The index is the position of the first character to

be copied. The size is the number of characters to

be copied. «

COPY is often used to copy portions of a string

into another one without using an index and manual

incrementing.

The index plus the size arguments must be less than

or equal to the length of the string.

person := ‘Susan Smith';

firstname := COPY (person,1,5);

WRITELN(firstname) ;

output: Susan

address := '124 Drummond Avenue, Madisonville, NJ

07953';

zip := COPY(address,LENGTH(address)-4,5);

12-3 Jan. '82

SECTION 12 - PASCAL INTRINSICS

DELETE Procedure

Function:

Definition:

Calling Format:

Arguments:

Example:

Jan. '82

Delete characters from a string.

PROCEDURE DELETE(<string>: STRING; <index>,<size>: INTEGER)

DELETE(<string>,<index>,<size>)

The string can be any defined string variable. Thr

index is the position of the first of value

characters to be deleted.

The procedure is used to save the programmer from

deleting portions of a string.

The string variable's length value is changed when

the characters are removed in the DELETE procedure.

The index plus the size should not be longer than

the length of the string.

overstuffed := 'This string is too long';

DELETE(overstuffed, POS('to' overstuffed) ,4);

WRITELN(overstuffed) ;

output: This line is long.

12-4 DELETE

SECTION 12 -— PASCAL INTRINSICS

INSERT Procedure

Function:

Definition:

Calling Format:

Arguments:

Note:

Example:

INSERT

Inserts characters into a string.

PROCEDURE INSERT (<source>: STRING; VAR<destination>

: STRING; <index>: INTEGER)

INSERT(<source string>,<destination string>,<index>)

The source string can be either a defined string

variable or a series of characters enclosed in

quotes. The index is an integer number that

represents the position where the source string

will be inserted in the destination string.

This is the easiest way to insert characters into a

string.

A compile time error will occur if the destination

string is not a variable.

The character in the indexth position will appear

after the insertion.

word := 'Fascinated.';

INSERT('ion unlimit' ,word,9);

WRITELN(word);

output: Fascination unlimited.

12-5 Jan. '82

SECTION 12 - PASCAL INTRINSICS

LENGTH Function

Function:

Definition:

Calling Format:

Argument:

Examples:

Ex. 1

Ex. 2

Jan. ‘82

Returns the number of characters in a string.

FUNCTION LENGTH(<string>:STRING) : INTEGER

LENGTH(<string>)

The string may be a declared string variable or a

series of characters enclosed by single quotes.

It is used to determine a string's length. It is

especially useful in working with buffers.

numberstring := '132479';

WRITELN(LENGTH (numberstring):10);

output: 6

IF(LENGTH(buffer) = maxbufferlength) THEN

WRITELN('Buffer overflow.');

12-6 LENGTH

SECTION 12 - PASCAL INTRINSICS

POS Function

Function:

Definition:

Calling Format:

Arguments:

Examples:

Ex. l

Ex. 2

POS

Returns the position of the first character in the

first occurrence of a pattern in a string.

FUNCTION POS(<pattern>,<string>:STRING) : INTEGER

POS(<pattern>,<string>)

The pattern is a character or string enclosed in

quotes. <string> is the text that is being

scanned.

The position of a character in a string is required

for INSERT and DELETE.

If the pattern is not found, a zero will be

returned. The position of the first character is

one.

WRETELN(POS('tu','congratulations'));

output: 7

str := 'Keep something hidden.';

DELETE(str,POS('s',str),

POS('g',str)-POS('s',str) +2);

WRITELN(str); .

output: Keep hidden.

12-7 Jan. '82

SECTION 12 - PASCAL INTRINSICS

12.3. INPUT AND OUTPUT INTRINSICS

Almost every program performs some 1/0, often involving files. The

functions and procedures discussed in this section make it possible

to do so.

Table 12-2.

Heading

B LOCKREAD

B LOCKWRITE

CLOSE

EOF

EOLN

GET

INP

IORESULT

OUT

PAGE

PUT

READ

READLN

RESET

REWRITE

SEEK

WRITE

WRITELN

Jan. '82

Table 12-2 summarizes these intrinsics.

Input/Output Intrinsics

Description

Transfers blocks of data from a file to an array

and returns the byte count.

Transfers blocks of data from an array to a file

and returns the byte count.

Closes and deletes files.

Returns a True value when the end of a file is

reached. :

Returns a True value when the end of a line is

reached.

Reads data from a file.

Reads a value from a port.

Holds the result codes of I/0 operations.

Writes a value to a port.

Sends a page carriage control to a text file.

Writes data to a file.

Reads data from a file or the keyboard, but does

not search for an end-of-line.

Reads a line of input until the first position of

the next line.

Prepares a file to be read.

Prepares a file to be written.

Changes the order in which data is accessed from a

file.

Outputs variables and strings but does not send the

cursor to a new line when it has completed.

Outputs a line and a carriage return.

12-8

SECTION 12 - PASCAL INTRINSICS

BLOCKREAD Function

Function:

Definition:

Calling Format:

Arguments:

Example:

B LOCKREAD

Transfers data from a file into an array and return

the count on the number of bytes that were actually

read.

FUNCTION BLOCKREAD(<fd>:FILE;<array ident>

:ARRAY;<number of blocks>:INTEGER|,first block

: INTEGER|): INTEGER

BLOCKREAD(<fd>,<array id>,<block count|,first

block|)

The fd is the file descriptor (see Section 1.4).

It cannot be defined as TEXT, though it may be of

type CHAR. The array identifier is any

user-defined array with the same type as the file.

Its length should be an integer multiple of the

number of values per block, i.e. 128 for INTEGER

and CHAR files and 64 for REAL files. The <number

of blocks> is the integer number of blocks that

need to be transferred. Firstblock is an integer

that indicates the block relative to the start of

the file that should be read first. The file

always starts with block zero and is read

sequentially.

This function easily manipulates blocks of

unformatted data.

There is no automatic range checking performed on

the array. If it is too large, it may be filled

with garbage. If it is too small, some of the

information will be lost.

I := BLOCKREAD(testfile,thenline,1,1);

WRITELN(L);

output: 256

note: This would read the second block of

“testfile” and put it in the array

“thenline”.

12-9 Jan. '82

SECTION 12 — PASCAL INTRINSICS

BLOCKWRITE Function

Function:

Definition:

Calling Format:

Arguments:

Example:

Jan. '82

Transfers data from an array into a file and

returns the count of the number of bytes that were

actually transferred.

FUNCTION BLOCKWRITE(<fd>:FILE;<array ident>

sARRAY;<number of blocks>:INTEGER|,firstblock
: INTEGER|) : INTEGER

BLOCKWRITE(<fd>,<array ident>|,<block count>|,

first block|)

The fd is the file descriptor (see Section 1.4).

It cannot be defined as TEXT. The array identifier

is any user-defined array with the same type as the

file. Its length should be any integer multiple of

the number of values per block, i.e. 128 for

INTEGER and CHAR files and 64 for REAL files. The

<number of blocks> is the integer number of blocks

that need to be transferred. Firstblock is an

integer that indicates the block relative to the

start of the file that should be written to first.

The file always starts with block zero and is read

sequentially.

This function easily manipulates blocks of

unformatted data.

There is no automatic range checking performed on

the array. If it is too large, not all the

information will be transferred. If it is too

small, garbage will be used as fill-in.

I := BLOCKWRITE(testfile,thenline,2);

WRITELN(L);

output: 512

Note: This would transfer “thenline” into two

blocks of “testfile” starting wherever the

file pointer is positioned.

12-10 BLOCKWRITE

SECTION 12 — PASCAL INTRINSICS

CLOSE Procedure

Function:

Definition:

Calling Format:

Note:

Example:

CLOSE

Closes and deletes files.

PROCEDURE CLOSE(<fd>:FILE| ,PURGE|)

CLOSE(<fd>| , purge|)

The fd is the file descriptor (see Section 1.4).

CLOSE closes files that have been opened in a

program or deletes files so they can be rewritten.

If the file is not open, the procedure will have no

effect. A closed file cannot be deleted by CLOSE.

PROGRAM testvalues(input,output,next) ;

VAR next:FILE OF INTEGER;

BEGIN

REWRITE(next, 'PAS:next');

IF (IORESULT <> 0) THEN

BEGIN

RESET (next, 'PAS:next');

CLOSE(next , PURGE); (* close and delete *)

REWRITE(next,'PAS: next')

END;

CLOSE(next) (* close *)

END:

12-11 Jan. '82

SECTION 12 - PASCAL INTRINSICS

EOF Function

Function:

Definition:

Calling Format:

Arguments:

Example:

Jane "82

Returns a boolean value indicating whether the end

of specified file has been reached.

FUNCTION EOF(<fd>: FILE) :BOOLEAN

EOF (<fd>)

The fd is any user-defined file descriptor (see

Section 1.4).

EOF is used when a file is being read to avoid

errors. EOF is false immediately after file is

opened and true on a closed file.

WHILE NOT EOF(DATA:testfile) DO

BEGIN...

12-12 EOF

|

SECTION 12 - PASCAL INTRINSICS

EOLN Function

Function: Returns a boolean value indicating whether the

pointer for a specified text file in at end of a

line.

Definition: FUNCTION EOLN(<fd>:TEXT FILE) :BOOLEAN

Calling Format: EOLN(<fd>)

Arguments: The fd is the user-defined file descriptor (see

Section 1.4).

Use: The EOLN function determines if the end of a line

has been reached in a textfile. EOLN returns a

false value immediately after the file is opened

and true on a closed file.

Note: The file must be TEXT or the EOLN function will

have unexpected results.

Example: chr := testfile;

WHILE NOT EOF (testfile) DO

BEGIN

IF EOLN(testfile)

THEN WRITELN

ELSE WRITE(chr);

GET (testfile);

chr := testfile

END; (* WHILE *)

EOLN 12-13 Jan. '82

SECTION 12 - PASCAL INTRINSICS

GET Procedure

Function:

Definition:

Calling Format:

Argument:

Use:

Note:

Example:

Change A, May '82

Reads data from a file.

PROCEDURE GET (<fd>:FILE)

GET (<fd>)

The fd is the file descriptor (see Section 1.4).

The GET procedure is the only routine that can

retrieve a value from a file that is not of type

TEXT.

A pointer variable is associated with and

implicitly defined by the file. It is of the form:

<fd> *

A buffer is assigned to the variable name into

which the value is being read. The buffer is

updated automatically by GET. Note that only one

buffer is allocated per file.

The procedure must be preceded by a RESET which

prepares the file to be read and initializes the

buffer.

RESET (out); (* Pointer moves to lst value and

reads it *)

(* then moves pointer to 2nd value *)

WHILE NOT EOF(out) DO

BEGIN

X := out*; (* assign value *)

GET(out); (* reads next record *)

WRITELN(X:10:5)

END;

12-14 GET

SECTION 12 - PASCAL INTRINSICS

IORESULT Function

Function: Returns the I/0 codes giving the results of the

last I/O operations.

Definition: FUNCTION LORESULT: INTEGER

Calling Format: IORESULT

Arguments: None.

Use: This function tests for errors in I/O such as

during RESET and REWRITE.

Note: If the operation succeeds, IORESULT returns a zero.

Otherwise, it returns a positive integer.

Example: REWRITE(test,name) ; pestle
IF IORESULT <> 0

THEN BEGIN...

IORESULT 12-15 Jan. '82

SECTION 12 — PASCAL INTRINSICS

PAGE Procedure

Function:

Definition:

Calling Format:

Argument:

Use:

Example:

Jan. '82

Sends a top-of-form character to a file.

PROCEDURE PAGE(<fd>:TEXT FILE)

PAGE(<fd>)

The fd is the file descriptor of a TEXT file (see

Section 1.4).

PAGE is often used in text-editing programs and to

make output more readable.

ES T. ante om ri) PA y", bo

(\

VAR paper: TEXT;

word:STRING;

BEGIN . 2-4 fein: i ys

READLN(word) ; —
WHILE (word <> '') DO

BEGIN

IF (word <> 'page')

THEN WRITELN (paper ,word)

ELSE PAGE (paper);

READLN (word)

END; (* WHILE *)

END.

12-16 PAGE

SECTION 12 - PASCAL INTRINSICS

PUT Procedure

Function:

Definition:

Calling Format:

Argument:

Use:

Note:

Example:

PUT

Writes a buffer to a file.

PROCEDURE PUT(<fd>:FILE)

PUT(<fd>)

The fd is the file descriptor (see Section 1.4).

PUT is used to write to non-TEXT files.

A pointer variable is associated with and

implicitly defined by the file. Its form is:

<fd>

This variable must be assigned a buffer from the

heap. The buffer is assigned a value and then it

is written to the file. The buffer's contents are

undefined after a PUT.
hn. \, eee (407, lene:

READ(X); (* input from the screen *)

WHILE X <> 0 DO

BEGIN

ouftt:@ X;

PUT (out); (* written to out *)

READ(X) (* input from the screen *)

END;

— n ~ Noy =" OU :

\ — + Or afd c

~, yo.

x - “4 &

12-17 Jan. '82

SECTION 12 - PASCAL INTRINSICS

READ Procedure

Function:

Definition:

Calling Format:

Argument:

Jan. "82

Reads data from a file or the keyboard and assigns

it to a variable list.

PROCEDURE READ(|fd:TEXT FILE, |<variable list>)

READ(<fd>|,variable list|)

The fd is the TEXT file descriptor (see Section

1.4) from which the data will be read. If it is

omitted, the keyboard will be used. The variable

list may contain any standard or scalar data types.

They must be CHAR or STRING type if a filename is

used and must all be properly disclosed in the

program block.

The READ procedure reads values from the keyboard

or from TEXT files.

The READ statement will read only as many values as

there are parameters. If too few identifiers are

listed, not all of the desired input will be

received. If too few values are listed, the

computer will wait until the remaining values are

entered.

If an integer variable is assigned a REAL value,

the decimal part will be truncated. If a REAL

variable is assigned an INTEGER value then the

number will be converted to a REAL value. Both

variable types assign zeroes if a character is read

where a number is expected.

12-18 READ

SECTION 12 - PASCAL INTRINSICS

Example:

Ex. 2

Ex. 3

Ex. 4

READ

VAR charval: CHAR;

realnum: REAL;

integernum: INTEGER;

BEGIN

READ (realnumber, integernum, charval);

WRITE (realnumber, ' ', integernum, ' ' charval);

input: 13.5 98 Letter

output: 1.3E+01 98 L

input: 33 87.7 Character

output: 3.3E+01 87 C

input: champ letter 7.5

output: 0.0E+00 0 7

READ(LETTER, charval); (* LETTER is a TEXT file *)

12-19 Jan. ‘82

SECTION 12 - PASCAL INTRINSICS

READLN Procedure

Function:

Definition:

Calling Format:

Arguments:

Use:

Note:

Examples:

Ex. 1

Ex. 2

Ex. 3

Jan. '82

Reads a line of input.

PROCEDURE READLN| (£d:TEXTFILE) |
or

PROCEDURE READLN(|fd:TEXTFILE,|<variable list>)

READLN| (fd) |
or

READLN(<fd>|,variable list|)

The variable list identifier(s) may contain CHAR,

INTEGER, REAL OR STRING types. Integers and reals

must be terminated/separated by a space or q on

input.

READLN is used for reading in strings. [It is

especially useful for text manipulations. The

first format will skip the rest of a line.

Caution must be used to insure that a REAL or

INTEGER variable does not appear among the

identifiers, or the system will either crash or

assign garbage to the variable.

VAR data:STRING;

READLN(data) ;

WRITELN(data) ;

input: 'The dog came home.'

output: 'The dog came home.’

input: Homeward.

output: Homeward.

READLN(LETTER,data); (* LETTER is a TEXT file *)

12-20 READLN

SECTION 12 - PASCAL INTRINSICS

RESET Procedure

Function:

Definition:

Calling Format:

Arguments:

Use:

Note:

Examples:

Ex. l

Ex. 2

RESET

a ri!
a f z a) Fe UE fF

Prepares a file to be read.

PROCEDURE RESET(<fd>:FILE|,title:STRING|)

’
RESET(<fd>} ,title|)

The fd is the file descriptor (see Section 1.4).

The title is a string or string variable of the

form:

'<fd>'

The two <fd's> should be the same.

The file pointer is set to the first element in the

file and prepares it to be read from. If the title

is included, the file is opened before the pointer

is changed.

RESET will only open a file if the title portion is

included. Also, if the file does not already

exist, RESET will not create or open it.

If the file is open and another RESET is attempted,

an error will be returned in IORESULT and the file

status will remain unchanged.

name := 'DATA:testfile';

RESET (testfile,name) ;

RESET(testfile) ;

READ(testfile,value);

12-21 Jan. '82

SECTION 12 - PASCAL INTRINSICS

REWRITE Procedure

Function:

Definition:

Calling Format:

Arguments:

Note:

Example:

Jan. '82

Create files and prepare them for writing.

PROCEDURE REWRITE(<fd>:FILE;<title>: STRING)

REWRITE(<fd>,<title>)

The fd is the file descriptor (see Section 1.4).

The title is a string variable of the form:

'fq'

The two <fd's> should be the same.

The file is created, its pointer is set to the

first position in the file, and it is prepared for

writing.

REWRITE will return an error in IORESULT if the

file already exists and the file will not be

opened. For this reason, REWRITE can only be used

once in a program in reference to a file unless it

is deleted in the program.

name := 'DATA:test';

REWRITE(test,name) ;

IF (IORESULT <> 0)

THEN BEGIN

RESET(test ,name) ;

CLOSE(test , PURGE);

REWRITE(test ,name)

END;

12-22 REWRITE

SECTION 12 - PASCAL INTRINSICS

SEEK Procedure

Function:

Definition:

Calling Format:

Arguments:

Use:

Note:

Example:

Ex. 1

SEEK

Changes the order that data is accessed from a

file.

PROCEDURE SEEK(<fd>:FILE;<record number>D:

INTEGER)

SEEK(<fd>,<record number>)

The fd is the file descriptor (see Section 1.4).

The record number is the number of the record being

sought, relative to the start of the file. It must

be a positive integer. The first record number is

zero.

It is used either to read or write from a place

that is not the start of the file.

The file can be of any type except TEXT. A record

is defined as the structure (either simple or

complex) of the file type. For example, a single

value is a record in a file of REAL's, an array is

a record in a file with an array as its base type.

WAR files : FILE OF REAL;

temp : REAL;

SEEK (files,1);

(* points to the second real value’ in “files” *)

12-23 Jan. '82

SECTION 12 - PASCAL INTRINSICS

Ex. 2 TYPE recks = RECORD

link : INTEGER;

data : REAL; *

END;

VAR filename : FILE OF recks;

tempreck : recks;

con : INTEGER;

BEGIN

(* put data in the file *)

con := 2; .

SEEK(filename, con);

GET(filename);

tempreck := filename =;

WRITELN (tempreck.link, tempreck.data) ;

END.

‘input: 1 1.5

2 3.1

4 5.7

0 -9.4

output: 4 5.7

Jan. '82 12-24 SEEK

SECTION 12 - PASCAL INTRINSICS

WRITE Procedure

Function:

Definition:

Calling Format:

Arguments:

Use:

WRITE

Outputs variabies and strings.

PROCEDURE WRITE(|fd:TEXT FILE,|<item list>

WRITE(<fd>|,item list|)

The fd is the file descriptor (see Section 1.4).

The <item list> may be any INTEGER, REAL, or CHAR

identifier or a character string inclosed in

quotes. The items in the item list can be

represented as:

<item 1|,item 2,...|>

An item can either be a -

<string expression> (a string variable or a char-

acter string inclosed in

quotes).

or

:precision| | <expression>|:field width

which is used to format numeric output.

Field width is an integer constant that specifies

the number of character positions to use in

displaying the value. The default is the minimum

number needed to express the value.

Precision is an integer or constant from one to six

charcters that specifies the number of decimal

places to be used. The default is one integer.

The WRITE statement is used to output a program's

results. It is also used to document output

through character strings.

12-25 Jan. '82

SECTION 12 — PASCAL INTRINSICS

Note: _ WRITE starts writing wherever the cursor is. To

start on a new line, refer to the WRITELN

statement. It does not leave spaces between

outputted values. .

Examples: .

amount:= 55.347*10.0;

counter: 455;

name:= "Homer';

Ex. l WRITE(amount,'’ ' ,counter,' ', name);

output: 5.5E+02 455 Homer

Ex. 2 WRITE(amount:15:6, amount:15:4);

output: 5.53470E+02 5 .534E+02

Ex. 3 WRITE(counter:15, amount:15:3);

output: 455 5 .53E+02

Ex. 4 WRITE(counter,' ', name);

output: 455 Homer

Ex. 5 WRITE(LETTER,name); (* LETTER is a TEXT file *)

Ex. 6 RESET(PN,'PR:');

WRITE(PN,amount,' ', counter,' ',name);

WRITELN(PN) ;

5.5E+0O1 455 HOMER (Result on printer)

Change A, May '82 12-26 WRITE

SECTION 12 - PASCAL INTRINSICS

WRITELN Statement

Function:

Definition:

Calling Format:

Arguments:

WRITELN

Outputs a line and a carriage return.

PROCEDURE WRITELN|(fd:TEXT FILE) |
or

PROCEDURE WRITELN(|fd:TEXT FILE, |<item list>

WRITELN | (<fd>) |
or

WRITELN(<fd>|,item list])

The fd is the file descriptor (see Section 1.4).

The <item list> may be any INTEGER, REAL, or CHAR

identifier or a character string inclosed in

greater. The items in the item list can be

represented as:

> <item 1|, item 2,...

An item can either be a -

<string expression> (a string variable or a char-

acter string inclosed in

greater)

or

<expression>|:fileid width|:precision| |

which is used to format numeric output.

Field width is an integer constant chat specifies

the number of character positions to use in

displaying value. The default is the minimum

number needed to express the value.

Precision is an integer or constant from one to six

characters that specifies the number of decimal

places to be used. The default is one digit.

12-27 Jan. '82

SECTION 12 - PASCAL INTRINSICS

Use: The first form of the statement skips to the next

line. It is used to skip a line or to begin output

on a new line.

The second form is used to output a series of

values and character strings. It is often used as

a prompt in interactive programs.

Note: WRITELN stops on the first space of the second

line. If a second line is being outputted, it will

start in the second print position.

Examples: 7

amount:= 55.347;

~ counter:=455;

name:='Homer';

Ex. l WRITE(amount);

WRITELN(counter) ;

WRITELN(name) ;

output: 5.5E+01455

Homer

Ex. 2 WRITE(nanme) ;

WRITELN;

WRITELN(amount ,counter) ;

output: Homer

5 .5E+01455

Change A, May '82 12-28 WRITELN

SECTION 12 - PASCAL INTRINSICS

Ex. 3 WRITELN:

WRITELN ('His name is ',name,'.');

output:

His name is Homer.

Ex. 4 WRITELN(LETTER,name); (* LETTER is a TEXT file *)

Ex. 5 RESET(PN,'PR:');

WRITELN(PN, amount,' ',counter,' ',name);

5.5E+O1 455 Homer (Result on printer)

WRITELN 12-29 Jan. '82

SECTION 12 - PASCAL INTRINSICS

12.4 CHARACTER ARRAY MANIPULATION INTRINSICS

Character arrays are often difficult to manipulate, especially when

they are packed. The intrinsics in this section simplify array

manipulations. However, they require a thorough understanding of

arrays in PASCAL.

These intrinsics are all byte oriented. Use them with care as no

range checking is performed on the kpassed parameters.

The following table summarizes the procedures presented in this

section.

Table 12-3. Character Array Manipulation Intrinsics

Heading Description

FILLCHAR Places a character into an array a specified

number of times.

MOVELEFT Moves characters from the left end of one string

to the left end of another.

MOVERIGHT As MOVELEFT but in the opposite direction.

SCAN Finds the distance a character is from a

starting point.

Jan. '82 12-30

SECTION 12 - PASCAL INTRINSICS

FILLCHAR Procedure

Function: Places a character into a packed array a specified

number of times.

Definition: PROCEDURE FILLCHAR(<array>:ARRAY;<length>: INTEGER;

<character>:CHAR)

Calling Format: FILLCHAR(<array>,<length>,<character>)

Arguments: The array must be a PACKED ARRAY of CHAR. The

character is a single character enclosed in quotes

or a variable of type CHAR. The length is the

number of characters to place in the array. It

must be an integer.

Use: The procedure transfers a character with only one

memory reference.

Note: The array may be subscripted. If it is, the

character will be placed in the array starting at

the indexed position.

Example: PROGRAM FILL(OUTPUT) ;

TYPE

ARR=PACKED ARRAY[({1..50] OF CHAR;

VAR

ARRI1 :ARR;

I : INTEGER;

BEGIN(*FILL*)

FOR I:=1 TO 10 DO

BEGIN

ARRI[I]:='A';

WRITELN(ARRI[I]) (* PRINTS 10 A's *)

END;

WRITELN;
FILLCHAR(ARR1,5,'B"); (* REPLACES FIRST FIVE

A's WITH B's *)

FOR I:=#l1 TO 10 DO

WRITELN(ARRI1[I]) (* PRINTS 5 B's and 5

A's *)

END. (* FILL *)

FP ILLCHAR 12-31 Change A, May '82

SECTION 12 - PASCAL INTRINSICS

MOVELEFT Procedure

Function:

Definition:

Calling Format:

Arguments:

Use:

Note:

Example: using:

Ex. l

Ex. 2

Ex. 3

Jan. '82

Moves a specified number of characters from the

left end of one string to the left end of another.

PROCEDURE MOVELEFT(VAR<source> ,<destination>: CHAR;

<length>: INTEGER)

MOVELEFT (<source>,<destination>,<length>)

<source> is in the source string and <destination>

is in the destination string. The length is the

number of characters to be moved. [It must be a

positive integer.

The procedure is used to transfer characters from

one part of a packed character array to another.

<source> and <destination> may be the same array.

If they are subscripted then the indexed positions

are assumed to be the left ends of the strings.

VAR str: STRING(31];

next : STRING[11];

str := 'This is the text in this string’;

next := 'Programming'; (* ALL EXAMPLES ARE BUILDING *)

MOVELEFT(str{1],str{3],10); WRITELN(str);

output: 'ThThThThThThtext in this string'

MOVELEFT(str[{17],str{3],9); WRITELN(str);

output: 'Th in this htext in this string’

MOVELEFT(str({1ll],str[{12],1); WRITELN(str);

output: 'Th in this text in this string’

MOVELEFT(next,str,11); WRITELN(str) ;

output: ‘Programming text in this string'

12-32 MOVELEFT

SECTION 12 - PASCAL INTRINSICS

MOVERIGHT Procedure

Function:

Definition:

Calling Format:

Arguments:

Use:

Note:

Examples: using:

Ex. l

Ex. 2

MOVERIGHT

Moves a specified number of characters from che

right end of one string to the right end of

another.

PROCEDURE MOVERIGHT(VAR<source> ,<destination>:CHAR;

<length>: INTEGER)

MOVERIGHT (<source>,<destination>,<length>)

<source> is in the source string and <destination>

is in the destination string. The length is the

number of characters to be moved. It must be a

positive integer.

The procedure is used to transfer characters from

one part of a packed character array to another.

<source> and <destination> may be in the same

array. If they are subscripted then the indexed

positions are assumed to be the left end of the

strings.

VAR str: STRING(31];

next : STRING(11];

str := 'This is the text in this string’;

next := 'Programming'; (* ALL EXAMPLES ARE BUILDING *)

MOVERIGHT(str[{1], str[3],10) ' WRITELN(str);

output: ThThis is thtext in this string

MOVERIGHT(str[{17],str(3],9); WRITELN(str);

output: Th in this htext in this string

12-33 Jan. '82

SECTION 12 - PASCAL INTRINSICS

Ex. 3 MOVERIGHT (next,str,11); WRITELN(str);

output: Programminghtext in this string

Ex. 4 MOVERIGHT (next[1],next[5],5); WRITELN(next)

output: ProgrProgrng

Jan. '82 12-34 MOVERIGHT

SECTION 12 - PASCAL INTRINSICS

SCAN Function

Function:

Definition:

Calling Format:

Arguments:

Use:

Note:

SCAN

Returns the distance a character is from a

specified starting point in a string.

FUNCTION SCAN(<length>: INTEGER;<partial expression>

;<array>:CHAR): INTEGER

SCAN(<length>,<partial expression>,<array>)

The length is a positive or negative integer. The

partial expression is either an equal (=) or not

equal (<>) sign followed by a character expression.

The array should be a PACKED ARRAY of CHAR and may

be subscripted to denote the starting point.

SCAN determines the number of characters from the

starting position to a character expression. It is

often used in conjunction with MOVELEFT and

MOVERIGHT.

The value returned by the function will be either

the specified length or the number of characters

from the starting position to the first occurrence

of the character expression. The length will be

returned if the character is not in the array. If

it is in the starting position the resultant value

will be zero.

If the length is a negative integer, the function

will scan backward from the starting position and

the returned value will be negative.

12-35 Jan. '82

SECTION 12 - PASCAL INTRINSICS

Examples:

Ex.

Ex.

Jan.

4

"82

Using the packed array, arr, with the value:

"There he goes again.'

SCAN(15, ='T',arr) = 0

SCAN(10, <> 'T',arr) =1

SCAN(10, 'g',arr[6]) = 4

SCAN(100, = 'z',arr) = 100

SCAN(-10, = ‘e',arr({10]) = -2

12-36 SCAN

SECTION 12 - PASCAL INTRINSICS

12.5 MATHEMATICAL FUNCTIONS

Monroe PASCAL contains predefined functions that perform mathematical

functions. Table 12-4 summarizes the functions that are available.

A detailed description of each function follows this table.

Table 12-4. PASCAL Mathematical Functions

Function Description

ABS Returns the absolute value of a value.

ARCTAN Returns the arctangent of a value.

cos Returns the COS of a value.

EXP Returns the exponential function of a value

(i.e., e VERE

LN Returns the material logarithm of a value

(i.e., loge value, |

LOG Returns the common logarithm (base 10) of a

value.

MOD Returns the remainder when one integer is

divided by another.

ODD Returns a BOOLEAN value specifying whether an

integer is odd.

ROUND Returns the integer representation of a REAL

number (rounded).

SIN Returns the sine of a value.

SQR Returns the square of a number.

SQRT Returns the square root of a number.

TRUNC Returns the INTEGER representation of the

decimal portion of a REAL number

(truncated).

12-37 Jan. '82

SECTION 12 — PASCAL INTRINSICS

ABS Function

Function:

Definition:

Calling Format:

Argument:

Use:

Note:

Examples:

Ex.

Ex.

Jan.

2

"82

Returns the absolute value of a number.

FUNCTION ABS(<value>:REAL or INTEGER):REAL or INTEGER

ABS(<value>)

The value may be any constant, variable, or

expression that represents a number.

The ABS function is used when the value being

sought must be positive. It is often used in

conjunction with SQRT.

The type of the output will be the same as the

input type.

WRITELN(ABS(-1):10,ABS(-2.5):10,ABS(5.2):10);

output: 1 2.5 5.2

VAR length,X1,X2,Y1,Y2:REAL;

length := SQRT(ABS(SQR(X2-X1)+SQR(Y2-Y1)));

12-38 ABS

SECTION 12 - PASCAL INTRINSICS

ARCTAN Function

Function:

Definition:

Calling Format:

Argument:

Use:

Note:

Examples:

Ex. 1

Ex. 2

ARCTAN

Returns the value of the arctangent of a number.

FUNCTION ARCTAN(<value>: REAL) : REAL

ARCTAN(<value>)

The value may be a numeric constant, a number, a

variable with a numeric value or an expression.

The ARCTAN function is used for trigonometric

calculations.

The ARCTAN function acts on a radian value and

returns a REAL value in radians.

WRITELN(ARCTAN(0.5):13:4);

output: 4.636E-0

VAR arctanY,Y:REAL;

arctanY := ARCTAN(Y);

12-39 Jan. '82

SECTION 12 - PASCAL INTRINSICS

COS Function

Function: Returns the cosine of a value.

Definition: FUNCTION COS(<value>: REAL) :REAL

Calling Format: COS(<value>)

Argument: The value may be a numeric constant, a number, a

variable with a numeric value or an expression.

Use: The COS function is used for trigonometric

calculations.

Note: The value is in radians, not in degrees. The value

that is returned is REAL and should be formatted

for greater accuracy.

Examples:

Ex. 1 WRITELN(COS(0.5):13:4);

output: 8./776E-01

Ex. 2 _ VAR X,tanX: REAL;

X := 3;

tanx := SIN(x)/COS(x);

Jan. '82 12-40 cos

SECTION 12 -— PASCAL INTRINSICS

EXP Function

Function:

Definition:

Calling Format:

Argument:

Use:

Note:

Examples:

Ex. l

Ex. 2

EXP

Returns the exponential function of a value.

FUNCTION EXP(<value>: REAL): REAL

EXP(<value>)

The value may be a number, a numeric constant, a

variable with a numeric value or an expression.

The EXP function is used in calculations that

involve the factor e.

The most common mathematical representation of

EXP(X) is e*,

WRITELN(EXP(.5):13:4);

output: 1.649E00

VAR E;X:REAL;

E := 5.0*EXP(X)+2*x;

12-41 Jan. '82

SECTION 12 — PASCAL INTRINSICS

LN Function

Function:

Definition:

Calling Format:

Argument:

Use:

Examples:

Ex. l

Ex. 2

Jan. '82

Returns the natural logarithm of a value.

FUNCTION LN(<value>: REAL) : REAL

LN(<value>)

The value must be a number greater than zero.

The LN function is often used in calculations

involved in graphing.

WRITELN(LN(0.5):13:4);

output: -6.931E-01

VAR _—sX, Y: REAL;

Y := LN(2*X+5.0);

12-42 LN

SECTION 12 - PASCAL INTRINSICS

LOG Function

Function: Returns the logarithm of a number.

Definition: FUNCTION LOG(<value>: REAL): REAL

Calling Format: LOG(<value>)

Argument: The value may be a number, a numeric constant, a

variable with a numeric value or an expression.

Use: Logarithms are often used to simplify arithmetic on

very large or very small numbers.

Note: The function returns a REAL value.

Examples:

Ex. l WRITELN(LOG(0.5):13:4);

output: -3.010E-01

Ex. 2 VAR Y,X: REAL;

Y := 2*LOG(X+5);

LOG 12-43 Jan. '82

SECTION 12 - PASCAL INTRINSICS

MOD Function

* Function:

Definition:

Calling Format:

Argument:

Examples:

Ex. l

Jan. '82

Returns the remainder when two integers are

divided.

FUNCTION(<value>: INTEGER MOD <value>: INTEGER):

INTEGER

<value> MOD <value>

Both values may be any constant, variable, or

expression that represents an INTEGER.

Since it finds the remainder after division, MOD is

often used to test if the division came out even.

The first value is divided by the second.

Therefore, the second number cannot be equal to

zero. Also, anything MOD one will always equal

Zero.

If the first value is positive, the result is

positive. If it is negative, the result is

negative. This is regardless of the value of the

second value.

WRITELN(2 MOD 3:10,3 MOD 2:10 -4 MOD 3:10, -5 MOD—2

210); ,

output: 2 l -1 -1

12-44 MOD

“4

SECTION 12 — PASCAL INTRINSICS

Ex. 2 VAR 1: INTEGER;

IVAL : STRING(5];

IF(I MOD 2 = 0)
THEN IVAL := 'EVEN'

ELSE IVAL := 'ODD';

MOD 12-45 Jan. "82

SECTION 12 -— PASCAL INTRINSICS

ODD Function

Function:

Definition:

Calling Format:

Argument:

Use:

Example:

Jan. "82

Returns a BOOLEAN value specifying when an integer

is odd.

FUNCTION ODD(<value>: INTEGER) :BOOLEAN

ODD(<value>)

The value may be any constant, variable, or

expression that represents an INTEGER value.

The ODD function is often used to determine if a

group has an even or odd number of elements. If

there are an odd number of elements this function

returns a true value. This is especially useful in

calculating medians and the like.

VAR counter: INTEGER;

truth:CHAR;

. e
e

IF ODD(counter)

THEN truth := 'Y'

ELSE truth := 'N';

12-46 ODD

SECTION 12 -— PASCAL INTRINSICS

ROUND Function

Function:

Definition:

Calling Format:

Argument:

Note:

Examples:

Ex. l

Ex. 2

ROUND

Returns the INTEGER representation of a REAL number

by rounding it to the closest integer.

FUNCTION ROUND(<value>: REAL) : INTEGER

ROUND(<value>)

The value may be any constant, variable, or

expression that represents a REAL number.

ROUND is often used to increase the accuracy when

converting a REAL to an INTEGER.

If the REAL value has a five in the tenths place

and the value is positive, PASCAL will round up.

If it is negative, it will round down.

WRITELN(ROUND(1.3):10,ROUND(1.6):10,ROUND(1.5):10,

ROUND(-2.5):10);

output: l 2 2 ~3

VAR X: REAL;

IF ROUND(X) = TRUNC(X) THEN ...

12-47 Jan. '82

SECTION 12 ~ PASCAL INTRINSICS

SIN Function

Function: Returns the sine of a value.

Definition: FUNCTION SIN(<value>: REAL): REAL

Calling Format: SIN(<value>)

Argument: The value may be a numeric constant, a number, a

variable with a numeric value, or an expression.

Use: The SIN function is used in calculating

trigonometric functions.

Note: The value mst be in radians, not in degrees. When

the value is outputted, it should be formatted for

greater accuracy.

Examples:

Ex. l WRITELN(SIN(0.5):13:4)

output: 4.794E-01

Ex. 2 VAR X:REAL;

X := 1;

WRITELN(SIN(x):13:4)3

output: 8.415E-01

Jan. '82 12-48 SIN

SECTION 12 - PASCAL INTRINSICS

SQR Function

Function:

Definition:

Calling Format:

Argument:

Use:

Note:

Ex. 2

SQR

Returns the square of a value.

FUNCTION SQR(<value>:REAL or INTEGER):REAL or

INTEGER

SQR(<value>)

The value may be a number, a numeric constant, a

variable with a numeric value, or an expression.

Numbers are often squared in calculations.

If the value that is squared is REAL, the result

will be REAL; if it is INTEGER, the result will be

an integer.

WRITELN(SQR(5.2):13:4,SQR(7):10);

output: 2.704E+01 49

VAR -X,Y,result: REAL;

result := SQR(X-1)+SQR(Y-4);

12-49 Jan. '82

SECTION 12 - PASCAL INTRINSICS

SQRT Function

Function: Returns the square root of a number.

Definition: FUNCTION SQRT(<value>: REAL) :REAL

Calling Format: SQRT (<value>)

Argument: The value must be greater than or equal to zero.

Use: Many square roots of numbers are taken in

calculations. Perhaps the best-known example is in

the formula for the distance between two points in

graphing.

Examples:

Ex. 1 WRITELN(SQRT(.5):13:5)3

output: 7.071E-01

Ex. 2 VAR X,Y,dist:REAL;

dist := SQRT(SQR(X)+SQR(Y));

Jan. '82 12-50 SQRT

SECTION 12 — PASCAL INTRINSICS

TRUNC Function

Function: Returns the INTEGER representation of the decimal

portion of a REAL number which has been truncated.

Definition: FUNCTION TRUNC(<value>: REAL) : INTEGER

Calling Format: TRUNC(<value>)

Argument: The value may be any constant, variable, or

expression that represents a REAL number.

Use: It is often used when converting REALs to INTEGERs

for further calculations.

Note: The input to the function is REAL but the output is

INTEGER. The result is not necessarily the integer

that is closest to the input.

Examples:

Ex. l WRITELN(TRUNC-0.2);10,TRUNC(2.6):10);

output: 0 2

Ex. 2 VAR in: REAL;

out: INTEGER;

out :* TRUNC(in*2);

TRUNC 12-51 Jan. '82

SECTION 12 — PASCAL INTRINSICS

12.6 MISCELLANEOUS ROUTINES

The functions and procedures presented in this section are useful in

diverse applications of PASCAL. They are summarized in Tables 12-5

and 12-6.

Table 12-5. Miscellaneous Intrinsics

Item

DATE

DISPOSE

EOLNCHR

EXIT

GOTOXY

HALT

MARK

NEW

OPTION

RELEASE

SIZEOF

STARTPAR

SVC

TIME

PWROFTEN

OUT

INP

Description

Gives the date.

Returns allocated memory to the heap.

Returns an integer value representing a

termination.

Results in an orderly exit.

Sends the cursor to specified positions on the

screen.

Terminates the execution of a PASCAL program.

Sets a pointer to the current top-of-heap of

available memory.

Allocates space from the heap.

Returns the starting switches.

Sets the top-of-heap pointer for the available

memory to the specified pointer.

Returns the number of bytes a variable or type

identifier represents.

Holds the starting parameters.

Executes Supervisor Calls.

Gives the time since the system was last booted.

Returns a REAL result of the number 10 raised to

the power of the integer parameter supplied.

Writes a value to a point.

Returns an integer value from an I/O port.

Table 12-6. Logical Intrinsics

Item

IXOR

IOR

TAND

ISHIFT

ISWAP

Change A, May ‘82

Description

Performs exclusive OR operation.

Performs OR operation.

Performs AND operation.

Returns an integer result from a shift operation.

Returns an integer with low and high byte swapped.

12-52

SECTION 12 - PASCAL INTRINSICS

DATE Function

Function: Returns the date.

Definition: FUNCTION DATE:STRING

Calling Format: DATE

Arguments: None.

Use: The DATE function can be used to set switches or to

date program corrections.

Note: The date is returned in a string in the format

“YYYY-MM-DD" where the Y's represent the year, the

M's represent the month, and the D's represent the

day.

ADDY) *
&

The date must be set every day.

Example: WRITELN(DATE);

output: 1981-09-04

DATE 12-53 Jan. '82

SECTION 12 - PASCAL INTRINSICS

DISPOSE Procedure

Function: Returns allocated memory to the heap.

Definition: PROCEDURE DISPOSE(<ptr>: POINTER)

Calling Format: DISPOSE(<ptr>)

Arguments: <ptr> is a dynamic pointer variable previously

allocated memory using NEW(<ptr>).

Use: To return a linked list of free space to the heap.

Note: When the DISPOSE procedure is executed, the memory

is placed onto the linked list of available free

Space. This list is then searched for a suitably

large space when a NEW is executed. The list is

cleared when a RELEASE is executed.

Example: TYPE pointer = into;

Jan.

into = RECORD

link : pointer;

data : STRING([25]

END;

VAR next : pointer;

BEGIN

NEW(next) ; (* allocate *)

DISPOSE(next); (* deallocate *)

END.

*82 12-54 DISPOSE

SECTION 12 -— PASCAL INTRINSICS

EOLNCHR Function

Function:

EOLNCHR

Returns an integer which is a termination character

detected by READLN in the last line of input from

the console.

EOLNCHR

EOLNCHR is used to detect the CR character (13

decimal) as well as the value of the function keys

if they are pressed during the execution of the

READLN.

The console has eight function keys labelled F1/F9

through F8/F16.

A programmer can assign various functions to the

function keys, e.g., cursor movenemts, write data,

read data, update data or a jump to a program

module.

The function keys can produce 32 different ASCII

values as shown in Table 12-6.

Table 12-7. Function Key ASCII Values

Shift | Key |Normal | | CTRL |Shift+CTRL |

| ¥F1/F9 | 128 | 136 | 144 | 152
| ¥F2/F10O | 129 | 137 | 145 | 153 |
| ¥F3/Fll | 130 | 138 | 146 | 154 |

| F4/F12 | 131 | 139 | 147 | 155 |

| FS/F13 | 132 | 140 | 148 | 156 |

| F6/F14 | 133 | 141 | 149 | 157 |

| F7/F15 | 134 | 142 | 150 | 158 |
| ¥F8/Fl16 | 135 | 143 | 151 | 159 |

RETURN	13			
RUN	208			
LoaD	209			
CONTINUE	210			
HOME	199			

| 7 | 197 | | | |
| 4 | 198 | | | |

12-55 Change A, May '82

SECTION 12 - PASCAL INTRINSICS

In addition, the RETURN, RUN, LOAD, CONTINUE and

certain cursor keys act as terminators.

Example: program exp50(input,output); (* TEST EOLNCHR *)

CONST

CR='(:13:)'

Fl='(:128:)'

var

index:integer;

letter:string;

(* program will detect CR or Fl keypress *)

begin

for index:=1 to 10 do

begin

readln(letter);

case eolnchr of

CR:writeln('CR pressed');

Fl:writeln('function key Fl

pressed');

end (*case*)

end (*for*)

end. (*exp50*)

Change A, May '82 12-56 EOLNCHR

SECTION 12 - PASCAL INTRINSICS

EXIT Procedure

Function:

Format:

Argument:

Example:

EXIT

Results in an orderly exit froma procedure,

function or main program.

EXIT(<identifier>)

Identifier is the name of a procedure, function,

program name or the word PROGRAM.

Following the execution of EXIT, processing

continues at the final end statement in the

procedure name. The procedure name need not be the

procedure currently under execution. If the

procedure has not been invoked when the EXIT is

executed, a run time error will occur. If the

procedure identifier passed to EXIT is a recursive

procedure, the most recent inovation of that

procedure will be exited. When an EXIT of a

function contains no assignment to the function

identifier, an undefined value will be returned.

EXIT brings the program to an orderly halt when the

program name or reserved word PROGRAM is used as

the parameter for EXIT.

program expl0; (* test exit *)

var

index: integer;

procedure testexit;

begin

writeln('procedure testexit');

index: =10;

if index=10 then exit(testexit)

else writeln('noexit');

end;

begin

testexit;

end.

12-57 Jan. '82

SECTION 12 - PASCAL INTRINSICS

GOTOXY Procedure

Function:

Definition:

Calling Format:

Arguments:

Examples:

Sends the cursor to specified coordinates.

PROCEDURE GOTOXY(<x-coordinate>,<y~coordinate>:

INTEGER)

GOTOXY(<x-coordinate>,<y-coordinate>)

X-coordinate and Y-coordinate are both integers

such that

O< X-coordinate < 80

6) < Y-coordinate < 22

GOTOXY is used extensively in graphing.

(0,0) is the top left corner of the screen. If

either coordinate goes out of range the edge

coordinate (0,22, or 80) will be used instead.

There is no window clipping.

I :2 1;

READLN(X[{I],Y{(1I];

WHILE X{I] > = 0 DO

BEGIN

I := I+l;

READLN(X([I],Y({I]}) (* read in coordinate pairs *)

END; (%* WHILE *)

FOR K := 1 TOL

DO BEGIN

GOTOXY(X[K] ,Y{K]);

WRITE('X') (* mark the position *)

END; (* FOR *)

GOTOXY(-5,27)

would go to position (0,22).

12-58 GOTOXY

SECTION 12 — PASCAL INTRINSICS

HALT Procedure

Function:

Format:

‘Example:

HALT

Terminates the execution of a PASCAL program.

HALT

The HALT statement is used to terminate the

execution of a PASCAL program. The statement is

normally used when a total error occurs.

When running in CSS-mode (see Section 14) an

internal error is generated when the HALT statement

is executed. If the CSS command $TEST has been

given, the CSS-processor continues to execute CSS

commands. If not, the CSS is stopped. It is

possible to detect the execution of a HALT

introduction by using the command "S$SIF ERROR".

The IF command will obtain the value true if the

previous PASCAL program executed a HALT

instruction.

program expl; (* test halt *)

const

unit=10;

var

error: boolean;

item:integer;

begin

item:=10;

if item=unit then error:=true

else error:=false;

if error=true then halt

else writeln('continue');

end.

12-59 Jan. '82

SECTION 12 - PASCAL INTRINSICS

MARK Procedure

Function: Sets a pointer to the top-of-heap of the available

free memory. The address of the heap is stored in

the pointer.

Definition: PROCEDURE MARK(<pointer var>: POINTER)

Calling Format: MARK(<pointer var>)

Arguments: The pointer variable must be declared pointer type.

See Section 10 for more details.

Use: MARK is used in conjunction with RELEASE to return

unneeded dynamically allocated memory to the

system.

Note: MARK should be followed by RELEASE.

Example:

Ex. 1 WHILE rear <> front DO

BEGIN

WRITELN(front .food);

heapptr := front;

front := front .link; (* update the queue's pointer *)

MARK(heapptr); (* set heapptr to the top of the stack *)

RELEASE(heapptr) (* release the record *)

END; (* WHILE *)

Jan. '82 12-60 MARK

SECTION 12 - PASCAL INTRINSICS

Ex. 2 program heaptest;

type

ptl=“person;

pt2="integer;

person=record

name:string[10];

ssnum:string([10];

address:string[10];

end;

var

Pp, r:ptl;

heap: pt2;

heapcount : integer;

begin

mark(heap);

new(p);
p~.name:='john smith';

p*.ssnum:='132-46-846';

p*.address:='1234 104st';

writeln(p*.name,p*.ssnum, p~.address) ;

release(heap) ;

writeln(p*.name,p~.ssnum, p~.address) ;

end.

MARK 12-61 Jan. '82

SECTION 12 - PASCAL INTRINSICS

NEW Procedure

Function:

Definition:

Calling Format:

Arguments:

Use:

Note:

Example:

Jan. '82

Allocates space from the heap.

PROCEDURE NEW(<ptr>: POINTER)

NEW(<ptr>)

<ptr> is a dynamic pointer variable.

NEW allocates space from the heap for dynamic

variables.

The pointer points to the free space in the heap

after the NEW procedure is executed. The amount of

space is determined by the type that the pointer

points to.

Executing a second NEW procedure does not return

old space. DISPOSE or RELEASE must be used for

this.

TYPE pointer = into;

into = RECORD

link : pointer;

data : INTEGER

END;

VAR first, next, last : pointer

BEGIN

NEW (first);

NEW (next);

NEW (last);

END.

12-62 NEW

SECTION 12 - PASCAL INTRINSICS

OPTION Function

Function:

Definition:

Calling Format:

Arguments:

Example:

OPTION

Returns the switches that represent the options

that were chosen when PASSYS or PASCAL was

executed.

FUNCTION OPTION:STRING

OPTION

None.

This function is often used when testing an option

against the current condition.

There are twenty-six switches, each one bit long so

OPTION returns four bytes.. Each switch corresponds

to a letter in the alphabet and is a one if the

switch is set, zero if it is net. The bytes may

not form a recognizable character so it usually

cannot be written out.

For the possible switches and their meanings, look

at the System programs' options in Section 13.

for : PASCAL,AK userprog

BIT O in OPTIONS(1] and Bit 2 in OPTIONS[2]

would be 1's, the rest would be zeroes.

12-63 Jan. '82

SECTION 12 — PASCAL INTRINSICS

RELEASE Procedure

Function:

Definition:

Calling Format:

Arguments:

Use:

Note:

Examples:

Jan. '82

Sets the top-of-heap pointer to the memory location

of the pointer variable.

PROCEDURE RELEASE(<pointer var>: POINTER)

RELEASE(<pointer var>)

The pointer must be declared pointer type. See

Section 9 for more details.

RELEASE is used in conjunction with MARK to return

unneeded dynamically allocated memory to the

system.

RELEASE should always follow MARK. Also, all

objects allocated between the MARK and RELEASE are

deallocated and should not be referenced.

MARK(free);

NEW(X);

NEW(Y);

NEW(Z);

RELEASE(free); (* Return space from X, Y, and Z *)

12-64 RELEASE

SECTION 12 - PASCAL INTRINSICS

SIZEOF Function

Function:

Description:

Calling Format:

Arguments:

Note:

Examples:

Ex. l

Ex. 2

SIZEOF

Returns the number of bytes in memory that are

assigned to an identifier.

FUNCTION SIZEOF(<identifier>): INTEGER

SIZEOF(<identifier>)

The identifier is a user-defined variable or type

identifier.

SIZEOF is particularly useful for the FILLCHAR,

MOVELEFT and MOVERIGHT intrinsics.

The result is in bytes, not characters.

TYPE rec: RECORD

link: INTEGER;

data:REAL

END;

VAR value: INTEGER;

next :REAL;

name : CHAR;

WRITELN(SIZEOF (value) :10,SIZEOF(name):10,SIZEOF(next):10);

output: 2 2 &

WRITELN(SIZEOF (rec));

output: 6

12-65 Jan. '82

SECTION 12 - PASCAL INTRINSICS

STARTPAR Function

Function: Returns the characters that are written after the

code-file name when a program is executed.

Definition: FUNCTION STARTPAR: STRING

Calling Format: START PAR

Arguments: None.

Use: It allows the user to access the parameters that

were appended to the filename.

Note: The function returns the characters as a STRING.

Examples: for PASCAL PASC: userprog ,ABC123

WRITELN(STARTPAR) ;

output: ABC123

Jan. '82 12-66 START PAR

SECTION 12 - PASCAL INTRINSICS

Svc Function

Function:

Definition:

Calling Format:

Arguments:

Note:

SVC

GoeLe Toe bench L GeTtef PER VINA Be

Executes Supervisor Calls and returns a false value

if the SVC was in error.

FUNCTION SVC(<n>: INTEGER;<parameter block>: PACKED

RECORD) : INTEGER

SVC(<n>,<parameter block>)

n is the SVC-number. The list of SVC's and their

associated numbers are given below. The parameter

block formats may be found in the Monroe Operating

System Programmer's Reference Manual.

This function allows the execution of SVC's so the

operating system can be called to perform special

tasks.

The function returns a False value if the SVC was

in error. Otherwise, it returns a True value.

The Supervisor Calls and their associated numbers

are listed below. Each of the calls is discussed

in detail in the Monroe Operating System

Programmer's Reference Manual.

Function

General Purpose I/O Requests

Memory Handling (2.1)

Log Message (2.2)

Pack File Descriptor (2.3)

Pack Numeric Data (2.4)

Nm

=
|p

Unpack Binary Number (2.5)

Fetch/Set Rate/Time (2.7)

Scan Mnemonic Table (2.8)

Open/Close Device (2.12)

12-67 Jan. '82

SECTION 12 - PASCAL INTRINSICS

Function

Timer Requests

Task Device

Loader Handling

Task Request

File Request

o
n

nD

UW

F&F

W
I

Resource Handling

Caution: Incorrect use of the SVC's can crash the

system.

Example: TYPE line =

RECORD

CASE BOOLEAN OF

TRUE : (I : INTEGER);

FALSE : (S : STRING)

END; (* line *)

byte = 0..255; (* 1 byte *)

SVC1B = PACKED RECORD (* Parameter block *)

TS,LV,RS,FC : byte; |
BAD : line;

BSZ, BCNT, RND, RND2 : INTEGER;

END; (* SVCI1B *)

VAR SVCl : SVCI1B;

RESULT : BOOLEAN;

BEGIN

(* assign values to the various fields of SVCl *)

RESULT := SVC(1,SVC1);

(Refer to the actual parameter block in the Monroe

Operating System Programmer's Reference Manual for

a better understanding of SVCl.)

Jan. ‘82 12-68 SVC

SECTION 12 - PASCAL INTRINSICS

TIME Function

Function:

Definition:

Calling Format:

Note:

_ Example:

TIME

Returns the system time or if the system time was

not set, the elapsed time since the system was last

booted.

FUNCTION TIME:STRING

TIME

None.

The TIME function helps in detecting infinite

loops. It can also be used to store the time

associated with a particular data entry.

The function is returned in a string in the form

HH.MM.SS where “H's” represent the hour 01-23, M's

represent the minutes, and S's represent the

seconds.

The time is reset automatically to 00-00-00 each

time the computer is booted. To set the system

time, use the TIME Utility. «Refer to the 8800
Series Utility Programs Programmer's Reference

Manual for details.

WRITELN(TIME) ;

output: 01.52.39

12-69 Change A, May '82

SECTION 12 - PASCAL INTRINSICS

INP Function

Function: ~

Definition:

Calling Format:

Arguments:

Use:

Example:

Change A, May '82

Returns the integer value from a port number.

FUNCTION INP(<PORT>) : INTEGER

INP(<PORT>) ;

PORT is an I/O number. Refer to Table K-l for the

port numbers.

INP is used to input an integer value from an 1/0

port, such as the communications interface.

J:=INP(164);

12-70 INP

SECTION 12 — PASCAL INTRINSICS

OUT Procedure

Function:

Definition:

Calling Format:

Arguments:

Use:

Example:

out

Writes a value to a port.

PROCEDURE OUT(<PORT>,<DATA>) : INTEGER

OUT (<PORT> ,<DATA>) ;

PORT is an I/O. Refer to Table K~-1 for the port

numbers.

This procedure is used to pass an INTEGER value to

an output port, such as the communications

interface.

OUT (164, DATA);

e
°
e

12-71 Change A, May '82

SECTION 12 — PASCAL INTRINSICS

PWROFTEN Function

Function: Returns a REAL result of the number 10 raised to

the power of the integer parameter supplied.

Definition: FUNCTION PWROFTEN(<VALUE>: INTEGER) : REAL

Calling Format: PWROFTEN(<VALUE>) ;

Arguments: VALUE is type INTEGER.

Use: This function converts an integer parameter to its

exponential form.

Example: Declaration:

VAR

result:real;

value: integer;

Main Section:

value:=4;

result: =pwroften(value) ;

writeln(result)

end.

Output:

1.0E+04

Change A, May '82 12-72 PWROFTEN

SECTION 12 - PASCAL INTRINSICS

Logical Intrinsics

IAND Function

Function:

Definition:

Calling Format:

Arguments:

Use:

Example:

PROGRAM IANDC;

VAR

Performs a bitwise AND operation.

FUNCTION IAND(<VAL1>,<VAL2>: INTEGER) : INTEGER

IAND(<VAL1> ,<VAL2>) ;

VALI and VAL2 are type INTEGER.

IAND is used for bitwise ANDing of INTEGER values.

RESULT _: INTEGER;

PN : TEXT ;

BEGIN

RESET(PN,'PR:');

RESULT:=IAND(1,2); (* BIT VALUE 1200000001, 2=00000010 *)

(* 1 AND 2 = 00000000 = 0 *)

WRITELN(PN,RESULT); (* RESULT=0 *)

RESULT :=IAND(5,14); (* BIT VALUE 5=00000101, 14=00001110 *)

(* 5 and 14 = 00000100 = 4 *)

WRITELN(PN,RESULT); (* RESULT=4 *)

RESULT: =IAND(28,27);(* BIT VALUE 28=#00011100,27=00011011 *)

WRITELN(PN,RESULT) (* RESULT=24 *)

END.

TAND 12-73 Change A, May '82

SECTION 12 — PASCAL INTRINSICS

IOR Function

Function: Performs a bitwise OR operation.

Definition: FUNCTION IOR(<VALL>,<VAL2>: INTEGER) : INTEGER

Calling Format: IOR(<VALI1>,<VAL2>) ;

Arguments: VAL1 and VAL2 are type INTEGER.

Use: IOR is used for bitwise ORing of INTEGER values.

Example:

PROGRAM IORC;

VAR

RESULT :INTEGER;

PN :TEXT;

BEGIN

RESET(PN,'PR:");

RESULT: =IOR(1,2); (* BIT VALUE 1=00000001, 2=00000010 *)

- (* 1 or 2=00000011=3 *)

WRITELN(PN, RESULT) ;

RESULT: =I0R(5,14);

WRITELN(PN, RESULT) ;

RESULT: =I0R(28,27);

WRITELN(PN, RESULT)

END.

Change A, May '82

(* RESULT =3 *)

(* BIT VALUE 5=00000101, 14=0001110 *)

(* 5 OR 14=#00001111=15 *)

(* RESULT = 15 *)

(* BIT VALUE 28200011100, 27=00011011 *)

(* 28 OR 27=200011111=31 *)

(* RESULT = 31 *)

12-74 IOR

SECTION 12 - PASCAL INTRINSICS

ISHIFT Function

Function:

Definition:

Calling Format:

Arguments:

Example:

Returns an integer result from the operation of

shifting a variable left or right.

FUNCTION ISHIFT(<value>,<direction>: INTEGER) : INTEGER

ISHIFT(<value>,<direction>) ;

Value is type INTEGER.

Direction steps to the left or right depending on

the sign of direction. The range is

-15 < direction < 15.

Positive direction is LEFT SHIFT.

Negative direction is RIGHT SHIFT.

ISHIFT is used to shift the bit positions in the

positive or negative direction. The operation is

equivalent to:

2 raised to the power of ‘direction’ times 'value'.

PROGRAM ISHIFTC(OUTPUT);

VAR

C : INTEGER;

PN :TEXT;

BEGIN

RESET (PN, 'PR:')

C:=ISHIFT(5,2);

WRITELN(PN,C);

C:=ISHIFT(3,4);

WRITELN(PN,C);

C:=ISHIFT(2,6);

WRITELN(PN,C)
END.

ISHIFT

(* 2 TO THE POWER OF 2 TIMES 5 *)

(* C=20 *)

(* 2 TO THE POWER OF 4 TIMES 3 *)
(* C=48 *)
(* 2 TO THE POWER OF 6 TIMES 2 *)
(* C=128 *)

12-75 Change A, May '82

PROGRAM LowArtl;
VAR

RESULT : INTEGER;
PN : TEXT ;

BEGIN
RESET(PN,'PR:');

RESULT :=ISWAP(1);

WRITELN(PN, RESULT) ;

RESULT : =1SWAP(3) ;

WRITELN(PN , RESULT) ;

RESULT : =LSWAP(2) ;

WRITELN(PN , RESULT)

END.

Change A, May "82

(* BIT VALUE 1=00000000000000001 *)

(* BIT VALUE FOR SWAP 1=000000010000U0000=256 *)

(* RESULT=256 *)

(* BIT VALUE 3=0000000000000011 *)

(* BIT VALUE FOR SWAP 3=0000001100000000=768 *)

(* RESULT=768 *)

(* BIT VALUE 2=0000000000000010 *)

(* BIT VALUE FOR SWAP 2=0000001000000000#512
*)

(* RESULT=512 *)

12-76
ISWAP

SECTION 12 - PASCAL INTRINSICS

IXOR Function

Function:

Definition:

Calling Format:

Arguments:

Use:

Example:

PROGRAM IXORC;

VAR

Performs a bitwise exclusive OR.

FUNCTION LXOR(<VAL1>,<VAL2>: INTEGER) : INTEGER;

IXOR(<VALI1>,<VAL2>) ;

VALI and VAL2 are INTEGER;

IXOR is used for bitwise exclusive oring of INTEGER

values.

RESULT :INTEGER;

PN :TEXT ;

BEGIN

RESET(PN,'PR:');

RESULT: =IXOR(1,2); (* BIT VALUE 1=00000001, 2=00000010 *)

(* 1 XOR 2500000011=3 *)

WRITELN(PN,RESULT); (* RESULT = 3 *)

RESULT :=I1X0OR(5,14); (* BIT VALUE 5=00000101, 14200001110 *)

(* 5 XOR 14=00001011=11 *)

WRITELN(PN,RESULT); (* RESULT = 11 *)

RESULT: =LXOR(28,27); (* BIT VALUE 28 = 00011100, 27200011011 *)

(* 28 XOR 27=00000111=7 *)

WRITELN(PN, RESULT) (* RESULT = 7 *)

END.

IXOR 12-77 Change A, May '82

SECTION 13

SYSTEM PROGRAMS AND CSS-FILES

SECTION 13

SYSTEM PROGRAMS AND CSS-FILES

13.1 INTRODUCTION

The PASCAL compiler generates a pseudo-machine code (called p-code).

An interpreter is needed to interpret the p~code into machine code so

the program can be executed. There are two interpreters available:

PASSYS - to execute PASCAL system programs. {~~ Weta’ BES

PASCAL — to execute user programs. Vex 215904

The following system programs, commands, and modes are also

available:

PASCOMP -<- to compile PASCAL text files. biniac 2G0%%

PASCROSS — to create a cross-reference list. ~' ~ LIF

PASDEL - to delete files. Oo =D

PASDUMP - to dump files See

PASLIB. - to create and update a PASCAL P-code library. >-~- ‘*

PASLINK <- to link precompiled text files or library modules (+

into an executable ortput file.

PASOBJ <- to interpret PASCAL P-code into object code. 7. “

PASPRINT - to list text files (e

YL CSS Mode to instruct the interpreter to execute CSS commands

ina user-specified program file.

Each of the above is described in detail in this section.

13-1 Jan. '82

SECTION 13 -— SYSTEM PROGRAMS AND CSS-FILES

PASCAL Interpreter

Function:

Format:

Arguments:

Note:

Jan. "82

Interprets p-code user programs into machine code

and then executes these programs.

PASCAL| ,options||,memory| <fd>

Both fields of the arguments are optional. If

either is used, a comma must separate it from the

word PASCAL. A second comma must precede the

memory field if it is used.

The options can be any letter of the alphabet. If

a system program is used, some letters have special

meaning depending on the program. If a user

program is executed, any letter may be used but its

meaning must be defined within the program. The

letters have no inherent meaning.

Extra memory may be needed if the program is very

large. It can be specified in bytes in the memory

field.

The fd is the file descriptor (see Section 1.4).

The PASCAL-interpreter is usually used to execute

user programs though it can execute all System

programs except the compiler.

See the PASSYS-interpreter for the list of System

programs.

13-2 PASCAL

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

Examples: PASCAL DATA:NEXTFILE

(Executes the program in the file NEXTFILE on the

DATA disk.)

PASCAL,A,1500 DATA:NEW

(Executes NEW with the Abort switch set and 1500

bytes of extra memory.)

PASCAL,,20000 DATA:SEGEXT

(Executes SEGEXT with 20000 bytes of extra memory.)

PASCAL 13-3 Jan. '82

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

PASSYS Interpreter

Function:

Format:

Arguments:

Jan. '82

Interprets p-code System programs into machine code

and then executes these programs.

PASSYS|,options| |,memory| <system programs>

Both fields of arguments are optional. If either

is used, a comman separates it from the word

PASSYS. A second comma must precede the memory

field if it is used.

The options that are available depend on the System

program being executed and are detailed with those

programs. The options are not separated from each

other by commas.

Extra memory may be needed if a program is very

large. It can be specified in the memory field.

The following System programs can be used. They

are detailed in the pages that follow:

/ PASCOMP - PASCAL Compiler.

PASCROSS - PASCAL Cross Reference.

PASDEL - PASCAL Delete File.

PASDUMP — PASCAL Dump File.

~ PASLIB - PASCAL P=code Library.

PASLINK —- PASCAL P-code Linker.

PASPRINT - PASCAL Print File.

PASSYS is usually used to execute the System

programs.

13-4 PASSYS

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

Note: The PASCOMP, PASLIB and PASLINK programs will

probably be used the most. The other programs

replicate System commands that are unrelated to the

PASCAL package such as DEL which deletes files.

PASCOMP is the default program for PASSYS so it can

be executed using:

PASSYS ,<fd>

See PASCOMP for greater detail.

Example: PASSYS,LNI,1500 PASLIB , DATA: KWLIB

(Executes the Library program and adds 1500 bytes

of additional memory.)

PASSYS,,20000 ,DATA:PROGRAMF ILE

(Executes PASCOMP by default with an additional

20000 bytes of memory.)

PASSYS 13-5 Jan. '82

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

PASCOMP System Program

Function:

Format:

Arguments:

Jan. "82

Compiles a PASCAL text file and generates an

executable p-code file.

PASCOMP,<fd>|,arguments |

The fd is the file descriptor of the source file to

be compiled. Its type should be "ASC" or “ASCPAS"”.

There are two possible arguments, both of which are

optional. A destination file can be specified for

the p-code that is generated. The default file is

the source file with filetype "“BINPAS". Also, a

list file with “TEXT” filetype can be specified if

the "L" option is used. Its default value is

“PR:". A comma must follow the source file if

either argument is specified and a second always

precedes the list file.

PASCOMP is the default program for PASSYS so it

does not have to be specified.

The following options are available with PASCOMP:

L —- generate a list file and output on the list

file descriptor.

E - generate a listing of syntax errors only.

G — allow GOTO statements in the source text.

Default value is on.

O — perform I/O check.

R - perform range check.

D - insert line numbers in code file. This will

significantly increase the size of the output

file.

B - generates additional information for the

linker.

13-6 PASCOMP

*

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

Ex. 1 PASSYS PASCOMP, DATA: KWF ILE

PASSYS ,DATA:KWFILE

(Both compile KWFILE.)

Ex. 2 PASSYS,LRD PASCOMP , DATAT: KWINT , DATA: COMPINT ,CON:

(Compiles KWINT using “L","R”, and "D” options,

places the p-code into COMPINT, and outputs the

listing to the console.)

Ex. 3 PASSYS,LRD ,DATA:KWINT, ,CON:
(Does the same thing as Ex. 2 except that the

p-code is put into KWINT with file type ‘BINPAS'.)

PASCOMP 13-7 Jan. '82

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

PASCROSS System Program

Function: Creates a cross-reference listing of all standard

functions and procedures in a program.

Format: PASCROSS ,<fd>| ,fd|

Arguments: The first fd (see Section 1.4) references an ASCII

source file. The second refers to the destination

file. Its default value is “PR:".

Use: PASCROSS is used to help locate a program's

standard functions and procedures. It is invoked

most often for debugging purposes.

Note: The entries in the listing are alphabetized with

the line numbers on which they appear listed at the

right. A line number appears at most once after

each entry regardless of the number of times it

appears on a line.

The “following options are available:

L - add a listing of the program (includes line

numbers).

R - include reserved words in the cross reference

_ listing.

F - force a list output in case of end-of-memory.

Example: PASSYS,LR PASCROSS,DATA:QUEFILE/A oral Lol
(Will output the list with the reserved words and

the program listing.)

Jan. '82 13-8 PASCROSS

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

PASDEL System Program

Function:

Format:

Arguments:

Note:

Examples:

Ex. l

Ex. 2

PASDEL

Deletes files.

PASDEL, <fd>

or

PASDEL ,CMD=<cfd>

The fd is the file descriptor (see Section 1.4) of

the file to be deleted. The default type is

"BINPAS' and any other type may be specified.

The cfd is the file descriptor of the command file

that specifies the files to delete. See CSS files

in this section for more information.

The command is used to delete files from the Master

File Directory.

If the option "D" is placed in the PASSYS option

field the command file is deleted on exit.

PASSYS PASDEL,DATA:USELESS/A

(Deletes the ASCII type of the file USELESS on

volume DATA.)

The command file (CMDDEL) is:

DATA: USELESS

DATA: USELESS/A

DATA: USELESS&/A

SEXIT

PASSYS PASDEL,CMD=DATA:CMDDEL

(Deletes all three forms of the file USELESS.)

13-9 Jan. '82

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

PASDUMP System Program

Function:

Format:

Arguments:

Example:

Jan. "82

Dumps the contents of a file.

PASDUMP ,<fd>| ,fd|

The first file descriptor (see Section 1-4.) is the

source file. Its default file type is 'BINPAS'.

The second file descriptor is the destination file

whose default type is 'PR:'.

The command is used to display the contents of a

file.

The file is outputted in groups of two rows with

the character representations above each group. A

column in a group represents a byte.

The output is further divided into sets of 256

bytes which constitute a full record. Partial

records can also be outputted.

PASSYS PASDUMP, DATA: QUEFILE

(Dumps file QUEFILE from volume DATA.)

13-10 PASDUMP

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

PASLIB System Program

Function:

Format:

Note:

Arguments:

PASLIB

Creates and updates a PASCAL p-code library that

holds pre-compiled functions and procedures.

PASLIB ,<libfd>|,arguments |

<arguments> "=" <source>

or

<source>,<,lfd>

<source> :=: <fd>|/identifier|

or

CMD = <Cfd>

The procedures/functions must be written in the

main body of the program via a “PROGRAM EXTERNAL”

statement. The procedures/functions added to the

library must not contain references to external

variables or subroutine calls. Note that “source”

must be compiled using switch “B".

The libfd is the file descriptor (see Section 1-4)

of the p-code library. If it is being created, the

“N" option must be included in the PASSYS option

field. ,

The lfd is the file descriptor for the list file.

IT should be type TEXT and “PR:" is its.default

value.

The fd in source is the file descriptor of the file

where the procedure or function exists. The

identifier is the procedure/function name to be

added to the library. It can be at most eight

characters long.

13-11 Change A, May '82

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

Use:

Jan. "82

The Cfd is the file descriptor (see Section 1-4) of

the command file that lists the procedures/

functions to be added must be listed in the command

file in the file descriptor format specified in

Section 1-4. Note type is optional.

There may not be any comments within the list of

additions. For more information about command

files, see CSS-files in this section.

The library contains subprograms that can be

accessed as external subroutines by many different

programs.

Note: If no source file is given, the current

contents of the library will be outputted to the

lfd.

The following options may be used immediately after

PASSYS (e.g., PASSYS,<option> PASLIB):

L - generate a listing.

N - create a new library.

I - insert two lines of general information after

each procedure is added.

A program can access a procedure in a library by

declaring it EXTERNAL. The procedure is then

linked with the main program using PASLINK. The

format for accessing the subprogram is:

LIB <libfd>

Libfd is the file descriptor (see Section 1-4) of

the p-code library.

13-12 PASLIB

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

Examples:

Ex. 1 PASSYS,N PASLIB , DATA: KWLIB , DATA: KWPROC (ADD)

(Creates a new library, KWLIB, and inserts the

subroutine ADD from the file KWPROC. ADD is a

subroutine in KWPROC.)

Ex. 2 PASSYS PASLIB ,DATA:KWLIB, ,CON:

(Outputs the contents of the library, KWLIB, to the

console.)

Ex. 3 DATA:CMDFILE is:

DATA: MATHF LLE/ SUB VARS

DATA: MATHFILE/AVERAGE

DATA : KWSTR/STRMANIP

SEXIT

PASSYS PASLIB , DATA: KWLIB ,CMD=DATA:CMDFILE

(Adds the three subroutines in CMDFILE to the

library.)

PASLIB 13-13 Jan. '82

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

PASLINK System Program

Function:

Format:

Arguments:

Jan. "82

Links pre-compiled PASCAL text files or library

modules into an executable output file.

PASLINK, | ,CMD=cfd |

Cfd is the file descriptor (see Section 1-4) of the

command file that contains the procedures and

segments to be linked together. The default

command file is the console.

PASLINK must be used to link programs that have

segments or external files.

A program can be broken up into segments, and the

segments into functions or procedures. These

segments are left on disk and brought into main

memory only when they are needed. Segments are

declared by inserting the word SEGMENT before a

procedure declaration.

Example:

SEGMENT PROCEDURE procname(....);

It is possible to declare segments or procedures/

functions external to a program. They are compiled

separately and linked into the main program. A

procedure or segment is declared external by

appending the word EXTERNAL to the procedure or

segment declared.

13-14 PASLINK

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

PASLINK

Examples:

PROCEDURE elsewhere(....);

EXTERNAL;

SEGMENT PROCEDURE onward(....);

EXTERNAL;

The actual procedure is defined in another file;

only the heading appears in the main program.

However, the heading must appear exactly as it does

in the file in which the procedure is defined

except the words SEGMENT or EXTERNAL.

If the external procedure or segment performs any

I/O, an output file must be passed to it from the

main file. The format is:

VAR <iofd> : TEXT

The I/O file must be used for all output to the

console that is performed in the external

procedure/segment. For example:

WRITELN(<iofd>,'IN SEGMENT ')

Iofd (see Section 1-4) would be the same as the one

the hedefined in the heading. Failure to include

will the output file will result in errors when the

files are linked.

There are certain rules that must be followed when

functions, procedures and segments are declared

external:

l. The main program may contain external

segments and procedures.

13-15 Jan. '82

- SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

Jan. "82

2. All segments must be declared in the main

program.

3. . An external segment may contain external

procedures but an external procedure may not.

4. Declarations must appear in the following

order:

External procedures and segments

Internal segments

Internal procedures

The procedures may be declared FORWARD if

necessary.

Values are passed to external procedures and

segments through the parameters in the headings.

Procedures that are declared external must be

defined in a separate module, the general outlay of

which should be:

Program heading: The word PROGRAM should be

followed directly by the word EXTERNAL. There is

no program name.

Global variable declaration: All global variables

used by the procedure(s) in the module should be

listed using the normal variable declaration

format. The global variables must be defined

exactly the same way in the main program.

External procedure and function declaration: Any

procedures or functions that are used by the

procedure(s) in the module but are external to the

module are listed in the same way they are in the

main program. Procedures that are in a different

segment must be declared as external segmented

procedures.

13-16 PASLINK

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

PASLINK

Procedure declaration: All local procedures are

then listed. All local variables are listed inside

of the specific procedures that use them. External

procedures can be declared within these procedures

and they are defined in a separate module. It is

important that all local procedures, external or

monexternal, are defined, even if they are only

used by external procedures.

Empty main program: There is no real “body” of the

program - only the words “BEGIN END".

Note that several external procedures may be

defined in the same module. Also, all procedures,

internal and external, and global variables must

have unique names.

13-17 Jan. '82

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

Example:

PROGRAM EXTERNAL;

VAR G1,G2,G3 : SOME TYPE (* global vars *)

PROCEDURE GETCHAR(...);
EXTERNAL; (* external procedure *)

SEGMENT PROCEDURE GETTOK (...);

EXTERNAL; (* external segmented procedure *)

PROCEDURE TOKEN(...); (* local procedure *)

PROCEDURE PRINTOUT(...);

EXTERNAL; (* external procedure referenced by TOKEN *)

PROCEDURE LOCAL

BEGIN (* body of LOCAL *)

:

END;

BEGIN

GETCHAR(...);

GETTOK(...); (* body of TOKEN *)

LOCAL;

PRINTOUT;

. END;

BEGIN END. (* empty main body *)

Procedure GETTOK would look like this:

PROGRAM EXTERNAL;

(* global variables and external procedures *)

SEGMENT PROCEDURE GETTOK(...);

BEGIN (* body of GETTOK *)

END;

BEGIN END.

Jan. '82 13-18 PASLINK

SECTION 13 -— SYSTEM PROGRAMS AND CSS-FILES

PASLINK

There are no restrictions as to where procedures,

segmented or non-segmented, may occur. However,

all procedure and global variable names must be

unique.

All modules must be compiled with the switch "B“ so

that the compiler will generate information used by

the linker.

Linker Commands

Linker commands are executed in command (CSS)

files. The following commands are available to be

used with the linker:

Note: In the commands below, fdnama is the file

descriptor (see Section 1-4) for the PASCAL p-code

file containing the external segment or procedure

being linked:

l. INC, <fdname>

Includes all procedures found in “fdname”.

Procedures in FNAME that are not currently

referenced in the program will be included as

global procedures.

2 LIB|,R| <fdname>

Includes only those procedures in “fname”

that are currently referenced in the program

but have not yet been included. If the

option R (REPLACE) is used, any procedure in

future that is already included in the

program will be deleted and the new version

brought in from "fdname”. This command is

also used to collect procedures from a

library.

13-19 Jan. '82

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

3. TASK| ,B| <fdname>

Name the output file “fdname". This command

can be given anywhere in the command stream.

If the option B is given the output file will

include linker information.

4. PRINT| ,M| <fdname>

A listing will be sent to “fdname”. If the

option M is given, a program layout of all

procedures will be included in the list file.

5. CHECK

Gives a list of all procedures which are

currently referenced but not yet included.

6. ABORT

Abort the linker.

7. END

Finish the linking session.

When linking the external modules the following

order of commands should be used:

1. Include the main program using the INC-command.

2. Include all global non-segmented procedures

declared in the main program.

3. Include all global segmented procedures

declared in the main program.

Collect all procedures which are local to

procedures included so far. If the procedures

included contain local external procedures the

INC-command should be used. If not the LIB-command

should be used. Repeat this procedure until all

external procedures have been included.

Jan. '82 13-20 PASLINK

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

Note that global procedures which are not

referenced in the main program need not be declared

provided these procedures are included, using the

INC-command, immediately following the INC-command

of the main program.

It is very important that the declaration heading

of the procedure being linked is absolutely

identical to the declaration heading where the

procedure is declared external.

Example: in DATA:MAINFILE:

PROGRAM mainprogram:

PROCEDURE procext(VAR io : TEXT);

EXTERNAL;

PROCEDURE printext(VAR io : TEXT);

EXTERNAL;

SEGMENT PROCEDURE segext(VAR io : TEXT);

EXTERNAL;

SEGMENT PROCEDURE segint;

BEGIN

WRITELN('IN segint')

END; (* segint *)

PROCEDURE procint;

BEGIN

WRITELN('IN procint')

END; (* procint *)

BEGIN

procext(OUTPUT); (* output file for an

external procedure *)

segint;

printext (OUTPUT) ;

segext (OUTPUT);

procint;

WRITELN('FINISHED')

END. (* mainprogram *)

PASLINK 13-21 Jan. '82

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

in DATA: PROCEXTFILE:

PROGRAM EXTERNAL;

PROCEDURE procext(VAR io : TEXT);

BEGIN

WRITELN(io, ‘IN procext')

END; (* procext *)

PROCEDURE printext(VAR io : TEXT);

BEGIN

WRITELN(io, ‘IN printext')

END

BEGIN

END. (* dummy *)

in DATA: SEGEXTFILE:

PROGRAM EXTERNAL;

SEGMENT PROCEDURE segext(VAR io : TEXT);

BEGIN

WRITELN(io, 'IN segext')

END; (* segext *)

BEGIN

END. (* dummy *)

in DATA:CMDFILE:

INC DATA: MAINFILE Include the main program

INC DATA: PROCEXTFILE Include the procedure

LB DATA:SEGEXTFILE Get the segmented procedure

PRINT ,M LISTFD Define list file

TASK,B TASKFD Define output file

END End of commands

To execute the program:

1. compile:

PASSYS ,B DATA:MAINFILE

PASSYS ,DATA:MAINFILE

PASSYS ,DATA:PROCEXTFILE

PASSYS ,DATA:SEGEXTFILE

Jan. '82 13-22 PASLINK

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

2. Link:

PASSYS PASLINK, CMD=CMDFILE

PASSYS PASLINK,CMD=CON:

(type in all the statements in CMDFILE in

order)

AB

3. execute:

PASCAL DATA:LINKED

output: IN procext

IN segint

IN printext.

IN segext

IN procint

FINISHED

"INC DATA:MAINFILE' includes the main program.

"INC DATA: PROCEXTFILE' includes both procedures in

PROCEXTFILE.

“LIB DATA:SEGEXTFILE' brings in the segmented

procedure “segext". INC could have been used

instead. Care should be taken when the

INC-command is used with a p-code library

since all procedures in the library will be

included. LIB ‘should be used since this will

only bring in those procedures that have been

referenced.

PASLINK 13-23 Jan. '82

SECTION 13 -— SYSTEM PROGRAMS AND CSS-FILES

PASOBJ System Program

Function:

Format:

Arguments:

Use:

Jan. "82

Interprets PASCAL P-code into object code.

PASOBJ <infd>|,outfd|

Both arguments are file descriptors (see Section

1-4): the first is the file descriptor that

contains the PASCAL P-code and the second is the

one into which the relocatable object code will be

placed. The default for outfd is infd with type

“OBJ”.

PASOBJ is required for the user to create a task

file. Tasks are often preferred to P-code because

they execute extremely fast.

Note: PASOBJ is not executed in conjunction with

PASSYS.

Although the creation of the object code file is

crucial, it is only one part of the conversion from

a PASCAL program to a task. First, the file must

be compiled. Then it is converted into object code —

using PASOBJ. Last, the task establisher, RLDR, is

called to perform the final conversion. Its format

is:

RLDR|,switches|,mem|| CMD = <commandfile>

The following switches are available:

R ~- Additional code for range checking is

generated.

O - Additional code for I/O-checking is generated.

13-24 PASOB J

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

PASGB J

MEM is extra memory that may be allocated. The

commandfile may be a CSS-file or "“CON:".

Regardless of whether or not the file is

interactive, it must consist of the following

commands:

|LOG CON: |

OPTION NOSTACK

| STACK XXX|

INC <PASOBJ fd>

(Displays each comand as it is

executed-not used in interactive

files.)

(No stack check is performed.)

(Expand the stack by XXX bytes.)

(Include as many object files as

needed.)

LIB PASRTL (Collects modules from the

PASCAL Runtime Library.)

Task <outfd> (Links the objectfiles into

outfile.)

END (Terminates RLDR.)

All variables in the program are pushed onto the

stack at run-time so the stack may need to be

expanded since it starts with only 256 bytes. If

the task terminates with an End-of-—Memory error,

the program should be relinked with a larger

argument in the STACK-command.

The following limitations must be considered when

PASOBJ is used in conjunction with PASCAL programs:

l. The sourcefile may not contain segmented

procedures or functions.

13-25 Jan. '82

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

Example:

Jan. "82

2. The function EXIT(NAME) is allowed provided

NAME is the name of a procedure and not a

function.

(TEST is a PASCAL file)

in

To

To

CMDF ILE

LOG CON:

OPTION NOSTACK

STACK 500

INC TESTOBJ

LIB PASRTL

TASK TEST TASK

END

create the taskfile TEST TASK:

PASSYS ,TEST (compiling TEST)

PASOBJ TEST,TESTOBJ (objectcode is placed in

TESTOB J)

RLDR,RO,20000 CMD=COMDFILE (create the task)

execute the task:

TEST TASK

(RLDR is described in detail in Appendix L.)

13-26 PASOB J

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

PASPRINT System Program

Function:

Format:

Arguments:

Use:

Note:

Example:

PASPRINT

Gives a list output of the specified text file.

PASPRINT ,<fd>| ,fd|

The first fd is the file descriptor (see Section

1-4) of the source file. It must be a text or list

file. The second fd is the file descriptor of the

destination file whose default type is 'PR:'.

This command is used to output file listings and

text files.

If the file contains a listing of a program, it

will be printed with line-numbers.

If the "I" option is placed in the PASSYS option

field no line-numbers or form feeds will be

generated on output. This option is designed to be

used with list files.

PASSYS PASPRINT , DATA: QUEFILE

(print QUEFILE's listing with line-numbers.)

13-27 Jan. '82

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

13.2 CSS-MODE

The user can instruct the interpreter to execute commands or to

accept input by executing in CSS-mode (Command String Supervisor).

The commands it executes are in a CSS-file that is user-defined like

a PASCAL program file except that it is not compiled.

The command file is initially created using the Editor the same way

that PASCAL files are formed. Any command that can instruct the

interpreter in non-CSS-mode can be used in CSS—mode.

Any command-line that starts with the character “*" is a comment and

is ignored by the CSS-processor. The S$EXIT-command informs the

interpreter that no more commands are available and terminates the

CSS file.

The files are often executed directly by PASSYS by placing a slash

('/') before the CSS-filename.

Example: PASSYS/DATA:CMDFILE

PASSYS/CON: (for interactive mode)

CMDFILE is a CSS-file holding commands for the CSS-processor. The

command can start the execution of a CSS-file using the format:

/<cfd>|,parameters |

Example: PASSYS/DATA:CMDFILE,vall

The parameters that are passed to a CSS-file can be accessed in the

program number ("“1" through "9" determined by the order in which the

parameters are listed). If these two symbols are found in a command,

the corresponding parameter will be automatically supplied.

Example: PASDEL, @l

The file with the first parameter's name and of type 'BinPas' would

be deleted when this command was read.

Jan. '82 13-28

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

When passing start switches to a PASCAL program, the switches must be

inclosed by the characters '<' and '>'. Note that in all other areas

of this manual these characters enclose required fields and are never

typed. A global switch 'Q' has been implemented.

Format: <switches> <PASCAL System Program>,<fd>

Example: <Q>PASCOMP , TEXTF ILE

Starts compiler, Q inhibits all console output.

13-29 Jan. '82

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

$-Commands

The following S$-commands define the current CSS-mode and are

interpreted by the CSS-processor:

Jan.

l.

"82

$LOGG

All CSS-commands will be logged on the system console

before they are executed.

SNOLOGG

The CSS-commands are not logged on the console before

execution. The system default is SNOLOGG.

STEST

A HALT instruction is implicitly executed when a fatal

programming error is detected. It can also be used as a

PASCAL command by the user.

SREMOTE

If a program being executed in CSS-mode executes a HALT,

whether implicitly or explicitly, the CSS will go to the

End-of-Task. SREMOTE is the default value.

SEXIT

Execution of the current CSS-file is terminated. If the

files are nested, the outer files are not terminated.

SPURGE

Execution is terminated on the current CSS-file and the

file is deleted.

SHALT

Stops all CSS-mode execution, regardless of the number of

nested program levels, and goes to End-of-task.

13-30

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

$$-Commands

The S-commands are powerful CSS-commands that allow more

sophisticated programming in the CSS-mode. These commands are

interpreted by the system program PASCSS which must be present on the

system volume. The syntax for a $$-command is:

$$| label: |<; command>

Several $S-commands may be written on the same line. The commands

are separated by the character “;". The last command on a line may

be of any type.

Example:

SLOAD TASKA; $SSTART TASKA; SE

The label is any integer between 1 and 99. The command can be any

CSS-command.

Flow of Control and Execution Commands

The following are the $$-commands that determine the flow of control

and execute internal portions of the CSS-command file:

l. SGOTO <label>

The command will force a change in the flow of control from

the current command to the one preceded by the label.

Ze SSDISPLAY <string>

The string is written to the console.

3. SSSLEEP <n>

CSS-execution is suspended for n seconds. n must be a

positive integer.

13-31 Jan. '82

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

4. SSIF <condition>

SSENDI

The $$IF-command executes the same way the PASCAL

IF-statement does, i.e. if the condition is True, the

CSS-processor executes the CSS-commands following the

$$IF-command. Otherwise, it executes the command following

the matching SSENDI (upper case only)-command. The

possible conditions are:

Par(p) True when p is a string.

NOPAR(p) True when p is the null-string.

PAR(pl=p2) True if pl equals p2.

NOPAR(pl=p2) True if pl does not equal p2.

TASK(tid) True if the task tid is present in

memory. (tid is the task fd.)

NOFASK(tid) True if tid is not in memory.

FILE(fd) True if the specified file exists.

Default in ASCII. Any other file type

requires “/type” to be appended to the

filename.

NOFILE(fd) True if the specified file does not exist

or the file is open.

ERROR True if the previous PASCAL program executed

a HALT-instruction. This condition implies

the execution of a $TEST-command.

NOERROR True if the preceding PASCAL program did not

execute a HALT-instruction. More than one

condition can be tested for using the

following format:

SSIF <conditionl>,<condition2>|,condition,...

Change A, May ‘82 13-32

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

Example:

$LOGG

* sample CSS-file using some of the commands

* described on the preceding pages.

SSIF PAR(@1=TEST)

SSDISPLAY @1

STEST

$$GOTO 1

SSENDI

$REMOTE

* compile TESTFILE

$$ 1:,TESTFILE

* execute TESTFILE using PASSYS

TESTFILE

SSDISPLAY 'END OF CSS-FILE'

SEXIT

SSRUN <fd>|,parameters| or $$RUN </cssfile>| ,Parameters |

The program fd is started. fd may be either a PASCAL file

or a CSS-file (requires slash before name). The parameters

are optional and may be a list of starting parameters, a

select file containing a set of starting parameters or

both. The select filename is preceded by 'SEL='. There

may be at most one select file and each line in the file

contains one set of parameters. The CSS-processor will

repeat the execution of fd until all the parameters in the

select file have been used, i.e., fd will be executed at

least once for every line in the select file. The SSRUN

command may not be nested and must not be followed by a

command on the same line.

in PFD:

SEGMENTTEST ,NRMLEXT , SEGLEXT

in CSS-file:

$SRUN /LINKING, SEL=PFD,CMDFILE

LINKING is a CSS-file that invokes PASLINK. CMDFILE is

just an additional parameter. The parameters are all

accessed using the @ character, i.e., CMDFILE would be @4.

13-33 Change A, May '82

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

Example:

SSACTIVATE |parameters|

SSENDA (Enter SSENDA in upper case only)

The CSS-commands between the two commands above are formed

into a-temporary CSS-file and activated. The parameters

are optional and may be a list of starting parameters, a

select file, or both. Each parameter is delimited from the

others by commas, both in the parameter list and in the

select file. At most, one select file may be specified in

a parameter list. The temporary CSS-file will be executed

repeatedly until all the parameters in the select file are

used, i.e., once for every line in the select file since

all the parameters for one execution are listed on one

line. The SSACTIVATE command may not be nested and may not

be followed by another command on the same line.

(using the same PFD as on previous page)

SSACTIVATE SEL=PFD,CMDFILE

/LINKING, @1,@2,@3,@4

SSDISPLAY 'LINKED'

SSENDA

Taskfile Commands

Certain CSS-commands operate on task files. They may be user-

developed or system tasks. In each command listed below, tid is a

four-letter name assigned to the task when it is loaded into memory.

Jan.

l.

"82

SSLOAD <fd>|, arguments |

Arguments :=: tid,Mem,R

The task in the field is loaded into memory under the name

tid. If tid is not specified, the first four letters of

the fd file descriptor is used. Additional memory may be

allocated using the Mem field. The memory amount is in

bytes. if the letter 'R' is specified, the task will

remain resident in memory until it is removed. (See

13-34

SECTION 13 -— SYSTEM PROGRAMS AND CSS-FILES

SSKILL.) If the task is resident in memory, it cannot be

loaded in again. If any of the arguments are used, all the

commas must be included.

$SSTART <tid>|,switches|,priority|| parameters |

The task that exists in memory specified by tid is started

with any switches, priority, or starting parameters that

are needed.

$SPAUSE |tid|

The task specified is paused. (Default is CSS.)

$SCONTINUE <tid>

The task specified by tid is continued.

SSWAIT <tid> CSS is suspended until the task specified by

tid has completed execution and gone to End-of-Task.

SSTRIGG <tid>

CSS is suspended until the task specified by tid changes

states. Note: If tid has not been started or has already

completed, the system must be rebooted and the files that

were left open closed using DISKCHECK.

SSKILL <tid>

The task specified by tid is cancelled and removed from

memory.

SSPRIORITY <tid>,<priority>

The task tid, is assigned a priority between 1 and 255.

SSOPTLION <tid>,<optl>,<op2>

The options of task tid is changed to opl, op2, etc. where:

Option Meaning

AB = Task abortable.

NAB = Task not abortable

RES = Task is memory resident.

NRES - Task is not memory resident.

13-35 Jan. '82

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

Creation of Permanent Files

The following commands create, destroy, and rename permanent files

from within a CSS-file:

Jan.

l.

"82

SSBUILD <cfd>|,parameters

e
e
e

$SENDB

The CSS-commands between the two listed above are formed

into a CSS-file and named cfd. The newly created file will

be type “AscPas” so it cannot be edited though it can be

executed. The parameters are optional. Even if they are

omitted when the file is created, they can be included when

it is executed. The $$BUILD-comand may not be nested and

may not be followed by a command on the same line.

SSFILE <fd>|,parameters|

SSENDF

The lines between the commands are formed into a file and

named fd. The files may contain either PASCAL or

CSS-commands. The file can be executed but not edited

because it is type “AscPas". The parameters are optional

but if they are omitted when the file is created, they

cannot be included later. This is one of the differences

between SSFILE and SSBUILD. SFILE commands may not be

nested and may not be followed by a command on the same

line.

SSDELETE <fd>

The file specified by fd is deleted. This is especially

important since a new file cannot be created by either of

the above commands if it already exists.

SSRENAME <fdl>,<fd2>

File fdl is renamed fd2. Files other than ASCII require

the type to be specified.

13-36

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

$$—Commands in Interactive Mode

It is possible to run the $$-commands in an interactive mode.

Characters enclosed in apostrophes are displayed on the console and a

prompt is output. The characters entered by the user then replaces

the original string before the command is activated.

Example: SSIF PAR('CONTINUE(Y/N)?'=N)

SHALT

SSENDI

In this case the string 'CONTINUE(Y/N)?' followed by a prompt is

displayed on the console. If the user enters the character 'N', this

character replaces the entire string, as shown below.

SSIF PAR(N=N)

SHALT

S$SENDI

Since the condition is true the SHALT command will be executed.

13-37 Jan. '82

SECTION 13 -— SYSTEM PROGRAMS ON CSS-FILES

Illustrated Example

l.
26
3
4.
5.
6.
7.
8.
9.

10.
ll.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43
44.
45.
46.
47.
48.
49.
50.

Jan.

KKH HK KKK RK RRR ERR ERRERER RRR RRRRRRRRRERRERERRRRREREREKERRKEREREE

* *

* x

* THIS IS AN EXAMPLE OF A CSS-FILE WHICH *
* CREATES AN EXECUTABLE TASK FILE FROM *
* A PASCAL TEXT FILE. *
* x

* THE CSS HAS FOUR INPUT PARAMETERS: *
® *

* Pl = PASCAL TEXT FILE. *

* P2 = NAME OF TASK FILE (DEFAULT: Pl) *x

* P3 = ADDITIONAL STACK SIZE (DEFAULT: 2000 BYTES) *
* P4 = LIST FILE FOR COMPILER (DEFAULT: NULL:) *
* *
* *

* *

KI K KR HR IRE RHR RK KEREEREERERRRERKEKEKKRKKREAREKRE

*
x
*

* HI THERE...
*

SSDISP;SSDISP Create Pascal Task - CSS 1.00
*

*
*
* PARAMETER 1 MUST BE SPECIFIED!
*

$$ IF NOPAR(@1);SSFILE CON:

Parameter error!

Enter: source-fd,<task-fd>,<task stack-size>,<list-fd>

Default: task-fd=source-fd, task stack-size=2000

SSENDF ; SE; $SENDI
-

MAKE SURE RECOURCES ARE AVAILABLE...

SIF FILE(RLDR/T) ,FILE(PASOBJ/T),FILE(PASRTL/O);$SGOTO 10;$SENDI

+
*
i
h

&
+

HF

IF NOT, THIS IS WHAT WE NEED!
*

SSFILE CON:
This CSS requires the following files on the system volume:

RLDR - Task establisher.

PASOBJ - Pascal object code generator.
PASRTL - Pascal run time library

SSENDF ; SE
*
*

"82 13-38

"I

SECTION 13 - SYSTEM PROGRAMS ON CSS-FILES

Illustrated Example (Cont.)

51. *

52. * NO USE TO INVOKE THE COMPILER IF PARAMETER 1 IS IN ERROR!

53. *

54. $$10:IF NOFILE(@1/A)
55. S$SDISP Assign error on source file @1!5;SE

56. $SENDI
57. *

58. *

59. *

60. STEST

61. *CSS WILL NOT BE ABORTED ON ERRORS!

62. *

63. *

64. * COMPILE SOURCE FILE, PARAMETER 4 IS LIST FILE!

65. *
66. SSDISP Compilation started...;<Q>PASCOMP,@1,CSSZ%B ,@4

67. *
68. *

69. *

70. * IF COMPILATION FAILED - STOP CSS!

71. *

72. SSIF ERROR

73 SSDISP Compilation error on source file @1!;SE

74. $SENDI

75.

76.

Tis

78.

79.

80.

81.

82.

83

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

CREATE THE OBJECT FILE

$LO PASOBJ,PO;SSPRI PO,200;S$$ST PO CSSZB;S$SWAIT PO

DELETE P-CODE TEMP FILE

$DEL CSSZB /B

BUILD A CSS WHICH DOES THE LINKING STUFF...

START OF CSS FILE

SBUILD CSSZLINK

THIS CSS HAS TWO PARAMETERS:

Pl = TASK FILE

P2 = STACK SIZE

+
+

+
*

+
F
F

F
D

HF

FF

F
H

HF

H
M

HH

F
H

H
M

+
HF

H
H

HF

13-39 Jan. '82

SECTION 13 - SYSTEM PROGRAMS AND CSS-FILES

Illustrated Examples (Cont.)

101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
lll.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.

146.
147.
148.
149.
150.

Jan.

*

* BUILD A COMMAND FILE FOR RLDR
*

* +H++HH+++ «=6COMMAND FILE FOR RLDR ++++++++++
SSFILE CSS%C
OPTION NOSTACK NO STACK CHECK!
STACK @2 STACK SIZE IS A PARAMETER!
INC CSS%® INCLUDE TEMP OBJECT FILE
LIB PASRTL RUN TIME LIBRARY...
TASK @1 TASK FILE IS A PARAMETER!
END
SSENDF
* +Hrtt++++t++ END OF COMMAND FILE 9 ++++++++++

START RLDR AND PRODUCE A TASK FILE

SLO RLDR,,10;$$PRI RLDR,200;$$ST RLDR CMD=CSS%C;S$WAIT RLDR

DELETE OBJECT FILE AND COMMAND FILE FOR RLDR

SDEL CSS%B/0;$SDEL CSS%C/A

ALL IS OK!!

SDISP;SSDISP Task @! created!

PURGE CSS FILE WILL BE DELETED ON EXIT!

SENDB
END OF CSS FILE!

+
+

F
F

F
M

F
M

F
N

HF

F
N

H
H

HF

H
N

HF

HF

HF

RUN THE CREATED CSS WITH PROPER PARAMETERS
*

SSIF NOPAR(@2) ,NOPAR(@3) ; /CSSZLINK, @1 , 2000

SE; SSENDI
*

SSIF PAR(@2) ,NOPAR(@3) ; /CSSZLINK, @2 , 2000

SE;SSENDI
*

SSIF NOPAR(@2),PAR(@3);/CSSZLINK, @1 ,@3
SE; SSENDI
*

/CSSZLINK, @2, @3
SE

"82 13-40

SECTION 14

ISAM STATEMENTS

SECTION 14

ISAM STATEMENTS

14.1 INTRODUCTION

ISAM, Indexed Sequential Access Method, is a technique used for

indexed access to large data files. It can be used for random access

using a particular key string as the search argument, or sequential

access using the index. The ISAM data and index files are

initialized by a utility program. After initialization, these files

are loaded by the user via ISAM write operations. They can be

modified using the other ISAM statements. This section describes the

statements used to load and modify ISAM data files.

The task file ISAM must be on the system disk in order to

successfully compile and execute a program containing ISAM

statements. If no more ISAM programs are to be compiled or executed,

utility program “KILLISAM" should be run to release the space

occupied by the ISAM task file.

ISAM Error Handling

When an ISAM error occurs (e.g., key not found condition) during

execution of an ISAM PASCAL program, the ISAM Task sends to the

PASCAL program the appropriate error code. This error code is

contained in LORESULT. In order to display this error code, set

IORESULT equal to some variable and then display the variable via

WRITELN. For example:

X: = IORESULT;

WRITELN(X);

The following ISAM error codes can be returned:

Code Meaning

120 ISAM - key not found

121 ISAM - duplicate key

122 ISAM - illegal key value

123 ISAM - mismatch at check-read

124 ISAM - index not found

125 ISAM - data record length invalid

126 ISAM - task: end of memory

Refer to procedure CHECK of program LSAMDEMO in Appendix G for a

sample method of handling ISAM errors.

14-1 Change A, May '82

SECTION 14 — ISAM STATEMENTS .

14.2 ISAM CREATE PROCEDURE

Function:

Change A, May ‘82

Allocates and creates an ISAM Index File and its

associated data file.

~CRE INDEX (CREINDEX is a task file on your disk.)

To create and allocate ISAM files requires the

execution of Utility Program CREINDEX. Refer to

8800 Series “Monroe Utility Programs Programmer's

Reference Manual" for important information about

ISAM files and procedure instructions for CREINDEX.

The information below is taken from this manual and

shown here for your convenience.

When program CREDINDEX is executed it prompts the

user as follows:

Enter name of index file?

Preallocate space (Y or N)?

Enter name of data file?

Preallocate space (Y¥ or N)?

Enter record length?

Enter key start position?

Enter key type (B, A, I, F or D)?

Ascending or Descending sequence (A/D)?

a

‘Are duplicate key values allowed (Y¥ or N)?

Are there any more indices (Y or N)?

Is information-correct (Y or N)?

If there are any more indices, the user is returned

to the first query inputting the name of the index

file, the name of the data file, and so on, until

all indices have been entered. Then a table is

output to the console summarizing all of the

information entered during the session. The

program terminates after the following questions

are answered:

Information correct (Y or N)?

Would you like a copy on the printer (Y or N)?

14-2

SECTION 14 — ISAM STATEMENTS

Example: This example illustrates how an index and a data

file are allocated, created and then built. Three

indexes are specified: Name, Number and Dept.

These files and indexes will be referenced in the

ISAM program examples that follow.

In this example the files CREINDEX, RETEST and

PERSONNEL are located on a data disk named DATA:.

-DATA: CREINDEX4

CEATE ISAM FILES Ver. m.nn*

Enter name of index file? DATA:RCTEST4

Preallocate space (Y or N)? N4

Enter name of data file? RATA: PERSONNEL

Preallocate space (Y or N)? NG

Enter record length? 804

Enter name of index? NAME

Enter key start position 1 {

Enter key length? 304

Enter key type (B, A, I, F or D)? Af

Ascending or Descending sequence (A/D)? A

Are duplicate key values allowed (Y or N)? Y4

Are there any more indices (Y or N)? Y4

The questions are repeated with the following

entries:

NUMBER4 304 Aq Aq Nq Yq

DEPTY 204 Aq Aq Yq Nq

14=3 Change A, May '82

SECTION 14 - ISAM STATEMENTS

The following output appears on the console:

ek*Create Isam Files*** Ver. P-m.nn xxx-mm-dd/hh-mm.ss

Index File:

Data File:

Data and Index File Information.

Index File name: data:rctest

Data File name : data:personnel

Record size : 80

Filename Reclgt BlkSize Allo blks

RCTEST 256 Default Default

PERSONNEL 80 Default Default

Index No. Index Name Key Type Sort order Dupl. Key Start/Length

name

2 number

3 dept

Change A, May '82

Ascii Ascending Yes 1/30

Ascii Ascending Yes 31/30

Ascii Ascending Yes 61/20

Is information correct (Y or N)? Y4

Would you like a copy on the printer (Y or N)? N4

The program ends with the message:

Index file created!

Data file created!

End of task Q.

Loading the Data File

Now, using the index file data:rctest and the data

file, data:personnel, a program can be written to

input information into the data file as a single

string of 80 characters.

14-4

SECTION 14 - ISAM STATEMENTS

This program must include the following statements

to open the ISAM index file and load its associated

data file:

1. OUTFILE:isamfile;

2. RESET (outfile,'data:rctest’);

3. ISAM (outfile,WRITE,strtwo);

Statement 1 “outfile:isamfile;" appears in the

variable declaration section of every PASCAL

program that uses ISAM.

Statement 2 “RESET(outfile,'data:rctest');”"

associates the declared filename outfile with the

CREINDEX index file name 'data:rctest' which must

appear in quotes. Note that the volume name data:

refers to the name of the disk where the index file

is stored.

Statement 3 “ISAM(outfile,write,strtwo);" is the

format of the ISAM write statement. It is

explained in detail in Section 14.6.

Sample Program:

Program ISAMDEMO, shown in Appendix G, is one Cype

of program which will load and modify index file

DATA: RCTEST just created.

This program is for illustration purposes only; it

is not intended to demonstrate the best possible

programming techniques.

14-5 Change A, May '82

SECTION 14 - ISAM STATEMENTS

Change A, May ‘82

Program ISAMDEMO can be compiled using the

following command:

-PASSYS,L,10000 ,DATA: ISAMDEMO, ,CON: {

The program is executed as follows:

-PASCAL DATA: ISAMDEMO4

The program performs all of the ISAM techniques

discussed in subsequent parts of this section. The

information you enter into the program is

maintained in both index file (DATA:RCTEST) and

associated data file (DATA:PERSONNEL). The

information entered may then be read, modified, or

deleted by invoking the appropriate procedure in

the program. |

Note that the ISAM data file can be displayed on

the console with the following utility command:

-COPYLIB DATA: PERSONNEL ,CON: {

14-6

SECTION 14 - ISAM STATEMENTS

14.3 ISAM DELETE STATEMENT

Function:

Format:

Arguments:

Use:

Note:

Example:

Removes a particular data record's keys from an

ISAM index file.

ISAM(<isamfileid>,DELETE,<destring>);

Isamfileid is a string declared in the VAR section

of the program or procedure heading and again

associated with the ISAM data file in the RESET

statement. For example:

Declaration:

VAR

isamfilename: ISAMFILE

Main Section:

begin

RESET (isamfilename,'data:filename');

ISAM (isamfilename, DELETE, destring);

Destring is a string containing the record to be

deleted.

This statement removes the appropriate keys from a

designated record in the ISAM file. The associated

data record is not touched but subsequent access is

not possible. Before an ISAM DELETE can be done

the record must be ISAM READ (see Section 14.4).

Destination string should be equal to the declared

record length.

Refer to the RECDEL procedure of program ISAMDEMO

in Appendix G.

14-7 Change A, May '82

SECTION 14 - ISAM STATEMENTS

14.4 ISAM READ STATEMENTS

Function:

Format:

Arguments:

Change A, May '82

Accesses by key or sequentially, records contained

in the Data File associated with an ISAM Index

File.

1. ISAM(<isamfileid>,READLAST ,<destring>

[,indexstring]);

2. ISAM(<isamfileid>,READFIRST ,<destring>

[,indexstring]);

3. ISAM(<isamfileid>,READPREVIOUS,<destring>

[,indexstring]);

4. ISAM(<isamfileid>,READNEXT ,<destring>

{indexstring]);

5. ISAM(<isamfileid>,READKEY,<destring>[,indexstring],

<keystring>);

Isamfileid refers to the filename declared in the

VAR section of the program and associated with the

ISAM data file in the RESET statement.

Destring refers to the string that is loaded with

the designated record from the ISAM data file as a

result of the ISAM read operation. This string is

available for manipulation by PASCAL string

statements (e.g., COPY(string,1,2);).

Indexstring refers to an index name set up by Task

CREINDEX and stored in the index file. If omitted,

the default is the first index except for Format 5

above; for this case, the search starts at the

first index and proceeds through the last until the

key is found.

Keystring refers to the string containing the

specific key to be searched for. If the length of

the keystring is greater than the key, the

14-8

SECTION 14 - ISAM STATEMENTS

Use:

Example:

keystring is truncated and matched against the key.

If the reverse is true, the key is truncated to the

same length as keystring; keystring is then matched

against the truncated key.

The particular record that is accessed depends on

what keyword is included in the ISAM Read

Statement. The available keywords are:

READLAST - reads the last record in logical order

for the index specified in indexstring.

READFIRST - reads the first logical record for the

index specified in indexstring.

READPREVIOUS - reads the previous record in reverse

logical order using the file pointer as the offset

for the index specified in indexstring.

READNEXT - reads the next record in logical order

using the file pointer as the offset for the index

specified in the indexstring.

READKEY - performs a sequential search for the key

or subkey string in the specified index. If it

finds the record it places it into the destination

string. If the index string is omitted, it

performs a sequential search for the key or subkey

string (starting at the first index proceeding

through the last) and reads that record into the

destring.

Examples:

ISAM(outfile,READKEY, 'NAME','JONES')

ISAM(outfile,READKEY, 'JONES')
ISAM(outfile,READKEY, 'JON')

Refer to the RECREAD procedure of program I[ISAMDEMO

in Appendix G.

14-9 Change A, May '82

SECTION 14 - ISAM STATEMENTS

14.5 ISAM UPDATE STATEMENT

Function:

Format:

Arguments:

Change A, May '82

Replaces a specified record in the ISAM data file

and produces key changes to the index file where

appropriate.

ISAM(<isamfileid>,UPDATE,<oldstring>,<newstring>) ;

Isamfileid is a string declared in the VAR section

of the program or procedure heading and again

associated with the ISAM data file in the RESET

statement. For example:

Declaration:

VAR

isamfilename: ISAMFILE

Main Section:

begin

RESET (isamfilename,'data:filename');

ISAM (isamfilename ,update,oldstring,newstring) ;

Oldstring is the string corresponding to the record

being replaced.

Newstring is the string to be inserted into the

ISAM data file in place of the oldstring. All

changed indices will be updated when this

replacement occurs.

14-10

SECTION 14 -— ISAM STATEMENTS

Example:

The ISAM UPDATE statement will exchange one record

string for another in the ISAM data file. The only

restriction is that oldstring and newstring must be

of equal length or an update will not occur.

Before using this statement, the appropriate ISAM

file must be opened (via RESET) and the desired

record read via an ISAM Read operation.

If a duplicate key occurs in an index where it is

not allowed, that index will not be updated. For

example, if the name SMITH was used as a key for

record 50 and you wanted to change record 20's key

to SMITH, record 20 would not be updated. In order

to keep the indices properly updated, an ESAM

DELETE operation must be performed.

Refer to Procedure RECUPDATE of program [SAMDEMO in

Appendix G.

14-11 Change A, May '82

SECTION 14 = ISAM STATEMENTS

14.6 ISAM WRITE STATEMENT

Function:

Format:

Arguments:

Change A, May '82

Enters a new record into the ISAM Data File and

adds the new keys in the Index File.

ISAM(<isamfileid> ,WRITE,<isamrecord>);

Isamfileid is a string declared in the VAR section

of the program or procedure heading and again

associated with the ISAM data file in the RESET

Statement. For example:

Declaration:

VAR

isamfilename: ISAMFILE

Main Section:

begin

RESET(isamfilename,'data:filename');

ISAM(isamfilename ,WRITE,isamrecord);

Isamrecord is a variable containing the string

(record) to be written to the ISAM Data File. The

isamrecord must be equal in length to the record

length specified when the file was created by Task

CREINDEX. If the length of isamrecord is not equal

to the declared record length for that associated

ISAM data file, no information will be written to

the data file or index file.

14-12

SECTION 14 - ISAM STATEMENTS

Note:

Example:

A good practice is to test the length of isamrecord

with the PASCAL string statement LENGTH(isamrecord)

to insure the proper execution of the ISAM WRITE

statement.

The record is appended to the data file and all

indices are updated. The record must contain

information in all key fields. If a duplicate key

occurs in an index where it is not allowed, that

record will not be written.

Refer to Procedure RECWRITE of program ISAMDEMO in

Appendix G.

14-13 Change A, May '82

APPENDIX A

QUICK REFERENCE SUMMARY

APPENDIX A

QUICK REFERENCE SUMMARY

Reference & Format Use

AB S(<value>) Returns absolute value of a number.

ARCTAN(<value>) Returns the arctangent of a value.

BLOCKREAD(<fd>,<array ident>,<block count>|,first block |)

Transfers data from a tile into an

array and returns the count of the

number of bytes actually read.

BLOCKWRITE(<fd>,<array ident>,<block count>|,first block|)

Transfers data from an array into

a file and returns the count of

the number of bytes that were

actually transferred.

CASE <case selector> OF <list>:|statement|;|<list>:|statement|;...,...

Transfers control to one or several

statements labels depending on the

variables value.

CHR(<i>) Returns a character value with the

ordinal number y.

CLOSE(<fd>| , PURGE|) Closes and deletes tiles.

CONCAT(<stringl>,<string2>|,string3,...|)

Concatenates two or more strings.

COPY(<string>,<index>,<size>) Copies all or part of a string.

COS(<value>) Returns the cosine ot value

Page

12-38

12-1LV

5-17

6-38

l2-1l

L2=3

12-40U

A-l Change A, May '82

APPENDIX A - QUICK REFERENCE SUMMARY

Reference & Format

DATE

DELETE(<string> ,<index>,<value>)

DISPOSE(<ptr>)

EOF (<fd>)

EOLN(<fd>)

EOLNCHR

EXIT

EXP(<value>)

Use

Returns the current date.

Deletes characters from a string.

Returns allocated memory to the heap

Determines whether the end of a

file has been reached.

Determines whether the end of the

line has been reached.

Returns an integer value

representing a terminator.

Results in an orderly exit.

Returns the exponential function.

FILLCHAR(<array>,<character>,<length>

FOR <control var>:=<initial value>

DOWNTO <final value> DO <statement>

FORWARD:

Places a character into a packed

array a specified number of times.

Executes a simple or compound state-

ment a predetermined number of times.

Enables a procedure or function

to be accessed before it is defined.

FUNCTION <ident>|(list:type;...)|:<type>;

Change A, May '82

Returns a value.

Page

12-53

12-4

12-54

12-12

12-13

12-55

12-57

12-41

12-30

5-10

11-2

Il=5

APPENDIX A - QUICK REFERENCE SUMMARY

Reference & Format Use Page

GET(<fd>) Reads data from a file. 12-14

GOTO<label> Unconditionally transfers control 5-21

from one portion of the program to

another.

GOTOXY(<x-coord> ,<y-coord>) Places cursor at specified 12-58

coordinates.

GRAPH(FGCIRCLE , <x-coord> ,<y-coord>,<length>)

Draws a circle or arc with x,y 17-6

as center and length as the

number of pixels to be set.

GRAPH(FGCTL,<color group>) Selects the color group to be used 17-8

in high resolution graphics.

GRAPH(FGDRAW,<BUFF>) Draws a shape on the screen. 17-10

GRAPH(FGERASE, <BUFF>) Erase a shape from the screen by 17-24

drawing the shape in the background

color.

GRAPH(FGFLLL, <x-coord> ,<y-coord>|<,color>|)

Fills the screen with a specified 17-26

color until x,y.

GRAPH(FGFPOINT ,<x-coord>, (y-coord>|<,color>|)

Returns the value of the point x,y 17-27

A-3 Change A, May '82

APPENDIX A ~- QUICK REFERENCE SUMMARY

Reference & Format Use

GRAPH (FGGET ,<x-coord>,<, y~coord>, BUFF>)

Store the parameters of a rectangle

in an array. x,y are the coordinates

of the opposite corner from a

specified point.

GRAPH(FGLINE ,<x-coord> ,<y-coord>|<,color>|)
Draws a line from the previous

point set to x,y in the

specified color.

GRAPH(FGPAINT , <x-coord> ,<y-coord>|<,color>|)

Fills in the pixels with the

specified color from x,y to

perimeter of the shape on screen.

GRAPH(FGPOINT , <x-coord> ,<y-coord>|<,color>|)

GRAPH (FGPUT ,BUFF)

GRAPH(FGROT ,<degrees>) ;

GRAPH (FGSCALE, <x-dimen> ,<y-dimen>)

Sets a point in a specified color.

Restore a rectangle to the screen

after allow user charges in

parameters.

Rotates a shape.

Multiplies the x-dimension and/or

y~dimension.

GRAPH(TXFPOINT ,<x~-coord>,<y-coord>,<value>)

Change A, May '82

Returns a value of zero if the point

x,y is clear otherwise a value of

one if point x,y is set.

Page

17-28

17-34

17-36

17-38

17-39

17-41

17-44

16-28

APPENDIX A - QUICK REFERENCE SUMMARY

Reference & Format Use

GRAPH(TXPOINT , <x-coord>,<y-coord><, value>)

HALT

LAND(VALUE, VALUE2)

IF <cond.expr> THEN <statement>

|ELSE <statement> |

INP(<PORT>)

INSERT (<source>,<dest>,<index>)

IOR(A,B)

IORESULT

LSHIFT(A,B)

ISWAP(A)

LXOR(A,B)

Sets a point x,y on the screen in

low resolution.

Terminates the execution of a PASCAL

program.

Returns an integer result from

the operation A AND B.

Executes a specified statement

depending on a stated condition.

Function to read a port.

Inserts characters into a string.

Returns an integer result from the.

operation A OR B.

Returns the I/O code result of last

I/O operations.

Returns an integer result from the

operation of shifting A.

Returns an integer with the low

and high byte swaped.

Returns an integer result from the

operation A AND B.

Page

16-26

12-59

12-73

5-14

12-70

12-5

12-74

12-15

12-75

12-76

12-77

A-5 Change A, May '82

APPENDIX A ~— QUICK REFERENCE SUMMARY

Reference & Format Use Page

LENGTH(<string>) Returns the number of characters 12-6

in a string.

LN(<value>) Returns the natural log of a value. 12-42

LOG(<value>) Returns the log (base 10) of a 2-43

number.

MARK(<pointer var>) Sets a pointer to the top-of-heap 12-60

of the available free memory.

<valuel> MOD <value2> Finds the remainder when two 12-44

integers are divided.

MOVELEFT(<stringl>,<string2>,<length>) 12-32

Moves a specified number of charac-

ters from the left end of one string

to the left end of the other.

- MOVERIGHT (<stringl>,<string2>,<length>) 12-33

Moves a specific number of charac-

ters from one string to another

string from the right.

NEW(<ptr>) Allocates space from the heap 12-62

ODD(<value>) Determines whether an integer is odd. 12-46

OPTION Returns switch options in effect 12-63

when PASSYS or PASCAL was executed.

ORD(<y>) Returns the ordinal value of the 7-2

constant y.

Change A, May '82 A-6

APPENDIX A = QUICK REFERENCE SUMMARY

Reference & Format Use Page

OUT (<PORT> , <VALUE>) Procedure to write to a port. 12-71

PAGE(<fd>) Sends a top-of-form character 12-16

to a file.

POS(<pattern>, <string>) Returns the position of the first 12-7

character of the first occurrence

of a pattern in the string.

PRED(y) Returns the element in a list 7-2

preceding y.

PROCEDURE <ident>|<list:type;... ; Manipulates data structures. 11-3

PWROFTEN(<value>) Returns a REAL result of the 12-72

number 10 raised to the power

of the integer parameter supplied.

PUT(<fd>) Writes a buffer to a file. 12-17

READ(<fd>|,variable list]) Reads data from a file or the 12-18

keyboard and assigns it to a

variable list.

READLN | (fd) |
READLN(<fd>| , variable list) Reads a line of input. 12-20

RELEASE(<pointer var>) Sets the top-of-heap pointer to the 12-64

memory location of the <pointer var>.

A-7 Change A, May '82

APPENDIX A - QUICK REFERENCE SUMMARY

Reference & Format Use . Page

REPEAT |statement|;statement;...| | Executes a statement or statement 5-8

block repeatedly until a deserved

condition is met.

REWRITE(<fd>,<title>) Creates and prepares a file for 12-22

writing.

ROUND(<value>) Converts a REAL value into an 12-47

integer by rounding it to the

closest integer.

SCAN(<length>),<partial expr>,<array>)

Returns the number of bytes between 12-35

a specified starting point ina

string and a particular character.

SEEK(<fd>, <record number>) Allows a file to be read or written 12-23

starting at a particular record.

SIN(<value>) Returns the sine of a value. 12-48

SIZEOF(<identifier>) Returns the number of bytes in 12-65

memory that are assigned to an

identifier.

SQRT (<value>) Returns the square root of a 12-50

number.

SQR(<value>) Returns the square of a value. 12-49

START PAR Holds the characters that are 12-66

written after the code - filename -

when a program is executed.

Change A, May '82 A-8

APPENDIX A - QUICK REFERENCE SUMMARY

Reference & Format

SUCC(y)

SVC(<n>,<parameter block>)

TIME

TRUNC(<value>)

TYPE <typeid> = (<list>);

|typeid = (list); e@oeyere

Use

Returns the element in a list

succeeding y.

Executes a supervisor call.

Returns the time since the

system was last booted.

Converts a REAL value into an

integer by truncating the decimal

portion of the number.

Declares a set of constant values

that a variable may assume.

VAR <stringid> = STRING [max length];

or

VAR <ident>|,ident,...

WHILE<cond expr.> DO <statement>

WRITE(<fd>|,item list|)

WRITELN | (<fd>) |
WRITELN(|<fd>,item list)

:<pointer id>;

Declares a string.

Executes a statement repeatedly

until the condition being tested

becomes false.

Outputs variables and strings

to the screen.

Outputs a line and carriage

return.

Change A,

12-67

12-69

12-51 ©

12-25

12-27

May '82

APPENDIX B

COMPILE TIME OPTIONS

SECTION B

COMPILE TIME OPTIONS

Compile time options are switches that can be set at compile-time

from within a program. The format to set an option switch is:

(*S$<option>)

This “dollar sign comment” should appear near the beginning of the

program. The following options are available:

Option Function

D Numbers program statements.

Sets the GOTO statement switch.

I Includes an outside source file at

compilation...

L Generates a program listing.

R Performs range checking.

Each switch is described in detail on succeeding pages.

B-l Jan. '82

APPENDIX B - COMPILE TIME OPTIONS

D-Option

Function: Sets the Debugging switch.

Format: (* $<D=switch>*)

Arguments: The D- switch may be:

D+ = statement numbers are generated.

D- = statement numbers are not generated.

Use: The compiler generates statement numbers that are

then displayed when a run-time error occurs. This

is especially useful in debugging programs.

Note: Extra code is generated so the program will be

enlarged.

Example: (* SDF *)

Jan. '82 B-2

APPENDIX B - COMPILE TIME OPTIONS

G-Option

Function:

Format:

Arguments:

Use:

Note:

Example:

Sets the GOTOOK switch.

(* $<G-switch>*)

The G- switch may have two forms:

G+ = Allows GOTO statements.

G- = Enables GOTO statement in a user's program to

generate a syntax error.

The switch must be set if a GOTO statement appears

in the source.

G- is the switch's default value.

(* $G+ *)

B-3 Jan. '82

APPENDIX B - COMPILE TIME OPTIONS

I-Option

Function: Sets the include switch.

Format: (* SI <fd> *)

Argument: fd is the file descriptor for the source file to be

included.

Use: The I-option provides for compiling more than one

source file at one time.

Note: The fd should be a PASCAL source file.

Example: (* $I DATA: zestfile *)

Jan. '82 B-4

APPENDIX B - COMPILE TIME OPTIONS

L-Option

Function:

Format:

Argument:

Use:

Note:

Example:

Sets the listing switch.

(*SL <fd> *)

fd is the file descriptor for the output file.

The L-option generates a listing of the source text

to the output file.

"PR:" and “CON:" are the most frequently used output

files.

(* SL PR:*)

B-5 Jan. "82

APPENDIX B -— COMPILE TIME OPTIONS

R-Option

Function: Sets the rangecheck switch.

Format: (* $<R-switch>*)

Argument: The R- switch may be the form.

R+ = turns rangechecking on.

R- = turns rangechecking off.

Use: Rangechecking checks if a subscript goes out of

range and halts execution on the program. This

helps avoid some of the unpredictable errors

resulting from subscripts going out of range.
“4

Note: R+ is the option's default value.

Example: C*SR+ *)

Jan. '82 B-6

APPENDIX C

COMPILER ERRORS

APPENDIX C

COMPILE-TIME ERROK MESSAGES

Number Message

l ERROR IN SIMPLE TYPE

2 IDENTIFIER EXPECTED

3 "PROGRAM' EXPECTED

4 ')" EXPECTED

5 ':" EXPECTED

6 ILLEGAL SYMBOL (POSSIBLY MISSING ';' ON LINE ABOVE)

7 ERROR IN PARAMETER LIST

8 'OF' EXPECTED

9 '(' EXPECTED

10 ERROR IN TYPE

ll 'a' EXPECTED

12 'a' EXPECTED

13 'END' EXPECTED

14 's' EXPECTED (POSSIBLY ON LINE ABOVE)

15 INTEGER EXPECTED

16 "=! EXPECTED

17 'BEGIN' EXPECTED

18 ERROR IN DECLARATION PART

19 ERROR IN <FIELD-LIST>

20 '," EXPECTED

21 '*' EXPECTED

22 "INTERFACE' EXPECTED

23 ‘IMPLEMENTATION! EXPECTED

24 'UNIT'’ EXPECTED

50 ERROR IN CONSTANT

51 '; =! EXPECTED

52 'THEN' EXPECTED

53 'UNTIL' EXPECTED

54 'DO' EXPECTED

55 'TO' OR 'DOWNTO' EXPECTED IN FOR STATEMENT

56 'IF' EXPECTED

57 'FILE' EXPECTED

58 ERROR IN <FACTOR> (BAD EXPRESSION)

59 ERROR IN VARIABLE

C-1 Jan. '82

APPENDIX C — COMPILE-TIME ERROR MESSAGES

Number

101

102

103

104

105

106

107

108

109

110

lll

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126
127

128

129

130

131

132

Jan. "82

Message

IDENTIFIER DECLARED TWICE

LOW BOUND EXCEEDS HIGH BOUND

IDENTIFIER IS NOT OF THE APPROPRIATE CLASS

UNDECLARED IDENTIFIER

SIGN NOT ALLOWED

NUMBER EXPECTED

INCOMPATIBLE SUBRANGE TYPES

FILE NOT ALLOWED HERE

TYPE MUST NOT BE REAL

<TAGFIELD> TYPE MUST BE SCALAR OR SUBRANGE

INCOMPATIBLE WITH <TAGFIELD> PART

INDEX TYPE MUST NOT BE REAL

INDEX TYPE MUST BE A SCALAR OR A SUBRANGE

BASE TYPE MUST NOT BE REAL

BASE TYPE MUST BE A SCALAR OR A SUBRANGE

ERROR IN TYPE OF STANDARD PROCEDURE PARAMETER

UNSATISFIED FORWARD REFERENCE

FORWARD REFERENCE TYPE IDENTIFIER IN VARIABLE

DECLARATION

RE-SPECIFIED PARAMS NOT OK FOR A FORWARD DECLARED

PROCEDURE

FUNCTION RESULT TYPE MUST BE SCALAR, SUBRANGE POINTER

FILE VALUE PARAMETER NOT ALLOWED

A FORWARD DECLARED FUNCTION'S RESULT TYPE CAN'T BE

RE~SPECIFIED

MISSING RESULT TYPE IN FUNCTION DECLARATION

F-FORMAT FOR REALS ONLY

ERROR IN TYPE OF STANDARD PROCEDURE PARAMETER

NUMBER OF PARAMETERS DOES NOT AGREE WITH DECLARATION

ILLEGAL PARAMETER SUBSTITUTION

RESULT TYPE DOES NOT AGREE WITH DECLARATION

TYPE CONFLICT OF OPERANDS

EXPRESSION IS NOT OF SET TYPE

TESTS ON EQUALITY ALLOWED ONLY

STRICT INCLUSION NOT ALLOWED

C-2

APPENDIX C - COMPILE-TIME ERROR MESSAGES

Number

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

Message

FILE COMPARISON NOT ALLOWED

ILLEGAL TYPE OF OPERAND(S)

TYPE OF OPERAND MUST BE BOOLEAN

SET ELEMENT TYPE MUST BE SCALAR OR SUBRANGE

SET ELEMENT TYPES MUST BE COMPATIBLE

TYPE OF VARIABLE OS NOT ARRAY

INDEX TYPE IS NOT COMPATIBLE WITH THE DECLARATION

TYPE OF VARIABLE IS NOT RECORD

TYPE OF VARIABLE MUST BE FILE OR POLNTER

ILLEGAL PARAMETER SOLUTION

ILLEGAL TYPE OF LOOP CONTROL VARIABLE

ILLEGAL TYPE OF EXPRESSION

TYPE CONFLICT

ASSIGNMENT OF FILES NOT ALLOWED

LABEL TYPE INCOMPATIBLE WITH SELECTING EXPRESSION

SUBRANGE BOUNDS MUST BE SCALAR

INDEX TYPE MUST BE INTEGER

ASSIGNMENT TO STANDARD FUNCTION IS NOT ALLOWED

ASSIGNMENT TO FORMAL FUNCTION IS NOT ALLOWED

NO SUCH FIELD IN THIS RECORD

TYPE ERROR IN READ

ACTUAL PARAMETER MUST BE A VARIABLE

CONTROL VARIABLE CANNOT BE FORMAL OR NON—LOCAL

MULTIDEFINED CASE LABEL

TOO MANY CASES IN CASE STATEMENT

NO SUCH VARIANT IN THIS RECORD

REAL OR STRING TAGFIELDS NOT ALLOWED

PREVIOUS DECLARATION WAS NOT FORWARD

AGAIN FORWARD DECLARED

PARAMETER SIZE MUST BE CONSTANT

MISSING VARIANT IN DECLARATION

SUBSTITUTION OF STANDARD PROC/PUNC NOT ALLOWED

MULTIDEFINED LABEL

MULTIDECLARED LABEL

UNDECLARED LABEL

UNDEFINED LABEL

c-3 Jan. '82

APPENDIX C - COMPILE-TIME ERROR MESSAGES

Number

169

170

171

172

174

182

183

184

185

186

187

188

189

190

191

192

193

194

195

201

202

203

204

205

251

252

253

254

256

257

258

259

300

301

302

303

Jan. "82

Message

ERROR IN BASE SET

VALUE PARAMETER EXPECTED

STANDARD FILE WAS RE-DECLARED

UNDECLARED EXTERNAL FILE

PASCAL FUNCTION OR PROCEDURE EXPECTED

NESTED UNITS NOT ALLOWED

EXTERNAL DECLARATION NOT ALLOWED AT THIS NESTING LEVEL

EXTERNAL DECLARATION NOT ALLOWED IN INTERFACE SECTION

SEGMENT DECLARATION NOT ALLOWED IN UNIT

LABELS NOT ALLOWED IN INTERFACE SECTION

ATTEMPT TO OPEN LIBRARY UNSUCCESSFUL

UNIT NOT DECLARED IN PREVIOUS USES DECLARATION

"USES' NOT ALLOWED AT THIS NESTING LEVEL

UNIT NOT IN LIBRARY

NO PRIVATE FILES

"USES' MUST BE IN INTERFACE SECTION

NOT ENOUGH ROOM FOR THIS OPERATION

COMMENT MUST APPEAR AT TOP OF PROGRAM

UNIT NOT IMPORTABLE

ERROR IN REAL NUMBER - DIGIT EXPECTED

STRING CONSTANT MUST NOT EXCEED SOURCE LINE

INTEGER CONSTANT EXCEEDS RANGE

8 OR 9 IN OCTAL NUMBER

TOO MANY SCOPES OF NESTED IDENTIFIERS

TOO MANY NESTED PROCEDURES OR FUNCTIONS

TOO MANY FORWARD REFERENCES OF PROCEDURE ENTRIES

PROCEDURE TOO LONG

TOO MANY LONG CONSTANTS IN THIS PROCEDURE

TOO MANY EXTERNAL REFERENCES

TOO MANY EXTERNALS

TOO MANY LOCAL FILES

EXPRESSION TOO COMPLICATED

DIVISION BY ZERO

NO CASE PROVIDED FOR THIS VALUE

INDEX EXPRESSION OUT OF BOUNDS

VALUE TO BE ASSIGNED IS OUT OF BOUNDS

c=4

APPENDIX C ~ COMPILE-TIME ERROR MESSAGES

Number

304

398

399

400

401

402

403

404

405

406

Message

ELEMENT EXPRESSION OUT OF RANGE

IMPLEMENTATION RESTRICTION

IMPLEMENTATION RESTRICTION

ILLEGAL CHARACTER IN TEXT

UNEXPECTED END OF INPUT

ERROR IN WRITING CODE FILE, NOT ENOUGH ROOM

ERROR IN READING INCLUDE FILE

ERROR IN WRITING LIST FILE, NOT ENOUGH ROOM

CALL NOT ALLOWED IN SEPARATE PROCEDURE

INCLUDE FILE NOT LEGAL

c-5 Jan. "82

APPENDIX D

RUN TIME ERRORS

APPENDIX D

RUN TIME ERRORS

Number Message

Format error on p-code file. _

Instruction not implemented.

System I/O-error.

End of memory.

Exiting procedure never called.

Integer overflow.

Division by zero.

Floating point error.

O
o

w
m
o
O
n
N

D
M
N

F&
F

W

NH

String overflow.

_

oO
 Invalid index out of range.

—

—
 User I/O-error.

D-1 Jan. '82

APPENDIX E

SUMMARY OF OPERATIONS

Operator

Arithmetic:

+ (unary)

- (unary)

+

x

Integer:

div

/
mod

Relational:

<>

in

Logical:

not

or

and

*
1

*|

APPENDIX E

SUMMARY OF OPERATIONS

Operation

Assignment

Identity

Sign Inversion

Addition

Subtraction

Multiplication

Division

Real division

Modules

Equality

Inequality

Less Than

Greater Than

Less Than or

Equal to
-or-

Set Inclusion

Greater Than or

Equal to
-or-

Set Inclusion

Set Membership

Negation

Disjunction

Conjunction

Union

Difference

Intersection

Type of Operand(s)

Any type except

file types

Integer or Real

Integer or Real

Integer or Real

Integer or Real

Integer or Real

Integer

Integer or real

Integer

Scalar, String

Set or Pointer

Scalar or String

Scalar or String

Scalar or String

Set Subset

Scalar or String

Set

First operand is

any scalar, second

is its set type

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

E-1

Result Type

Same as operand

Integer or Real

Integer

Real

Integer

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

{] or [A,B,...]

Boolean

Boolean

Jan. '82

APPENDIX F

ASCII CHARACTER SET

Dec. Hex. Char. |

|
0 00 (NUL) |
l 01 (SoH) |
2 02 (STX) |
3 03 (ETX) |
4 04 (EOT) |
5 05 (ENQ) |
6 06 (ACK) |
7 07 (BEL) |
8 08 (BS) |
9 09 (TAB) |

10 OA (NL) |

ll OB (VT) |
12 oc (FF) |

13 oD (CR) |
14 OE (so) |
15 OF (sl) |
16 10 (DLE) |
17 ll (pel) |
18 12 (pc2)_ |
19 13 (pc3) |
20 14 (pc4) |
21 15 (NAK) |
22 16 (SYN) |
23 17 (ETB) |
24 18 (CAN) |
25 19 (EM) |
26 1A (SUB) |
27 1B (ESC) |
28 Ic (FS) |
29 1D (cs) |
30 1E (RS) |
31 1F (us) |
32 20 (space) |

33 21 ! |
34 22 " |
35 23 if |
36 24 $ |
37 25 Zz |
38 26 & |
39 27 ' |
40 28 (|
41 29) |
42 2A * |

ASCII CHARACTER SET

APPENDIX F

Dec. Hex. Char.

43 2B +

44 2C >

45 2D -

46 2E °

47 2F /

48 30 0

49 31 1

50 32 2

51 33 3

52 34 4

53 35 5

54 36 6

55 37 7

56 38 8

57 39 9

58 3A :

59 3 ;

60 3C <

61 3D =

62 3E >

63 3F ?

64 40 @

65 4l A

66 42 B

67 43 Cc

68 44 D

69 45 E

70 46 F

71 47 G

72 48 H

73 49 I

74 4A J

75 4B K

76 4C b

77 4D M

78 4E N

79 4F (0)

80 50 P

81 51 Q

82 52 R

83 53 S

84 54 T

85 55 U

Dec. Hex. Char.

86 56 V

87 57 W

88 58 xX

89 59 XY

90 5A Z

91 5B [

92 5C “\

93 5D]

94 5E *

95 5F _

96 60 .

97 61 a

98 62 b

99 63 c

100 64 d

101 65 e

102 66 f

103 67 g

104 68 h

105 69 i

106 6A j

107 6B k

108 6C 1

109 6D m

110 6E n

lll 6F fe)

112 70 %
113 71 q

114 72 r

115 73 s

116 74 t

117 75 u

118 76 Vv

119 77 w

120 78 x

121 79 y

122 7A A

123 7B }
124 7c |
125 7m 4
126 7E ~

127 7F (DEL)

Jan. '82

APPENDIX G

SAMPLE PROGRAMS

APPENDIX G

SAMPLE PROGRAMS

This Appendix contains the following sample programs:

(*character for formfeed*)

(*ten spaces*)

(*twenty spaces*)

l. ISAM Program - ISAMDEMO

2. FGDRAW Sample Programs ~ DRAWGARPHICS and PUT&GETSHAPE

3. Animation Program - ANIMATESTICK

4. Running Assembly Language Programs under PASCAL:

5. Multi-tasking Example.

G.l1 ISAM PROGRAM ISAMDEMO

program isamdemo(input,output);

const

clearscreen = '(:12:)';

bell = '(:7:)';

tensp = ! my

twentysp = "s

type

s80 = string[80];

s30 = string[30];

s20 = string[20];

var

rec, recnew s80;

Name, number : s30;

dept s20;

outfile isamfile;

finished,errflag : boolean;

choicea,choiceb : char;

PROCEDURE CHECK; forward;

PROCEDURE PRESSIT;

begin

writeln;

writeln('Press <return> to continue’);

readln(choicea)

end; (*pressit*)

(*procedure

(*execution

used to pause*)

of pgm till*)

(*<return> is pressed*)

Change A, May '82

APPENDIX G — SAMPLE PROGRAMS

PROCEDURE PADREC;

var

stl, st2

st3

begin

stl :=

st2 :=

st3 :=

s30;

: $20;

concat(twentysp,tensp);

stl;

twentysp;

delete(stl,l,length(name));

stl := concat(name,stl);

delete(st2,1,length(number));

st2 := concat(number,st2) ;

delete(st3,1,length(dept));

st3 :=

recnew

concat(dept,st3);

end; (*padrec*)

PROCEDURE CHECK;

var

x : integer;

begin

x := ioresult;

if x = O then exit(check);

if ((x < 120) and (x > 126)) then

begin

writeln(' ioresult is ',x);

exit(isamdemo)

end;

case x of

120 :

121

122

123 :

124 :

125 :

126 :

end;

errflag :=

end;

writeln('ISAM ERROR

: writeln('ISAM ERROR

: writeln('ISAM ERROR

writeln('ISAM ERROR

writeln('ISAM ERROR

writeln('ISAM ERROR

writeln('ISAM ERROR

true;

Change A, May '82

concat(stl,st2,st3)

(*procedure used to construct*)

(*record NEWREC with length of*)

(*exactly 80 characters*)

(*construct string of 30 spaces*)

(*another string of 30 spaces*)

(*construct string of 20 spaces*)

(*pad stl with spaces*)

(*pad st2 with spaces*)

(*pad st3 with spaces*)

(*construct fixed length record*)

(*procedure used to check for

ISAM errors and return message*)

- Key not found',bell);

- Duplicate key',bell);

- Illegal key value',bell);

- Mismatch at check read',bell);

- Index not found, 'bell);

- Bad data record length',bell);

- Task : end of memory',bell)

; APPENDIX G - SAMPLE PROGRAMS

PROCEDURE RECREAD; (*procedure used to read in record from file*)

var

search : 830;

choice : s20;

begin

writeln(clearscreen) ;

writeln('Read a record');

writeln;

writeln;

writeln('Choose key : name, number, or dept’);

readln(choice);

writeln;

writeln('Do you want to');

writeln(' _L Read last record');

writeln(' F Read first record');

writeln(' P Read previous record');

writeln(' N Read next record');

writeln(') Search for a record');

writeln;

readln(choicea) ;

case choicea of .

'L', "L' : isam(outfile,readlast,rec,choice);

'F' '€' : isam(outfile,readfirst,rec,choice) ;

"Pp! "pt! oo: isam(outfile,readprevious,rec,choice) ;

'N', 'n' : isam(outfile, readnext,rec,choice) ;

'S', 's' : begin

writeln('String to be searched for');

readln(search) ;

isam(outfile,readkey,rec,choice,search) -

end

check;

if errflag then

begin

errflag := false;

pressit;

exit (recread)

end;

writeln(clearscreen) ;

G-3 Change A, May '82

APPENDIX G - SAMPLE PROGRAMS

writeln('The record is');

writeln;

writeln;

writeln(rec);

pressit

end; (*recread*)

PROCEDURE RECWRITE; (*procedure used to write a record into a file*)

begin

writeln(clearscreen) ;

writeln('Write a record');

writeln;

writeln('Name');

readln(name) ;

writeln;

writeln('Phone');

readln(number) ;

writeln;

writeln('dept');

readin(dept); (*now that all the info is in...*)

padrec; (*create the fixed length record*)

isam(outfile,write,recnew);

check;

if errflag then

begin

errflag := false;

pressit;

exit(recwrite)

end;

writeln;

writeln('Record written!');

pressit

end; (*recwrite*)

Change A, May '82 G-4

APPENDIX G - SAMPLE PROGRAMS

PROCEDURE RECUPDATE

begin

writeln(clearscreen);

writeln('Update a record");

writeln('First we must read in a record');

pressit;

recread; (*record must be read in before*)

writeln; (*it can be updated*)

writeln('New name');

readln(name);

writeln;

writeln('New phone number');

readin(number);

writeln;

writeln('New department');

readln(dept); (*now that all info is in...*)

padrec; (*create the fixed length record*)

isam(outfile,update,rec,recnew) ;

check;

if errflag then

begin

errflag := false;

pressit;

exit (recupdate)

end;

writeln('Record updated!');

rec := concat(twentysp,twentysp,twentysp,twentysp) ;

recnew :=rec;

close(outfile);

reset(outfile,'-:rctest'); (*forces clearing of buffer*)

pressit

end; (*recupdate*)

G-5 Change A, May '82

APPENDIX G - SAMPLE PROGRAMS

PROCEDURE RECDEL; (*procedure used to delete record from the file*)

begin

end;

writeln(clearscreen);

writeln('Delete a record');

writeln;

writeln('First we must read in record");

pressit;

recread; (*record must be read in before*)

isam(outfile,delete,rec); (*it can be deleted*)

check;

if errflag then

begin

errflag := false;

pressit;

exit(recdel)

end;

rec := concat(twentysp,twentysp,twentysp,twentysp); (*clear string*)

close(outfile);

reset(outfile,'-:rctest'); (*forces clearing of the buffer*)

writeln;

writeln('Record was deleted!');

pressit

(*recdel*)

begin (*main program*)

reset(outfile,'-:rctest'); (*open isam file*)

finished := false;

errflag := false;

repeat

writeln(clearscreen) ;

writeln('ISAM demo');

writeln;

writeln;

writeln('Please choose');

writeln;

Change A, May '82 G-6

APPENDIX G - SAMPLE PROGRAMS

end.

writeln('

writeln('

writeln('

writeln('

x
o
a
k

Dw

writeln('

writeln;

readln(choiceb) ;

case choiceb of

"rR, 'r'

'w', ‘yw!

'U', 'y!

'D', 'q'

'x', "y!

end (*case*)

until finished

Read record’);

Write record');

Update record');

Delete record');

Exit program');

recread;

recwrite;

recupdate;

recdel;

finished := true

Change A, May '82

APPENDIX G — SAMPLE PROGRAMS

G.2 FGDRAW PROGRAMS - DRAWGRAPHICS AND PUT&GETSHAPE

Interactive program DRAWGRAPHICS draws the shape specified by the

user. It consists of two procedures:

GENSHAPE Prompts user for move direction/set information.

This data is stored in a buffer.

DISPLAYIT Prompts user for color group, color number and the

coordinates of where the shape is to be displayed.

The shape stored in a buffer by GENSHAPE is then

drawn on the screen.

Program PUT&GETSHAPE consists of three procedures:

INFO Specifies shape table information. Refer to

FGDRAW, Section 17.5, Ex. 2 for shape derivation.

WRITE Writes the shape table data to a disk file. This

procedure with little modification can be used in

other FGDRAW programs, when required.

READ Reads the disk file containing the shape table

information and displays it on the console. This

procedure can also be used with little

modification in FGDRAW programs, when required.

Change A, May '82 G-8

APPENDIX G - SAMPLE PROGRAMS

Program DRAWGRAPHICS

PROGRAM DRAWGRAPHICS;

CONST

FEED = '(:12:)';

TYPE

BYTE = 0..255;

. SETBUFF = PACKED RECORD CASE BOOLEAN OF

TRUE : (BUF : ARRAY[0O..127] OF INTEGER);

FALSE : (SIZE : INTEGER;
BBUF : PACKED ARRAY[1..254] OF BYTE);

END;

VAR

BUFF : SETBUFF;

LY : INTEGER;

RESP : CHAR;

PROCEDURE GENSHAPE
(* READS EACH MOVE AND STORES INTO BUFFER FOR SUBSEQUENT DISPLAY *)
VAR

X,X1,IX,CB : INTEGER;
FLAG,MOVE : CHAR;

BEGIN

IY := 0; FLAG := ' '; MOVE :='' ';

REPEAT

FOR IX := 1 TO 2 DO

BEGIN

WRITELN(FEED) ;
WRITELN('TYPE u to Move up');
WRITELN(' r to Move right');
WRITELN(' d to Move down');

WRITELN(' 1 to Move left');
WRITELN(' U to Set pixel & move up');

WRITELN(' R to Set pixel & move right');

WRITELN(' D to Set pixel & move down');

WRITELN(' L to Set pixel & move left');

WRITELN(' 0 to set color 0');

WRITELN(' l to set color 1');

_WRITELN(' 2 to set color 2");

WRITELN(' 3 to set color 3');

WRITELN;

WRITE('Type your move : ');
READLN(MOVE) ;
CASE MOVE O

‘u! : X := 0;

'r! >: X :2 1;

‘da’ > X := 2;

‘1! 2: X := 3;

"U' : X := 4;
'R' >: X := 5;

"D' >: X 3= 6;

"L! >: X := 7;

"O' : X := 12;
4! : KX := 13;

"2' >: X := 14;
"3" >: X := 15

END;

G-9 Change A, May '82

APPENDIX G - SAMPLE PROGRAMS

IF IX = 1 THEN Xl := X

ELSE CB := X1*16+XX

END;

IY := LY + 1;

BUFF .BBUF[IX] := CB;

WRITE('Do you want to exit (Y/N)? ');

READLN(FLAG) ;

UNTIL ((IY=254) or (FLAG='Y') OR (FLAG='y'))

END;

PROCEDURE DISPLAYIT; (* Displays shape stored in a buffer *)

VAR

X,Y,GROUP,NUM : INTEGER;

BEGIN

BUFF.SIZE := IY;

WRITELN(FEED) ;

WRITE('Enter color group & color number separated by a blank? ');

READLN(GROUP , NUM);

WRITE('Where do you want the display to begin (X Y) ? ");

READLN(X,Y);

WRITELN(FEED) ;

GRAPH(FGCTL,GROUP) ;

GRAPH(FGPOILNT ,X,Y,NUM);

GRAPH (FGDRAW ,BUFF .BUF)

END;

BEGIN

REPEAT

WRITELN(FEED) ;

GRAPH(FGCTL,2);

GRAPH(FGPOINT,0,0,0);

GRAPH(FGFILL, 239,239);

GENSHAPE;

DISPLAYIT;

WRITE('Do you want to draw another shape (Y/N) ? ');

READLN(RESP) ;

UNTIL ((RESP='N') OR (RESP='n'))

END.

Change A, May '82 G-10

APPENDIX G - SAMPLE PROGRAMS

Program PUT&GETSHAPE

PROGRAM PUT&GETSHAPE

CONST

FEED = '(:12:)';

VAR

BUFF : ARRAY({O..6] OF INTEGER;

STOSHAPE : FILE OF INTEGER;
FILENAME : STRING;
I,L : INTEGER;

PROCEDURE INFO;

BEGIN

(* Fill out shape table information *)

BUFF(O] := 12;
BUFF[1] := 65%*256+4;

BUFF(2] := 65*256+85;

BUFF([3] := 82*256+85;

BUFF[4] := 99%*256+102;

BUFF(5] := 67*256+118;—

FOR I := 0 TO 6 DO

WRITELN(BUFF([I]);

WRITELN

END;

PROCEDURE READ;

BEGIN

RESET (STOSHAPE, F [LENAME) ;

I := 0;

GET (STOSHAPE) ;

WHILE NOT EOF(STOSHAPE) DO

BEGIN

BUFF(I] := STOSHAPE ;

I := I +1;

GET (STOSHAPE)

END;

I := I-l; L := 1;

FOR I := 0 TO L DO

WRITELN(BUFF [I])

END;

(* Length in bytes *)

(* Display on console *)

(* Open file *)

(* Read file & put it into BUFF *)

(* Manipulate L for displaying *)

G-11 Change A, May '82

APPENDIX G - SAMPLE PROGRAMS

PROCEDURE WRITE;

BEGIN

REWRITE(STOSHAPE , F LLENAME) ;

IF LORESULT <> O THEN

BEGIN

RESET (STOSHAPE , FILENAME) ;

CLOSE(STOSHAPE, PURGE) ;

REWRITE(STOSHAPE , FILENAME)

END;

IF (BUFF[0] MOD 2 = 0) THEN

L := BUFF(0O] DIV 2 ELSE

L := BUFF([O] DIV 2 + 1;

FOR I := 0 TO L DO

BEGIN

STOSHAPE := BUFF(I];

PUT (STOSHAPE)

END;

CLOSE(STOSHAPE)

END;

BEGIN

WRITELN(FEED) ;

INFO;

FILENAME := '-:SHAPETABLE';

WRITE;

L := 0;

FOR I := 0 TO 6 DO

BUFF[I]

READ

END.

:= 0;

Change A, May '82

(*

(*

(*

(*

(*

(*

(*

(*

(*

(*

(*

G-12

Create file *)

Open file *)

Close file & delete it *)

Create file *)

If length is even bytes *)

If length is odd bytes *)

Write to file *)

Close file *)

Write to file *)

Put Os in BUFF to check for

reading of file *)

Read file *)

APPENDIX G - SAMPLE PROGRAMS

G.3 ANIMATION PROGRAM -— ANIMATESTICK

This program draws a blue bar on the left side of the screen. It

then moves the bar across the screen from X=l to X=230 position.

PROGRAM ANIMATESTICK;
CONST

FEED = '(:12:)';
VAR

X,Y,C : INTEGER;

PROCEDURE DRAW;

BEGIN

GRAPH(FGPOINT,X,Y,C);

GRAPH(FGLINE,X,Y+100);
X :=* X +2

END;

PROCEDURE ERASE;
BEGIN

GRAPH(FGPOINT ,X-4,Y,0);

GRAPH(FGLINE ,X-4,Y+100);
END;

BEGIN

WRITELN(FEED) ; (* Clear low res screen *)

GRAPH(FGCTL,O); (* Clear *)

GRAPH(FGPOINT,0,0,0); (* hi-res *)
GRAPH (FGF ILL, 239,239); (* screen *)

GRAPH(FGCTL,109); (* Select color group *)

C := 1; X := 1; Y := 1; (* Initialize values *)

DRAW; (* Draw stick *)

C := 2;

REPEAT

DRAW;

IF C=l1 THEN GRAPH(FGCTL,108) (* Switch color group *)

ELSE GRAPH(FGCTL,109);

ERASE;

IF C=] THEN C := 2 ELSE C := 1; (* C determines color group *)

UNTIL (X >= 230)

END.

G-13 Change A, May '82

APPENDIX G - SAMPLE PROGRAMS

G.4 RUNNING ASSEMBLY LANGUAGE PROGRAMS UNDER PASCAL

SVC6 may be used to run Assembly Language Programs or task files.

The SVC6 function requires that a header be initialized prior to

running the command. Refer to the parameter block description below

for the header locations.

Executing Program SWITCH (see following page) is an example of

multi-tasking since the Pascal program and the Assembly language

program will run concurrently. Refer to the 8800 Series Monroe

Operating System Programmer's Reference Manual for more information

on SVC commands.

Parameter Block

The parameter block for SVC6 is shown below for your convenience.

|(0) SO.FC |(1) SO.RS |(2) S6.PRIO|(3) S6.OPT|

| Function code| Return status| Priority | Option |

| (4) S6.TID | (6) S6.PAR

| Name pointer or task number | Parameter |

|(8) S6.SAD | (10) S6.FD

| Address | File descriptor

| (12) S6.SIZE |

|__Additional size |

The parameter block for SVC6 has the following structure:

Offset Byte Type Mnemonic Name

1) 0 1 Byte SO.FC Function Code

2) 1 1 Byte SO.RS Return Status

3) 2 1 Byte SO.PRIO Priority

4) 3 1 Byte S6.OPT Option

5) 4 2 Integer S6.TID Name Pointer or task number

6) 6 2 Byte S6.PAR Parameter

7) 8 2 Address S6.SAD Address

8) 10 2 Address S6.FD File descriptor

9) 12 —_ Integer S6.SIZE Additional size

Total 14

Change A, May '82 G-14

APPENDIX G — SAMPLE PROGRAMS

PROGRAM SWITCH

PROGRAM SWITCH (* Running assembly language program under Pascal *)

TYPE

BYTE = 0..255;

SVCB = PACKED RECORD

FC : BYTE; (* Function code *)

RS: BYTE; (* Return status *)

PRI : BYTE; (* Priority *)

OPT : BYTE; (* Option *)
TID : INTEGER; (* Pointer to task-id *)

PAR : INTEGER; (* Pointer to starting parameter *)
SAD : INTEGER; (* Starting address *)
FD : INTEGER; (* Pointer to file descriptor *)
SIZE : INTEGER; (* Additional size *)

END;

VAR

SW : PACKED ARRAY[0..31] OF 0..1;

(* Above variable holds start switches for the program at start
up. SW({O] := 1 is equal to start switch A and so on... SVC6
block must follow *)

SVC6 : SVCB;

TIDSTR : STRING[4]; (* Hold task-id *)

PARSTR : STRING; (* Hold starting parameters *)
FDSTR : STRING; (* Hold name of file *)

BEGIN

FDSTR := '- COPYLIB "

TIDSTR := 'GO ";
(* Task id - four characters *)

PARSTR := '(:10:)(:0:)-:TSKRUN/A(:0:)(:0:)';

(* This string holds the start parameters for the task. First

two bytes holding the length of string (low,high order). The

parameter string follows, string is terminated by two zeros

to make an even number of bytes for string. Even number of

bytes is required to please OS. *)

SW(3] := 1;

(* Fill out SVC block. *)

WITH SVC6 DO

BEGIN

FC := 3; ; (* Load & start *)
PRI := 0; ‘ (* Set default value of priority *)

OPT := 0; yv (* Set default value of option *)
TID := ADDRESS(TIDSTR)+1; (* +1 to step length byte of string *)

FD := ADDRESS(FDSTR)+1;

PAR := ADDRESS(PARSTR)+1; (* Omit if no parameters *)

SAD := 0; (* OS will figure out address *)

RS := 0; (* Return status not used *)
SIZE := 0

END;

G-15 Change A, May '82

APPENDIX G - SAMPLE PROGRAMS

IF NOT SVC(6,SVC6) THEN WRITELN('START FAILED');

SVC6.FC := 32+8;

(* 32+8 is wait for task termination. *)

IF NOT SVC(6,SVC6) THEN WRITELN('WAIT DOES NOT WORK');

(* Execution of above statement will put Pascal program into wait

statement till termination of running task (COPYLIBB in this

case) *)

WRITELN;

WRITELN('SUCCESS!')

END.

Execution Commands

Compilation

-PASSYS ,-: SWITCH

00.00.00 MS.8PASCAL 3.02

00.00.00 End of task 0

Execution - Sample Run

-PASCAL :SWITCH4

00.00.00 MS.8 Pascal 3.02

TSKRUN Asc Deleted.

00.00.00 GO End of task 0

SUCCESS!

00.00.00 End of task 0

Change A, May ‘82 G-16

APPENDIX G — SAMPLE PROGRAMS

G.5 MULTI-TASKING EXAMPLE

In order to run several tasks concurrently, the CSS-mode command file

is used to direct the task execution.

In this comprehensive example which follows, two PASCAL programs,

TASKA and TASKB, are converted to type TSKPAS files with the

CSS-command file PASTSK. They are subsequently started concurrently

with CSS-command file TSKRUN.

Program file: TASKA

Program TASKA contains the following code:

fa wy jercar in a> a is rt st . Rosy as

PROGRAM TASKA (ourPuT) ; te Tren aw

VAR .

OUTPUT: TEXT;

IX: INTEGER;

BEGIN

RESET(OUTPUT ,'PR:');

FOR IX:=1 TO 50 DO

WRITELN(OUTPUT,'THIS IS LINE ',IX,’ OF 50 LINES TO BE PRINTED');

END.

When executed this program prints 50 lines of text on the printer.

Program file: TASKB

Program TASKB contains the following code:

PROGRAM TASKB ;

VAR

IX: INTEGER;

BEGIN

FOR IX:=1 TO 500 DO

WRITLEN('TASKB WILL DISPLAY ON THE CONSOLE ',IX,' OF 500 TIMES');

END.

When executed this program displays 500 lines of text on the console.

G-17 Change A, May '82

APPENDIX G - SAMPLE PROGRAMS

CSS file: PASTSK

The CSS-file PASTSK, shown below, will convert an ASCII PASCAL source

file to a task file.

This CSS-file was documented in detail in Section 13 under

“Illustrated Examples”.

$LOGG

SSDI;SSDL Create Pascal Task - CSS 1.00;S$SIF NOP(@l1);$SFI CON:

Parameter error!

Enter: source-fd, <task-fd>, <task stack-size>,<list-fd>

Default: task-fd=source-fd, task stack-size=2000

SSENDF ; S$E;SSENDI

SSIF F(RLDR/T) ,F(PASOBJ/T) ,F(PASRTL/0) :$$GO 10;$SENDI;S$S$FI CON:

This CSS requires the following files on the system volume:

RLDR - Task establisher.

PASOBJ - Pascal object code generator.

PASRTL — Pascal run time library.

SSENDF;SE;$S10:IF NOF(@1/A);$SDI Assign error on @1!;SE;$SENDI;$T

SSDI Compilation started...;<Q>—:PASCOMP,@1,CSSZB ,@4

SSIF E;SSDI Compilation error on file @1!;S$E;S$SENDI

S$SLO PASOBJ,PO;SSPRI PO,200;$SST PO CSSZB;SSWA PO;

SSDE CSSZB/B

SSBU CSSZL

SSFI CSSZC

REMOTE

CHECK

OPTION NOSTACK

STACK @2

INC CSSZB

LIB PASRTL

TASK @1

END

SSENDF;

S$SLO RLDR,,10000;SSPRI RLDR,200;SSST RLDR CMD=CSS%C;SSWA RLDR

SSDE CSS%B/0;$SDE CSS%C/A;SSDI;S$SDI Task @1 created!;$P

$SENDB

/CSSZL,@2,@3;SSDI NO ERRORS

SSDI PARA1 WAS @1;

SSDI PARA2 WAS @2;

SSDI PARA3 WAS @3;

SSDI PARA4 WAS @4;

SE

Change A, May '82 G-18

APPENDIX G - SAMPLE PROGRAMS

CSS-FILE: TSKRUN

A CSS-command file can be built via the text Editor EDIT to load and

start task files TASKA and TASKB and assign equal priorities to each

task. This file is shown below.

$LOGG

$$D1;$SDI RUN MULTI TASKING

S$SLO TSKA;SSPRI TSKA,1;$$ST TSKA

SSLO TSKB;S$SPRI TSKB,1;$$ST TSKB

SSWA TSKA;SSDI;S$$DI TASKA IS FINISHED

$SWA TSKB;$SDI:S$SDI TASKB IS FINISHED

SE

Command File: POP

A command file can be created via the Text Editor EDIT which contains

all the necessary commands in the proper sequence to control the

multi-tasking activity. This file, named POP, looks like this:

PASC:DELETE LORI:TSKA/TP,LORI:TSKB/TP

PASSYS/PASTSK,TASKA ,TSKA 8024, PR;

PASSYS/PASTSK,TASKB ,TSKB , 8024, PR;

SLICE 100

PASSYS/TSKRUN

Execution

To begin execution of this multi-tasking example type.

!POP

TASKA will print a line of text on the printer for approximately 20

lines of text displayed on the console by TASKB.

G-19 Change A, May '82

APPENDIX G - SAMPLE PROGRAMS

Pausing and Canceling Tasks

It is also possible to pause, continue and cancel tasks. By

utilizing the TA,F command at system level, the current task and

their respective states are displayed.

The following console record shows a pause, “TA,F" and cancel TSKA.

~PASSYS/tskrunq

00.00.00 MS.8 Pascal 3.02

00.00.00 $$DI;$$DI RUN MULTI TASKING

RUN MULTI TASKING

00.00.00 $$LO TSKA;$$PRI TSKA,1;$$ST TSKA

00.00.00 $$LO TSKB;SPRI TSKB ,1;S$ST TSKB

<Pause task via a CTRL-A sequence>

-PA

|

00.00.00 Paused

<Pause task via a CTRL-A sequence?

-PAq

|

00.00.00 Paused

~PA tskaq

-CA tskaq

|

00.00.00 TSKA End of task 255

<Pause task via CTRL-A sequence>

~CA TSKB q

=

00.00.00 TSKB End of task 255

00.00.00 End of task 255

Change A, May '82 G-20

APPENDIX L

RLDR - RELOCATABLE LOADER

APPENDIX L

RLDR - RELOCATABLE LOADER

L.1 INTRODUCTION

The Relocatable Loader (or Task Establisher, as it is also known) is

a utility program that builds an executable program (i.e., task) from

an object program or set of object programs in an object library.

The resultant program generated by RLDR is put on disk as a file or

type T-“taskasm.”

A task may be either relocatable or absolute. Relocatable tasks can

be located anywhere in memory. When they are loaded into memory for

execution all necessary addresses are modified for the particular

memory they will be occupying. An absolute task is a memory~image

executable program. Operating system MS8 (Task OS) itself is an

example of an absolute task.

RLDR is directed by a command stream which may either be entered

interactively or stored in an ASCII file. In the simplest case, no

command stream is necessary. As a by-product of the task generation,

RLDR can produce a listing of the memory map and global symbols.

The loader works in two passes. In the first pass, acting on

commands from the operator or an ASCII command file, it builds on

disk a temporary file. This file contains object programs as they

are introduced, a symbol table in memory containing the names of

global symbols, and as they become defined, their values. When the

END command is encountered, RLDR enters the second pass. During this

pass the temporary file is read and a task file is built utilizing

the values of the symbols as now defined in the system table. At the

end of the second pass a list of all global symbols is printed.

Before using RLDR, the PASCAL program must be compiled and the object

file must be created via PASOBJ.

L-1 Change A, May '82

APPENDIX L - RLDR — RELOCATABLE LOADER

L.2 RLDR INVOCATION

RLDR is invoked by the command:

RLDR,|switches|,memory |CMD=fd|

switches

memory

fd

L.3 COMMANDS

Optional. The following switches are available:

R - Additional code for range checking will be

generated.

0 - Additional code for I/0 checking will be

generated.

Valid entries are F, 0, or RO; if one of these is

specified a comma must precede it.

Required. Additional memory for symbol table.

Specify 20000 or greater.

Optional. Name of an ASCII file containing a

command stream. RLDR reads the commands from that

file. If the file contains no END command, RLDR

will revert to (interactive) command mode after

processing all the commands in the file.

Once RLDR is invoked, the following set of commands can be entered.

Other commands are available but generally are not required for

PASCAL. In the command descriptions the following generic terms are

used:

<fd> File descriptor or (for INCLUDE and LIBRARY

commands) module descriptor. (See Section 1.3.)

Change A, May '82 L=-2

APPENDIX L - RLDR — RELOCATABLE LOADER

<exp> Any expression. An expression may be a symbol; or a

numeric constant in octal, decimal, or hexadecimal

format; or a character constant; or symbols and

constants connected by operators:

+ plus

= minus

/ division

* multiplication

& AND

! OR

2? XOR

shift

Only the operators '+' and '-' can be used with

relocatable symbols.

The value of the PLC selected by the PLCNR command

can be referenced by the symbol '*' which is always

relocatable.

Expressions are evaluated from left to right as

l6—bit values.

Command Function

ABort

Abort RLDR and delete the task file.

ABSolute

Generate an absolute task. The default is

relocatable.

CHAin fd

Process <fd> for further commands.

L-3 Change A, May '82

APPENDIX L - RLDR -— RELOCATABLE LOADER

Command Function

ENd [exp]

Terminate the command phase and initiate the second

pass. If <exp> is specified, then that defines the

starting address of the task.

INClude[{,opt] fd [,fd ... }

Insert an object file or set of object files into the

task. Fd may specify either an object library or a

“module”:

fd.name

where"fd" is the file name of an object library and

"name" is the name of an object program within that

library.

If fd is an object library then all of its modules

will be included, subject to the search rules of the

<opt> parameter. If fd is a module name, then only

that module will be included.

opt: A: Do not load the module, but use the

definitions of any absolute symbols

that satisfy unresolved entries in the

symbol table.

E: Search through the file until end-of-

file is found.

R: (default) The file is searched from its

current position until the end of file;

it is then rewound and searching

resumed. This continues until no more

references can be resolved by the file.

W: Same as R except the file is rewound

before searching starts.

Change A, May '82 L-4

APPENDIX L — RLDR - RELOCATABLE LOADER

Command Function

LIBrary PASRTL

Required; collects the modules. from the PASCAL

Routine Library.

List [opt]

NOList [opt]

Specify symbols to be included (LIST) or excluded

(NOLIST) in the listing file:

1. If <opt> is not specified, all symbols.

2. If <opt> is ABSolute, all absolute symbols.

3. If <opt> is UNUSed, all unreferenced symbols.

LOg fd

Produce a log of the commands and error messages to

the file <fd>.

MAXLu exp

Set the maximum number of logical units the output

task can use. The default is 3.

MAXNode exp

Sets the maximum number of nodes generated for the

output task. The default is 8.

OBject fd

Rename the temporary file as <fd> and save it. This

is useful for creating a new object library from

others by using the INCLUDE and LIBRARY commands.

L-5 Change A, May '82

APPENDIX L — RLDR - RELOCATABLE LOADER

Command Function

OPtion opt [,opt ...]

Set the task load options:

RESident Memory resident

NONAbortable Not abortable from other tasks

DEFAssign Default logical unit assignment

NOStackcheck Disables stack limit checks during

SVC

ERMsg ERror messages generated by MS8.

ORG exp

Set the value of the current PLC (selected by the

previous PLCNR command) to the value of <exp>.

PAuse

Set RLDR in the pause state.

PRINt fd

Specify the file where the listing is to be written.

This command overrides any <List> file specified in

the RLDR invocation.

PRIOrity exp

Set the default priority for a task to <exp>. The

value of <exp> must be in the range 9-250. The

default is 128.

RADix exp

Select the number base for the listing file. The

value of <exp> must be 8 or 16. This command

overrides a <Radix> specified in the RLDR invocat#on.

RELocatable

Generate a relocatable task. This is the default

case.

Change A, May '82 L-6

APPENDIX L - RLDR - RELOCATABLE LOADER

Command Function

REMote

Abort RLDR if an error is detected.

STACKlimit exp

Set the task stack size to <exp>. The default value

is 256.

TAsk fd

Specify the output task file name. This overrides

<task> specified in the RLDR invocation.

L.4 MESSAGES

RLDR may display the following messages on the console:

ESTAB MS8 Rx. yz<date>

Sign-on message: revision level x, update level yz,

date of last update.

COMMAND ERROR

Unrecognized command.

PARAMETER ERROR

Parameter missing or invalid expression.

FILE NAME ERROR

Invalid fd.

FILE NOT FOUND

Undefined fd.

MODULE <name> NOT FOUND

Module not present in the object library file.

L-7 Change A, May "82

APPENDIX L -— RLDR - RELOCATABLE LOADER

Command Function

END OF TASK <s>

Termination message. <s> may be:

0: No errors

I: Multiply defined or undefined symbols

23 Aborted

L.5 ILLUSTRATED EXAMPLE

Create the Task file DEMOISAM from PASCAL source program ISAMDEMO in

Appendix G.

PASSYS ,ISAMDEMO Compile ISAMDEMO

PASOBJ ISAMDEMO , DEMOOB J Place object code in DEMOOBJ

RLDR, , 20000 Invoke RLDR

OPTION NOSTACK Do not perform stack check

INC DEMOOB J Include object file DEMOOBJ

LIB PASRTL Collects modules from PASCAL Run

Time iibrary.

TASK DEMOISAM Links DEMOOBJ into DEMOLISAM

END Terminate RLDR

For additional examples of how to use RLDR refer to Section 13 in the

PASOBJ System Program description.

“Change A, May '82 L-8

GLOSSARY OF TERMS

GLOSSARY OF TERMS

Actual parameters A call to a function or procedure can

pass actual parameter. These must be

the same in number, sequence, and type

as the formal parameters.

Array An ordered collection of values that are

all referenced by a single variable

name.

Array declaration Sets aside memory space for an array.

Array subscript Designates a particular element of an

array. It can be any arithmetic

expression that has an integer value.

ASCII character set The American Standard Code for

Information Interchange character set.

It consists of 128 representations. See

Appendix F for more information.

Base type A structured variable's component's

, type.

CHAR Type CHAR variables have characters as

their values. These values can be

assigned, compared, read and written.

Character A letter, digit or special character (+,

*, |, etc.).

Compiler A system program that interprets a

program in a higher level language, such

as PASCAL, into a program in machi we

code so that the computer may execute

it.

Glossary~-l Jan. '82

GLOSSARY OF TERMS

Compound statement A series of simple statements that are

preceded by the reserved word BEGIN and

followed by an END.

Constant definition Establishes named constants for use in a

progran. Constants are defined

immediately after the program headings.

CSS-file (command A file of commands that are executed by

string supervisor) system programs or the PASSYS

interpreted.

Dynamically allocated Variables whose size and number of

variables components are changed as needed within

a program.

External files Files that contain source code that must

be linked with other programs before

execution.

Enumerated type A type whose values are given by listing

their names.

Formal parameters The dummy variables in a function or

procedure heading that receive values to

be passed during execution.

Functions Subroutines that return a value.

Global variables : Variables that are declared in an outer

program and are accessible to nested

subprocedures.

Heading The first line in a function, procedure

or program that contains the routine's

name and all applicable parameters.

Jan. ‘82 Glossary-2

GLOSSARY OF TERMS

Identifier The name used to refer to a variable or

constant. It must begin with a letter.

Integer constant An integer (whole number), for example,

200 and 2575.

Leading loop decision A loop with the terminating condition

tested for at the top of the loop.

Linked list A linked sequence of total items.

Literal A sequence of characters enclosed in

quotes.

Local variables Variables whose values are only

accessible within part of a program,

i.e., in a subprogram.

Logical operators The value a logical operator returns is

either true or false.

Machine code Code that is directly executable by the

computer.

Maxint The largest possible INTEGER in PASCAL.

Operator precedence The order in which operators are

executed in an expression.

P-code (psuedo code) The code that is outputted from the

compiler.

Pointer Each pointer in PASCAL can point to an

item of only one type. For example,

pointer P can locate only values of type

Tis

Glossary-3 Jan. '82

GLOSSARY OF TERMS

Port

Procedures

Program block

Queue

Range checking

Real constant

Record

Recursive procedure

Relational operators

Reserved words

Jan. '82

An I/O register that interfaces between

the processor and its paripheral

services.

Subroutines that perform tasks and

Operate on data. They do not return

values.

All parts of a program except the

heading.

A specialized type of list that allows

total items to be added at one end and

removed from the other.

All subscripts are checked at execution

to insure that they do not go outside of

a specified range of values.

A number such as 2.414141.

A variable with multiple components,

each of which may have a different base

type.

A procedure that calls itself. New

formal parameters and local variables

are allocated each time the procedure is

called.

Operators that compare values to

determine their relative magnitudes.

Words that have predefined meanings in

PASCAL.

Glossary-4

GLOSSARY OF TERMS

Reset file Prepare a file for reading by a program.

Rewrite file Prepare a file for writing by a program.

Scalar type A variable type that represents a single

value rather than a series of values.

For example: CHAR is scalar; STRING Is

not e

Segmented files A segmented file is left outside of

memory until it is called. Segmented

files must be linked together using

PASLINK.

Sequential files The elements in sequential files are

accessed serially without special file

markings. Compare to TEXT files.

Set A collection of values all of the same

type.

Simple statement A single PASCAL statement, i.e., not a

compound statement.

Stack A list that is restricted to having

entries added (pushed) or removed

(popped) from the beginning.

Standard variable types PASCAL types that are redefined. There

are four: INTEGER, REAL, CHAR, BOOLEAN.

Statement block The group of statements in a program

following all declarations. [It is

preceded by the reserved word BEGIN and

followed by END.

Glossary-5 Jan. '82

GLOSSARY OF TERMS

String An array of characters that contains a

length value in the first byte.

Structured types Variable types with standardized

structures that contain more than a

single element.

Subrange type A variable type that can only be

assigned a limited range of values. The

values are defined in another variable

type.

Text files Files of CHAR that contain special

characters that mark the end of a line.

Top-of-heap An integer type pointer which is not by

MARK and refers to the pointer address

at the start of the dynamic data

structure called the Heap.

Type Each variable has a specific type whose

type is determined by its declaration.

Trailing loop decision A loop with the termination decision

made of the end of a loop.

Value parameters Those formal parameters found in a

procedure or function heading that are

not preceded by the keyword VAR which

are passed to the procedure as values.

Variable parameters Those formal parameters in a procedure

heading that are preceded by the keyword

VAR. Functions may not have variable

parameters.

Jan. '82 Glossary-6

GLOSSARY OF TERMS

Variable declaration Establishes variables for use in a

program.

Variant record A record that can have a varying

structure. The structure is changed

within a program.

Glossary-/ Jan. '82

INDEX

INDEX

A

Abbreviations, 1-4 COPY Function, 12-3

ABS Function, 12-38 COS Function, 12-40

Animation Mode, 17=3 Creating Files, 10-6

Animation Program, G-12 Creation of Permanent CSS Files,
ARCTAN Functions, 12-39 13-36
Array, 8-1 SSBUILD, 13-36

Packed Arrays, 8-4 SSDELETE, 13-36

Arrays with Boolean Base Type, 8-5 SSENDB, 13-36

String Arrays, 8-5 SSENDF, 13-36

Arrays with Boolean Base Type, 8-5 SSFILE, 13-36

Assignment Statement, 5-3 SSRENAME, 13-36
CREINDEX, 14-2

B CSS-Files, 13-l, 13-28
CSS-Mode, 13-28

Background Color Selection, 16-16 Creation of Permanent Files,

BEGIN, 5-2 13-36
BLOCKREAD Function, 12-9 Flow and Execution Commands, 13-31

BLOCKWRITE Function, 12-10 Taskfile Commands, 13-34

Boolean, 6-4 $—Commands, 13-30

Baud Rate, 2-8 $$-Commands, 13-31

$$-Commands in Interactive

Cc Mode, 13-37

CASE, 5-17 D
CHAR, 6-7, 6-8
Character Array Intrinsics, 12-30 DATE Function, 12-53

FILLCHAR, 12-31 Declaration Format, 10-2

MOVELEFT, 12-32 Declaring Buffers, 17-4

MOVERIGHT, 12-33 DELETE Procedure, 12-4

SCAN, 12-35 — Disk Handling, 2-l
CMD FILE, 13-33 DISKDUMP, 10-6

Color Protection, 17-4 DISPOSE Procedure, 12-54

Color Selection Graphic Character,

16-7 E

Command File, 12-28

Compiling a Program, 2-6 EOF Function, 10-5, 12-12

CONCAT Function, 12-2 EOLN Functions, 10-5, 12-13

Conditional/Unconditione ~ EOLNCHR Function, 12-55

Statements, 5-13 ERROR, 13-32

CASE, 5-17 EXIT Procedure, 12-57

IF, 5-14 EXP Function, 12-41

GOTO, 5-21
Compound Statement, 5-2 F

CONST, 4-2

Constant Definitions, 4-2 FGCIRCLE Statement, 17-6

Comments, 3-4 FGCTL Statement, 17-2, 17-8, I-l

Control Byte, 17-15 FGDRAW Programs, G-/

Control Characters, 15-5 FGDRAW Statement, 17-10

Control Statements, 5-1

INDEX-1 Change A, May ‘82

FGERASE Statement, 17-24

FGFILL Statement, 17-26

FGGET Statement, 17-28

FGLINE Statement, 17-34

FGPAINT Statement, 17-36

FGPOINT Function, 17-27

FGPOINT Statement, 17-38

FGPUT Statement, 17-39
FGROT Statement, 17-41

FGSCALE Statement, 17-44

FILE, 13-32
File Types, 10-2
File Data Types, 10-1

FILLCHAR Procedure, 12-31

Flashing Mode Selection, 16-11
Flow of Control Execution

Commands, 13-31

FOR, 5-10

FORWARD Directive, 11-2

Four-Color Groups, 17-8

Functions, 11-5

Function Definitions, 4-4

Function Definition, 4-4

Function Keys, 12-55

G

GET Procedure, 10-4, 12-14

Global and Local Variables, 11-6

GOTO, 5-21
GOTOXY, 15-6
GOTOXY Procedure, 12-58

Graphic Characters, 15-1

Graphic Fill Mode, 16-18
Graphics Attributes, 15-4

Graphics Display Format, 15-6

Graphics Mode, 15-3 ‘

H

HALT Procedure, 12-59

Height Selection, 16-9

Hide Mode, 16-21

High and Low Resolution Color

Mixing, J-l

High Resolution Color Chart, I-1l
High Resolution Color Graphics, 17-1

Change A, May '82

INDEX

INDEX~2

Animation Mode, 17=3

Declaring Buffers, 17-4
FGCIRCLE Statement, 17-6
FGCTL Statement, 17-8

FGDRAW Statement, 17-10

FGERASE Statement, 17-24
FGFILL Statement, 17-26

FGGET Statement, 17-28
FGLINE Statement ,17-34

FGPAINT Statement, 17-36
FGPOINT Function, 17-27

FGPOINT Statement, 17-38

FGPUT Statement, 17-39

FGROT Statement, 17-41

FGSCALE Statement, 17-44

I

IAND Function, 12-73

IF, 5-14

INP Function, 12-70

Input and Output Intrinsics, 12-8

BLOCKREAD. 12-9

BLOCKWRITE, 12-10

EOF, 12-12

EOLN, 12-13

GET, 12-14

IORESULT, 12-15

PAGE, 12-16

READ, 12-18

READLN, 12-20

SEEK, 12-23

WRITE, 12-25

WRITELN, 12-27
INSERT Procedure, 12-5

Integers, 3-3, 6-l

IOR Function, 12-74

IORESULT Function, 12-15

ISAM, 14-1

ISAM Create Procedure, 14-2

ISAM Delete Statement, 14-7, G-6

ISAM File, 10-2

ISAM Program, G-2
ISAM Read Statements, 14-8, G4,

G=5

ISAM Statements, 14-1
ISAM Create, 14-2

ISAM Delete, 14-7

ISAM Read, 14-8
ISAM Write, 14-12

ISAM Update, 14-11

ISAM UPDATE, 14-11, G-5
ISAM Write Statement, 14-12, G-5

ISHIFT Function, 12-75

ISWAP Function, 12-76

IXOR Function, 12-77

K

KILLISAM, 14-1

L

Label Declarations, 4-1

LENGTH Function, 12-6

LN Function, 12-42

LOG Function, 12-43

Logical Intrinsics, 12-73
IAND Function, 12-73

IOR Function, 12-74

ISHIFT Function, 12-75

ISWAP Function, 12-76

IXOR Function, 12-77

Low Resolution Business Graphics,

15-1 :

Graphic Characters, 15-1

Graphics Modes, 15-3

Graphics Attributes, 15-4

Control Characters, 15-5
Graphics Display Format, 15-6

Low Resolution Character Set, H-1l

Low Resolution Color Graphics, 16-1

16-4

16-5
Printable Characters,

Text Color Selection,

INDEX

Graphic Character Color Selection,

16-7
Height Selection, 16-9

Flashing Mode Selection, 16-11

Separate Mode Selection, 16-13

Background Color Selection, 16-6

16-18
16-21

Fill Mode,

Hide Mode,

M

MARK Procedure, 12-60

INDEX-3

Mathematical Functions, 12-37

ABS, 12-38

ARCTAN, 12-39

cos, 12-40

EXP, 12-41

LN, 12-42

LOG, 12-43

MOD, 12-44

ODD, 12-46

ROUND, 12-47

SIN, 12-48

SQR, 12-49

SQRT, 12-50
TRUNC, 12-51

MOD Function, 12-44

MOVELEFT Procedure,

MOVERIGHT Procedure,

Multi-Tasking

Running Assembler Under PASCAL,

G-13

Running Multiple PASCAL

Programs, G-16

12-32
12-33

N

Naming Conventions, 1-5
NEW Procedure, 12-62

NOERROR, 13-32

NOFILE, 13-32
NOPAR, 13-32
NOTASK, 13-32
NRMLEXT, 13-33
Numbers, 3-3

Integers, 3-3
Reals, 3-3

fe)

ODD Function, 12-46

OPTION Function, 12-63

Ord, 6-7 $
OUT Procedure, 12-71

P

Packed Arrays, 8-4

Packed Records, 8-9

PAGE Procedure, 12-16

PAR, 13-?2

Change A, May '82

PASCAL, 2-6
PASCAL Interpreter, 13-2
PASCAL Intrinsics, 12-]
PASCOMP System Program, 13-6
PASDEL System Program, 13-9
PASDUMP System Program, 13-10
PASLIB System Program, 13-11
PASLINK System Program, 13-14, 13-33
PASOBJ System Program, 13-24
PASPRINT System Program, 13-27
PASSYS, 2=5
PASSCROSS System Program, 13-8
PASSYS Interpreter, 13-4
PFD, 13-33, 13-34
Physical File, 10-2
Pointer Data Types, 9-1
Pointer Type Components, 9-2
Port Number Assignments, K-]
POS Function, 12-7
Printer Baud Rate, 2-8
Printable Characters, 16-4
Procedure Definition, 4-4
Procedures, 11-3
Procedures and Functions, 11-1
Program Headings and Declarations,
4-1

Program Syntax, 2-3
PUT, 10-5 ;
PWROFTEN Function, 12-72

R

READ, 10-3

READFIRST, 14-9
READ Procedure, 12-18
READKEY, 14-9
READLAST, 14-9

READLN, 10-4
READLN Procedure, 12-20
READNEXT, 14-9
READPREVIOUS, 14-9

Real, 3-3, 6-3

Record, 8-7

Packed Records, 8-9
Record Assignment, 8-12
Record Variants, 8-15
WITH Statement, 8-10

Record Assignment, 8-12

Change A, May' 82

Record File, 10-2
Record Variants, 8-15
Related Manuals, 1-7
RELEASE Procedure, 12-64
REPEAT, 5-8
Repetitive Statements, 5-5

FOR, 5-10

REPEAT, 5-8
WHILE, 5-6

Reserved Words/Special Symbols,
3-1

RESET, 10-3

REWRITE, 10-3
RLDR, L-1, 13-25, 2-1
ROUND Function, 12-47
Running A Program, 2-7

S

Scalar, 7-2
Restrictions on Scalar
Constants, 7-2

SCAN Function, 12-35
SEEK Procedure, 12-23
SEGIEXT, 13-33
SEGMENTTEST, 13-33
Separate Mode Selection, 16-13
Set, 7-5

SIN Function, 12-48
SIZEOF Function, 12-65
Special Symbols and Constants, 4-1

Reserved Words/Special Symbsls,
3-1

User-Defined Words, 3-2
SQR Function, 12-49
SQRT Function, 12-50
Standard Data Types, 6-1
STARTPAR Function, 12-66
String Arrays, 8-5
String Constants, 3-4
String Intrinsics, 12-1

CONCAT, 12-2

COPY, 12-3

DELETE, 12-4

INSERT, 12-5

LENGTH, 12-6
POS, 12-7

Structured Data Types, 8-1

INDEX~4

Subprogram Placement, 11-2
Subrange, 7-3

SVC Function,

Symbol, 1-2

System Programs, 13-1

PASCAL Interpreter,

PASCOMP, 13-6

PASCROSS, 13-8
PASDEL, 13-9
PASDUMP, 13-10
PASLINK, 13-14
PASOBJ, 13-24
PASPRINT, 13-27
PASSYS Interpreter,

12-67

13-2

13-4

T

TASK, 13-32
Task File CSS-Commands,

SSCONTINUE, 13-35

SSKILL, 13-35

SSLOAD, 13-34

SSOPTION, 13-35

SSPAUSE, 13-35
SSPRIORITY, 13-35

SSSTART, 13-35

SSTRIGG,_ 13-35

SSWAIT, 13-35

Text Color Selection,

Text File, 10-2

Text, Symbols and Conventions, 1-2

TIME Function, 12-69

TRUNC Function, 12-51

Two-Color Groups, 17-8

TXFPOINT Statement, 16-25, 16-28

TXPOINT Function, 16-25, 16-26

Type, 7-1, 8-1

Type Definitions, 4-3

13-34

16-5

U

User-Defined Types, 7-1

User-Defined Words, 3-2

V

Var, 4-3

INDEX

INDEX-5

Variable Declarations, 4-4

Variant Record Declarations, 18-19

Variant Record Type, 17-5

Varying Parameters, 11-8

W

WHILE, 5-6
WITH Statement, 8-10

Word Lengths, 2-2
Working with PASCAL, 2-1

WRITE, 10-4
WRITE Procedure,

WRITELN, 10-4
WRITELN Statment, 12-27

Writing a Program, 2-2

12-25

$-—Commands, 13-30
SEXIT, 13-30
SHALT, 13-30, 13-37
$LOGG, 13-30

SNOLOGG, 13-30

SPURGE, 13-30

SREMOTE, 13-30
STEST, 13-30

SEXIT, 13-30

SHALT, 13-30, 13-37
SLOGG, 13-30

SNOLOGG, 13-30

SPURGE, 13-30

SREMOTE, 13-30
STEST, 13-30

SSACTIVATE, 13-34

SSBUILD, 13-36

$$-—Commands, 13-31

SSDISPLAY, 13-31

SSENDI, 13-31

$SGOTO, 13-31

SSIF, 13-31

SSSLEEP, 13-31

Change A, May '82

‘$$ Commands Interactive. Hode, .13=37
SSENDI,-13-37> |”

- “$$HALT, .£3-37
“$SIF, -13+37

SSCONTINUE , 13-35
$$DELETE, 13-36:
$SDISPLAY, . 13-31

“-S$SENDA, 13-34:
SSENDB, 13-36
SSENDF, 13-36
$SENDI, 13-31, 13-37.

" $SFILE, 13-36
$$COTO, 13-31.
$SEF, 13-31, .13-37.
SSIF Commands, i13-32
. ERROR, 13-32 |
"FILE, ~13=32.

Change A, May '82

- NOERRQR, 13-32
- NOFILE, + 13-32
-NOPAR, 13-32
NOTASK, 13-32

PAR, 53-32
‘TASK, .13-32

- SSKILL, “13=35
- S$LOAD, 13-35
- $$QPTION, 13=35
S$PAUSE, 13-35.
SSPRIORITY, 13=35,
SSRENAME , 13-36
‘SSRUN, 13-33
SSSLEEP, 13-31

- SSSTART, 13-35
SSTRIGG, 13-35
SswAIT, 13=35

INDEX~6

10 000000 2-2

MONROE TEXT EDITOR

PROGRAMMER'S REFERENCE MANUAL

July 1981

MONROE SYSTEMS FOR BUSINESS

The American Rd.

Morris Plains, N.J. 079

©1981, Litton Business Systems, Inc., All Rights Reserved.

21065

The material contained herein is supplied without

representation or warranty of any kind by Monroe

Systems For Business. Monroe assumes no

responsibility relative for the use of this material

and shall have no liability, consequential or

otherwise arising from the use

part thereof. Further, Monroe

revise this publication and to

to time in the content hereof

of this material or any

reserves the right to

make changes from time

without obligation to

notify any person of such revision or changes.

ii

PURPOSE OF THIS DOCUMENT

This document is a Programmer's Reference Manual.

It is to be used by experienced programmers as a

reference tool. It is not intended for use as a

learning aid by non-programmers.

iii

RECORD OF CHANGES

—
-
_
—

iv

Section

1

TABLE OF CONTENTS

Title

INTRODUCTION

Lel Overview

1.2 Using this Manual

1.3 Text Symbols and Conventions

1.4 File-Volume—Device Naming Conventions

1.5 Kinds of Files

1.6 Organization of this Manual

1.7 Abbreviations

1.8 Related Manuals

STARTING UP

2.1 Loading and Starting

Logging In

Specifying the File Descriptor

Disk File Procedures

Prompting

202 Terminal Keys that Control Lines of

Text

23 Modes of Work

USING THE EDITOR

3.1 General

302 Text Format

3.3 Text Display

3.4 Setting the Environment

3.65 Text Identification

Line Numbers

“String” Identification

Create Text

: Modify Text

Save Text on Disk File

3.9 Get Existing Text from Disk File

Page

1-1

1-1

1-1

1-3

1-4

1-6

1=7 |

Section

TABLE OF CONTENTS (CONT.)

Title

3.10 Editing Tips

Working with Large Volumes

Saving Work Periodically

Renumbering

DESCRIPTION OF COMMANDS

4.1

4.2

4.3

4.5

General

Notes About Command Descriptions

String Operand

Line Number Operand

Commands Which Manipulate and

Display Text

Change Variable (CV) Command

Delete Line (DL) Command

Edit Line (ED) Command

Insert Line (IL) Command

Line Number Command

Print (PR) Command

Search Variable (SV) Command

Commands Which Control 1/0

Output and Read (OR) Command

Read (RE) Command

Write (WR) Command

Commands Which Control the

Environment

Abort (AB) Command

End Edit Session (EN) Command

Kill Buffer (KI) Command

Renumber (NU) Command

Set Tabs (ST) Command

vi

Page
3-10

3-10

3-10

3-11

4-2
4-3
4-5
4-7
4-9
4-12
4-14
4-16
4-18
4-19
4-20
4-22

4-23

4-24

4-25

4-26

4-27

4-28

Section

APPENDIX A

APPENDIX B

TABLE OF CONTENTS

Title

COMMAND SUMMARY

ERROR MESSAGES

vii

(CONT.)

SECTION 1

INTRODUCTION

SECTION 1

INTRODUCTION

1.1 OVERVIEW

This manual describes the utility program EDIT, a general purpose,

text editing program that modifies and/or creates source programs and

other ASCII text material (e.g., data, documentation) interactively.

Text is read sequentially from the input unit (terminal) into an area

of memory called the edit-buffer. Both the modification and creation

of text are performed within the edit-buffer; the former revising the

text of a file or segment of a file just read into the edit-buffer,

and the latter using the edit-buffer as a work area for the

generation of a new text. When editing is complete, the contents of

the edit-buffer may be written onto the output unit (printer or

file).

EDIT is edit-buffer oriented within the file, line oriented within

the edit buffer, and character oriented within a line.

EDIT makes use of any available memory for the edit-buffer.

1.2 USING THIS MANUAL

This manual deals with the function and capabilities of the editor

and provides the means by which those capabilities can be exploited.

Each command is reviewed and examples are provided to facilitate its

use. It is important to note, however, that this document is a

PROGRAMMER'S REFERENCE MANUAL and not a tutorial. Thus, it is

intended to be used as a reference device rather than as an

educational tool.

1.3 TEXT SYMBOLS AND CONVENTIONS

Throughout this manual specific documentation conventions are used to

describe formats for writing EDIT commands and statements. The

following conventions are in effect:

1-1 July '81

SECTION 1 - INTRODUCTION

Symbol

1. CAPITAL LETTERS

2. Lower Case

3. <>

Ae oy

5. 4

6. []

7. CTRL-H

July '81

Description and Use

Capital letters are used for all keywords,

commands and statements that are to be

explicitly typed.

Example: RE

OR

Lower case letters specify variables which

are to be supplied by the user according to

the rules explained in this text.

Example: line number

Angle brackets enclose fields that are

required for valid syntax. They are never to

be typed.

Example: SV <string>

Commas and dashes are separators. All must

be typed as shown.

Example: PR 1-4

BT ll, 17, 35

The symbol "“{" indicates the depression of

the RETURN key.

Example: EN

CV TST1, TST24

Vertical lines enclose optional elements of a

statement.

Example: PR [line nos.]

Control character. Depress and hold CTRL key

while striking another key (represented by

H).

Example: CTRL-C

CTRL-H

Le=2

SECTION 1 - INTRODUCTION

1.4 FILE-VOLUME-DEVICE-NAMING CONVENTIONS

The file, volume, and device naming conventions that are used

throughout this manual are defined as follows.

A) A file is a program or a collection of data stored on a disk-type

storage medium. Files stay in the system permanently unless they

are explicitly removed.

B) A volume name is the name given by the user to a diskette (e.g,

MONT: ,PASC:,FIX:). The system volume is the volume from which

the operating system is booted.

C) A device name is name given to a physical device (e.g., CON for

the console, PR for the printer, FPYO for disk 0, FPY1 for disk

1). These names cannot be changed by the user.

D) The file/device descriptor, referred to in this manual by <fd>,

may refer to any of the above (A, B or C) depending upon the

content of the utility command being discussed.

E) File/device descriptors can be composed of four fields: vol,

filename, directory, and type, where vol can be either a volume

or device name.

F) The format can be expressed in four ways:

1. <vol:>

2. [vol:]<filename>[/type]

3. [vol:]<directory>

4. (vol: |<directory.filename>[/type]

where:

vol Name of the volume on which the file resides if the

file descriptor refers to a file, or the name of a

device if the file descriptor refers to a device.

It may be from one to four characters. The first

character must be alphabetic and the remaining

alphanumeric. If the volume is not specified, the

default volume is the SYSTEM volume.

1-3 July '81

SECTION 1 - INTRODUCTION

filename

directory

type

Name of the file. It may be from one to twelve

characters, the first alphabetic and the remaining

alphanumeric.

Name of the user's directory file. It may be from

one to twelve alphanumeric characters. If not

specified, the directory defaults to the master

directory.

Type of file, i.e., ASCII, Binary, etc.

Example: Examples of legal file/device descriptors are:

EDIT MAIN Starts the program EDIT; the file MAIN from

the Master Directory is ready to be read into

the eidt-buffer.

EDIT INFO:MAIN Starts the program EDIT; the file MAIN from

disk "INFO" is ready to be read into the

edit-buffer.

EDIT INFO:TEST.MAIN Starts the program EDIT; the file MAIN from

user directory “TEST” on disc “INFO" is ready

to be read into the edit-buffer.

1.5 KINDS OF FILES

With each file there is a type specification that describes, for the

System and the user, what kind of data is in the file. These appear

next to the filename for your files in your Master File Directory.

Table 1-1 lists these specifications and their meanings. The type of

the file is normally implied by the program, and does not need to be

Specified. If the file type is not implied by the program, it must

be specified!

July '81

SECTION 1 - INTRODUCTION

Table l-l. Type Specifications

SYMBOL Description and Use

Asm ASSEMBLER source code.

Bas BASIC source code, or data produced by BASIC.

Und Undefined data, which verifies to any other

type.

Asc ASCII data readable without any special

handling.

Lst List file, ASCII data together with position

information.

Obj Object code, readable by the task Establisher.

Cannot be loaded and executed.

Bin Binary data, which is unspecified.

Tsk Task file, either relocatable or absolute.

Can be loaded and executed.

Ism ISAM index file.

Pas PASCAL source code or data produced by PASCAL.

Efd Element File Directory.

Mfd Master File Directory.

1-5 July '81l

SECTION 1 -— INTRODUCTION

1.6 ORGANIZATION OF THIS MANUAL

This manual is organized into four sections and two appendices.

Section 2 demonstrates the statements needed to initiate the editor

and addresses disc file procedures, modes of work and editor

prompting.

Section 3 gives the reader the information necessary to understand

and work with the editor. It provides examples which illustrate text

creation and modification, text identification, and how to save text

and retrieve existing text on a disk file.

Section 4 describes each of the EDIT commands and statements

available to the user. For every command or statement, the following

information is included:

1. Function -Summarizes purpose of the command.

2. Mode -Specifies which mode applies - Command or

Inline.

3. Format -Shows the command syntax.

4. Arguments -Defines the format variables.

5. Use -Describes in detail how the command is used

including restrictions and exceptions.

6. Example -Lists program examples illustrating the

various uses of the command.

Appendix A contains a command summary which includes the command

mnemonic, its format, and function.

Appendix B contains a list of error messages with comments.

July '81 1-6

SECTION | - INTRODUCTION

1.7 ABBREVIATIONS

The following abbreviations are used in this manual:

fd -File Descriptor

line no. -Line Number

PR -Printer

string var -String Variable

vol -Volume Name

1.8 RELATED MANUALS

This document is to be used as a reference manual. For more

information, please refer to the following supplementary material:

“Monroe Utility Programs Programmer's Reference Manual

“Monroe Operating System Programmer's Reference Manual

-Monroe PASCAL Programmer's Reference Manual

1=7 July '8l

SECTION 2

STARTING UP

SECTION 2

STARTING UP

2.1 LOADING AND STARTING

The editor is delivered to you as a task-file on a 5" disk. Once the

bootloading process has been completed, the editor may be called.

Logging In

The program is started by the command:

EDIT{ , ,addmem]<fdl>[,fd2]

The [,,addmem] is optional and will expand the edit-buffer. It is

specified as an integer in number of bytes.

The <fdl> is the name of the source file or the device that contains

or shall contain the text. It is specified in the form of a file

descriptor.

The optional {fd2] is the name of the destination file or the device

where the result should be placed. If no [f£d2] is specified, the

resulting text is placed in the file specified in <fdl>.

Specifing the File Descriptor

As noted in section 1.4 of this manual, the file descriptor, fd, can

be composed of four fields: voln, filename, directory, and type.

There are several ways to call the editor:

EDIT fd Creates a new text file or edits an existing

file. Input and output files are the same.

A backup file is created.

2-1 July '81

SECTION 2 - STARTING UP

EDIT fdl, £d2

EDIT fd,PR:

Examples:

EDIT GAMES

EDIT GAMES ,SPACE

EDIT GAMES,PR:

Disk File Procedures

Creates a new text file by editing an

existing file. This method can be used to

simply make a copy of a file. No backup is

created.

Outputs the text file to the printer. If

corrections were just made, they will appear

in the listing. The original file, howevey

remains unchanged. This means that any text

modification or generation performed during

this editing session will not be output to

the specified file.

This allows the user to create a new text

file called GAMES, or edit the file GAMES

that already exists in the file directory.

Creates a new text file SPACE, by editing the

existing file GAMES.

Outputs the text file GAMES to the printer

along with any editing changes just made.

The original file, however, remains

unchanged.

When editing a file, there are several internal procedures with which

the user should be aware. First, the editor opens a temporary file

with the name EDITTEMPX, where X is a sequence number. Secondly, the

contents of the file to be edited must be read into the edit-buffer.

Since the editor does not automatically read the text from the file

July '81 i)
 ! nm

SECTION 2 -— STARTING UP

into the edit-buffer, the user must do so with the RE command. The

edited text is outputted with the OR or EN command into the temporary

file and with the WR command to the printer.

If the file to be edited is larger than the edit-buffer (this

condition exists if the message EOF (end of file) and the number of

the last line of text in the edit-buffer is not displayed on the

console when the RE command is executed) the next part of the file

must be read in if further editing is needed. This can be

accomplished by using the OR command.

The editing session is completed with the EN command. This results

in the following: the temporary file becomes the new text file, and

the old text file (the file before editing changes) becomes a backup

file. The backup file retains the name of the original file, along

with an ampersand, “&". Any previous backup file is deleted.

Example:

original file: GAMES

temporary file: EDITIMPO

backup file: GAMES&

Prompting

Text is edited according to user commands. When the editor expects a

command, the symbol “>” is outputted as a prompt to the user. To

enter a command, the user types the desired command and terminates

with a carriage return. The editor interprets this command and

performs the specific operation. When execution of the operation is

complete, the prompt character is again displayed.

2.2 TERMINAL KEYS THAT CONTROL LINES OF TEXT

The editor is used in conjunction with a terminal device like a CRT.

Keys that control lines of text are as follows:

TAB key or CTRL-I

CTRL-H

CTRL-A

tabulates cursor according to preset columns.

backspaces 1 position.

stops multiple line presentation or output on

printer.

2-3 July '81

SECTION 2 - STARTING UP

2.3 MODES OF WORK

The editor works in two control modes:

command mode - the editor is ready to accept commands.

inline mode - allows user to insert lines of text.

The command mode is prompted with “>", and is automatically invoked

at start up.

The inline mode is prompted with “#". When inline mode is active,

lines entered at the terminal are treated as text to be inserted into

the output file.

The inline mode is made active by the IL command.

Each of the editor commands has a mode associated with it, as is

further explained in Section 4 of this reference manual.

Example:

Insert line(s) of text after the last line in the edit-buffer by:

>IL4 Inline mode. Key in line(s) of text. Enter

text by pressing carriage return.

Insert line(s) of text after any line in the edit-buffer by:

>IL line no. Inline mode. Insert lines of text after line

number indicated. Carriage return.

The inline mode is terminated by inputting # and carriage return

directly after the “#" prompt as follows:

f--- Inserted text is entered by pressing carriage

FEY return. Input # and carriage return. The

> prompt ">" signifies that the command mode is

now active.

July '8l 2-4

SECTION 3

USING THE EDITOR

SECTION 3

USING THE EDITOR

3.1 GENERAL

This section gives to the user an understanding of the capabilities

of the editor, as well as the procedures necessary to utilize those

capabilities. If possible, this section should be followed while at

the terminal.

The editor is logged in by:

EDIT fd

The editor responds with:

LINEORIENTED VERSION n

>

The first line informs the user that the editor is operative; a

stands for the revision number of the editor program. The prompt

character “>” indicates that the editor is in the command mode and is

ready to accept command from the user.

A command is a brief phrase which tells the editor what to do. A

command is entered following the prompt charcter, and is terminated

by a carriage return. The carriage return causes the command to be

interpreted by the editor.

3.2 TEXT FORMAT

The maximum number of characters allowed in each line of text is 80

characters. If the number of characters exceeds 80 the error

message, “LINE TOO LONG”, will be displayed.

3.3 TEXT DISPLAY

The execution of the command PR causes text to be displayed on the

console. Since it is possible that not all the text in the file may

be displayed on the console at one time, any remaining text may be

3-1 July '81

SECTION 3 - USING THE EDITOR

displayed by pressing the space bar. If only certain lines of text

are of interest the user may specify a range of lines as the operand

of the PR command which, when executed, will display only those lines

specified.

3.4 SETTING THE ENVIRONMENT

Tab control causes text to be aligned at pre-set positions, and thus

frees the user from constantly having to space text a desired number

of columns.

The BI command allows the user to set tabs. The editor moves the

cursor according to the pre-set positions whenever the CTRL-I key is

depressed.

3.5 TEXT IDENTIFICATION

In order to perform a given editing operation, an editor command

usually requires that line(s) of text or a portion of a line be

specified. A line of text is a sequence of characters terminated by

a carriage return. Text is identified for an operation by the use of

editor-assigned line numbers, or by a “string” of characters within a

line.

Line Numbers

Line numbers provide a conventient means for identifying lines of

text during an editing session. They are assigned when a file is

opened for editing, or are generated when text is entered from the

terminal. Each line retains its assigned number as long as the line

exists during the editing session. Line numbers are output only when

text is displayed on the terminal; they are not written to the output

file.

When an existing file is opened for editing each line of text entered

is assigned a line number beginning with |, and incremented by one.

The largest line number allowed is 9999.

July '81 3-2

SECTION 3 - USING THE EDITOR

When text is entered at the terminal, line numbers are assigned

according to the command used. For example, the IL command can be

used to insert new text into existing text at a specified position.

Line numbers for inserted lines have a decimal point following the

integer number. Decimal points are generated by incrementing the

line number by .0l after each line of new text entered. Thus, the

line number of each inserted line is .01 greater than the previous

a
line.

“String” Identification

A line of text can also be identified by specifying a “string”, which

is a sequence of characters contained within the line. If the

specified string occurs more than once in the text being edited, each

occurrence of the string is assumed to be the line being searched.

Searching for a particular string always begins at the first line in

the edit-buffer and proceeds sequentially until the last line in the

buffer is reached.

3.6 CREATE TEXT

Suppose you wish to create a file. After calling the editor,

choosing a filename in the form of a file descriptor, the terminal

has the following display:

EDIT fd

LINEORIENTED VERSION n

>

After the prompt you must open the file with the RE command:

>REY

The editor is now ready to receive commands for text generation.

Enter the command IL. This puts the editor in the inline mode. Text

may now be entered.

>IL

1.#

3-3 July '81

SECTION 3 - USING THE EDITOR

The “#" prompts for the line of text to be entered. For example,

Suppose you enter:

>IL

1.# THE EDITOR FACILITATES4

The editor responds after your carriage return with:

>IL

1.# THE EDITOR FACILITATES

2 .i#

The first line is now accepted and the editor is waiting to receive

the next line to be entered.

Now you enter:

2.# SOURCE FILES OF ANY KIND4

In expectation of the next line the editor outputs:

3.#

Let us assume that you do not wish to enter any more lines. Type in

and press carriage return. The editor is back in the command mode

and outputs the prompt ">".

The terminal will now show:

EDIT fd

LINEORIENTED VERSION n

>RE

>IL

1.# THE EDITOR FACILITATES

2.# SOURCE FILES OF ANY KIND

3.#F

July '81 3-4

SECTION 3 - USING THE EDITOR

Verify the text just entered with the PR command. This command tells

the editor to output all lines of text to the terminal. Lf the text

has been entered correctly and the editing session is over, the EN

command will save the contents of the edit buffer under the filename

specified in your file descriptor. A backup file is also created and

both files are entered in your system library for future access.

3.7 MODIFY TEXT

Should you decide to modify the existing text you simply specify the

appropriate file descriptor when calling the editor and use the RE

command to read the contents of the file into the edit buffer.

To add a new line of text after the last line in the file, you use

the IL command without specifying an operand. The text entered shall

follow immediately after the last line of text in the file. For

example, you enter:

>ILq

The editor responds with the prompt “#" followed by a line number one

greater than the last line of text. You type in:

3.# THE CRT IS USED AS A WORK AREA

Display the current text to verify the result:

>PRY

1. THE EDITOR FACILITATES

2. SOURCE FILES OF ANY KIND

3. THE CRT IS USED AS A WORKAREA

Suppose you wish to insert a line of text between two existing lines.

There are two ways to accomplish this. You can either enter the

number of the lines after which you want the new line to follow, as

the operand of the IL command, or enter as the operand a number which

numerically lies between the line numbers of the two existing lines

in which you want the new line to be inserted.

3-5 July '81

SECTION 3 - USING THE EDITOR

The latter number may have up to two digits following the decimal

point.

For example, suppose you wanted to insert “GENERATION OF" between

lines 1 and 2. You enter:

>IL 14 a

The terminal now looks like this:

>IL 1

1.01#

You enter:

1.01# GENERATION OF4

OR

You could have initially entered:

>IL 1.504

The terminal displays:

>IL 1.50

1.50 #

And then the correct text is entered at line 1.50. No matter which

method is used, when the text is verified, it should look like this:

PRY

l. THE EDITOR FACILITATES

(1.01 or 1.50)GENERATION OF

2. SOURCE FILES OF ANY KIND

3e THE CRT IS USED AS A WORKAREA

July '81 3-6

SECTION 3 - USING THE EDITOR

Hence, a new line can be positioned anywhere within existing text by

entering the appropriate line number as the operand of the IL

command.

Suppose you now want to modify one of the existing lines. This is

accomplished by entering the command ED along with the number of

the line you wish to change.

For example, if you wanted to add “CORRECTION, UPDATING AND" to the

first line of text, you would enter:

>ED 14

The editor responds with:

1. THE EDITOR FACILITATES

rl. ?

You can change the line, add to the line, or just modify a portion of

it. The TAB key allows the user to position the cursor at the

location of the word or character he wishes to edit without changing

any text prior to that location. In this example, the TAB key is

depressed until the cursor is positioned one space after the “S", and

the following is typed in:

CORRECTION, UPDATING AND4

The carriage return enters the new text and the PR command displays

the following:

>PR

l. THE EDITOR FACILITATES CORRECTION, UPDATING AND

(1.01 or 1.50)GENERATION OF

2 SOURCE FILES OF ANY KIND

3. THE CRT IS USED AS A WORKAREA

I-7 July '81

SECTION 3 - USING THE EDITOR

Lines of text may also be deleted from the file, and the names of

variables may be changed. For further information on commands that

modify text, see Section 4 of this reference manual.

3.8 SAVE TEXT ON DISK FILE

When the editing session is finished, you will probably wish to save

the text just entered so it will be available for future reference.

This is accomplished by using the EN command. This command will

write the text into the file specified by the file descriptor used

when calling the editor. The complete procedure is as follows:

EDIT4

LINEORIENTED EDITOR VERSION

>REq

>ILY (User enters text.)

l. THE EDITOR FACILITATES CORRECTION, UPDATING AND4

1.50 GENERATION OF4

2s SOURCE FILES OF ANY KIND4

3 THE CRT IS USED AS A WORKAREA4

DENY

The EN command indicates to the editor that the session is over,

writes the contents of the edit-buffer into the specified file,

closes the file and turns control over to the operating system. The

operating system responds with a “ready” message.

Note: The line numbers that were used during the editing session

will not be output to the file. When the file is again opened for

editing, the editor will assign integers in successive order for the

new line numbers.

3.9 GET EXISTING TEXT FROM DISK FILE

In order to demonstrate how to edit an existing file, let us use the

file just saved. The editor is called using the appropriate file

descriptor. The RE command opens the file, deletes old text from the

edit-buffer and reads the contents of the file just specified into

the edit-buffer.

July '81 3-8

SECTION 3 - USING THE EDITOR

The first thing you might do is display the lines:

>PRY

1. THE EDITOR FACILITATES CORRECTION, UPDATING AND

2. GENERATION OF

3. SOURCE FILES OF ANY KIND

4, THE CRT IS USED AS A WORKAREA

Suppose you want to add new lines at the end of the text. The IL

command without an operand allows you to do so. The editor responds,

and you type in the following:

>IL4

5.# WHERE THE USER MAY VIEW HIS FILE4

6.# AND MODIFY, REARRANGE OR DELETE IT4

Now display the text:

>PRY

1. THE EDITOR FACILITATES CORRECT, UPDATING AND

2. GENERATION OF

3. SOURCE FILES OF ANY KIND

4, THE CRT IS USED AS A WORKAREA

5. WHERE THE USER MAY VIEW HIS FILE

6. AND MODIFY, REARRANGE OR DELETE IT

To save all the text enter:

PENG

All six lines are output to the file specified when the editor was

called. The old file is now the backup file; any previous backup

file is deleted.

3-9 July '81

SECTION 3 - USING THE EDITOR

3.10 EDITING TIPS

Working with Large Volumes

The size of the edit-buffer depends upon the available memory in your

system. Your text files may be larger than the edit-buffer. If the

RE comand is executed and the EOF message is not displayed on the

terminal, such a condition has arisen. The remaining portion of the

text file is edited, then, in increments the size of the edit-buffer.

This can be accomplished by using one or more of the following

commands:

RE Reads the next portion of the file into the

edit-buffer. Check if EOF is displayed.

OR Outputs the current edit-buffer, deletes its

contents, and reads the next portion of the file

into the buffer.

WR Qutputs the current edit-buffer but does not delete

its contents. Thus, it is possible to duplicate

any text in the edit-buffer.

AB Aborts the editing session. The original text file

is left unchanged.

Note: Only the RE and OR commands move text from the original file

into the edit-buffer.

Saving Work Periodically

When heavily editing large files or generating large amounts of text,

it is a good idea to periodically save the edited text and resume a

new session. In the event that the system crashes, there is always a

fairly up-to-date version of the file available.

July '81 3-10

SECTION 3 - USING THE EDITOR

It igs also advisable to save a copy of your file on a different

diskette. If the original diskette becomes lost or damaged, a copy

of the file is still available.

Renumbering

Often during editing, many lines are inserted throughout the text.

In order to make the line numbers less cumbersome to use, the user

may renumber the lines of text. The NU command sequentially

renumbers all the lines of text in the edit-buffer.

3-11 July '81

SECTION 4

DESCRIPTION OF COMMANDS

SECTION 4

DESCRIPTION OF COMMANDS

4.1 GENERAL

The editor commands are divided into three groups. The first group

deals with those commands that manipulate and display the text.

These may require an operand which specifies a range of lines upon

which the command operates. The second group of commands controls

Input/Output procedures, and the third group of commands controls the

environment in which the editor operates.

The general command format is:

MNEMONIC [operand1] ,[operand2]

More than one blank may separate the command mnemonic from the first

operand. Each successive operand may have leading blanks.

Operands are separated by a comma, or in some cases, by a minus sign.

A command is terminated by a carriage return. Only one command may

be entered per line.

4.2 NOTES ABOUT COMMAND DESCRIPTIONS

An operand of a command is the element(s) upon which the command

operates. The following gives detailed definitions of each of the

operands that may be required by several of the editor's commands:

String Operand

<string> specifies a string operand.

A string is a sequence of one or more alphanumeric

characters.

4-] July ‘81

SECTION 4 - DESCRIPTION OF COMMANDS

Line Number Operand

line no. Takes the form of:

integer

or

integer.decimal part

where

0 > integer < 999

0 > decimal part > 99

The decimal part of a line number cannot exceed two

digits.

Examples:

1. Valid line number

32

1

9999

6.99

1900.6

ell

2. Invalid line numbers

5.678 -too many decimal places

69001 -integer too large; maximum is

9999

2 -missing decimal digit

~15 -negative number

26 -missing integer part

4.3 COMMANDS WHICH MANIPULATE AND DISPLAY TEXT

These commands are described in detail in the following pages. The

commands in this group are:

CV -Change Variable

DL -Delete Line

ED -Edit Line

IL -Insert Line

line no. -Insert, Replace or Delete Line

PR -Print Text on Console

SV -Search Variable

July '81 ey

SECTION 4 -— DESCRIPTION OF COMMANDS

Change Variable (CV) Command

Function: Replaces every occurence of string, with string,.

' Mode: Command.

Format: o <string >,<string5>

Arguments: string, is the string that is to be replaced.

string, is the string that replaces string,-

Use: Allows the user to change symbols throughout the

text with single command.

Note: If operand string, is omitted, all occurrences of

string, will be deleted from the edit-buffer.

Example: Ex. 1

Existing Text: 10. REPEAT

ll. IF RSLT <>0 THEN

12. ANS:=TRUE

13. UNTIL SUM:=CNTR

Enter Command: >CV TRUE,FALSE4

Resulting Text: 10. REPEAT

ll. IF RSLT <>0 THEN

12. ANS :=FALSE

13. UNTIL SUM:=CNTR

CV Command 4-3 July '81

SECTION 4 ~ DESCRIPTION OF COMMANDS

July '81

Ex. 2

Existing Text: 101. CALL TEST

202. CALL TEST

303. CALL TEST

Enter Command: >CV TEST,TESTNUM{

Resulting Text: 101. CALL TESTNUM

202. CALL TESTNUM

303. CALL TESTNUM

CV Command

SECTION 4 - DESCRIPTION OF COMMANDS

Delete Line (DL) Command

Function: Deletes line(s) of text specified.

Mode: Command.

Format: DL <arguments>

Arguments: Can be specified as the number of a line to be

deleted or as a range of lines. If a range of

lines are specified, L, - Los then all lines between
l

and including L, and L, are deleted.
1 2

Use: The command allows the user to remove the text no

longer needed in the file.

Example: Ex. 1

Existing Text: 21. WHILE RECNO >= 0 DO

22. BEGIN

23. READLN(FILID) ;

24. IF FILID >= 0 THEN

25. SEEK (FILID,RECNO) ;

Enter Command: >DL 234

Resulting Text: 21. WHILE RECNO >= 0 DO

22. BEGIN

24. IF FILID >= 0 THEN

25. SEEK(FILID,RECNO) ;

i
 ! Nn
 DL Command July '81l

SECTION 4 - DESCRIPTION OF COMMANDS

Ex. 2
Existing Text: 155. STRUCTUR=

156. RECORD

157. NAME , COMPANY : STRING[32];

158. STREET : STRING[20];

159. CITYSTATE: STRING[30] ;

160. TEL: STRING[10];

Enter Command: >DL 156-1584

Resulting Text: 155. STRUCTURE=

159. CITYSTATE: STRING [30];

160. TEL:STRING{10];

July ‘81 4-6 DL Command

SECTION 4 — DESCRIPTION OF COMMANDS

Edit Line (ED) Command

Function:

Mode:

Format:

Arguments:

Use:

Notes:

ED Command

Edits characters within a line.

Command.

ED <line no.>

<line no.> is the number of the line to be edited.

Allows user to make corrections on a line of text.

The correction procedure is controlled by the

following control keys:

TAB key:

CTRL—-H:

or

BACKSPACE key

ESC key:

Displays the next character in the

specified line. This key moves the

cursor character by character along

the line so that the user may

modify only those character(s) he

chooses.

Deletes the last character

displayed, moving the cursor to the

left.

Aborts the ED-command. The

original contents of the line,

prior to the command, is received.

4~7 July '81

SECTION 4 -— DESCRIPTION OF COMMANDS

Example: Ex. 1

Existing Text: 31. THE FLOPPY DISK CAN BE

32. DAMAGED IF

33. NOT HANDLED CAREFULLY.

Enter Command: >ED 324

The Editor Responds With:

32. DAMAGED IF

32.?

Depress the TAB key to move cursor to the right,

displaying the contents of the line character by

character, until the cursor is at the desired

location.

32. DAMAGED IF

32.?DAMAGED __

Now type in “OR RUINED".

The console should now look like this:

32. DAMAGED IF

32.?DAMAGED OR RUINED IF

Since the TAB key positioned the cursor before the

"IF" to insert “OR RUINED” the “IF” is pushed over.

By depressing the TAB key once again, the “IF” is

displayed following the new text. A carriage

return enters the line and the editor executes the

command.

July '81 4-8 ED Command

SECTION 4 - DESCRIPTION OF COMMANDS

Insert Line (IL) Command

Function: Lines of text are read from the terminal and are

inserted after the last line in the edit-buffer, or

after the line specified in the command.

Mode: Inline.

Format: IL [line no.]}

Arguments: [line no.] is the number of the line after which

the new line is to be inserted.

Use: Allows the user to insert lines of text anywhere in

the file.

Note: Once the IL command is entered, the editor responds

with the prompt “#" which indicates that the editor

is ready to accept text. Each line of text entered

is terminated by a carriage return and the editor

responds with a new line number and prompt.

When the user is finished entering text, the mode

may be changed by keying in “#" followed by a

carriage return.

If carriage return is entered immediately on a new

line, the line is stored as an empty line. This

causes compiler or assembly error if not deleted.

In order to skip a line between lines of text,

depress the space bar until the cursor is located

at the end of the line and then enter the line.

This causes the ASCII representation of of the null

character to be entered as the contents of the

line. Thus, there is no assembly or compiler

error.

IL Command 4-9 July '81

SECTION 4 - DESCRIPTION OF COMMANDS

Example: Ex. 1

Existing Text: 55.

56.

57.

58.

59.

60.

61.

62.

DISK FILES ARE BEING USED

ALMOST UNIVERSALLY IN SMALL

GENERAL PURPOSE COMPUTERS

DISK STORAGE DEVICES AVAILABLE

RANGE FROM THE SMALLEST OF

THE MINI FLOPPY DISKS

TO THE LARGE MULTIDRIVE HARD

DISK SYSTEMS

Enter Command: >IL 604

Editor's Response:

Type In: CAPABLE OF

Resulting Text:

55.

56.

57.

58.

59.

60.

60.01 #

STORING 90 K BYTES{

DISK FILES ARE BEING USED

ALMOST UNIVERSALLY IN SMALL

GENERAL PURPOSE COMPUTERS -

DISK STORAGE DEVICES AVAILABLE

RANGE FROM THE SMALLEST OF

THE MINI FLOPPY DISKS

60.01 CAPABLE OF STORING 90K BYTES

6l.

62.

July '81 4-10

TO THE LARGE MULTIDRIVE HARD

DISK SYSTEMS

IL Command

SECTION 4 -— DESCRIPTION OF COMMANDS

Bx. 2
Existing Text: 55.

56.

57.

58.

59.

60.

60.01

61.

62.

Enter Command: >IL{

Editors Response: 63.#

DISK FILES ARE BEING USED

ALMOST UNIVERSALLY IN SMALL

GENERAL PURPOSE COMPUTERS

DISK STORAGE DEVICES AVAILABLE

RANGE FROM THE SMALLEST OF

THE MINI FLOPPY DISKS

CAPABLE OF STORING 90K BYTES

TO THE LARGE MULTIDRIVE HARD

DISK SYSTEMS

Type In: THAT CAN STORE MILLIONS OF BYTES.{

Resulting Text: 55.

56.

57.

58.

59.

60.

60.01

61.

62.

63.

IL Command 4-11

DISK FILES ARE BEING USED

ALMOST UNIVERSALLY IN SMALL

GENERAL PURPOSE COMPUTERS

DISK STORAGE DEVICES AVAILABLE

RANGE FROM THE SMALLEST OF

THE MINI FLOPPY DISKS

CAPABLE OF STORING 90K BYTES

TO THE LARGE MULTIDRIVE HARD

DISK SYSTEMS

THAT CAN STORE MILLIONS OF BYTES

July ‘81

SECTION 4 ~ DESCRIPTION OF COMMANDS

Line Number Command

Function: Deletes, replaces, or inserts a line using the line

number specified.

Mode: Command.

Format: Line no. [string]

Arguments: Line no. is the number of the existing line you

want to delete or replace, or the number of a line

to be inserted within the existing text. [String]

is the sequence of characters that is to replace

the existing text in the line of text specified.

Use: Allows the user to quickly replace, delete or

insert a line by specifying only a line number as

the command memonic.

Note: By specifying the number of a line of text that

exists, the user can replace or delete the line.

If the line no. is followed by a [string], the

content of the specified line is replaced with

the [string]. If no text is entered after the line

no., the line is deleted.

If the user specifies a line number that lies

between two existing lines of text, the line is

inserted accordingly; its content is specified by

the [string].

Example: Ex. l

Existing Text: 121. TOTAL:=TOTAL+GRADES(1);

122. AVG:=TOTAL/COUNT;

123. IF AVG > TEMP THEN

124. TEMP:= AVG;

July '81 4-12

SECTION 4 - DESCRIPTION OF COMMANDS

Enter Command:

Resulting Text:

Ex. 2

Enter Command:

Resulting Text:

Ex. 3

Enter Command:

Resulting Text:

>121.50 COUNT :=COUNT+14

121. TOTAL:=TOTAL+GRADES(L)

121.50 COUNT :=COUNT+1;

122. AVG:= TOTAL/COUNT;

123. IF AVG > TEMP THEN

124. TEMP:= AVG,

>121 TOTAL: =TOTAL+EXAMS(1) 4

121. TOTAL:=TOTAL+EXAMS(1);

121.50 COUNT :=COUNT+1;

122. AVG:=TOTAL/COUNT;

123. IF AVG > TEMP THEN

124 TEMP:= AVG;

°>122.4

121. TOTAL: =TOTAL+EXAMS(1);

121.50 COUNT :=COUNT+1 ;

123. IF AVG > TEMP THEN

124. TEMP: =AUG;

4-13 July "81

SECTION 4 -— DESCRIPTION OF COMMANDS

Print (PR) Command

Function:

Mode:

Format:

Arguments:

Example:

July ‘81

Displays text currently in the edit-buffer on the

console.

Command.

PR [arguments]

Arguments can take the form of a range of lines to

be displayed or a number of a line to be output to

the console. If a range of lines is specified, by

TT all lines between and including Ly and Ly are

displayed. If no arguments are specified, the

current content of the edit buffer is displayed.

Allows the user to display lines in order to verify

text modification and generation.

If the number of lines to be displayed exceeds the

nitmber that may appear on the console at one time,

the space bar may be used to display any or all of

the remaining lines of text.

Ex. 1

Existing Text: 89. BEGIN

90. RESET(FIN, 'OLDFILE');

91. REWRITE(FOUT, 'NEWFILE');

92. WHILE NOTE EOF(FIN) DO

93. BEGIN

94. RECNUM: =RECNUM+1 ;

95, WRITELN(RECNUM) ;

Enter Command:>PR 924

Console Display:92. WHILE NOT EOF(FIN) DO

4-14 PR Command

SECTION 4 - DESCRIPTION OF COMMANDS

Exe 2

Enter Command:>PR 90-944

Console Display:90. RESET(FIN,'OLDFILE');

91. REWRITE(FOUT,'NEWFILE');

92. WHILE NOT EOF(FIN) DO

93. BEGIN

94. RECNUM : =RECNUM+1 ;

Ex. 3

Enter Command:>PR{

Console Display:89. BEGIN

90. RESET(FIN, 'OLDFILE');

91. REWRLTE(FOUT, 'NEWFLLE');

92. WHILE NOTE EOF(FIN)DO

93. BEGIN

94. RECNUM : =RECNUM+1 ;

95. WRITELN(RECNUM) ;

PR Command 4-15 July ‘31

SECTION 4 - DESCRIPTION OF COMMANDS

Search Variable (SV) Command

Function:

Mode:

Format:

Arguments:

Note:

Example:

July '81

Searches for all occurrences of the string

specified.

Command.

SV <string>

The <string> is a sequence of one or more ASCII

characters surrounded by any valid delimiter, such

as blanks, parentheses, period, comma, etc.

Allows the user to locate variable names, numbers,

commands, etc.

No more than one space may separate the command

miemonic from the argument.

Ex. 1

Existing Text: 132. READLN(EXP);

133. IF LENGTH(EXP)>0O THEN

134. REPLY :=TRUE

135. ELSE TEMP:= EXP;

Enter Command: >SV EXPY

Result: 132. 133% 135.

4-16 SV Command

SECTION 4 - DESCRIPTION OF COMMANDS

Exs 2

Existing Text: 47. IF RECNUM > O AND < 9999 THEN

48. BEGIN

49. FID:=FILE(RECNUM) ;

50. SUM: =SUM+1 ;

51. WRITELN('NEWFILE' , FID);

Enter Command:>SV sum

Result: 50. 50.

SV Command 4-17 July ‘81

SECTION 4 — DESCRIPTION OF COMMANDS

4.4 COMMANDS WHICH CONTROL 1/0

These commands control the inputting and

files into the edit-buffer, and from the

existing files.

described in detail in the following pages.

Command Function

OR Output and Read

RE Read

WR Write

July "81

The commands in this group

outputting of text from

edit-buffer into new or

are listed below and are

SECTION 4 -— DESCRIPTION OF COMMANDS

Output and Read (OR) Command

Function: Outputs the contents of the edit-buffer to the

temporary file. The edit-buffer is deleted and the

next part of the source file is read into the

buffer.

Mode: Command.

Format: OR

Arguments: None.

Use: Facilitates the outputting of the edit buffer, its

deletion and the reading of the next part of the

source file into the edit-buffer in a single

command.

Example: Enter Command:

PREG

- (editing the first

- part of the file)

PORY

- (output and delete the edit-

= buffer; read next part of

- the file into buffer and

- continue editing)

>ORY

- (etc.)

>ENY (end editing session)

OR Command 4-19 July '81

SECTION 4 - DESCRIPTION OF COMMANDS

Read (RE) Command

Function:

Mode:

Format:

Arguments:

Use:

Note:

Example:

July '81

Reads the contents of the source file into the

edit-buffer; opens a new file.

Command.

RE

None.

The command allows the user to open a new file, and

to read the contents of an existing file into the

edit-buffer at the start of an editing session.

The execution of two RE commands before an EN or AB

command deletes the source file. The backup file

remains unchanged. In order to read the next part

of the source file into the edit-buffer (after

using the RE command initially) use the OR command.”

Ex. l

Enter Command:

DRE The EOF message indicates that

EOF complete file is in the edit-

95. buffer; 95 is the number of

> the last line of the text in

the file

Ex. 2

Enter Command:

PREY The first 200 lines of the

200. file have been read into

> the edit-buffer.

4-20 RE Command

SECTION 4 - DESCRIPTION OF COMMANDS

RE Command

>ORY

POR

etc.

>ENY

4 21

Outputs the first part of

the file (200 lines in this

example) to the temporary

file. The next part of the

file is read into the edit

buffer.

Editing session (2).

The second part of the file

is output to the temporary

file and a third portion of

the file is read into the

edit-buffer.

End of session.

July "81

SECTION 4 - DESCRIPTION OF COMMANDS

Write (WR) Command

Function:

Mode:

Format:

Arguments:

Note:

July '81

Writes the contents of the edit-buffer to the

specified output destination. the contents of the

edit-buffer, however, are not deleted; the editing

session continues with the same text.

Command.

WR

None.

Allows the user to write edited material. to the

specified destination without losing the current

contents of the edit-buffer.

This command should be used when the destination

specified is the printer and the user wants more

than one copy of this file. If the source file is

specified as the output destination, multiple

copies of the edit-buffer-- one for each WR

executed-- will be written to the file.

4-22 WR Command

SECTION 4 — DESCRIPTION OF COMMANDS

4.5 COMMANDS WHICH CONTROL THE ENVIRONMENT

These commands control the environment in which the editor operates.

This includes setting tabs and renumbering lines of text as well as

the ability to delete the edit-buffer and end the edit session. The

commands in this group are listed below and are described in detail

in the following pages.

Command Function

AB Abort

EN End Edit Session

KI Kill Buffer

NU Renumber

BT Set Tabs

4-23 July '81

SECTION 4 - DESCRIPTION OF COMMANDS

Abort (AB) Command

Function: Aborts the editing session.

Mode: Command.

Format: AB

Arguments: None.

Use: Allows the user to abort the editing session,

transferring control to the operating system.

Note: When the AB command is executed, any text

generation or modification performed in the

previous editing session is lost. Hence, the

source file remains unchanged.

July ‘81 4-24 AB Command

SECTION 4 — DESCRIPTION OF COMMANDS

End Edit Session (EN) Command

Function: Completes the editing session; the temporary file

becomes the new text file, or if an existing file

was edited, the temporary file becomes the new

edition of the original text file. The original

file becomes the backup file. Control is then

returned to the operating system.

Mode: Command .

Format: EN

Arguments: None.

Use: Allows the user to save on a disk file any newly

generated text or text modification once editing is

complete.

EN Command 4-25 July '81

SECTION 4 - DESCRIPTION OF COMMANDS

Kill Buffer (KI) Command

Function:

Mode:

Format:

Arguments:

Use:

Note:

KI Command

Deletes the contents of the edit-buffer so that new

text may be entered; the source file will contain

the new text.

Command.

KI

None.

Allows the user to delete the contents of a file in

the edit-buffer.

The KI command deletes the contents of the

edit-buffer. Remember, however, that when the -EN

command is eventually executed, the contents of the

edit-buffer have been output to a temporary file

and this temporary file becomes the new version of

the original file. Thus, the source file no longer

contains the original text, but rather contains the

text entered following the execution of the KI

command.

4-26 July '81

SECTION 4 -— DESCRIPTION OF COMMANDS

Renumber (NU) Command

Function:

Mode:

Format:

Arguments:

Use: -

Example:

NU Command

Sequentially renumbers lines of text in the

edit-buffer that have been and inserted during an

editing session.

Command.

NU

None.

Allows the user to Renumber the lines of text in

the edit-buffer so that further editing is less

cumbersome.

Existing Text: 49.

50.

50.01

50.02

53.

55.

56.

60.

100.

Enter Command:

>NUY

Result: 49.

50.

Sls

52.

53.

54.

55.

56.

57.

4-27

POP

LR

ST

PUSH

LA

CALL

H,CURSPT

L,H

H,D

D

A,B

A,(H)

C

B,TEMP1

BINTREE

H, CURSPT

L,H

H,D

D

A,B

A, (H)

e

B,TEMP 1

BINTREE

July '81

SECTION 4 - DESCRIPTION OF COMMANDS

Set Tabs (BT) Command

Function:

Mode:

Format:

Arguments:

Example:

July '81

Formats text according to user-specified values.

Command.

BT <Cl>,[C2,...C7]

Cl...C7 are the values of the tabulation columns.

Their values must be an integer between 1 and 80.

Allows the user to preset tabulation points so that

subsequent tabbing while editing is not necessary.

The default tabulation values when the editor is

invoked are columns 11, 17 and 35, which are used

by the assembler.

The CTRL-I key positions the cursor according to

the preset column values.

Enter Commands:

>BT 10,35,604

>ILY

Enter Text:

1. #CTRL-LNAMECTRL-ICOMPANYCTRL-IST

2. #CTRL-ISMITH,L.CTRL-IBOSECTRL-I MAIN

3. #CTRL-LCOLE ,W.CTRL-IMOBILCTRL—IHIGH

4. #CTRL-IBROWN ,K.CTRL~IRCACTRL-1 PARK

5. ##4

Enter Command: >PR4

4-28

SECTION 4 - DESCRIPTION OF COMMANDS

Resulting Text:

1. NAME COMPANY

2. SMITH, J. BOSE

3. COLE, W. MOBIL

4. BROWN, K. RCA

4-29

MAIN

HIGH

MAPLE

July "81

APPENDIX A

COMMAND SUMMARY

€t.

ite

he

Command

Abort

Change Variable

Delete Line(s)

Edit Line

End Edit Session

Insert Line

Kill Buffer

Line Number

Output and Read

Print

Read

AB

CV <stringl>,<string2>

APPENDIX A

COMMAND SUMMARY

Format

DL<line no. or L,-L,?

ED <line no.>

EN

IL [line no.]

Line no.

OR

PR[line no. or L
1-2]

Function

Aborts editing session.

Replaces every

occurrence of stringl

with string2.

Deletes line(s) of text

specified.

Edits characters within

a line.

Ends the edit session.

Inserts lines of text

after last line in

edit-buffer, or after

line specified.

Kills the contents the

edit-buffer.

Deletes, replaces or

inserts a line.

Outputs edit-buffer and

reads in next part of

the file.

Displays lines of text

on the console.

Reads the file into the

edit-buffer; opens a new

file.

July ‘81

APPENDIX A — COMMAND SUMMARY

Command

Renumber

Search Variable

Set Tabs

Write

July ‘81

Format

NU

SV <string>

BT <cl, ¢c2, c3>

WR

Function

Renumbers lines of text

in the edit-buffer.

Searches for all the

occurrences of the

string specified.

Sets tabulation columns.

Writes the contents of

the edit-buffer to the

printer.

APPENDIX 8B

ERROR MESSAGES

APPENDIX B

ERROR MESSAGES

Messages are output to the console when one or more of the following

conditions occur:

-The syntax of the command is incorrect.

-The editor cannot complete the execution of the command as

specified.

Error Messages From The Editor

LINE TOO LONG -The user has entered a line that exceeds 80

characters; the line is not accepted. The editor

switches to the command mode.

BAD COMMAND -The user has entered a non-existent command.

SYNTAX ERROR -—One or more operands are missing.

CAN'T FIND -Editor's response to the SV command when the

specified string is not found.

RENAME ERROR -System error; you have probably lost your file.

END OF MEMORY -While in the Inline mode, text inserted has used

up all available memory.

B-1 July '81l

INDEX

a

A

Abbreviations, 1-7

AB Commands, 3-10, 4-24, A-l
Abort (AB) Command, 3-10, 4-24,

A-1

Addmem, 2-1
Appendix A - Command Summary, A-1l

Appendix B - Error Messages, B-1l

B

BACKSPACE Key, 4-7

Backup File, 2-1, 2-2, 2-3, 3-5

BT, 3-2, 4-28, A-2

Cc

Change Variable (CV) Command,

4-3, A-l

Command, 3-1

Command Mode, 2-4, 3-1

Command Summary, A-l

Commands Which Control 1/0, 4-18

Output and Read (OR) Command,
3-10, 4-19, A-l

Read (RE) Command, 3-3, 3-4, 3-8,

3-10, 4-20, Al
Write (WR) Command, 3-10, 4-22,

A-2

Commands Which Control the
Environment, 4-23

Abort (AB) Command, 3-10, 4-24,
A-|

End Edit Session (EN) Command,

3-8, 3-9, 4-25, A-l

Kill Buffer (KI) Command, 4-26,

A-l

Renumber (NU) Command, 3-11,

4-27, A-2

Set Tabs (BT) Command, 3-2, 4-28,

A-2

Commands Which Manipulate and

Display Text, 4-2

Charge Variable (CV) Command, 4-3,

A-1

Delete Line (DL) Command, 4-5,

A-1

Edit Line (ED) Command, 3-7, 4-7,

A-1
Insert Line (IL) Command, 2-4,

3-3, 3-4, 3-5, 3-6, 4-9, A-l

Line Number Command, 4-12, A-l

Print (PR) Command, 3-5, 3-6, 3-7,

3-9, 4-14, A-2
Search Variable (SV) Command,

4-16, A-2

Create Text, 3-3

CTRL-H Key, 2-3, 4-7

CTRL-I Key, 2-3, 3-2, 4-28

CV Command, 4-3, A-l

D

Delete Line (DL) Command, 4-5, A-l

Description of Commands, 4-1

Commands Which Control the

Environment, 4-23

Commands Which Control I/0, 4-18

Commands Which Manipulate and

Display Text, 4-2

Notes Abort Command Descriptions,

4-1

Disk File Procedures, 2-2

DL Command, 4-5, A-l

E

ED Command, 3-7, 4-7, A-l

EDIT, 1-1
Edit-Buffer, 1-1, 2-2, 2-3, 3-10

Edit Line (ED) Command, 3-7, 4-7,

A-1

Editing Tips, 3-10
Renumbering, 3-11

Saving Work Periodically, 3-10

Working with Large Volumes, 3-10

EN Command, 3-8, 3-9, 4-25, A-l

End Edit Session (EN) Command,

3-8, 3-9, 4-25, A-l

EOF, 2-3
Error Messages, B-l

July '81

F

File, 1-3

Backup, 2-1,

Filename, 1-3

File Type, 1-3

Open, 3-3

Temporary, 2~2, 2-3

File Descriptor, 1-3,

2-2
Filename, 1-3

File-Volume-Device Naming

Conventions, 1-3

2-2, 2-3, 3-5.

1-4, 2-1,

G

Get Existing Text From Disk File,

3-8

I

IL Command, 2-4, 3-3, 3-4, 3-5,

3-6, 4-9, A-l

Inline Mode, 2-4, 3-3

Insert Line (IL) Command,

3-4, 3-5, 3-6, 4-9, A-l

Insert Text, 3-5, 3-6

2-4, 3-3,

K

KI Command, 4-26, A-l

Kill Buffer (KI) Command, 4-26, A-1l

Kinds of Files, 1-4

L

Line Numbers, 3-2
Line Number Command, 4-12, A-l

Line Number Opearand, 4-2

Lines of Text, 3-2

Identification, 3-2 a

Loading and Starting, 2-1

Disk File Procedures, 2-2

Logging In, 2-1

Prompting, 2-3

Specifying the File Descriptor,
2-1

Logging In, 2-1

July '81

INDEX

INDEX-2

M

Modes of Work, 2-4 5 age

Modify Text, 3-3

Mnemonic, 4-1

N

Notes About Command Description,

4-1
String Operand, 4- -1

Line Number Operand, 4-2

NU Command, 3-11, 4-27, A-2

6)

OR Command, 3-10, 4-19, Ards.
Organization of this Manual,..1-6

Output and Read (OR) Command. 3= lO,
4-19, A-l

P

PR Command, 3-5,

- 4-14, A-2

“ets “3¢9

Print (PR) Command, 3-5, 3-6, 4-7
3-9, 4-14, A-2

Prompting, 2-3

R

RE Command, 3-3, 3-4, 3-8, 3-10,
4-20, A-l

Read (RE) Command, 3-3, 3-4, 3-8,

3-10, 4-20, A-l
Related Manuals, 1-7

Renumber (NU) Command, 3-11,

A-2

Renumbering, 3-11

4-27,

S

Save Text On Disk File, 3-8
Saving Work Periodically, 3-10

Search Variable (SV) Command, 4-16,

A-2
Set Tabs (BT) Command, 3-2, 4-28,

A-2

Setting the Environment, 3-2

Specifying the File Descriptor, 2-1

Starting Up, 2-1

Loading and Starting, 2-1

Modes of Work, 2-4

Terminal Keys that Control ines

of Text, 2-3

“String” Identification, 3-3

String: OQperand, 4-1.

Strings, 3-3, 4-1

SV Command, 4-16, A-2

T s>

Tab Control, 3-2

TAB Key, 3-7, 4-7, 4-8

Temporary. File, 2+2, 2-3.

Terminal = that Control Lines of

Tekts :
Text Display, 3-1

Text Format, 3-1

Text Identification, 3-2

Line Numbers, 3-2

“String” Identification, 3-3
Text Symbols and Conventions, 1-l

2-3

INDEX

Type (File), 1-3

U

Using the Editor, 3-l

Create Text, 3-3 =

Get Existing Text from Disk File,

3-8

Modify Text, 3-3

Save Text on Disk File, 3-8

Setting the Environment, 3-2

Text Display, 3-l ‘

Text Format, 3-1

Text Identification;

Using this Manual, 1|-l

«9*2

WV

INDEX-3

Volume Name, 1-3

W

Working With Large Volumes, 3-10

WR Command, 3-10, 4-22, A-2

Write (WR) Command, 3 10; 4-22,
A-2 ‘

July "81

- ae . 2 ge » % “ee #

: . : Y . - iB : rn ms . oo * se - &. la . see wee 7 e

. a : 2 shea we . - - © ani eh m4 ;

- : 4 : » was oes: Bee oe wee

“ ne ea - ag” :

_ s oa e wt sistas Oa ete Fee we a8 CL oe oe wa ey wo Tanta et

‘ a toe ne . So
: *, 4 AF : att © 2° Be .

’ ° . S 7 z: -

i 7

As fellas ea y : 3

eee 4 or ‘ - .

#, . t- :

, oi
it .- i

<e oe eo Ls & Signer ooh ars ae 3 me

aKiges ee SEG SS a = Sy Se Py ee " 7 = &

ak ee a rs é ; Se Re ee . Bee hk . - x wh « at k :
. _ . : z

aay “ “ é ~ ie: se teens - te + we

7 .
« 2. fie 2

. oe : sai

F oe Bia fae tee. / - B ar “ aa a

— ee ae ee Bs 3 Bee : : : 2 -

aS a Lee a eye a “ : x : ne z

ths ‘ i ae whe os. z — 7 = = me

ae . ” ma sei, ian _ 4 ‘eo - - =

. e 7
Kens Pomme ES wpytiae op eee og sm 2 . r 7 “= = or

i sees Ft pe ng. i: Ray - ae A = :

wee, os age Beck 8, a wees 7 coe e “ ~ SS .

READER COMMENT FORM DATE

Your comments and suggestions help to improve this publication.

Please complete the questionaire. Fold, staple, and mail it to Monroe.

Name
Title

Organization

Street end State Zip

Publication Title

Publication No. Revision Letter Date

CIRCLE YOUR RESPONSES TO THE STATEMENTS SELOW. IF YOU RESPOND "NO" TO A STATEMENT, ENTER THE

STATEMENT NUMBER ANO THE PAGE AND PARAGRAPH IN THE PUBLICATION THAT PROMPTED YOUR RESPONSE.

1. The publication was used for 2. The user/reader was

Learning Installing High-level Programmer

Reference Maintaining Occasional Programmer

Sales Programming Student Programmer

Data Entry Operator

Other (specify)

3, The material is accurate. YES NO 4. The material is clear. YES

56

5, The material is complete. YES NO 6. The material is well organized. YES

ENTER DETAILED INFORMATION FOR STATEMENTS 3-6.

Statement No. Page No. Paragraph No. Comments

7. The overal! rating for this publication is

Very Good Good Fair Poor Yery Poor

Briefly expiain your rating.

8. Additional comments

STAPLE STAPLE \

FOLD : | as ok ee oe ee ee Se eh 3 mde Fe aE A

|

|
.
— |

— | |
— C9620 “*P°N SUMOYS LisOW
. 40006 xog
, ‘ou; ‘swaysks ssoutsng u0I1il7 |

- $O UOLSLALD JOYNOW
: . |

— 33SSYCOY Ag divd 36 TIM BDVLSOd |

= oma TN 'NMOLSISHOW LEZ ‘ON LINHSd + SSVT0 LS¥i4 | ; | : .
. | TIVWW AIdau SSBNISNE |
: : { |

SAIBIS PsyuN - i

aU} Ul PaleW 4}! .
~ ASBSSBDON onpdiat: eens a S si ‘6 |
aBeisog ON qdaq suolqyediiqng s1emzyos |

mee am aca amt eee a ee a a a a sr ss a a ses a es er ee ae eee ee
C
U
T

A
L
O
N
G

L
I
N
E

