|
@@ -23,6 +23,18 @@ Other features include
|
|
|
- Full web interface for further configuration/management
|
|
|
- Firmware over-the-air update
|
|
|
|
|
|
+**Important note** (philippe44 writing)
|
|
|
+
|
|
|
+The main build of squeezelite-esp32 is a 16 bits internal core with all calculations in 32 bits or float precision. This is a design choice I've made to preserve CPU performances (it is already stretching a lot the esp32 chipset) and optimize memory usage as we only have 4MB of usable RAM. Now, when I did the porting of squeezelite to esp32, I've also made the core 16 or 32 bits compatible at compile-time. So far, it works in 32 bits but very little tests have been done. You can chose to compile it in 32 bits mode by changing the cmake file in components/squeezelite. Note the following limitation in 32 bits
|
|
|
+
|
|
|
+- no resampling
|
|
|
+- no equalizer
|
|
|
+- buffer are smaller, so crossfade will be at best 5s at 44.1 kHz
|
|
|
+- SPDIF is 20 bits maximum *(1)*
|
|
|
+- display will be slower
|
|
|
+
|
|
|
+I've not tested all codecs, I've only verified it with TAS57xx DAC and in general I've not tested that mode more than a few minutes. I'm not very interested above 16 bits samples because it does not bring anything (I have an engineering background in theory of information). On memory Some might correctly comment that wrover module have 8MB of RAM, but the processor is only able to address 4MB and the remaining 4MB must be paginated by smaller blocks and I don't have patience to that.
|
|
|
+
|
|
|
## Supported Hardware
|
|
|
Any esp32-based hardware with at least 4MB of flash and 4MB of PSRAM will be capable of running squeezelite-esp32 and there are various boards that include such chip. A few are mentionned below, but any should work. You can find various help & instructions [here](https://forums.slimdevices.com/showthread.php?112697-ANNOUNCE-Squeezelite-ESP32-(dedicated-thread))
|
|
|
### Raw WROVER module
|
|
@@ -470,3 +482,6 @@ Use 'idf monitor' to monitor the application (see esp-idf documentation)
|
|
|
- add DEPS_CFLAGS and DEPS_LIBS to avoid pkg-config to be required
|
|
|
- stack consumption can be very high with some codec variants, so set NONTHREADSAFE_PSEUDOSTACK and GLOBAL_STACK_SIZE=32000 and unset VAR_ARRAYS in config.h
|
|
|
- libmad has been patched to avoid using a lot of stack and is not provided here. There is an issue with sync detection in 1.15.1b from where the original stack patch was done but since a few fixes have been made wrt sync detection. This 1.15.1b-10 found on debian fixes the issue where mad thinks it has reached sync but has not and so returns a wrong sample rate. It comes at the expense of 8KB (!) of code where a simple check in squeezelite/mad.c that next_frame[0] is 0xff and next_frame[1] & 0xf0 is 0xf0 does the trick ...
|
|
|
+
|
|
|
+# Footnotes
|
|
|
+(1) SPDIF is made by tricking the I2S bus but this consumes a fair bit of CPU as it multiplies by four the throughput on the i2s bus. To optimize some computation, the parity of the spdif frames must always be 0, so at least one bit has to be available to force it. As SPDIF samples are 20+4 bits length maximum, the LSB is used for that purpose, so the bit 24 is randomly toggling. It does not matter for 16 bits samples but it has been chosen to truncate the last 4 bits for 24 bits samples. I'm sure that some smart dude can further optimize spdif_convert() and use the user bit instead. You're welcome to do a PR but, as said above, I (philippe44) am not interested by 24 bits mental illness :-) and I've already made an effort to provide 20 bits which already way more what's needed :-)
|