|
@@ -1,1135 +0,0 @@
|
|
|
-/*
|
|
|
- * ALAC (Apple Lossless Audio Codec) decoder
|
|
|
- * Copyright (c) 2005 David Hammerton
|
|
|
- * All rights reserved.
|
|
|
- *
|
|
|
- * This is the actual decoder.
|
|
|
- *
|
|
|
- * http://crazney.net/programs/itunes/alac.html
|
|
|
- *
|
|
|
- * Permission is hereby granted, free of charge, to any person
|
|
|
- * obtaining a copy of this software and associated documentation
|
|
|
- * files (the "Software"), to deal in the Software without
|
|
|
- * restriction, including without limitation the rights to use,
|
|
|
- * copy, modify, merge, publish, distribute, sublicense, and/or
|
|
|
- * sell copies of the Software, and to permit persons to whom the
|
|
|
- * Software is furnished to do so, subject to the following conditions:
|
|
|
- *
|
|
|
- * The above copyright notice and this permission notice shall be
|
|
|
- * included in all copies or substantial portions of the Software.
|
|
|
- *
|
|
|
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
|
- * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
|
|
- * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
|
- * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
|
|
- * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
|
- * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
|
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
|
- * OTHER DEALINGS IN THE SOFTWARE.
|
|
|
- *
|
|
|
- */
|
|
|
-
|
|
|
-#if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
|
|
|
-static const int host_bigendian = 0;
|
|
|
-#else
|
|
|
-static const int host_bigendian = 1;
|
|
|
-#endif
|
|
|
-
|
|
|
-
|
|
|
-#include <stdio.h>
|
|
|
-#include <stdlib.h>
|
|
|
-#include <string.h>
|
|
|
-#include <stdint.h>
|
|
|
-
|
|
|
-#include "alac.h"
|
|
|
-
|
|
|
-extern int _fprintf(FILE *file, ...);
|
|
|
-
|
|
|
-#define _Swap32(v) do { \
|
|
|
- v = (((v) & 0x000000FF) << 0x18) | \
|
|
|
- (((v) & 0x0000FF00) << 0x08) | \
|
|
|
- (((v) & 0x00FF0000) >> 0x08) | \
|
|
|
- (((v) & 0xFF000000) >> 0x18); } while(0)
|
|
|
-
|
|
|
-#define _Swap16(v) do { \
|
|
|
- v = (((v) & 0x00FF) << 0x08) | \
|
|
|
- (((v) & 0xFF00) >> 0x08); } while (0)
|
|
|
-
|
|
|
-struct {signed int x:24;} se_struct_24;
|
|
|
-#define SignExtend24(val) (se_struct_24.x = val)
|
|
|
-
|
|
|
-void allocate_buffers(alac_file *alac)
|
|
|
-{
|
|
|
- alac->predicterror_buffer_a = malloc(alac->setinfo_max_samples_per_frame * 4);
|
|
|
- alac->predicterror_buffer_b = malloc(alac->setinfo_max_samples_per_frame * 4);
|
|
|
-
|
|
|
- alac->outputsamples_buffer_a = malloc(alac->setinfo_max_samples_per_frame * 4);
|
|
|
- alac->outputsamples_buffer_b = malloc(alac->setinfo_max_samples_per_frame * 4);
|
|
|
-
|
|
|
- alac->uncompressed_bytes_buffer_a = malloc(alac->setinfo_max_samples_per_frame * 4);
|
|
|
- alac->uncompressed_bytes_buffer_b = malloc(alac->setinfo_max_samples_per_frame * 4);
|
|
|
-}
|
|
|
-
|
|
|
-void alac_set_info(alac_file *alac, char *inputbuffer)
|
|
|
-{
|
|
|
- char *ptr = inputbuffer;
|
|
|
- ptr += 4; /* size */
|
|
|
- ptr += 4; /* frma */
|
|
|
- ptr += 4; /* alac */
|
|
|
- ptr += 4; /* size */
|
|
|
- ptr += 4; /* alac */
|
|
|
-
|
|
|
- ptr += 4; /* 0 ? */
|
|
|
-
|
|
|
- alac->setinfo_max_samples_per_frame = *(uint32_t*)ptr; /* buffer size / 2 ? */
|
|
|
- if (!host_bigendian)
|
|
|
- _Swap32(alac->setinfo_max_samples_per_frame);
|
|
|
- ptr += 4;
|
|
|
- alac->setinfo_7a = *(uint8_t*)ptr;
|
|
|
- ptr += 1;
|
|
|
- alac->setinfo_sample_size = *(uint8_t*)ptr;
|
|
|
- ptr += 1;
|
|
|
- alac->setinfo_rice_historymult = *(uint8_t*)ptr;
|
|
|
- ptr += 1;
|
|
|
- alac->setinfo_rice_initialhistory = *(uint8_t*)ptr;
|
|
|
- ptr += 1;
|
|
|
- alac->setinfo_rice_kmodifier = *(uint8_t*)ptr;
|
|
|
- ptr += 1;
|
|
|
- alac->setinfo_7f = *(uint8_t*)ptr;
|
|
|
- ptr += 1;
|
|
|
- alac->setinfo_80 = *(uint16_t*)ptr;
|
|
|
- if (!host_bigendian)
|
|
|
- _Swap16(alac->setinfo_80);
|
|
|
- ptr += 2;
|
|
|
- alac->setinfo_82 = *(uint32_t*)ptr;
|
|
|
- if (!host_bigendian)
|
|
|
- _Swap32(alac->setinfo_82);
|
|
|
- ptr += 4;
|
|
|
- alac->setinfo_86 = *(uint32_t*)ptr;
|
|
|
- if (!host_bigendian)
|
|
|
- _Swap32(alac->setinfo_86);
|
|
|
- ptr += 4;
|
|
|
- alac->setinfo_8a_rate = *(uint32_t*)ptr;
|
|
|
- if (!host_bigendian)
|
|
|
- _Swap32(alac->setinfo_8a_rate);
|
|
|
-
|
|
|
- allocate_buffers(alac);
|
|
|
-
|
|
|
-}
|
|
|
-
|
|
|
-/* stream reading */
|
|
|
-
|
|
|
-/* supports reading 1 to 16 bits, in big endian format */
|
|
|
-static uint32_t readbits_16(alac_file *alac, int bits)
|
|
|
-{
|
|
|
- uint32_t result;
|
|
|
- int new_accumulator;
|
|
|
-
|
|
|
- result = (alac->input_buffer[0] << 16) |
|
|
|
- (alac->input_buffer[1] << 8) |
|
|
|
- (alac->input_buffer[2]);
|
|
|
-
|
|
|
- /* shift left by the number of bits we've already read,
|
|
|
- * so that the top 'n' bits of the 24 bits we read will
|
|
|
- * be the return bits */
|
|
|
- result = result << alac->input_buffer_bitaccumulator;
|
|
|
-
|
|
|
- result = result & 0x00ffffff;
|
|
|
-
|
|
|
- /* and then only want the top 'n' bits from that, where
|
|
|
- * n is 'bits' */
|
|
|
- result = result >> (24 - bits);
|
|
|
-
|
|
|
- new_accumulator = (alac->input_buffer_bitaccumulator + bits);
|
|
|
-
|
|
|
- /* increase the buffer pointer if we've read over n bytes. */
|
|
|
- alac->input_buffer += (new_accumulator >> 3);
|
|
|
-
|
|
|
- /* and the remainder goes back into the bit accumulator */
|
|
|
- alac->input_buffer_bitaccumulator = (new_accumulator & 7);
|
|
|
-
|
|
|
- return result;
|
|
|
-}
|
|
|
-
|
|
|
-/* supports reading 1 to 32 bits, in big endian format */
|
|
|
-static uint32_t readbits(alac_file *alac, int bits)
|
|
|
-{
|
|
|
- int32_t result = 0;
|
|
|
-
|
|
|
- if (bits > 16)
|
|
|
- {
|
|
|
- bits -= 16;
|
|
|
- result = readbits_16(alac, 16) << bits;
|
|
|
- }
|
|
|
-
|
|
|
- result |= readbits_16(alac, bits);
|
|
|
-
|
|
|
- return result;
|
|
|
-}
|
|
|
-
|
|
|
-/* reads a single bit */
|
|
|
-static int readbit(alac_file *alac)
|
|
|
-{
|
|
|
- int result;
|
|
|
- int new_accumulator;
|
|
|
-
|
|
|
- result = alac->input_buffer[0];
|
|
|
-
|
|
|
- result = result << alac->input_buffer_bitaccumulator;
|
|
|
-
|
|
|
- result = result >> 7 & 1;
|
|
|
-
|
|
|
- new_accumulator = (alac->input_buffer_bitaccumulator + 1);
|
|
|
-
|
|
|
- alac->input_buffer += (new_accumulator / 8);
|
|
|
-
|
|
|
- alac->input_buffer_bitaccumulator = (new_accumulator % 8);
|
|
|
-
|
|
|
- return result;
|
|
|
-}
|
|
|
-
|
|
|
-static void unreadbits(alac_file *alac, int bits)
|
|
|
-{
|
|
|
- int new_accumulator = (alac->input_buffer_bitaccumulator - bits);
|
|
|
-
|
|
|
- alac->input_buffer += (new_accumulator >> 3);
|
|
|
-
|
|
|
- alac->input_buffer_bitaccumulator = (new_accumulator & 7);
|
|
|
- if (alac->input_buffer_bitaccumulator < 0)
|
|
|
- alac->input_buffer_bitaccumulator *= -1;
|
|
|
-}
|
|
|
-
|
|
|
-/* various implementations of count_leading_zero:
|
|
|
- * the first one is the original one, the simplest and most
|
|
|
- * obvious for what it's doing. never use this.
|
|
|
- * then there are the asm ones. fill in as necessary
|
|
|
- * and finally an unrolled and optimised c version
|
|
|
- * to fall back to
|
|
|
- */
|
|
|
-#if 0
|
|
|
-/* hideously inefficient. could use a bitmask search,
|
|
|
- * alternatively bsr on x86,
|
|
|
- */
|
|
|
-static int count_leading_zeros(int32_t input)
|
|
|
-{
|
|
|
- int i = 0;
|
|
|
- while (!(0x80000000 & input) && i < 32)
|
|
|
- {
|
|
|
- i++;
|
|
|
- input = input << 1;
|
|
|
- }
|
|
|
- return i;
|
|
|
-}
|
|
|
-#elif defined(__GNUC__)
|
|
|
-/* for some reason the unrolled version (below) is
|
|
|
- * actually faster than this. yay intel!
|
|
|
- */
|
|
|
-static int count_leading_zeros(int input)
|
|
|
-{
|
|
|
- return __builtin_clz(input);
|
|
|
-}
|
|
|
-#elif (defined(_MSC_VER) || defined (__BORLANDC__)) && defined(_M_IX86)
|
|
|
-static int count_leading_zeros(int input)
|
|
|
-{
|
|
|
- int output = 0;
|
|
|
- if (!input) return 32;
|
|
|
- __asm
|
|
|
- {
|
|
|
- mov eax, input;
|
|
|
- mov edx, 0x1f;
|
|
|
- bsr ecx, eax;
|
|
|
- sub edx, ecx;
|
|
|
- mov output, edx;
|
|
|
- }
|
|
|
- return output;
|
|
|
-}
|
|
|
-#else
|
|
|
-#warning using generic count leading zeroes. You may wish to write one for your CPU / compiler
|
|
|
-static int count_leading_zeros(int input)
|
|
|
-{
|
|
|
- int output = 0;
|
|
|
- int curbyte = 0;
|
|
|
-
|
|
|
- curbyte = input >> 24;
|
|
|
- if (curbyte) goto found;
|
|
|
- output += 8;
|
|
|
-
|
|
|
- curbyte = input >> 16;
|
|
|
- if (curbyte & 0xff) goto found;
|
|
|
- output += 8;
|
|
|
-
|
|
|
- curbyte = input >> 8;
|
|
|
- if (curbyte & 0xff) goto found;
|
|
|
- output += 8;
|
|
|
-
|
|
|
- curbyte = input;
|
|
|
- if (curbyte & 0xff) goto found;
|
|
|
- output += 8;
|
|
|
-
|
|
|
- return output;
|
|
|
-
|
|
|
-found:
|
|
|
- if (!(curbyte & 0xf0))
|
|
|
- {
|
|
|
- output += 4;
|
|
|
- }
|
|
|
- else
|
|
|
- curbyte >>= 4;
|
|
|
-
|
|
|
- if (curbyte & 0x8)
|
|
|
- return output;
|
|
|
- if (curbyte & 0x4)
|
|
|
- return output + 1;
|
|
|
- if (curbyte & 0x2)
|
|
|
- return output + 2;
|
|
|
- if (curbyte & 0x1)
|
|
|
- return output + 3;
|
|
|
-
|
|
|
- /* shouldn't get here: */
|
|
|
- return output + 4;
|
|
|
-}
|
|
|
-#endif
|
|
|
-
|
|
|
-#define RICE_THRESHOLD 8 // maximum number of bits for a rice prefix.
|
|
|
-
|
|
|
-static int32_t entropy_decode_value(alac_file* alac,
|
|
|
- int readSampleSize,
|
|
|
- int k,
|
|
|
- int rice_kmodifier_mask)
|
|
|
-{
|
|
|
- int32_t x = 0; // decoded value
|
|
|
-
|
|
|
- // read x, number of 1s before 0 represent the rice value.
|
|
|
- while (x <= RICE_THRESHOLD && readbit(alac))
|
|
|
- {
|
|
|
- x++;
|
|
|
- }
|
|
|
-
|
|
|
- if (x > RICE_THRESHOLD)
|
|
|
- {
|
|
|
- // read the number from the bit stream (raw value)
|
|
|
- int32_t value;
|
|
|
-
|
|
|
- value = readbits(alac, readSampleSize);
|
|
|
-
|
|
|
- // mask value
|
|
|
- value &= (((uint32_t)0xffffffff) >> (32 - readSampleSize));
|
|
|
-
|
|
|
- x = value;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- if (k != 1)
|
|
|
- {
|
|
|
- int extraBits = readbits(alac, k);
|
|
|
-
|
|
|
- // x = x * (2^k - 1)
|
|
|
- x *= (((1 << k) - 1) & rice_kmodifier_mask);
|
|
|
-
|
|
|
- if (extraBits > 1)
|
|
|
- x += extraBits - 1;
|
|
|
- else
|
|
|
- unreadbits(alac, 1);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return x;
|
|
|
-}
|
|
|
-
|
|
|
-static void entropy_rice_decode(alac_file* alac,
|
|
|
- int32_t* outputBuffer,
|
|
|
- int outputSize,
|
|
|
- int readSampleSize,
|
|
|
- int rice_initialhistory,
|
|
|
- int rice_kmodifier,
|
|
|
- int rice_historymult,
|
|
|
- int rice_kmodifier_mask)
|
|
|
-{
|
|
|
- int outputCount;
|
|
|
- int history = rice_initialhistory;
|
|
|
- int signModifier = 0;
|
|
|
-
|
|
|
- for (outputCount = 0; outputCount < outputSize; outputCount++)
|
|
|
- {
|
|
|
- int32_t decodedValue;
|
|
|
- int32_t finalValue;
|
|
|
- int32_t k;
|
|
|
-
|
|
|
- k = 31 - rice_kmodifier - count_leading_zeros((history >> 9) + 3);
|
|
|
-
|
|
|
- if (k < 0) k += rice_kmodifier;
|
|
|
- else k = rice_kmodifier;
|
|
|
-
|
|
|
- // note: don't use rice_kmodifier_mask here (set mask to 0xFFFFFFFF)
|
|
|
- decodedValue = entropy_decode_value(alac, readSampleSize, k, 0xFFFFFFFF);
|
|
|
-
|
|
|
- decodedValue += signModifier;
|
|
|
- finalValue = (decodedValue + 1) / 2; // inc by 1 and shift out sign bit
|
|
|
- if (decodedValue & 1) // the sign is stored in the low bit
|
|
|
- finalValue *= -1;
|
|
|
-
|
|
|
- outputBuffer[outputCount] = finalValue;
|
|
|
-
|
|
|
- signModifier = 0;
|
|
|
-
|
|
|
- // update history
|
|
|
- history += (decodedValue * rice_historymult)
|
|
|
- - ((history * rice_historymult) >> 9);
|
|
|
-
|
|
|
- if (decodedValue > 0xFFFF)
|
|
|
- history = 0xFFFF;
|
|
|
-
|
|
|
- // special case, for compressed blocks of 0
|
|
|
- if ((history < 128) && (outputCount + 1 < outputSize))
|
|
|
- {
|
|
|
- int32_t blockSize;
|
|
|
-
|
|
|
- signModifier = 1;
|
|
|
-
|
|
|
- k = count_leading_zeros(history) + ((history + 16) / 64) - 24;
|
|
|
-
|
|
|
- // note: blockSize is always 16bit
|
|
|
- blockSize = entropy_decode_value(alac, 16, k, rice_kmodifier_mask);
|
|
|
-
|
|
|
- // got blockSize 0s
|
|
|
- if (blockSize > 0)
|
|
|
- {
|
|
|
- memset(&outputBuffer[outputCount + 1], 0, blockSize * sizeof(*outputBuffer));
|
|
|
- outputCount += blockSize;
|
|
|
- }
|
|
|
-
|
|
|
- if (blockSize > 0xFFFF)
|
|
|
- signModifier = 0;
|
|
|
-
|
|
|
- history = 0;
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-#define SIGN_EXTENDED32(val, bits) ((val << (32 - bits)) >> (32 - bits))
|
|
|
-
|
|
|
-#define SIGN_ONLY(v) \
|
|
|
- ((v < 0) ? (-1) : \
|
|
|
- ((v > 0) ? (1) : \
|
|
|
- (0)))
|
|
|
-
|
|
|
-static void predictor_decompress_fir_adapt(int32_t *error_buffer,
|
|
|
- int32_t *buffer_out,
|
|
|
- int output_size,
|
|
|
- int readsamplesize,
|
|
|
- int16_t *predictor_coef_table,
|
|
|
- int predictor_coef_num,
|
|
|
- int predictor_quantitization)
|
|
|
-{
|
|
|
- int i;
|
|
|
-
|
|
|
- /* first sample always copies */
|
|
|
- *buffer_out = *error_buffer;
|
|
|
-
|
|
|
- if (!predictor_coef_num)
|
|
|
- {
|
|
|
- if (output_size <= 1) return;
|
|
|
- memcpy(buffer_out+1, error_buffer+1, (output_size-1) * 4);
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- if (predictor_coef_num == 0x1f) /* 11111 - max value of predictor_coef_num */
|
|
|
- { /* second-best case scenario for fir decompression,
|
|
|
- * error describes a small difference from the previous sample only
|
|
|
- */
|
|
|
- if (output_size <= 1) return;
|
|
|
- for (i = 0; i < output_size - 1; i++)
|
|
|
- {
|
|
|
- int32_t prev_value;
|
|
|
- int32_t error_value;
|
|
|
-
|
|
|
- prev_value = buffer_out[i];
|
|
|
- error_value = error_buffer[i+1];
|
|
|
- buffer_out[i+1] = SIGN_EXTENDED32((prev_value + error_value), readsamplesize);
|
|
|
- }
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- /* read warm-up samples */
|
|
|
- if (predictor_coef_num > 0)
|
|
|
- {
|
|
|
- int i;
|
|
|
- for (i = 0; i < predictor_coef_num; i++)
|
|
|
- {
|
|
|
- int32_t val;
|
|
|
-
|
|
|
- val = buffer_out[i] + error_buffer[i+1];
|
|
|
-
|
|
|
- val = SIGN_EXTENDED32(val, readsamplesize);
|
|
|
-
|
|
|
- buffer_out[i+1] = val;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#if 0
|
|
|
- /* 4 and 8 are very common cases (the only ones i've seen). these
|
|
|
- * should be unrolled and optimised
|
|
|
- */
|
|
|
- if (predictor_coef_num == 4)
|
|
|
- {
|
|
|
- /* FIXME: optimised general case */
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- if (predictor_coef_table == 8)
|
|
|
- {
|
|
|
- /* FIXME: optimised general case */
|
|
|
- return;
|
|
|
- }
|
|
|
-#endif
|
|
|
-
|
|
|
-
|
|
|
- /* general case */
|
|
|
- if (predictor_coef_num > 0)
|
|
|
- {
|
|
|
- for (i = predictor_coef_num + 1;
|
|
|
- i < output_size;
|
|
|
- i++)
|
|
|
- {
|
|
|
- int j;
|
|
|
- int sum = 0;
|
|
|
- int outval;
|
|
|
- int error_val = error_buffer[i];
|
|
|
-
|
|
|
- for (j = 0; j < predictor_coef_num; j++)
|
|
|
- {
|
|
|
- sum += (buffer_out[predictor_coef_num-j] - buffer_out[0]) *
|
|
|
- predictor_coef_table[j];
|
|
|
- }
|
|
|
-
|
|
|
- outval = (1 << (predictor_quantitization-1)) + sum;
|
|
|
- outval = outval >> predictor_quantitization;
|
|
|
- outval = outval + buffer_out[0] + error_val;
|
|
|
- outval = SIGN_EXTENDED32(outval, readsamplesize);
|
|
|
-
|
|
|
- buffer_out[predictor_coef_num+1] = outval;
|
|
|
-
|
|
|
- if (error_val > 0)
|
|
|
- {
|
|
|
- int predictor_num = predictor_coef_num - 1;
|
|
|
-
|
|
|
- while (predictor_num >= 0 && error_val > 0)
|
|
|
- {
|
|
|
- int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num];
|
|
|
- int sign = SIGN_ONLY(val);
|
|
|
-
|
|
|
- predictor_coef_table[predictor_num] -= sign;
|
|
|
-
|
|
|
- val *= sign; /* absolute value */
|
|
|
-
|
|
|
- error_val -= ((val >> predictor_quantitization) *
|
|
|
- (predictor_coef_num - predictor_num));
|
|
|
-
|
|
|
- predictor_num--;
|
|
|
- }
|
|
|
- }
|
|
|
- else if (error_val < 0)
|
|
|
- {
|
|
|
- int predictor_num = predictor_coef_num - 1;
|
|
|
-
|
|
|
- while (predictor_num >= 0 && error_val < 0)
|
|
|
- {
|
|
|
- int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num];
|
|
|
- int sign = - SIGN_ONLY(val);
|
|
|
-
|
|
|
- predictor_coef_table[predictor_num] -= sign;
|
|
|
-
|
|
|
- val *= sign; /* neg value */
|
|
|
-
|
|
|
- error_val -= ((val >> predictor_quantitization) *
|
|
|
- (predictor_coef_num - predictor_num));
|
|
|
-
|
|
|
- predictor_num--;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- buffer_out++;
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-static void deinterlace_16(int32_t *buffer_a, int32_t *buffer_b,
|
|
|
- int16_t *buffer_out,
|
|
|
- int numchannels, int numsamples,
|
|
|
- uint8_t interlacing_shift,
|
|
|
- uint8_t interlacing_leftweight)
|
|
|
-{
|
|
|
- int i;
|
|
|
- if (numsamples <= 0) return;
|
|
|
-
|
|
|
- /* weighted interlacing */
|
|
|
- if (interlacing_leftweight)
|
|
|
- {
|
|
|
- for (i = 0; i < numsamples; i++)
|
|
|
- {
|
|
|
- int32_t difference, midright;
|
|
|
- int16_t left;
|
|
|
- int16_t right;
|
|
|
-
|
|
|
- midright = buffer_a[i];
|
|
|
- difference = buffer_b[i];
|
|
|
-
|
|
|
-
|
|
|
- right = midright - ((difference * interlacing_leftweight) >> interlacing_shift);
|
|
|
- left = right + difference;
|
|
|
-
|
|
|
- /* output is always little endian */
|
|
|
- if (host_bigendian)
|
|
|
- {
|
|
|
- _Swap16(left);
|
|
|
- _Swap16(right);
|
|
|
- }
|
|
|
-
|
|
|
- buffer_out[i*numchannels] = left;
|
|
|
- buffer_out[i*numchannels + 1] = right;
|
|
|
- }
|
|
|
-
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- /* otherwise basic interlacing took place */
|
|
|
- for (i = 0; i < numsamples; i++)
|
|
|
- {
|
|
|
- int16_t left, right;
|
|
|
-
|
|
|
- left = buffer_a[i];
|
|
|
- right = buffer_b[i];
|
|
|
-
|
|
|
- /* output is always little endian */
|
|
|
- if (host_bigendian)
|
|
|
- {
|
|
|
- _Swap16(left);
|
|
|
- _Swap16(right);
|
|
|
- }
|
|
|
-
|
|
|
- buffer_out[i*numchannels] = left;
|
|
|
- buffer_out[i*numchannels + 1] = right;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-static void deinterlace_24(int32_t *buffer_a, int32_t *buffer_b,
|
|
|
- int uncompressed_bytes,
|
|
|
- int32_t *uncompressed_bytes_buffer_a, int32_t *uncompressed_bytes_buffer_b,
|
|
|
- void *buffer_out,
|
|
|
- int numchannels, int numsamples,
|
|
|
- uint8_t interlacing_shift,
|
|
|
- uint8_t interlacing_leftweight)
|
|
|
-{
|
|
|
- int i;
|
|
|
- if (numsamples <= 0) return;
|
|
|
-
|
|
|
- /* weighted interlacing */
|
|
|
- if (interlacing_leftweight)
|
|
|
- {
|
|
|
- for (i = 0; i < numsamples; i++)
|
|
|
- {
|
|
|
- int32_t difference, midright;
|
|
|
- int32_t left;
|
|
|
- int32_t right;
|
|
|
-
|
|
|
- midright = buffer_a[i];
|
|
|
- difference = buffer_b[i];
|
|
|
-
|
|
|
- right = midright - ((difference * interlacing_leftweight) >> interlacing_shift);
|
|
|
- left = right + difference;
|
|
|
-
|
|
|
- if (uncompressed_bytes)
|
|
|
- {
|
|
|
- uint32_t mask = ~(0xFFFFFFFF << (uncompressed_bytes * 8));
|
|
|
- left <<= (uncompressed_bytes * 8);
|
|
|
- right <<= (uncompressed_bytes * 8);
|
|
|
-
|
|
|
- left |= uncompressed_bytes_buffer_a[i] & mask;
|
|
|
- right |= uncompressed_bytes_buffer_b[i] & mask;
|
|
|
- }
|
|
|
-
|
|
|
- ((uint8_t*)buffer_out)[i * numchannels * 3] = (left) & 0xFF;
|
|
|
- ((uint8_t*)buffer_out)[i * numchannels * 3 + 1] = (left >> 8) & 0xFF;
|
|
|
- ((uint8_t*)buffer_out)[i * numchannels * 3 + 2] = (left >> 16) & 0xFF;
|
|
|
-
|
|
|
- ((uint8_t*)buffer_out)[i * numchannels * 3 + 3] = (right) & 0xFF;
|
|
|
- ((uint8_t*)buffer_out)[i * numchannels * 3 + 4] = (right >> 8) & 0xFF;
|
|
|
- ((uint8_t*)buffer_out)[i * numchannels * 3 + 5] = (right >> 16) & 0xFF;
|
|
|
- }
|
|
|
-
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- /* otherwise basic interlacing took place */
|
|
|
- for (i = 0; i < numsamples; i++)
|
|
|
- {
|
|
|
- int32_t left, right;
|
|
|
-
|
|
|
- left = buffer_a[i];
|
|
|
- right = buffer_b[i];
|
|
|
-
|
|
|
- if (uncompressed_bytes)
|
|
|
- {
|
|
|
- uint32_t mask = ~(0xFFFFFFFF << (uncompressed_bytes * 8));
|
|
|
- left <<= (uncompressed_bytes * 8);
|
|
|
- right <<= (uncompressed_bytes * 8);
|
|
|
-
|
|
|
- left |= uncompressed_bytes_buffer_a[i] & mask;
|
|
|
- right |= uncompressed_bytes_buffer_b[i] & mask;
|
|
|
- }
|
|
|
-
|
|
|
- ((uint8_t*)buffer_out)[i * numchannels * 3] = (left) & 0xFF;
|
|
|
- ((uint8_t*)buffer_out)[i * numchannels * 3 + 1] = (left >> 8) & 0xFF;
|
|
|
- ((uint8_t*)buffer_out)[i * numchannels * 3 + 2] = (left >> 16) & 0xFF;
|
|
|
-
|
|
|
- ((uint8_t*)buffer_out)[i * numchannels * 3 + 3] = (right) & 0xFF;
|
|
|
- ((uint8_t*)buffer_out)[i * numchannels * 3 + 4] = (right >> 8) & 0xFF;
|
|
|
- ((uint8_t*)buffer_out)[i * numchannels * 3 + 5] = (right >> 16) & 0xFF;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
-}
|
|
|
-
|
|
|
-void decode_frame(alac_file *alac,
|
|
|
- unsigned char *inbuffer,
|
|
|
- void *outbuffer, int *outputsize)
|
|
|
-{
|
|
|
- int channels;
|
|
|
- int32_t outputsamples = alac->setinfo_max_samples_per_frame;
|
|
|
-
|
|
|
- /* setup the stream */
|
|
|
- alac->input_buffer = inbuffer;
|
|
|
- alac->input_buffer_bitaccumulator = 0;
|
|
|
-
|
|
|
- channels = readbits(alac, 3);
|
|
|
-
|
|
|
- *outputsize = outputsamples * alac->bytespersample;
|
|
|
-
|
|
|
- switch(channels)
|
|
|
- {
|
|
|
- case 0: /* 1 channel */
|
|
|
- {
|
|
|
- int hassize;
|
|
|
- int isnotcompressed;
|
|
|
- int readsamplesize;
|
|
|
-
|
|
|
- int uncompressed_bytes;
|
|
|
- int ricemodifier;
|
|
|
-
|
|
|
- /* 2^result = something to do with output waiting.
|
|
|
- * perhaps matters if we read > 1 frame in a pass?
|
|
|
- */
|
|
|
- readbits(alac, 4);
|
|
|
-
|
|
|
- readbits(alac, 12); /* unknown, skip 12 bits */
|
|
|
-
|
|
|
- hassize = readbits(alac, 1); /* the output sample size is stored soon */
|
|
|
-
|
|
|
- uncompressed_bytes = readbits(alac, 2); /* number of bytes in the (compressed) stream that are not compressed */
|
|
|
-
|
|
|
- isnotcompressed = readbits(alac, 1); /* whether the frame is compressed */
|
|
|
-
|
|
|
- if (hassize)
|
|
|
- {
|
|
|
- /* now read the number of samples,
|
|
|
- * as a 32bit integer */
|
|
|
- outputsamples = readbits(alac, 32);
|
|
|
- *outputsize = outputsamples * alac->bytespersample;
|
|
|
- }
|
|
|
-
|
|
|
- readsamplesize = alac->setinfo_sample_size - (uncompressed_bytes * 8);
|
|
|
-
|
|
|
- if (!isnotcompressed)
|
|
|
- { /* so it is compressed */
|
|
|
- int16_t predictor_coef_table[32];
|
|
|
- int predictor_coef_num;
|
|
|
- int prediction_type;
|
|
|
- int prediction_quantitization;
|
|
|
- int i;
|
|
|
-
|
|
|
- /* skip 16 bits, not sure what they are. seem to be used in
|
|
|
- * two channel case */
|
|
|
- readbits(alac, 8);
|
|
|
- readbits(alac, 8);
|
|
|
-
|
|
|
- prediction_type = readbits(alac, 4);
|
|
|
- prediction_quantitization = readbits(alac, 4);
|
|
|
-
|
|
|
- ricemodifier = readbits(alac, 3);
|
|
|
- predictor_coef_num = readbits(alac, 5);
|
|
|
-
|
|
|
- /* read the predictor table */
|
|
|
- for (i = 0; i < predictor_coef_num; i++)
|
|
|
- {
|
|
|
- predictor_coef_table[i] = (int16_t)readbits(alac, 16);
|
|
|
- }
|
|
|
-
|
|
|
- if (uncompressed_bytes)
|
|
|
- {
|
|
|
- int i;
|
|
|
- for (i = 0; i < outputsamples; i++)
|
|
|
- {
|
|
|
- alac->uncompressed_bytes_buffer_a[i] = readbits(alac, uncompressed_bytes * 8);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- entropy_rice_decode(alac,
|
|
|
- alac->predicterror_buffer_a,
|
|
|
- outputsamples,
|
|
|
- readsamplesize,
|
|
|
- alac->setinfo_rice_initialhistory,
|
|
|
- alac->setinfo_rice_kmodifier,
|
|
|
- ricemodifier * alac->setinfo_rice_historymult / 4,
|
|
|
- (1 << alac->setinfo_rice_kmodifier) - 1);
|
|
|
-
|
|
|
- if (prediction_type == 0)
|
|
|
- { /* adaptive fir */
|
|
|
- predictor_decompress_fir_adapt(alac->predicterror_buffer_a,
|
|
|
- alac->outputsamples_buffer_a,
|
|
|
- outputsamples,
|
|
|
- readsamplesize,
|
|
|
- predictor_coef_table,
|
|
|
- predictor_coef_num,
|
|
|
- prediction_quantitization);
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- _fprintf(stderr, "FIXME: unhandled predicition type: %i\n", prediction_type);
|
|
|
- /* i think the only other prediction type (or perhaps this is just a
|
|
|
- * boolean?) runs adaptive fir twice.. like:
|
|
|
- * predictor_decompress_fir_adapt(predictor_error, tempout, ...)
|
|
|
- * predictor_decompress_fir_adapt(predictor_error, outputsamples ...)
|
|
|
- * little strange..
|
|
|
- */
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
- else
|
|
|
- { /* not compressed, easy case */
|
|
|
- if (alac->setinfo_sample_size <= 16)
|
|
|
- {
|
|
|
- int i;
|
|
|
- for (i = 0; i < outputsamples; i++)
|
|
|
- {
|
|
|
- int32_t audiobits = readbits(alac, alac->setinfo_sample_size);
|
|
|
-
|
|
|
- audiobits = SIGN_EXTENDED32(audiobits, alac->setinfo_sample_size);
|
|
|
-
|
|
|
- alac->outputsamples_buffer_a[i] = audiobits;
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- int i;
|
|
|
- for (i = 0; i < outputsamples; i++)
|
|
|
- {
|
|
|
- int32_t audiobits;
|
|
|
-
|
|
|
- audiobits = readbits(alac, 16);
|
|
|
- /* special case of sign extension..
|
|
|
- * as we'll be ORing the low 16bits into this */
|
|
|
- audiobits = audiobits << (alac->setinfo_sample_size - 16);
|
|
|
- audiobits |= readbits(alac, alac->setinfo_sample_size - 16);
|
|
|
- audiobits = SignExtend24(audiobits);
|
|
|
-
|
|
|
- alac->outputsamples_buffer_a[i] = audiobits;
|
|
|
- }
|
|
|
- }
|
|
|
- uncompressed_bytes = 0; // always 0 for uncompressed
|
|
|
- }
|
|
|
-
|
|
|
- switch(alac->setinfo_sample_size)
|
|
|
- {
|
|
|
- case 16:
|
|
|
- {
|
|
|
- int i;
|
|
|
- for (i = 0; i < outputsamples; i++)
|
|
|
- {
|
|
|
- int16_t sample = alac->outputsamples_buffer_a[i];
|
|
|
- if (host_bigendian)
|
|
|
- _Swap16(sample);
|
|
|
- ((int16_t*)outbuffer)[i * alac->numchannels] = sample;
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case 24:
|
|
|
- {
|
|
|
- int i;
|
|
|
- for (i = 0; i < outputsamples; i++)
|
|
|
- {
|
|
|
- int32_t sample = alac->outputsamples_buffer_a[i];
|
|
|
-
|
|
|
- if (uncompressed_bytes)
|
|
|
- {
|
|
|
- uint32_t mask;
|
|
|
- sample = sample << (uncompressed_bytes * 8);
|
|
|
- mask = ~(0xFFFFFFFF << (uncompressed_bytes * 8));
|
|
|
- sample |= alac->uncompressed_bytes_buffer_a[i] & mask;
|
|
|
- }
|
|
|
-
|
|
|
- ((uint8_t*)outbuffer)[i * alac->numchannels * 3] = (sample) & 0xFF;
|
|
|
- ((uint8_t*)outbuffer)[i * alac->numchannels * 3 + 1] = (sample >> 8) & 0xFF;
|
|
|
- ((uint8_t*)outbuffer)[i * alac->numchannels * 3 + 2] = (sample >> 16) & 0xFF;
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case 20:
|
|
|
- case 32:
|
|
|
- _fprintf(stderr, "FIXME: unimplemented sample size %i\n", alac->setinfo_sample_size);
|
|
|
- break;
|
|
|
- default:
|
|
|
- break;
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case 1: /* 2 channels */
|
|
|
- {
|
|
|
- int hassize;
|
|
|
- int isnotcompressed;
|
|
|
- int readsamplesize;
|
|
|
-
|
|
|
- int uncompressed_bytes;
|
|
|
-
|
|
|
- uint8_t interlacing_shift;
|
|
|
- uint8_t interlacing_leftweight;
|
|
|
-
|
|
|
- /* 2^result = something to do with output waiting.
|
|
|
- * perhaps matters if we read > 1 frame in a pass?
|
|
|
- */
|
|
|
- readbits(alac, 4);
|
|
|
-
|
|
|
- readbits(alac, 12); /* unknown, skip 12 bits */
|
|
|
-
|
|
|
- hassize = readbits(alac, 1); /* the output sample size is stored soon */
|
|
|
-
|
|
|
- uncompressed_bytes = readbits(alac, 2); /* the number of bytes in the (compressed) stream that are not compressed */
|
|
|
-
|
|
|
- isnotcompressed = readbits(alac, 1); /* whether the frame is compressed */
|
|
|
-
|
|
|
- if (hassize)
|
|
|
- {
|
|
|
- /* now read the number of samples,
|
|
|
- * as a 32bit integer */
|
|
|
- outputsamples = readbits(alac, 32);
|
|
|
- *outputsize = outputsamples * alac->bytespersample;
|
|
|
- }
|
|
|
-
|
|
|
- readsamplesize = alac->setinfo_sample_size - (uncompressed_bytes * 8) + 1;
|
|
|
-
|
|
|
- if (!isnotcompressed)
|
|
|
- { /* compressed */
|
|
|
- int16_t predictor_coef_table_a[32];
|
|
|
- int predictor_coef_num_a;
|
|
|
- int prediction_type_a;
|
|
|
- int prediction_quantitization_a;
|
|
|
- int ricemodifier_a;
|
|
|
-
|
|
|
- int16_t predictor_coef_table_b[32];
|
|
|
- int predictor_coef_num_b;
|
|
|
- int prediction_type_b;
|
|
|
- int prediction_quantitization_b;
|
|
|
- int ricemodifier_b;
|
|
|
-
|
|
|
- int i;
|
|
|
-
|
|
|
- interlacing_shift = readbits(alac, 8);
|
|
|
- interlacing_leftweight = readbits(alac, 8);
|
|
|
-
|
|
|
- /******** channel 1 ***********/
|
|
|
- prediction_type_a = readbits(alac, 4);
|
|
|
- prediction_quantitization_a = readbits(alac, 4);
|
|
|
-
|
|
|
- ricemodifier_a = readbits(alac, 3);
|
|
|
- predictor_coef_num_a = readbits(alac, 5);
|
|
|
-
|
|
|
- /* read the predictor table */
|
|
|
- for (i = 0; i < predictor_coef_num_a; i++)
|
|
|
- {
|
|
|
- predictor_coef_table_a[i] = (int16_t)readbits(alac, 16);
|
|
|
- }
|
|
|
-
|
|
|
- /******** channel 2 *********/
|
|
|
- prediction_type_b = readbits(alac, 4);
|
|
|
- prediction_quantitization_b = readbits(alac, 4);
|
|
|
-
|
|
|
- ricemodifier_b = readbits(alac, 3);
|
|
|
- predictor_coef_num_b = readbits(alac, 5);
|
|
|
-
|
|
|
- /* read the predictor table */
|
|
|
- for (i = 0; i < predictor_coef_num_b; i++)
|
|
|
- {
|
|
|
- predictor_coef_table_b[i] = (int16_t)readbits(alac, 16);
|
|
|
- }
|
|
|
-
|
|
|
- /*********************/
|
|
|
- if (uncompressed_bytes)
|
|
|
- { /* see mono case */
|
|
|
- int i;
|
|
|
- for (i = 0; i < outputsamples; i++)
|
|
|
- {
|
|
|
- alac->uncompressed_bytes_buffer_a[i] = readbits(alac, uncompressed_bytes * 8);
|
|
|
- alac->uncompressed_bytes_buffer_b[i] = readbits(alac, uncompressed_bytes * 8);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* channel 1 */
|
|
|
- entropy_rice_decode(alac,
|
|
|
- alac->predicterror_buffer_a,
|
|
|
- outputsamples,
|
|
|
- readsamplesize,
|
|
|
- alac->setinfo_rice_initialhistory,
|
|
|
- alac->setinfo_rice_kmodifier,
|
|
|
- ricemodifier_a * alac->setinfo_rice_historymult / 4,
|
|
|
- (1 << alac->setinfo_rice_kmodifier) - 1);
|
|
|
-
|
|
|
- if (prediction_type_a == 0)
|
|
|
- { /* adaptive fir */
|
|
|
- predictor_decompress_fir_adapt(alac->predicterror_buffer_a,
|
|
|
- alac->outputsamples_buffer_a,
|
|
|
- outputsamples,
|
|
|
- readsamplesize,
|
|
|
- predictor_coef_table_a,
|
|
|
- predictor_coef_num_a,
|
|
|
- prediction_quantitization_a);
|
|
|
- }
|
|
|
- else
|
|
|
- { /* see mono case */
|
|
|
- _fprintf(stderr, "FIXME: unhandled predicition type: %i\n", prediction_type_a);
|
|
|
- }
|
|
|
-
|
|
|
- /* channel 2 */
|
|
|
- entropy_rice_decode(alac,
|
|
|
- alac->predicterror_buffer_b,
|
|
|
- outputsamples,
|
|
|
- readsamplesize,
|
|
|
- alac->setinfo_rice_initialhistory,
|
|
|
- alac->setinfo_rice_kmodifier,
|
|
|
- ricemodifier_b * alac->setinfo_rice_historymult / 4,
|
|
|
- (1 << alac->setinfo_rice_kmodifier) - 1);
|
|
|
-
|
|
|
- if (prediction_type_b == 0)
|
|
|
- { /* adaptive fir */
|
|
|
- predictor_decompress_fir_adapt(alac->predicterror_buffer_b,
|
|
|
- alac->outputsamples_buffer_b,
|
|
|
- outputsamples,
|
|
|
- readsamplesize,
|
|
|
- predictor_coef_table_b,
|
|
|
- predictor_coef_num_b,
|
|
|
- prediction_quantitization_b);
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- _fprintf(stderr, "FIXME: unhandled predicition type: %i\n", prediction_type_b);
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- { /* not compressed, easy case */
|
|
|
- if (alac->setinfo_sample_size <= 16)
|
|
|
- {
|
|
|
- int i;
|
|
|
- for (i = 0; i < outputsamples; i++)
|
|
|
- {
|
|
|
- int32_t audiobits_a, audiobits_b;
|
|
|
-
|
|
|
- audiobits_a = readbits(alac, alac->setinfo_sample_size);
|
|
|
- audiobits_b = readbits(alac, alac->setinfo_sample_size);
|
|
|
-
|
|
|
- audiobits_a = SIGN_EXTENDED32(audiobits_a, alac->setinfo_sample_size);
|
|
|
- audiobits_b = SIGN_EXTENDED32(audiobits_b, alac->setinfo_sample_size);
|
|
|
-
|
|
|
- alac->outputsamples_buffer_a[i] = audiobits_a;
|
|
|
- alac->outputsamples_buffer_b[i] = audiobits_b;
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- int i;
|
|
|
- for (i = 0; i < outputsamples; i++)
|
|
|
- {
|
|
|
- int32_t audiobits_a, audiobits_b;
|
|
|
-
|
|
|
- audiobits_a = readbits(alac, 16);
|
|
|
- audiobits_a = audiobits_a << (alac->setinfo_sample_size - 16);
|
|
|
- audiobits_a |= readbits(alac, alac->setinfo_sample_size - 16);
|
|
|
- audiobits_a = SignExtend24(audiobits_a);
|
|
|
-
|
|
|
- audiobits_b = readbits(alac, 16);
|
|
|
- audiobits_b = audiobits_b << (alac->setinfo_sample_size - 16);
|
|
|
- audiobits_b |= readbits(alac, alac->setinfo_sample_size - 16);
|
|
|
- audiobits_b = SignExtend24(audiobits_b);
|
|
|
-
|
|
|
- alac->outputsamples_buffer_a[i] = audiobits_a;
|
|
|
- alac->outputsamples_buffer_b[i] = audiobits_b;
|
|
|
- }
|
|
|
- }
|
|
|
- uncompressed_bytes = 0; // always 0 for uncompressed
|
|
|
- interlacing_shift = 0;
|
|
|
- interlacing_leftweight = 0;
|
|
|
- }
|
|
|
-
|
|
|
- switch(alac->setinfo_sample_size)
|
|
|
- {
|
|
|
- case 16:
|
|
|
- {
|
|
|
- deinterlace_16(alac->outputsamples_buffer_a,
|
|
|
- alac->outputsamples_buffer_b,
|
|
|
- (int16_t*)outbuffer,
|
|
|
- alac->numchannels,
|
|
|
- outputsamples,
|
|
|
- interlacing_shift,
|
|
|
- interlacing_leftweight);
|
|
|
- break;
|
|
|
- }
|
|
|
- case 24:
|
|
|
- {
|
|
|
- deinterlace_24(alac->outputsamples_buffer_a,
|
|
|
- alac->outputsamples_buffer_b,
|
|
|
- uncompressed_bytes,
|
|
|
- alac->uncompressed_bytes_buffer_a,
|
|
|
- alac->uncompressed_bytes_buffer_b,
|
|
|
- (int16_t*)outbuffer,
|
|
|
- alac->numchannels,
|
|
|
- outputsamples,
|
|
|
- interlacing_shift,
|
|
|
- interlacing_leftweight);
|
|
|
- break;
|
|
|
- }
|
|
|
- case 20:
|
|
|
- case 32:
|
|
|
- _fprintf(stderr, "FIXME: unimplemented sample size %i\n", alac->setinfo_sample_size);
|
|
|
- break;
|
|
|
- default:
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-alac_file *create_alac(int samplesize, int numchannels)
|
|
|
-{
|
|
|
- alac_file *newfile = malloc(sizeof(alac_file));
|
|
|
-
|
|
|
- newfile->samplesize = samplesize;
|
|
|
- newfile->numchannels = numchannels;
|
|
|
- newfile->bytespersample = (samplesize / 8) * numchannels;
|
|
|
-
|
|
|
- return newfile;
|
|
|
-}
|
|
|
-
|
|
|
-void delete_alac(alac_file *alac)
|
|
|
-{
|
|
|
- free(alac->predicterror_buffer_a);
|
|
|
- free(alac->predicterror_buffer_b);
|
|
|
-
|
|
|
- free(alac->outputsamples_buffer_a);
|
|
|
- free(alac->outputsamples_buffer_b);
|
|
|
-
|
|
|
- free(alac->uncompressed_bytes_buffer_a);
|
|
|
- free(alac->uncompressed_bytes_buffer_b);
|
|
|
-
|
|
|
- free(alac);
|
|
|
-}
|
|
|
-
|
|
|
-
|