/* Copyright © 2011 Apple Inc. All rights reserved. IMPORTANT: This Apple software is supplied to you by Apple Inc. (“Apple”) in consideration of your agreement to the following terms, and your use, installation, modification or redistribution of this Apple software constitutes acceptance of these terms. If you do not agree with these terms, please do not use, install, modify or redistribute this Apple software. In consideration of your agreement to abide by the following terms, and subject to these terms, Apple grants you a personal, non-exclusive license, under Apple’s copyrights in this original Apple software (the “Apple Software”), to use, reproduce, modify and redistribute the Apple Software, with or without modifications, in source and/or binary forms; provided that if you redistribute the Apple Software in its entirety and without modifications, you must retain this notice and the following text and disclaimers in all such redistributions of the Apple Software. Neither the name, trademarks, service marks or logos of Apple Inc. may be used to endorse or promote products derived from the Apple Software without specific prior written permission from Apple. Except as expressly stated in this notice, no other rights or licenses, express or implied, are granted by Apple herein, including but not limited to any patent rights that may be infringed by your derivative works or by other works in which the Apple Software may be incorporated. The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE OR IN COMBINATION WITH YOUR PRODUCTS. IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * main.cpp * * Converts pcm data contained in a .wav or .caf file into Apple Lossless (ALAC) put into a .caf file * or converts ALAC data from a .caf file into pcm data and put into a .wav or .caf file * */ #include #include #include // these are headers for the ALAC encoder and decoder #include "ALACEncoder.h" #include "ALACDecoder.h" #include "ALACBitUtilities.h" // these are utility headers for this sample code #include "CAFFileALAC.h" #include "EndianPortable.h" #define kMaxBERSize 5 #define kCAFFdataChunkEditsSize 4 #define kWAVERIFFChunkSize 12 #define kWAVEfmtChunkSize 24 #define kWAVEdataChunkHeaderSize 8 #define VERBOSE 0 // Helper functions int32_t GetInputFormat(FILE * inputFile, AudioFormatDescription * theInputFormat, uint32_t * theFileType); int32_t SetOutputFormat(AudioFormatDescription theInputFormat, AudioFormatDescription * theOutputFormat); int32_t FindDataStart(FILE * inputFile, uint32_t inputFileType, int32_t * dataPos, int32_t * dataSize); int32_t EncodeALAC(FILE * inputFile, FILE * outputFile, AudioFormatDescription theInputFormat, AudioFormatDescription theOutputFormat, int32_t inputDataSize); int32_t DecodeALAC(FILE * inputFile, FILE * outputFile, AudioFormatDescription theInputFormat, AudioFormatDescription theOutputFormat, int32_t inputDataSize, uint32_t outputFileType); void GetOutputFileType(char * outputFileName, uint32_t * outputFileType); ALACChannelLayoutTag GetALACChannelLayoutTag(uint32_t inChannelsPerFrame); // Some crude WAVE writing tools void WriteWAVERIFFChunk(FILE * outputFile); void WriteWAVEfmtChunk(FILE * outputFile, AudioFormatDescription theOutputFormat); void WriteWAVEdataChunk(FILE * outputFile); void WriteWAVEChunkSize(FILE * outputFile, uint32_t numDataBytes); // Adapted from CoreAudioTypes.h enum { kTestFormatFlag_16BitSourceData = 1, kTestFormatFlag_20BitSourceData = 2, kTestFormatFlag_24BitSourceData = 3, kTestFormatFlag_32BitSourceData = 4 }; int32_t main (int32_t argc, char * argv[]) { char * inputFileName = argv[1]; char * outputFileName = argv[2]; FILE * inputFile = NULL; FILE * outputFile = NULL; bool malformed = argc < 2; // Parse the commandline and open the necessary files for (int32_t i = 1; i < argc; ++i) { if (strcmp (argv[i], "-h") == 0) { malformed = true; } else { if (argv[i][0] == '-') { printf ("unknown option: %s\n", argv[i]); malformed = true; } else { if (inputFile == NULL) inputFile = fopen (inputFileName, "rb"); // the b is necessary for Windows -- ignored by Unix if(inputFile == NULL) { fprintf(stderr," Cannot open file \"%s\"\n", inputFileName); exit (1); } if (outputFile == NULL) outputFile = fopen (outputFileName, "w+b"); // the b is necessary for Windows -- ignored by Unix if(outputFile == NULL) { fprintf(stderr," Cannot open file \"%s\"\n", outputFileName); exit (1); } } } if (malformed) { break; } } if (!malformed) { printf("Input file: %s\n", inputFileName); printf("Output file: %s\n", outputFileName); // So at this point we have the input and output files open. Need to determine what we're dealing with int32_t theError = 0; AudioFormatDescription inputFormat; AudioFormatDescription outputFormat; int32_t inputDataPos = 0, inputDataSize = 0; uint32_t inputFileType = 0; // 'caff' or 'WAVE' uint32_t outputFileType = 0; // 'caff' or 'WAVE' theError = GetInputFormat(inputFile, &inputFormat, &inputFileType); if (theError) { fprintf(stderr," Cannot determine what format file \"%s\" is\n", inputFileName); exit (1); } if (inputFileType != 'WAVE' && inputFileType != 'caff') { fprintf(stderr," File \"%s\" is of an unsupported type\n", outputFileName); exit (1); } if (inputFormat.mFormatID != kALACFormatAppleLossless && inputFormat.mFormatID != kALACFormatLinearPCM) { fprintf(stderr," File \"%s\'s\" data format is of an unsupported type\n", outputFileName); exit (1); } SetOutputFormat(inputFormat, &outputFormat); if (theError) { fprintf(stderr," Cannot determine what format file \"%s\" is\n", outputFileName); exit (1); } FindDataStart(inputFile, inputFileType, &inputDataPos, &inputDataSize); fseek(inputFile, inputDataPos, SEEK_SET); // We know where we are and we know what we're doing if (outputFormat.mFormatID == kALACFormatAppleLossless) { // encoding EncodeALAC(inputFile, outputFile, inputFormat, outputFormat, inputDataSize); } else { // decoding GetOutputFileType(outputFileName, &outputFileType); if (outputFileType == 'WAVE' && outputFormat.mChannelsPerFrame > 2) { // we don't support WAVE because we don't want to reinterleave on output fprintf(stderr," Cannot decode more than two channels to WAVE\n"); exit (1); } DecodeALAC(inputFile, outputFile, inputFormat, outputFormat, inputDataSize, outputFileType); } } if (malformed) { printf ("Usage:\n"); printf ("Encode:\n"); printf (" alacconvert \n"); printf ("Decode:\n"); printf (" alacconvert \n"); printf ("\n"); return 1; } if (inputFile) fclose(inputFile); if (outputFile) fclose(outputFile); return 0; } int32_t GetInputFormat(FILE * inputFile, AudioFormatDescription * theInputFormat, uint32_t * theFileType) { // assumes the file is open uint8_t theReadBuffer[20]; bool done = false; uint32_t chunkType = 0; fread(theReadBuffer, 1, 4, inputFile); if (theReadBuffer[0] == 'c' && theReadBuffer[1] == 'a' && theReadBuffer[2] == 'f' & theReadBuffer[3] == 'f') { // It's a caff file! *theFileType = 'caff'; // We support pcm data for encode and alac data for decode done = GetCAFFdescFormat(inputFile, theInputFormat); } else if (theReadBuffer[0] == 'R' && theReadBuffer[1] == 'I' && theReadBuffer[2] == 'F' & theReadBuffer[3] == 'F') { fread(theReadBuffer, 1, 8, inputFile); if (theReadBuffer[4] == 'W' && theReadBuffer[5] == 'A' && theReadBuffer[6] == 'V' & theReadBuffer[7] == 'E') { // It's a WAVE file! *theFileType = 'WAVE'; // We only support pcm data while (!done) { uint32_t theChunkSize = 0, theSampleRate = 0; fread(theReadBuffer, 1, 4, inputFile); chunkType = ((int32_t)(theReadBuffer[0]) << 24) + ((int32_t)(theReadBuffer[1]) << 16) + ((int32_t)(theReadBuffer[2]) << 8) + theReadBuffer[3]; switch (chunkType) { case 'fmt ': fread(theReadBuffer, 1, 20, inputFile); // Remember campers we're in little endian land if (theReadBuffer[4] != 1 || theReadBuffer[5] != 0) { // we only support PCM *theFileType = 0; // clear it return -1; } theInputFormat->mFormatID = kALACFormatLinearPCM; theInputFormat->mChannelsPerFrame = theReadBuffer[6]; theSampleRate = ((int32_t)(theReadBuffer[11]) << 24) + ((int32_t)(theReadBuffer[10]) << 16) + ((int32_t)(theReadBuffer[9]) << 8) + theReadBuffer[8]; theInputFormat->mSampleRate = theSampleRate; theInputFormat->mBitsPerChannel = theReadBuffer[18]; theInputFormat->mFormatFlags = kALACFormatFlagIsSignedInteger | kALACFormatFlagIsPacked; // always little endian theInputFormat->mBytesPerPacket = theInputFormat->mBytesPerFrame = (theInputFormat->mBitsPerChannel >> 3) * theInputFormat->mChannelsPerFrame; theInputFormat->mFramesPerPacket = 1; theInputFormat->mReserved = 0; done = true; break; default: // read the size and skip fread(theReadBuffer, 1, 4, inputFile); theChunkSize = ((int32_t)(theReadBuffer[3]) << 24) + ((int32_t)(theReadBuffer[2]) << 16) + ((int32_t)(theReadBuffer[1]) << 8) + theReadBuffer[0]; fseek(inputFile, theChunkSize, SEEK_CUR); break; } } } else { *theFileType = 0; // clear it return -1; } } else { *theFileType = 0; // clear it return -1; } if (!done) return -1; return 0; } int32_t SetOutputFormat(AudioFormatDescription theInputFormat, AudioFormatDescription * theOutputFormat) { if (theInputFormat.mFormatID == kALACFormatLinearPCM) { // encoding theOutputFormat->mFormatID = kALACFormatAppleLossless; theOutputFormat->mSampleRate = theInputFormat.mSampleRate; switch(theInputFormat.mBitsPerChannel) { case 16: theOutputFormat->mFormatFlags = kTestFormatFlag_16BitSourceData; break; case 20: theOutputFormat->mFormatFlags = kTestFormatFlag_20BitSourceData; break; case 24: theOutputFormat->mFormatFlags = kTestFormatFlag_24BitSourceData; break; case 32: theOutputFormat->mFormatFlags = kTestFormatFlag_32BitSourceData; break; default: return -1; break; } theOutputFormat->mFramesPerPacket = kALACDefaultFramesPerPacket; theOutputFormat->mChannelsPerFrame = theInputFormat.mChannelsPerFrame; // mBytesPerPacket == 0 because we are VBR // mBytesPerFrame and mBitsPerChannel == 0 because there are no discernable bits assigned to a particular sample // mReserved is always 0 theOutputFormat->mBytesPerPacket = theOutputFormat->mBytesPerFrame = theOutputFormat->mBitsPerChannel = theOutputFormat->mReserved = 0; } else { // decoding theOutputFormat->mFormatID = kALACFormatLinearPCM; theOutputFormat->mSampleRate = theInputFormat.mSampleRate; switch(theInputFormat.mFormatFlags) { case kTestFormatFlag_16BitSourceData: theOutputFormat->mBitsPerChannel = 16; break; case kTestFormatFlag_20BitSourceData: theOutputFormat->mBitsPerChannel = 20; break; case kTestFormatFlag_24BitSourceData: theOutputFormat->mBitsPerChannel = 24; break; case kTestFormatFlag_32BitSourceData: theOutputFormat->mBitsPerChannel = 32; break; default: return -1; break; } theOutputFormat->mFramesPerPacket = 1; theOutputFormat->mChannelsPerFrame = theInputFormat.mChannelsPerFrame; theOutputFormat->mBytesPerPacket = theOutputFormat->mBytesPerFrame = theOutputFormat->mBitsPerChannel != 20 ? theInputFormat.mChannelsPerFrame * ((theOutputFormat->mBitsPerChannel) >> 3) : (int32_t)(theInputFormat.mChannelsPerFrame * 2.5 + .5); theOutputFormat->mFormatFlags = kALACFormatFlagsNativeEndian; theOutputFormat->mReserved = 0; } return 0; } int32_t FindDataStart(FILE * inputFile, uint32_t inputFileType, int32_t * dataPos, int32_t * dataSize) { // returns the absolute position within the file int32_t currentPosition = ftell(inputFile); // record the current position uint8_t theReadBuffer[12]; uint32_t chunkType = 0, fileSize = 0, chunkSize = 0; bool done = false; switch (inputFileType) { case 'WAVE': fseek(inputFile, 0, SEEK_SET); // start at 0 fread(theReadBuffer, 1, 8, inputFile); fileSize = ((int32_t)(theReadBuffer[7]) << 24) + ((int32_t)(theReadBuffer[6]) << 16) + ((int32_t)(theReadBuffer[5]) << 8) + theReadBuffer[4]; fseek(inputFile, 12, SEEK_SET); // start at 12! while (!done && ((uint32_t)(ftell(inputFile)) < fileSize)) { fread(theReadBuffer, 1, 8, inputFile); chunkType = ((int32_t)(theReadBuffer[0]) << 24) + ((int32_t)(theReadBuffer[1]) << 16) + ((int32_t)(theReadBuffer[2]) << 8) + theReadBuffer[3]; switch(chunkType) { case 'data': *dataPos = ftell(inputFile); // little endian size *dataSize = ((int32_t)(theReadBuffer[7]) << 24) + ((int32_t)(theReadBuffer[6]) << 16) + ((int32_t)(theReadBuffer[5]) << 8) + theReadBuffer[4]; done = true; break; default: chunkSize = ((int32_t)(theReadBuffer[7]) << 24) + ((int32_t)(theReadBuffer[6]) << 16) + ((int32_t)(theReadBuffer[5]) << 8) + theReadBuffer[4]; fseek(inputFile, chunkSize, SEEK_CUR); break; } } break; case 'caff': done = FindCAFFDataStart(inputFile, dataPos, dataSize); break; } fseek(inputFile, currentPosition, SEEK_SET); // start at 0 if (!done) return -1; return 0; } int32_t EncodeALAC(FILE * inputFile, FILE * outputFile, AudioFormatDescription theInputFormat, AudioFormatDescription theOutputFormat, int32_t inputDataSize) { int32_t theInputPacketBytes = theInputFormat.mChannelsPerFrame * (theInputFormat.mBitsPerChannel >> 3) * theOutputFormat.mFramesPerPacket; int32_t theOutputPacketBytes = theInputPacketBytes + kALACMaxEscapeHeaderBytes; int32_t thePacketTableSize = 0, packetTablePos = 0, dataPos = 0, dataSizePos = 0, theBERSize = 0, packetTableSizePos; uint8_t * theReadBuffer = (uint8_t *)calloc(theInputPacketBytes, 1); uint8_t * theWriteBuffer = (uint8_t *)calloc(theOutputPacketBytes, 1); int32_t numBytes = 0; uint32_t packetTableBytesLeft = 0; int64_t numDataBytes = 0; port_CAFPacketTableHeader thePacketTableHeader; int32_t inputDataBytesRemaining = inputDataSize; uint8_t * theMagicCookie = NULL; uint32_t theMagicCookieSize = 0; ALACEncoder * theEncoder = new ALACEncoder; theEncoder->SetFrameSize(theOutputFormat.mFramesPerPacket); theEncoder->InitializeEncoder(theOutputFormat); // we only write out the caff header, the 'desc' chunk. the 'kuki' chunk, the 'pakt' chunk and the 'data' chunk // write out the caff header WriteCAFFcaffChunk(outputFile); // write out the desc chunk WriteCAFFdescChunk(outputFile, theOutputFormat); // get the magic cookie theMagicCookieSize = theEncoder->GetMagicCookieSize(theOutputFormat.mChannelsPerFrame); theMagicCookie = (uint8_t *)calloc(theMagicCookieSize, 1); theEncoder->GetMagicCookie(theMagicCookie, &theMagicCookieSize); // write out the kuki chunk WriteCAFFkukiChunk(outputFile, theMagicCookie, theMagicCookieSize); free(theMagicCookie); // We might be multi channel if (theOutputFormat.mChannelsPerFrame > 2) { WriteCAFFchanChunk(outputFile, GetALACChannelLayoutTag(theOutputFormat.mChannelsPerFrame)); } // Figure out the maximum size and build the base pakt header BuildBasePacketTable(theInputFormat, inputDataSize, &thePacketTableSize, &thePacketTableHeader); packetTableBytesLeft = thePacketTableSize; // This could be substantially larger than either the read or write buffer, so allocate a block of memory here // all we're going to do is copy it to the file uint8_t * thePacketTableEntries = (uint8_t *)calloc (thePacketTableSize, 1); /* move */ thePacketTableSize += kMinCAFFPacketTableHeaderSize; WriteCAFFpaktChunkHeader(outputFile, &thePacketTableHeader, thePacketTableSize); packetTableSizePos = packetTablePos = ftell(outputFile); packetTableSizePos -= (sizeof(int64_t) + kMinCAFFPacketTableHeaderSize); thePacketTableSize -= kMinCAFFPacketTableHeaderSize; fwrite (thePacketTableEntries, 1, thePacketTableSize, outputFile); free(thePacketTableEntries); // We'll write out the data chunk next. The 'data' size will start past the 'data' chunk identifier dataSizePos = ftell(outputFile) + sizeof(uint32_t); // Finally, write out the data chunk WriteCAFFdataChunk(outputFile); dataPos = ftell(outputFile); while (theInputPacketBytes <= inputDataBytesRemaining) { numBytes = fread(theReadBuffer, 1, theInputPacketBytes, inputFile); #if VERBOSE printf ("Read %i bytes\n", numBytes); #endif inputDataBytesRemaining -= numBytes; if ((theInputFormat.mFormatFlags & 0x02) != kALACFormatFlagsNativeEndian) { #if VERBOSE printf ("Byte Swapping!\n"); #endif if (theInputFormat.mBitsPerChannel == 16) { uint16_t * theShort = (uint16_t *)theReadBuffer; for (int32_t i = 0; i < (numBytes >> 1); ++i) { Swap16(&(theShort[i])); } } else if (theInputFormat.mBitsPerChannel == 32) { uint32_t * theLong = (uint32_t *)theReadBuffer; for (int32_t i = 0; i < (numBytes >> 2); ++i) { Swap32(&(theLong[i])); } } else // covers both 20 and 24 { for (int32_t i = 0; i < numBytes; i += 3) { Swap24(&(theReadBuffer[i])); } } } theEncoder->Encode(theInputFormat, theInputFormat, theReadBuffer, theWriteBuffer, &numBytes); GetBERInteger(numBytes, theReadBuffer, &theBERSize); fseek(outputFile, packetTablePos, SEEK_SET); fwrite(theReadBuffer, 1, theBERSize, outputFile); packetTablePos += theBERSize; packetTableBytesLeft -= theBERSize; fseek(outputFile, dataPos, SEEK_SET); fwrite(theWriteBuffer, 1, numBytes, outputFile); dataPos += numBytes; numDataBytes += numBytes; #if VERBOSE printf ("Writing %i bytes\n", numBytes); #endif } // encode the last partial packet if (inputDataBytesRemaining) { numBytes = fread(theReadBuffer, 1, inputDataBytesRemaining, inputFile); #if VERBOSE printf ("Last Packet! Read %i bytes\n", numBytes); #endif inputDataBytesRemaining -= numBytes; if ((theInputFormat.mFormatFlags & 0x02) != kALACFormatFlagsNativeEndian) { #if VERBOSE printf ("Byte Swapping!\n"); #endif if (theInputFormat.mBitsPerChannel == 16) { uint16_t * theShort = (uint16_t *)theReadBuffer; for (int32_t i = 0; i < (numBytes >> 1); ++i) { Swap16(&(theShort[i])); } } else if (theInputFormat.mBitsPerChannel == 32) { uint32_t * theLong = (uint32_t *)theReadBuffer; for (int32_t i = 0; i < (numBytes >> 2); ++i) { Swap32(&(theLong[i])); } } else // covers both 20 and 24 { for (int32_t i = 0; i < numBytes; i += 3) { Swap24(&(theReadBuffer[i])); } } } theEncoder->Encode(theInputFormat, theInputFormat, theReadBuffer, theWriteBuffer, &numBytes); GetBERInteger(numBytes, theReadBuffer, &theBERSize); fseek(outputFile, packetTablePos, SEEK_SET); fwrite(theReadBuffer, 1, theBERSize, outputFile); packetTablePos += theBERSize; packetTableBytesLeft -= theBERSize; fseek(outputFile, dataPos, SEEK_SET); fwrite(theWriteBuffer, 1, numBytes, outputFile); dataPos += numBytes; numDataBytes += numBytes; #if VERBOSE printf ("Writing %i bytes\n", numBytes); #endif } // cleanup -- if we have a lot of bytes left over in packet table, write a free chunk if (packetTableBytesLeft > sizeof(port_CAFChunkHeader)) // min size required to write { #if VERBOSE printf ("Writing %i free bytes\n", packetTableBytesLeft); #endif fseek(outputFile, packetTablePos, SEEK_SET); WriteCAFFfreeChunk(outputFile, packetTableBytesLeft); fseek(outputFile, packetTableSizePos, SEEK_SET); WriteCAFFChunkSize(outputFile, thePacketTableSize - packetTableBytesLeft + kMinCAFFPacketTableHeaderSize); } // write out the data size fseek(outputFile, dataSizePos, SEEK_SET); numDataBytes += kCAFFdataChunkEditsSize; #if VERBOSE printf ("numDataBytes == %i bytes\n", numDataBytes); #endif WriteCAFFChunkSize(outputFile, numDataBytes); delete theEncoder; free(theReadBuffer); free(theWriteBuffer); return 0; } // There's not a whole lot of difference between encode and decode on this level int32_t DecodeALAC(FILE * inputFile, FILE * outputFile, AudioFormatDescription theInputFormat, AudioFormatDescription theOutputFormat, int32_t inputDataSize, uint32_t outputFileType) { int32_t theInputPacketBytes = theInputFormat.mChannelsPerFrame * (theOutputFormat.mBitsPerChannel >> 3) * theInputFormat.mFramesPerPacket + kALACMaxEscapeHeaderBytes; int32_t theOutputPacketBytes = theInputPacketBytes - kALACMaxEscapeHeaderBytes; int32_t thePacketTableSize = 0, packetTablePos = 0, outputDataSizePos = 0, inputDataPos = 0; uint8_t * theReadBuffer = (uint8_t *)calloc(theInputPacketBytes, 1); uint8_t * theWriteBuffer = (uint8_t *)calloc(theOutputPacketBytes, 1); int32_t numBytes = 0; int64_t numDataBytes = 0; uint32_t numFrames = 0; BitBuffer theInputBuffer; uint8_t * theMagicCookie = NULL; uint32_t theMagicCookieSize = 0; ALACDecoder * theDecoder = new ALACDecoder; // We need to get the cookie from the file theMagicCookieSize = GetMagicCookieSizeFromCAFFkuki(inputFile); theMagicCookie = (uint8_t *)calloc(theMagicCookieSize, 1); GetMagicCookieFromCAFFkuki(inputFile, theMagicCookie, &theMagicCookieSize); // While we don't have a use for this here, if you were using arbitrary channel layouts, you'd need to run the following check: theDecoder->Init(theMagicCookie, theMagicCookieSize); free(theMagicCookie); BitBufferInit(&theInputBuffer, theReadBuffer, theInputPacketBytes); inputDataPos = ftell(inputFile); if (outputFileType != 'WAVE') { // we only write out the caff header, the 'desc' chunk and the 'data' chunk // write out the caff header WriteCAFFcaffChunk(outputFile); // write out the desc chunk WriteCAFFdescChunk(outputFile, theOutputFormat); // We might be multi channel if (theOutputFormat.mChannelsPerFrame > 2) { // we are not rearranging the output data WriteCAFFchanChunk(outputFile, CAFFChannelLayoutTags[theOutputFormat.mChannelsPerFrame - 1]); } // We'll write out the data chunk next. The 'data' size will start past the 'data' chunk identifier outputDataSizePos = ftell(outputFile) + sizeof(uint32_t); // Finally, write out the data chunk WriteCAFFdataChunk(outputFile); } else { // We're writing a mono or stereo WAVE file WriteWAVERIFFChunk(outputFile); WriteWAVEfmtChunk(outputFile, theOutputFormat); WriteWAVEdataChunk(outputFile); outputDataSizePos = ftell(outputFile) - sizeof(uint32_t); } // We do have to get the packet size from the packet table FindCAFFPacketTableStart(inputFile, &packetTablePos, &thePacketTableSize); fseek(inputFile, packetTablePos, SEEK_SET); numBytes = fread(theReadBuffer, 1, kMaxBERSize, inputFile); theInputPacketBytes = ReadBERInteger(theReadBuffer, &numBytes); packetTablePos += numBytes; fseek(inputFile, inputDataPos, SEEK_SET); inputDataPos += theInputPacketBytes; while ((theInputPacketBytes > 0) && ((size_t)theInputPacketBytes == fread(theReadBuffer, 1, theInputPacketBytes, inputFile))) { #if VERBOSE printf ("Read %i bytes\n", theInputPacketBytes); #endif theDecoder->Decode(&theInputBuffer, theWriteBuffer, theInputFormat.mFramesPerPacket, theInputFormat.mChannelsPerFrame, &numFrames); numBytes = numFrames * theOutputFormat.mBytesPerFrame; #if VERBOSE printf ("Writing %i bytes\n", numBytes); #endif fwrite(theWriteBuffer, 1, numBytes, outputFile); numDataBytes += numBytes; fseek(inputFile, packetTablePos, SEEK_SET); numBytes = fread(theReadBuffer, 1, kMaxBERSize, inputFile); theInputPacketBytes = ReadBERInteger(theReadBuffer, &numBytes); #if VERBOSE printf ("theInputPacketBytes == %i bytes\n", theInputPacketBytes); #endif packetTablePos += numBytes; fseek(inputFile, inputDataPos, SEEK_SET); inputDataPos += theInputPacketBytes; BitBufferReset(&theInputBuffer); } if (outputFileType != 'WAVE') { // cleanup -- write out the data size fseek(outputFile, outputDataSizePos, SEEK_SET); numDataBytes += kCAFFdataChunkEditsSize; // add in the edit bytes #if VERBOSE printf ("numDataBytes == %i bytes\n", numDataBytes); #endif WriteCAFFChunkSize(outputFile, numDataBytes); } else { // cleanup -- write out the data size fseek(outputFile, outputDataSizePos, SEEK_SET); WriteWAVEChunkSize(outputFile, (uint32_t)numDataBytes); // write out the file size fseek(outputFile, 4, SEEK_SET); WriteWAVEChunkSize(outputFile, numDataBytes + sizeof(outputFileType) + kWAVEdataChunkHeaderSize + kWAVEfmtChunkSize); // add in the size for 'WAVE', size of the data' chunk header and the 'fmt ' chunk } delete theDecoder; free(theReadBuffer); free(theWriteBuffer); return 0; } void GetOutputFileType(char * outputFileName, uint32_t * outputFileType) { char * typeStr = strrchr(outputFileName, '.'); *outputFileType = 'caff'; if (typeStr != NULL) { if (strlen(typeStr) == 4) { if (strcmp(typeStr, ".wav") == 0) { *outputFileType = 'WAVE'; } } } } ALACChannelLayoutTag GetALACChannelLayoutTag(uint32_t inChannelsPerFrame) { return ALACChannelLayoutTags[inChannelsPerFrame - 1]; } void WriteWAVERIFFChunk(FILE * outputFile) { uint8_t theReadBuffer[kWAVERIFFChunkSize] = {'R', 'I', 'F', 'F', 0, 0, 0, 0, 'W', 'A', 'V', 'E'}; fwrite(theReadBuffer, 1, kWAVERIFFChunkSize, outputFile); } void WriteWAVEfmtChunk(FILE * outputFile, AudioFormatDescription theOutputFormat) { // we use a standard 'fmt ' chunk for our pcm data where 16 is the chunk size and 1 is the compression code uint8_t theBuffer[kWAVEfmtChunkSize] = {'f', 'm', 't', ' ', 16, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; uint32_t theSampleRate = theOutputFormat.mSampleRate; uint32_t theAverageBytesPerSecond = theSampleRate * theOutputFormat.mBytesPerFrame; theBuffer[10] = theOutputFormat.mChannelsPerFrame; theBuffer[12] = theSampleRate & 0xff; theBuffer[13] = (theSampleRate >> 8) & 0xff; theBuffer[14] = (theSampleRate >> 16) & 0xff; theBuffer[15] = theSampleRate >> 24; theBuffer[16] = theAverageBytesPerSecond & 0xff; theBuffer[17] = (theAverageBytesPerSecond >> 8) & 0xff; theBuffer[18] = (theAverageBytesPerSecond >> 16) & 0xff; theBuffer[19] = theAverageBytesPerSecond >> 24; theBuffer[20] = theOutputFormat.mBytesPerFrame; theBuffer[22] = theOutputFormat.mBitsPerChannel; fwrite(theBuffer, 1, kWAVEfmtChunkSize, outputFile); } void WriteWAVEdataChunk(FILE * outputFile) { uint8_t theBuffer[kWAVEdataChunkHeaderSize] = {'d', 'a', 't', 'a', 0, 0, 0, 0}; fwrite(theBuffer, 1, kWAVEdataChunkHeaderSize, outputFile); } void WriteWAVEChunkSize(FILE * outputFile, uint32_t numDataBytes) { uint8_t theBuffer[4]; theBuffer[0] = numDataBytes & 0xff; theBuffer[1] = (numDataBytes >> 8) & 0xff; theBuffer[2] = (numDataBytes >> 16) & 0xff; theBuffer[3] = (numDataBytes >> 24) & 0xff; fwrite(theBuffer, 1, 4, outputFile); }