/** * Copyright (c) 2017-2018 Tara Keeling * 2020 Philippe G. * * This software is released under the MIT License. * https://opensource.org/licenses/MIT */ #include #include #include #include #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "driver/gpio.h" #include "driver/ledc.h" #include "esp_log.h" #include "gds.h" #include "gds_private.h" #ifdef CONFIG_IDF_TARGET_ESP32S3 #define LEDC_SPEED_MODE LEDC_LOW_SPEED_MODE #else #define LEDC_SPEED_MODE LEDC_HIGH_SPEED_MODE #endif static struct GDS_Device Display; static struct GDS_BacklightPWM PWMConfig; static char TAG[] = "gds"; struct GDS_Device* GDS_AutoDetect( char *Driver, GDS_DetectFunc* DetectFunc[], struct GDS_BacklightPWM* PWM ) { if (!Driver) return NULL; if (PWM) PWMConfig = *PWM; for (int i = 0; DetectFunc[i]; i++) { if (DetectFunc[i](Driver, &Display)) { if (PWM && PWM->Init) { ledc_timer_config_t PWMTimer = { .duty_resolution = LEDC_TIMER_13_BIT, .freq_hz = 5000, .speed_mode = LEDC_SPEED_MODE, .timer_num = PWMConfig.Timer, }; ledc_timer_config(&PWMTimer); } ESP_LOGD(TAG, "Detected driver %p with PWM %d", &Display, PWM ? PWM->Init : 0); return &Display; } } return NULL; } void GDS_ClearExt(struct GDS_Device* Device, bool full, ...) { GDS_CHECK_FOR_DEVICE(Device,return); bool commit = true; if (full) { GDS_Clear( Device, GDS_COLOR_BLACK ); } else { va_list args; va_start(args, full); commit = va_arg(args, int); int x1 = va_arg(args, int), y1 = va_arg(args, int), x2 = va_arg(args, int), y2 = va_arg(args, int); if (x2 < 0) x2 = Device->Width - 1; if (y2 < 0) y2 = Device->Height - 1; GDS_ClearWindow( Device, x1, y1, x2, y2, GDS_COLOR_BLACK ); va_end(args); } Device->Dirty = true; if (commit) GDS_Update(Device); } void GDS_Clear( struct GDS_Device* Device, int Color ) { GDS_CHECK_FOR_DEVICE(Device,return); if (Color == GDS_COLOR_BLACK) memset( Device->Framebuffer, 0, Device->FramebufferSize ); else if (Device->Depth == 1) memset( Device->Framebuffer, 0xff, Device->FramebufferSize ); else if (Device->Depth == 4) memset( Device->Framebuffer, Color | (Color << 4), Device->FramebufferSize ); else if (Device->Depth == 8) memset( Device->Framebuffer, Color, Device->FramebufferSize ); else GDS_ClearWindow(Device, 0, 0, -1, -1, Color); Device->Dirty = true; } #define CLEAR_WINDOW(x1,y1,x2,y2,F,W,C,T,N) \ for (int y = y1; y <= y2; y++) { \ T *Ptr = (T*) F + (y * W + x1)*N; \ for (int c = (x2 - x1)*N; c-- >= 0; *Ptr++ = C); \ } void GDS_ClearWindow( struct GDS_Device* Device, int x1, int y1, int x2, int y2, int Color ) { GDS_CHECK_FOR_DEVICE(Device,return); // -1 means up to width/height if (x2 < 0) x2 = Device->Width - 1; if (y2 < 0) y2 = Device->Height - 1; // driver can provide own optimized clear window if (Device->ClearWindow) { Device->ClearWindow( Device, x1, y1, x2, y2, Color ); } else if (Device->Depth == 1) { // single shot if we erase all screen if (x2 - x1 == Device->Width - 1 && y2 - y1 == Device->Height - 1) { memset( Device->Framebuffer, Color == GDS_COLOR_BLACK ? 0 : 0xff, Device->FramebufferSize ); } else { uint8_t _Color = Color == GDS_COLOR_BLACK ? 0: 0xff; uint8_t Width = Device->Width >> 3; uint8_t *optr = Device->Framebuffer; // try to do byte processing as much as possible for (int r = y1; r <= y2;) { int c = x1; // for a row that is not on a boundary, no optimization possible while (r & 0x07 && r <= y2) { for (c = x1; c <= x2; c++) Device->DrawPixelFast( Device, c, r, Color ); r++; } // go fast if we have more than 8 lines to write if (r + 8 <= y2) { memset(optr + Width * r + x1, _Color, x2 - x1 + 1); r += 8; } else while (r <= y2) { for (c = x1; c <= x2; c++) Device->DrawPixelFast( Device, c, r, Color ); r++; } } } } if (Device->Depth == 4) { if (x2 - x1 == Device->Width - 1 && y2 - y1 == Device->Height - 1) { // we assume color is 0..15 memset( Device->Framebuffer, Color | (Color << 4), Device->FramebufferSize ); } else { uint8_t _Color = Color | (Color << 4); int Width = Device->Width; uint8_t *optr = Device->Framebuffer; // try to do byte processing as much as possible for (int r = y1; r <= y2; r++) { int c = x1; if (c & 0x01) Device->DrawPixelFast( Device, c++, r, Color); int chunk = (x2 - c + 1) >> 1; memset(optr + ((r * Width + c) >> 1), _Color, chunk); if (c + chunk <= x2) Device->DrawPixelFast( Device, x2, r, Color); } } } else if (Device->Depth == 8) { CLEAR_WINDOW(x1,y1,x2,y2,Device->Framebuffer,Device->Width,Color,uint8_t,1); } else if (Device->Depth == 16) { CLEAR_WINDOW(x1,y1,x2,y2,Device->Framebuffer,Device->Width,Color,uint16_t,1); } else if (Device->Depth == 24) { CLEAR_WINDOW(x1,y1,x2,y2,Device->Framebuffer,Device->Width,Color,uint8_t,3); } else { for (int y = y1; y <= y2; y++) { for (int x = x1; x <= x2; x++) { Device->DrawPixelFast( Device, x, y, Color); } } } // make sure diplay will do update Device->Dirty = true; } void GDS_Update( struct GDS_Device* Device ) { GDS_CHECK_FOR_DEVICE(Device,return); if (Device->Dirty) Device->Update( Device ); Device->Dirty = false; } bool GDS_Reset( struct GDS_Device* Device ) { GDS_CHECK_FOR_DEVICE(Device,return false); if ( Device->RSTPin >= 0 ) { gpio_set_level( Device->RSTPin, 0 ); vTaskDelay( pdMS_TO_TICKS( 100 ) ); gpio_set_level( Device->RSTPin, 1 ); } return true; } static void IRAM_ATTR DrawPixel1Fast( struct GDS_Device* Device, int X, int Y, int Color ) { uint32_t YBit = ( Y & 0x07 ); uint8_t* FBOffset; /* * We only need to modify the Y coordinate since the pitch * of the screen is the same as the width. * Dividing Y by 8 gives us which row the pixel is in but not * the bit position. */ Y>>= 3; FBOffset = Device->Framebuffer + ( ( Y * Device->Width ) + X ); if ( Color == GDS_COLOR_XOR ) { *FBOffset ^= BIT( YBit ); } else { *FBOffset = ( Color == GDS_COLOR_BLACK ) ? *FBOffset & ~BIT( YBit ) : *FBOffset | BIT( YBit ); } } static void IRAM_ATTR DrawPixel4Fast( struct GDS_Device* Device, int X, int Y, int Color ) { uint8_t* FBOffset = Device->Framebuffer + ( (Y * Device->Width >> 1) + (X >> 1)); *FBOffset = X & 0x01 ? (*FBOffset & 0x0f) | ((Color & 0x0f) << 4) : ((*FBOffset & 0xf0) | (Color & 0x0f)); } static void IRAM_ATTR DrawPixel4FastHigh( struct GDS_Device* Device, int X, int Y, int Color ) { uint8_t* FBOffset = Device->Framebuffer + ( (Y * Device->Width >> 1) + (X >> 1)); *FBOffset = X & 0x01 ? ((*FBOffset & 0xf0) | (Color & 0x0f)) : (*FBOffset & 0x0f) | ((Color & 0x0f) << 4); } static void IRAM_ATTR DrawPixel8Fast( struct GDS_Device* Device, int X, int Y, int Color ) { Device->Framebuffer[Y * Device->Width + X] = Color; } // assumes that Color is 16 bits R..RG..GB..B from MSB to LSB and FB wants 1st serialized byte to start with R static void IRAM_ATTR DrawPixel16Fast( struct GDS_Device* Device, int X, int Y, int Color ) { uint16_t* FBOffset = (uint16_t*) Device->Framebuffer + Y * Device->Width + X; *FBOffset = __builtin_bswap16(Color); } // assumes that Color is 18 bits RGB from MSB to LSB RRRRRRGGGGGGBBBBBB, so byte[0] is B // FB is 3-bytes packets and starts with R for serialization so 0,1,2 ... = xxRRRRRR xxGGGGGG xxBBBBBB static void IRAM_ATTR DrawPixel18Fast( struct GDS_Device* Device, int X, int Y, int Color ) { uint8_t* FBOffset = Device->Framebuffer + (Y * Device->Width + X) * 3; *FBOffset++ = Color >> 12; *FBOffset++ = (Color >> 6) & 0x3f; *FBOffset = Color & 0x3f; } // assumes that Color is 24 bits RGB from MSB to LSB RRRRRRRRGGGGGGGGBBBBBBBB, so byte[0] is B // FB is 3-bytes packets and starts with R for serialization so 0,1,2 ... = RRRRRRRR GGGGGGGG BBBBBBBB static void IRAM_ATTR DrawPixel24Fast( struct GDS_Device* Device, int X, int Y, int Color ) { uint8_t* FBOffset = Device->Framebuffer + (Y * Device->Width + X) * 3; *FBOffset++ = Color >> 16; *FBOffset++ = Color >> 8; *FBOffset = Color; } bool GDS_Init( struct GDS_Device* Device ) { GDS_CHECK_FOR_DEVICE(Device,return false); if (Device->Depth > 8) Device->FramebufferSize = Device->Width * Device->Height * ((8 + Device->Depth - 1) / 8); else Device->FramebufferSize = (Device->Width * Device->Height) / (8 / Device->Depth); // set the proper DrawPixel function if not already set by driver if (!Device->DrawPixelFast) { if (Device->Depth == 1) Device->DrawPixelFast = DrawPixel1Fast; else if (Device->Depth == 4 && Device->HighNibble) Device->DrawPixelFast = DrawPixel4FastHigh; else if (Device->Depth == 4) Device->DrawPixelFast = DrawPixel4Fast; else if (Device->Depth == 8) Device->DrawPixelFast = DrawPixel8Fast; else if (Device->Depth == 16) Device->DrawPixelFast = DrawPixel16Fast; else if (Device->Depth == 24 && Device->Mode == GDS_RGB666) Device->DrawPixelFast = DrawPixel18Fast; else if (Device->Depth == 24 && Device->Mode == GDS_RGB888) Device->DrawPixelFast = DrawPixel24Fast; } // allocate FB unless explicitely asked not to if (!(Device->Alloc & GDS_ALLOC_NONE)) { if ((Device->Alloc & GDS_ALLOC_IRAM) || ((Device->Alloc & GDS_ALLOC_IRAM_SPI) && Device->IF == GDS_IF_SPI)) { Device->Framebuffer = heap_caps_calloc( 1, Device->FramebufferSize, MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA ); } else { Device->Framebuffer = calloc( 1, Device->FramebufferSize ); } NullCheck( Device->Framebuffer, return false ); } if (Device->Backlight.Pin >= 0) { Device->Backlight.Channel = PWMConfig.Channel++; Device->Backlight.PWM = PWMConfig.Max - 1; ledc_channel_config_t PWMChannel = { .channel = Device->Backlight.Channel, .duty = Device->Backlight.PWM, .gpio_num = Device->Backlight.Pin, .speed_mode = LEDC_SPEED_MODE, .hpoint = 0, .timer_sel = PWMConfig.Timer, }; ledc_channel_config(&PWMChannel); } bool Res = Device->Init( Device ); if (!Res && Device->Framebuffer) free(Device->Framebuffer); return Res; } int GDS_GrayMap( struct GDS_Device* Device, uint8_t Level) { GDS_CHECK_FOR_DEVICE(Device,return -1); switch(Device->Mode) { case GDS_MONO: return Level; case GDS_GRAYSCALE: return Level >> (8 - Device->Depth); case GDS_RGB332: Level >>= 5; return (Level << 6) | (Level << 3) | (Level >> 1); case GDS_RGB444: Level >>= 4; return (Level << 8) | (Level << 4) | Level; case GDS_RGB555: Level >>= 3; return (Level << 10) | (Level << 5) | Level; case GDS_RGB565: Level >>= 2; return ((Level & ~0x01) << 10) | (Level << 5) | (Level >> 1); case GDS_RGB666: Level >>= 2; return (Level << 12) | (Level << 6) | Level; case GDS_RGB888: return (Level << 16) | (Level << 8) | Level; } return -1; } void GDS_SetContrast( struct GDS_Device* Device, uint8_t Contrast ) { GDS_CHECK_FOR_DEVICE(Device,return); if (Device->SetContrast) Device->SetContrast( Device, Contrast ); else if (Device->Backlight.Pin >= 0) { Device->Backlight.PWM = PWMConfig.Max * powf(Contrast / 255.0, 3); ledc_set_duty( LEDC_SPEED_MODE, Device->Backlight.Channel, Device->Backlight.PWM ); ledc_update_duty( LEDC_SPEED_MODE, Device->Backlight.Channel ); } } void GDS_SetLayout( struct GDS_Device* Device, struct GDS_Layout *Layout ) { if (Device && Device->SetLayout) Device->SetLayout( Device, Layout ); } void GDS_SetDirty( struct GDS_Device* Device ) { GDS_CHECK_FOR_DEVICE(Device,return); Device->Dirty = true; } int GDS_GetWidth( struct GDS_Device* Device ) { return Device ? Device->Width : 0; } void GDS_SetTextWidth( struct GDS_Device* Device, int TextWidth ) { GDS_CHECK_FOR_DEVICE(Device,return); Device->TextWidth = Device && TextWidth && TextWidth < Device->Width ? TextWidth : Device->Width; } int GDS_GetHeight( struct GDS_Device* Device ) { return Device ? Device->Height : 0; } int GDS_GetDepth( struct GDS_Device* Device ) { return Device ? Device->Depth : 0; } int GDS_GetMode( struct GDS_Device* Device ) { return Device ? Device->Mode : 0; } void GDS_DisplayOn( struct GDS_Device* Device ) { if (Device && Device->DisplayOn) Device->DisplayOn( Device ); } void GDS_DisplayOff( struct GDS_Device* Device ) { if (Device && Device->DisplayOff) Device->DisplayOff( Device ); }