/** * Copyright (c) 2017-2018 Tara Keeling * 2020 Philippe G. * * This software is released under the MIT License. * https://opensource.org/licenses/MIT */ #include #include #include #include #include #include #include #include "gds.h" #include "gds_private.h" #include "gds_draw.h" static const unsigned char BitReverseTable256[] = { 0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0, 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8, 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4, 0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC, 0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2, 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA, 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6, 0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE, 0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1, 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9, 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5, 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD, 0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3, 0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB, 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7, 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF }; __attribute__( ( always_inline ) ) static inline void SwapInt( int* a, int* b ) { int Temp = *b; *b = *a; *a = Temp; } inline void IRAM_ATTR GDS_DrawPixelFast( struct GDS_Device* Device, int X, int Y, int Color ) { uint32_t YBit = ( Y & 0x07 ); uint8_t* FBOffset = NULL; /* * We only need to modify the Y coordinate since the pitch * of the screen is the same as the width. * Dividing Y by 8 gives us which row the pixel is in but not * the bit position. */ Y>>= 3; FBOffset = Device->Framebuffer + ( ( Y * Device->Width ) + X ); if ( Color == GDS_COLOR_XOR ) { *FBOffset ^= BIT( YBit ); } else { *FBOffset = ( Color == GDS_COLOR_WHITE ) ? *FBOffset | BIT( YBit ) : *FBOffset & ~BIT( YBit ); } } inline void IRAM_ATTR GDS_DrawPixel4Fast( struct GDS_Device* Device, int X, int Y, int Color ) { uint32_t YBit = ( Y & 0x07 ); uint8_t* FBOffset = NULL; /* * We only need to modify the Y coordinate since the pitch * of the screen is the same as the width. * Dividing Y by 8 gives us which row the pixel is in but not * the bit position. */ Y>>= 3; FBOffset = Device->Framebuffer + ( ( Y * Device->Width ) + X ); if ( Color == GDS_COLOR_XOR ) { *FBOffset ^= BIT( YBit ); } else { *FBOffset = ( Color == GDS_COLOR_WHITE ) ? *FBOffset | BIT( YBit ) : *FBOffset & ~BIT( YBit ); } } void IRAM_ATTR GDS_DrawHLine( struct GDS_Device* Device, int x, int y, int Width, int Color ) { int XEnd = x + Width; Device->Dirty = true; if (x < 0) x = 0; if (XEnd >= Device->Width) XEnd = Device->Width - 1; if (y < 0) y = 0; else if (y >= Device->Height) x = Device->Height - 1; for ( ; x < XEnd; x++ ) { if ( IsPixelVisible( Device, x, y ) == true ) { Device->DrawPixelFast( Device, x, y, Color ); } else { break; } } } void IRAM_ATTR GDS_DrawVLine( struct GDS_Device* Device, int x, int y, int Height, int Color ) { int YEnd = y + Height; Device->Dirty = true; for ( ; y < YEnd; y++ ) { if ( IsPixelVisible( Device, x, y ) == true ) { GDS_DrawPixel( Device, x, y, Color ); } else { break; } } } static inline void IRAM_ATTR DrawWideLine( struct GDS_Device* Device, int x0, int y0, int x1, int y1, int Color ) { int dx = ( x1 - x0 ); int dy = ( y1 - y0 ); int Error = 0; int Incr = 1; int x = x0; int y = y0; if ( dy < 0 ) { Incr = -1; dy = -dy; } Error = ( dy * 2 ) - dx; for ( ; x < x1; x++ ) { if ( IsPixelVisible( Device, x, y ) == true ) { Device->DrawPixelFast( Device, x, y, Color ); } if ( Error > 0 ) { Error-= ( dx * 2 ); y+= Incr; } Error+= ( dy * 2 ); } } static inline void IRAM_ATTR DrawTallLine( struct GDS_Device* Device, int x0, int y0, int x1, int y1, int Color ) { int dx = ( x1 - x0 ); int dy = ( y1 - y0 ); int Error = 0; int Incr = 1; int x = x0; int y = y0; if ( dx < 0 ) { Incr = -1; dx = -dx; } Error = ( dx * 2 ) - dy; for ( ; y < y1; y++ ) { if ( IsPixelVisible( Device, x, y ) == true ) { Device->DrawPixelFast( Device, x, y, Color ); } if ( Error > 0 ) { Error-= ( dy * 2 ); x+= Incr; } Error+= ( dx * 2 ); } } void IRAM_ATTR GDS_DrawLine( struct GDS_Device* Device, int x0, int y0, int x1, int y1, int Color ) { if ( x0 == x1 ) { GDS_DrawVLine( Device, x0, y0, ( y1 - y0 ), Color ); } else if ( y0 == y1 ) { GDS_DrawHLine( Device, x0, y0, ( x1 - x0 ), Color ); } else { Device->Dirty = true; if ( abs( x1 - x0 ) > abs( y1 - y0 ) ) { /* Wide ( run > rise ) */ if ( x0 > x1 ) { SwapInt( &x0, &x1 ); SwapInt( &y0, &y1 ); } DrawWideLine( Device, x0, y0, x1, y1, Color ); } else { /* Tall ( rise > run ) */ if ( y0 > y1 ) { SwapInt( &y0, &y1 ); SwapInt( &x0, &x1 ); } DrawTallLine( Device, x0, y0, x1, y1, Color ); } } } void IRAM_ATTR GDS_DrawBox( struct GDS_Device* Device, int x1, int y1, int x2, int y2, int Color, bool Fill ) { int Width = ( x2 - x1 ); int Height = ( y2 - y1 ); Device->Dirty = true; if ( Fill == false ) { /* Top side */ GDS_DrawHLine( Device, x1, y1, Width, Color ); /* Bottom side */ GDS_DrawHLine( Device, x1, y1 + Height, Width, Color ); /* Left side */ GDS_DrawVLine( Device, x1, y1, Height, Color ); /* Right side */ GDS_DrawVLine( Device, x1 + Width, y1, Height, Color ); } else { /* Fill the box by drawing horizontal lines */ for ( ; y1 <= y2; y1++ ) { GDS_DrawHLine( Device, x1, y1, Width, Color ); } } } /**************************************************************************************** * Process graphic display data from column-oriented data (MSbit first) */ void GDS_DrawBitmapCBR(struct GDS_Device* Device, uint8_t *Data, int Width, int Height) { if (!Height) Height = Device->Height; if (!Width) Width = Device->Width; // need to do row/col swap and bit-reverse int Rows = Height / 8; for (int r = 0; r < Rows; r++) { uint8_t *optr = Device->Framebuffer + r*Device->Width, *iptr = Data + r; for (int c = Width; --c >= 0;) { *optr++ = BitReverseTable256[*iptr];; iptr += Rows; } } Device->Dirty = true; } /**************************************************************************************** * Process graphic display data MSBit first * WARNING: this has not been tested yet */ /* static void draw_raw(int x1, int y1, int x2, int y2, bool by_column, bool MSb, u8_t *data) { // default end point to display size if (x2 == -1) x2 = Display.Width - 1; if (y2 == -1) y2 = Display.Height - 1; display->dirty = true; // not a boundary draw // same comment about bit depth if (y1 % 8 || y2 % 8 || x1 % 8 | x2 % 8) { ESP_LOGW(TAG, "can't write on non cols/rows boundaries for now"); } else { // set addressing mode to match data if (by_column) { // copy the window and do row/col exchange for (int r = y1/8; r <= y2/8; r++) { uint8_t *optr = Display.Framebuffer + r*Display.Width + x1, *iptr = data + r; for (int c = x1; c <= x2; c++) { *optr++ = MSb ? BitReverseTable256[*iptr] : *iptr; iptr += (y2-y1)/8 + 1; } } } else { // just copy the window inside the frame buffer for (int r = y1/8; r <= y2/8; r++) { uint8_t *optr = Display.Framebuffer + r*Display.Width + x1, *iptr = data + r*(x2-x1+1); for (int c = x1; c <= x2; c++) *optr++ = *iptr++; } } } } */