/* ***** BEGIN LICENSE BLOCK ***** * Source last modified: $Id: sbrhuff.c,v 1.1 2005/02/26 01:47:35 jrecker Exp $ * * Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved. * * The contents of this file, and the files included with this file, * are subject to the current version of the RealNetworks Public * Source License (the "RPSL") available at * http://www.helixcommunity.org/content/rpsl unless you have licensed * the file under the current version of the RealNetworks Community * Source License (the "RCSL") available at * http://www.helixcommunity.org/content/rcsl, in which case the RCSL * will apply. You may also obtain the license terms directly from * RealNetworks. You may not use this file except in compliance with * the RPSL or, if you have a valid RCSL with RealNetworks applicable * to this file, the RCSL. Please see the applicable RPSL or RCSL for * the rights, obligations and limitations governing use of the * contents of the file. * * This file is part of the Helix DNA Technology. RealNetworks is the * developer of the Original Code and owns the copyrights in the * portions it created. * * This file, and the files included with this file, is distributed * and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY * KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS * ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET * ENJOYMENT OR NON-INFRINGEMENT. * * Technology Compatibility Kit Test Suite(s) Location: * http://www.helixcommunity.org/content/tck * * Contributor(s): * * ***** END LICENSE BLOCK ***** */ /************************************************************************************** * Fixed-point HE-AAC decoder * Jon Recker (jrecker@real.com) * February 2005 * * sbrhuff.c - functions for unpacking Huffman-coded envelope and noise data **************************************************************************************/ #include "sbr.h" #include "assembly.h" /************************************************************************************** * Function: DecodeHuffmanScalar * * Description: decode one Huffman symbol from bitstream * * Inputs: pointers to Huffman table and info struct * left-aligned bit buffer with >= huffTabInfo->maxBits bits * * Outputs: decoded symbol in *val * * Return: number of bits in symbol * * Notes: assumes canonical Huffman codes: * first CW always 0, we have "count" CW's of length "nBits" bits * starting CW for codes of length nBits+1 = * (startCW[nBits] + count[nBits]) << 1 * if there are no codes at nBits, then we just keep << 1 each time * (since count[nBits] = 0) **************************************************************************************/ static int DecodeHuffmanScalar(const signed /*short*/ int *huffTab, const HuffInfo *huffTabInfo, unsigned int bitBuf, signed int *val) { unsigned int count, start, shift, t; const unsigned int /*char*/ *countPtr; const signed int /*short*/ *map; map = huffTab + huffTabInfo->offset; countPtr = huffTabInfo->count; start = 0; count = 0; shift = 32; do { start += count; start <<= 1; map += count; count = *countPtr++; shift--; t = (bitBuf >> shift) - start; } while (t >= count); *val = (signed int)map[t]; return (countPtr - huffTabInfo->count); } /************************************************************************************** * Function: DecodeOneSymbol * * Description: dequantize one Huffman symbol from bitstream, * using table huffTabSBR[huffTabIndex] * * Inputs: BitStreamInfo struct pointing to start of next Huffman codeword * index of Huffman table * * Outputs: bitstream advanced by number of bits in codeword * * Return: one decoded symbol **************************************************************************************/ static int DecodeOneSymbol(BitStreamInfo *bsi, int huffTabIndex) { int nBits, val; unsigned int bitBuf; const HuffInfo *hi; hi = &(huffTabSBRInfo[huffTabIndex]); bitBuf = GetBitsNoAdvance(bsi, hi->maxBits) << (32 - hi->maxBits); nBits = DecodeHuffmanScalar(huffTabSBR, hi, bitBuf, &val); AdvanceBitstream(bsi, nBits); return val; } /* [1.0, sqrt(2)], format = Q29 (one guard bit for decoupling) */ static const int envDQTab[2] PROGMEM = {0x20000000, 0x2d413ccc}; /************************************************************************************** * Function: DequantizeEnvelope * * Description: dequantize envelope scalefactors * * Inputs: number of scalefactors to process * amplitude resolution flag for this frame (0 or 1) * quantized envelope scalefactors * * Outputs: dequantized envelope scalefactors * * Return: extra int bits in output (6 + expMax) * in other words, output format = Q(FBITS_OUT_DQ_ENV - (6 + expMax)) * * Notes: dequantized scalefactors have at least 2 GB **************************************************************************************/ static int DequantizeEnvelope(int nBands, int ampRes, signed char *envQuant, int *envDequant) { int exp, expMax, i, scalei; if (nBands <= 0) return 0; /* scan for largest dequant value (do separately from envelope decoding to keep code cleaner) */ expMax = 0; for (i = 0; i < nBands; i++) { if (envQuant[i] > expMax) expMax = envQuant[i]; } /* dequantized envelope gains * envDequant = 64*2^(envQuant / alpha) = 2^(6 + envQuant / alpha) * if ampRes == 0, alpha = 2 and range of envQuant = [0, 127] * if ampRes == 1, alpha = 1 and range of envQuant = [0, 63] * also if coupling is on, envDequant is scaled by something in range [0, 2] * so range of envDequant = [2^6, 2^69] (no coupling), [2^6, 2^70] (with coupling) * * typical range (from observation) of envQuant/alpha = [0, 27] --> largest envQuant ~= 2^33 * output: Q(29 - (6 + expMax)) * * reference: 14496-3:2001(E)/4.6.18.3.5 and 14496-4:200X/FPDAM8/5.6.5.1.2.1.5 */ if (ampRes) { do { exp = *envQuant++; scalei = MIN(expMax - exp, 31); *envDequant++ = envDQTab[0] >> scalei; } while (--nBands); return (6 + expMax); } else { expMax >>= 1; do { exp = *envQuant++; scalei = MIN(expMax - (exp >> 1), 31); *envDequant++ = envDQTab[exp & 0x01] >> scalei; } while (--nBands); return (6 + expMax); } } /************************************************************************************** * Function: DequantizeNoise * * Description: dequantize noise scalefactors * * Inputs: number of scalefactors to process * quantized noise scalefactors * * Outputs: dequantized noise scalefactors, format = Q(FBITS_OUT_DQ_NOISE) * * Return: none * * Notes: dequantized scalefactors have at least 2 GB **************************************************************************************/ static void DequantizeNoise(int nBands, signed char *noiseQuant, int *noiseDequant) { int exp, scalei; if (nBands <= 0) return; /* dequantize noise floor gains (4.6.18.3.5): * noiseDequant = 2^(NOISE_FLOOR_OFFSET - noiseQuant) * * range of noiseQuant = [0, 30] (see 4.6.18.3.6), NOISE_FLOOR_OFFSET = 6 * so range of noiseDequant = [2^-24, 2^6] */ do { exp = *noiseQuant++; scalei = NOISE_FLOOR_OFFSET - exp + FBITS_OUT_DQ_NOISE; /* 6 + 24 - exp, exp = [0,30] */ if (scalei < 0) *noiseDequant++ = 0; else if (scalei < 30) *noiseDequant++ = 1 << scalei; else *noiseDequant++ = 0x3fffffff; /* leave 2 GB */ } while (--nBands); } /************************************************************************************** * Function: DecodeSBREnvelope * * Description: decode delta Huffman coded envelope scalefactors from bitstream * * Inputs: BitStreamInfo struct pointing to start of env data * initialized PSInfoSBR struct * initialized SBRGrid struct for this channel * initialized SBRFreq struct for this SCE/CPE block * initialized SBRChan struct for this channel * index of current channel (0 for SCE, 0 or 1 for CPE) * * Outputs: dequantized env scalefactors for left channel (before decoupling) * dequantized env scalefactors for right channel (if coupling off) * or raw decoded env scalefactors for right channel (if coupling on) * * Return: none **************************************************************************************/ void DecodeSBREnvelope(BitStreamInfo *bsi, PSInfoSBR *psi, SBRGrid *sbrGrid, SBRFreq *sbrFreq, SBRChan *sbrChan, int ch) { int huffIndexTime, huffIndexFreq, env, envStartBits, band, nBands, sf, lastEnv; int freqRes, freqResPrev, dShift, i; if (psi->couplingFlag && ch) { dShift = 1; if (sbrGrid->ampResFrame) { huffIndexTime = HuffTabSBR_tEnv30b; huffIndexFreq = HuffTabSBR_fEnv30b; envStartBits = 5; } else { huffIndexTime = HuffTabSBR_tEnv15b; huffIndexFreq = HuffTabSBR_fEnv15b; envStartBits = 6; } } else { dShift = 0; if (sbrGrid->ampResFrame) { huffIndexTime = HuffTabSBR_tEnv30; huffIndexFreq = HuffTabSBR_fEnv30; envStartBits = 6; } else { huffIndexTime = HuffTabSBR_tEnv15; huffIndexFreq = HuffTabSBR_fEnv15; envStartBits = 7; } } /* range of envDataQuant[] = [0, 127] (see comments in DequantizeEnvelope() for reference) */ for (env = 0; env < sbrGrid->numEnv; env++) { nBands = (sbrGrid->freqRes[env] ? sbrFreq->nHigh : sbrFreq->nLow); freqRes = (sbrGrid->freqRes[env]); freqResPrev = (env == 0 ? sbrGrid->freqResPrev : sbrGrid->freqRes[env-1]); lastEnv = (env == 0 ? sbrGrid->numEnvPrev-1 : env-1); if (lastEnv < 0) lastEnv = 0; /* first frame */ ASSERT(nBands <= MAX_QMF_BANDS); if (sbrChan->deltaFlagEnv[env] == 0) { /* delta coding in freq */ sf = GetBits(bsi, envStartBits) << dShift; sbrChan->envDataQuant[env][0] = sf; for (band = 1; band < nBands; band++) { sf = DecodeOneSymbol(bsi, huffIndexFreq) << dShift; sbrChan->envDataQuant[env][band] = sf + sbrChan->envDataQuant[env][band-1]; } } else if (freqRes == freqResPrev) { /* delta coding in time - same freq resolution for both frames */ for (band = 0; band < nBands; band++) { sf = DecodeOneSymbol(bsi, huffIndexTime) << dShift; sbrChan->envDataQuant[env][band] = sf + sbrChan->envDataQuant[lastEnv][band]; } } else if (freqRes == 0 && freqResPrev == 1) { /* delta coding in time - low freq resolution for new frame, high freq resolution for old frame */ for (band = 0; band < nBands; band++) { sf = DecodeOneSymbol(bsi, huffIndexTime) << dShift; sbrChan->envDataQuant[env][band] = sf; for (i = 0; i < sbrFreq->nHigh; i++) { if (sbrFreq->freqHigh[i] == sbrFreq->freqLow[band]) { sbrChan->envDataQuant[env][band] += sbrChan->envDataQuant[lastEnv][i]; break; } } } } else if (freqRes == 1 && freqResPrev == 0) { /* delta coding in time - high freq resolution for new frame, low freq resolution for old frame */ for (band = 0; band < nBands; band++) { sf = DecodeOneSymbol(bsi, huffIndexTime) << dShift; sbrChan->envDataQuant[env][band] = sf; for (i = 0; i < sbrFreq->nLow; i++) { if (sbrFreq->freqLow[i] <= sbrFreq->freqHigh[band] && sbrFreq->freqHigh[band] < sbrFreq->freqLow[i+1] ) { sbrChan->envDataQuant[env][band] += sbrChan->envDataQuant[lastEnv][i]; break; } } } } /* skip coupling channel */ if (ch != 1 || psi->couplingFlag != 1) psi->envDataDequantScale[ch][env] = DequantizeEnvelope(nBands, sbrGrid->ampResFrame, sbrChan->envDataQuant[env], psi->envDataDequant[ch][env]); } sbrGrid->numEnvPrev = sbrGrid->numEnv; sbrGrid->freqResPrev = sbrGrid->freqRes[sbrGrid->numEnv-1]; } /************************************************************************************** * Function: DecodeSBRNoise * * Description: decode delta Huffman coded noise scalefactors from bitstream * * Inputs: BitStreamInfo struct pointing to start of noise data * initialized PSInfoSBR struct * initialized SBRGrid struct for this channel * initialized SBRFreq struct for this SCE/CPE block * initialized SBRChan struct for this channel * index of current channel (0 for SCE, 0 or 1 for CPE) * * Outputs: dequantized noise scalefactors for left channel (before decoupling) * dequantized noise scalefactors for right channel (if coupling off) * or raw decoded noise scalefactors for right channel (if coupling on) * * Return: none **************************************************************************************/ void DecodeSBRNoise(BitStreamInfo *bsi, PSInfoSBR *psi, SBRGrid *sbrGrid, SBRFreq *sbrFreq, SBRChan *sbrChan, int ch) { int huffIndexTime, huffIndexFreq, noiseFloor, band, dShift, sf, lastNoiseFloor; if (psi->couplingFlag && ch) { dShift = 1; huffIndexTime = HuffTabSBR_tNoise30b; huffIndexFreq = HuffTabSBR_fNoise30b; } else { dShift = 0; huffIndexTime = HuffTabSBR_tNoise30; huffIndexFreq = HuffTabSBR_fNoise30; } for (noiseFloor = 0; noiseFloor < sbrGrid->numNoiseFloors; noiseFloor++) { lastNoiseFloor = (noiseFloor == 0 ? sbrGrid->numNoiseFloorsPrev-1 : noiseFloor-1); if (lastNoiseFloor < 0) lastNoiseFloor = 0; /* first frame */ ASSERT(sbrFreq->numNoiseFloorBands <= MAX_QMF_BANDS); if (sbrChan->deltaFlagNoise[noiseFloor] == 0) { /* delta coding in freq */ sbrChan->noiseDataQuant[noiseFloor][0] = GetBits(bsi, 5) << dShift; for (band = 1; band < sbrFreq->numNoiseFloorBands; band++) { sf = DecodeOneSymbol(bsi, huffIndexFreq) << dShift; sbrChan->noiseDataQuant[noiseFloor][band] = sf + sbrChan->noiseDataQuant[noiseFloor][band-1]; } } else { /* delta coding in time */ for (band = 0; band < sbrFreq->numNoiseFloorBands; band++) { sf = DecodeOneSymbol(bsi, huffIndexTime) << dShift; sbrChan->noiseDataQuant[noiseFloor][band] = sf + sbrChan->noiseDataQuant[lastNoiseFloor][band]; } } /* skip coupling channel */ if (ch != 1 || psi->couplingFlag != 1) DequantizeNoise(sbrFreq->numNoiseFloorBands, sbrChan->noiseDataQuant[noiseFloor], psi->noiseDataDequant[ch][noiseFloor]); } sbrGrid->numNoiseFloorsPrev = sbrGrid->numNoiseFloors; } /* dqTabCouple[i] = 2 / (1 + 2^(12 - i)), format = Q30 */ static const int dqTabCouple[25] PROGMEM = { 0x0007ff80, 0x000ffe00, 0x001ff802, 0x003fe010, 0x007f8080, 0x00fe03f8, 0x01f81f82, 0x03e0f83e, 0x07878788, 0x0e38e38e, 0x1999999a, 0x2aaaaaab, 0x40000000, 0x55555555, 0x66666666, 0x71c71c72, 0x78787878, 0x7c1f07c2, 0x7e07e07e, 0x7f01fc08, 0x7f807f80, 0x7fc01ff0, 0x7fe007fe, 0x7ff00200, 0x7ff80080, }; /************************************************************************************** * Function: UncoupleSBREnvelope * * Description: scale dequantized envelope scalefactors according to channel * coupling rules * * Inputs: initialized PSInfoSBR struct including * dequantized envelope data for left channel * initialized SBRGrid struct for this channel * initialized SBRFreq struct for this SCE/CPE block * initialized SBRChan struct for right channel including * quantized envelope scalefactors * * Outputs: dequantized envelope data for left channel (after decoupling) * dequantized envelope data for right channel (after decoupling) * * Return: none **************************************************************************************/ void UncoupleSBREnvelope(PSInfoSBR *psi, SBRGrid *sbrGrid, SBRFreq *sbrFreq, SBRChan *sbrChanR) { int env, band, nBands, scalei, E_1; scalei = (sbrGrid->ampResFrame ? 0 : 1); for (env = 0; env < sbrGrid->numEnv; env++) { nBands = (sbrGrid->freqRes[env] ? sbrFreq->nHigh : sbrFreq->nLow); psi->envDataDequantScale[1][env] = psi->envDataDequantScale[0][env]; /* same scalefactor for L and R */ for (band = 0; band < nBands; band++) { /* clip E_1 to [0, 24] (scalefactors approach 0 or 2) */ E_1 = sbrChanR->envDataQuant[env][band] >> scalei; if (E_1 < 0) E_1 = 0; if (E_1 > 24) E_1 = 24; /* envDataDequant[0] has 1 GB, so << by 2 is okay */ psi->envDataDequant[1][env][band] = MULSHIFT32(psi->envDataDequant[0][env][band], dqTabCouple[24 - E_1]) << 2; psi->envDataDequant[0][env][band] = MULSHIFT32(psi->envDataDequant[0][env][band], dqTabCouple[E_1]) << 2; } } } /************************************************************************************** * Function: UncoupleSBRNoise * * Description: scale dequantized noise floor scalefactors according to channel * coupling rules * * Inputs: initialized PSInfoSBR struct including * dequantized noise data for left channel * initialized SBRGrid struct for this channel * initialized SBRFreq struct for this SCE/CPE block * initialized SBRChan struct for this channel including * quantized noise scalefactors * * Outputs: dequantized noise data for left channel (after decoupling) * dequantized noise data for right channel (after decoupling) * * Return: none **************************************************************************************/ void UncoupleSBRNoise(PSInfoSBR *psi, SBRGrid *sbrGrid, SBRFreq *sbrFreq, SBRChan *sbrChanR) { int noiseFloor, band, Q_1; for (noiseFloor = 0; noiseFloor < sbrGrid->numNoiseFloors; noiseFloor++) { for (band = 0; band < sbrFreq->numNoiseFloorBands; band++) { /* Q_1 should be in range [0, 24] according to 4.6.18.3.6, but check to make sure */ Q_1 = sbrChanR->noiseDataQuant[noiseFloor][band]; if (Q_1 < 0) Q_1 = 0; if (Q_1 > 24) Q_1 = 24; /* noiseDataDequant[0] has 1 GB, so << by 2 is okay */ psi->noiseDataDequant[1][noiseFloor][band] = MULSHIFT32(psi->noiseDataDequant[0][noiseFloor][band], dqTabCouple[24 - Q_1]) << 2; psi->noiseDataDequant[0][noiseFloor][band] = MULSHIFT32(psi->noiseDataDequant[0][noiseFloor][band], dqTabCouple[Q_1]) << 2; } } }