/* 
 *  Squeezelite for esp32
 *
 *  (c) Sebastien 2019
 *      Philippe G. 2019, philippe_44@outlook.com
 *
 *  This software is released under the MIT License.
 *  https://opensource.org/licenses/MIT
 *
 */
 
#include <string.h>
//#define LOG_LOCAL_LEVEL ESP_LOG_DEBUG
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/i2s.h"
#include "driver/i2c.h"
#include "driver/gpio.h"
#include "esp_log.h"
#include "adac.h"
#include "stdio.h"
#include "math.h"
#define CS4265_PULL_UP (0x4F )
#define CS4265_PULL_DOWN (0x4E )

#ifndef ARRAY_SIZE
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
#endif

static const char TAG[] = "CS4265";

static bool init(char *config, int i2c_port_num, i2s_config_t *i2s_config);
static void speaker(bool active);
static void headset(bool active);
static bool volume(unsigned left, unsigned right);
static void power(adac_power_e mode);
static esp_err_t cs4265_update_bit(uint8_t reg_no,uint8_t mask,uint8_t val );
static esp_err_t set_clock();
const struct adac_s dac_cs4265 = { "CS4265", init, adac_deinit, power, speaker, headset, volume };

struct cs4265_cmd_s {
	uint8_t reg;
	uint8_t value;
};
struct cs4265_private {
	uint8_t format;
	uint32_t sysclk;
	i2s_config_t *i2s_config;
	int i2c_port;
};
struct cs4265_private cs4265;

#define CS4265_CHIP_ID				0x1
#define CS4265_CHIP_ID_VAL			0xD0
#define CS4265_CHIP_ID_MASK			0xF0
#define CS4265_REV_ID_MASK			0x0F

#define CS4265_PWRCTL				0x02
#define CS4265_PWRCTL_PDN			(1 << 0)
#define CS4265_PWRCTL_PDN_DAC       (1 << 1)
#define CS4265_PWRCTL_PDN_ADC       (1 << 2)
#define CS4265_PWRCTL_PDN_MIC       (1 << 3)
#define CS4265_PWRCTL_FREEZE        (1 << 7)
#define CS4265_PWRCTL_PDN_ALL   	CS4265_PWRCTL_PDN | CS4265_PWRCTL_PDN_ADC | CS4265_PWRCTL_PDN_DAC | CS4265_PWRCTL_PDN_MIC



#define CS4265_DAC_CTL				0x3
// De-Emphasis Control (Bit 1)
// The standard 50/15 i2s digital de-emphasis filter response may be implemented for a sample
// rate of 44.1 kHz when the DeEmph bit is set.  NOTE: De-emphasis is available only in Single-Speed Mode.
#define CS4265_DAC_CTL_DEEMPH		(1 << 1)
// MUTE DAC
// The DAC outputs will mute and the MUTEC pin will become active when this bit is set. Though this bit is
// active high, it should be noted that the MUTEC pin is active low. The common mode voltage on the outputs
// will be retained when this bit is set. The muting function is effected, similar to attenuation changes, by the
// DACSoft and DACZero bits in the DAC Control 2 register.
#define CS4265_DAC_CTL_MUTE			(1 << 2)
// The required relationship between LRCK, SCLK and SDIN for the DAC is defined by the DAC Digital Interface
// DAC_DIF1 DAC_DIF0 Description                                    Format Figure
// 0        0        Left Justified, up to 24-bit data (default)    0       5
// 0        1        I²S, up to 24-bit data                         1       6
// 1        0        Right-Justified, 16-bit Data                   2       7
// 1        1        Right-Justified, 24-bit Data                   3       7
#define CS4265_DAC_CTL_DIF0			(1 << 4)
// The required relationship between LRCK, SCLK and SDIN for the DAC is defined by the DAC Digital Interface
// DAC_DIF1 DAC_DIF0 Description                                    Format Figure
// 0        0        Left Justified, up to 24-bit data (default)    0       5
// 0        1        I²S, up to 24-bit data                         1       6
// 1        0        Right-Justified, 16-bit Data                   2       7
// 1        1        Right-Justified, 24-bit Data                   3       7
#define CS4265_DAC_CTL_DIF1			(1 << 5)



#define CS4265_ADC_CTL				0x4
#define CS4265_ADC_MASTER			1

#define CS4265_ADC_CTL_MUTE   		(1 << 2)
#define CS4265_ADC_DIF				(1 << 4)
#define CS4265_ADC_FM				(3 << 6)

//Master Clock Dividers (Bits 6:4)
//Sets the frequency of the supplied MCLK signal. 
//
//MCLK Divider MCLK Freq2 MCLK Freq1 MCLK Freq0
// ÷   1 	   0          0           0
// ÷   1.5 	   0          0           1
// ÷   2 	   0          1           0
// ÷   3 	   0          1           1
// ÷   4 	   1          0           0
// NA          1          0           1
// NA 		   1          1           x 
#define CS4265_MCLK_FREQ			0x5
#define CS4265_MCLK_FREQ_1_0X	(0b000<<4 )
#define CS4265_MCLK_FREQ_1_5X	(0b001<<4 )
#define CS4265_MCLK_FREQ_2_0X	(0b010<<4 )
#define CS4265_MCLK_FREQ_3_0X	(0b011<<4 )
#define CS4265_MCLK_FREQ_4_0X	(0b100<<4 )


#define CS4265_MCLK_FREQ_MASK			(7 << 4)

#define CS4265_SIG_SEL				0x6
#define CS4265_SIG_SEL_LOOP			(1 << 1)
#define CS4265_SIG_SEL_SDIN2		(1 << 7)
#define CS4265_SIG_SEL_SDIN1		(0 << 7)

// Sets the gain or attenuation for the ADC input PGA stage. The gain may be adjusted from -12 dB to
// +12 dB in 0.5 dB steps. The gain bits are in two’s complement with the Gain0 bit set for a 0.5 dB step.
// Register settings outside of the ±12 dB range are reserved and must not be used. See Table 13 for example settings
#define CS4265_CHB_PGA_CTL			0x7
// Sets the gain or attenuation for the ADC input PGA stage. The gain may be adjusted from -12 dB to
// +12 dB in 0.5 dB steps. The gain bits are in two’s complement with the Gain0 bit set for a 0.5 dB step.
// Register settings outside of the ±12 dB range are reserved and must not be used. See Table 13 for example settings
#define CS4265_CHA_PGA_CTL			0x8
// Gain[5:0]    Setting
// 101000       -12 dB
// 000000       0 dB
// 011000       +12 dB


#define CS4265_ADC_CTL2				0x9

// The digital volume control allows the user to attenuate the signal in 0.5 dB increments from 0 to -127 dB.
// The Vol0 bit activates a 0.5 dB attenuation when set, and no attenuation when cleared. The Vol[7:1] bits
// activate attenuation equal to their decimal equivalent (in dB). 
//Binary Code 	Volume Setting
//00000000 		0 dB
//00000001 		-0.5 dB
//00101000 		-20 dB
//00101001 		-20.5 dB
//11111110 		-127 dB
//11111111 		-127.5 dB
#define CS4265_DAC_CHA_VOL			0xA
// The digital volume control allows the user to attenuate the signal in 0.5 dB increments from 0 to -127 dB.
// The Vol0 bit activates a 0.5 dB attenuation when set, and no attenuation when cleared. The Vol[7:1] bits
// activate attenuation equal to their decimal equivalent (in dB). 
//Binary Code 	Volume Setting
//00000000 		0 dB
//00000001 		-0.5 dB
//00101000 		-20 dB
//00101001 		-20.5 dB
//11111110 		-127 dB
//11111111 		-127.5 dB
#define CS4265_DAC_CHB_VOL			0xB
#define CS4265_DAC_VOL_ATT_000_0		0b00000000
#define CS4265_DAC_VOL_ATT_000_5		0b00000001
#define CS4265_DAC_VOL_ATT_020_0		0b00101000
#define CS4265_DAC_VOL_ATT_020_5		0b00101001
#define CS4265_DAC_VOL_ATT_127_0		0b11111110
#define CS4265_DAC_VOL_ATT_127_5		0b11111111

// DAC Soft Ramp or Zero Cross Enable (Bits 7:6)
//
// Soft Ramp Enable
// Soft Ramp allows level changes, both muting and attenuation, to be implemented by incrementally ramping, in 1/8 dB steps, from the current level to the new level at a rate of 1 dB per 8 left/right clock periods.
// See Table 17.
// Zero Cross Enable
// Zero Cross Enable dictates that signal-level changes, either by attenuation changes or muting, will occur
// on a signal zero crossing to minimize audible artifacts. The requested level change will occur after a timeout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal
// does not encounter a zero crossing. The zero cross function is independently monitored and implemented
// for each channel. See Table 17.
// Soft Ramp and Zero Cross Enable
// Soft Ramp and Zero Cross Enable dictate that signal-level changes, either by attenuation changes or muting, will occur in 1/8 dB steps and be implemented on a signal zero crossing. The 1/8 dB level change will
// occur after a time-out period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal does not encounter a zero crossing. The zero cross function is independently monitored and implemented for each channel
// DACSoft DACZeroCross Mode
// 0 0 Changes to affect immediately
// 0 1 Zero Cross enabled
// 1 0 Soft Ramp enabled
// 1 1 Soft Ramp and Zero Cross enabled (default)
#define CS4265_DAC_CTL2								0xC
#define CS4265_DAC_CTL2_ZERO_CROSS_EN  				(uint8_t)(0b01 <<7)
#define CS4265_DAC_CTL2_SOFT_RAMP_EN  				(uint8_t)(0b10 <<7)
#define CS4265_DAC_CTL2_SOFT_RAMP_ZERO_CROSS_EN  	(uint8_t)(0b11 <<7)


#define CS4265_INT_STATUS			0xD
#define CS4265_INT_STATUS_ADC_UNDF  (1<<0)
#define CS4265_INT_STATUS_ADC_OVF   (1<<1)
#define CS4265_INT_STATUS_CLKERR    (1<<3)


#define CS4265_INT_MASK				0xE
#define CS4265_STATUS_MODE_MSB			0xF
#define CS4265_STATUS_MODE_LSB			0x10

//Transmitter Control 1 - Address 11h
#define CS4265_SPDIF_CTL1			0x11



#define CS4265_SPDIF_CTL2			0x12
// Transmitter Digital Interface Format (Bits 7:6)
// Function:
// The required relationship between LRCK, SCLK and SDIN for the transmitter is defined
// Tx_DIF1 Tx_DIF0 Description Format Figure
// 0 0 Left Justified, up to 24-bit data (default) 0 5
// 0 1 I²S, up to 24-bit data 1 6
// 1 0 Right-Justified, 16-bit Data 2 7
// 1 1 Right-Justified, 24-bit Data 3 7
#define CS4265_SPDIF_CTL2_MMTLR         (1<<0)
#define CS4265_SPDIF_CTL2_MMTCS         (1<<1)
#define CS4265_SPDIF_CTL2_MMT           (1<<2)
#define CS4265_SPDIF_CTL2_V             (1<<3)
#define CS4265_SPDIF_CTL2_TXMUTE        (1<<4)
#define CS4265_SPDIF_CTL2_TXOFF         (1<<5)
#define CS4265_SPDIF_CTL2_MUTE			(1 << 4)
#define CS4265_SPDIF_CTL2_DIF			(3 << 6)
#define CS4265_SPDIF_CTL2_DIF0			(1 << 6)
#define CS4265_SPDIF_CTL2_DIF1			(1 << 7)






#define CS4265_C_DATA_BUFF			0x13
#define CS4265_MAX_REGISTER			0x2A
struct cs4265_clk_para {
	uint32_t mclk;
	uint32_t rate;
	uint8_t fm_mode; /* values 1, 2, or 4 */
	uint8_t mclkdiv;
};
static const struct cs4265_clk_para clk_map_table[] = {
	/*32k*/
	{8192000, 32000, 0, 0},
	{12288000, 32000, 0, 1},
	{16384000, 32000, 0, 2},
	{24576000, 32000, 0, 3},
	{32768000, 32000, 0, 4},

	/*44.1k*/
	{11289600, 44100, 0, 0},
	{16934400, 44100, 0, 1},
	{22579200, 44100, 0, 2},
	{33868000, 44100, 0, 3},
	{45158400, 44100, 0, 4},

	/*48k*/
	{12288000, 48000, 0, 0},
	{18432000, 48000, 0, 1},
	{24576000, 48000, 0, 2},
	{36864000, 48000, 0, 3},
	{49152000, 48000, 0, 4},

	/*64k*/
	{8192000, 64000, 1, 0},
	{12288000, 64000, 1, 1},
	{16934400, 64000, 1, 2},
	{24576000, 64000, 1, 3},
	{32768000, 64000, 1, 4},

	/* 88.2k */
	{11289600, 88200, 1, 0},
	{16934400, 88200, 1, 1},
	{22579200, 88200, 1, 2},
	{33868000, 88200, 1, 3},
	{45158400, 88200, 1, 4},

	/* 96k */
	{12288000, 96000, 1, 0},
	{18432000, 96000, 1, 1},
	{24576000, 96000, 1, 2},
	{36864000, 96000, 1, 3},
	{49152000, 96000, 1, 4},

	/* 128k */
	{8192000, 128000, 2, 0},
	{12288000, 128000, 2, 1},
	{16934400, 128000, 2, 2},
	{24576000, 128000, 2, 3},
	{32768000, 128000, 2, 4},

	/* 176.4k */
	{11289600, 176400, 2, 0},
	{16934400, 176400, 2, 1},
	{22579200, 176400, 2, 2},
	{33868000, 176400, 2, 3},
	{49152000, 176400, 2, 4},

	/* 192k */
	{12288000, 192000, 2, 0},
	{18432000, 192000, 2, 1},
	{24576000, 192000, 2, 2},
	{36864000, 192000, 2, 3},
	{49152000, 192000, 2, 4},
};
static const struct cs4265_cmd_s cs4265_init_sequence[] = {
	{CS4265_PWRCTL, CS4265_PWRCTL_PDN_ADC | CS4265_PWRCTL_FREEZE | CS4265_PWRCTL_PDN_DAC | CS4265_PWRCTL_PDN_MIC},
 	{CS4265_DAC_CTL, CS4265_DAC_CTL_DIF0 | CS4265_DAC_CTL_MUTE}, 
 	{CS4265_SIG_SEL, CS4265_SIG_SEL_SDIN1},/// SDIN1
 	{CS4265_SPDIF_CTL2, CS4265_SPDIF_CTL2_DIF0 },//
 	{CS4265_ADC_CTL, 0x00 },// // Set the serial audio port in slave mode
 	{CS4265_MCLK_FREQ, CS4265_MCLK_FREQ_1_0X },// // no divider 
 	{CS4265_CHB_PGA_CTL, 0x00 },// // sets the gain to 0db on channel B
 	{CS4265_CHA_PGA_CTL, 0x00 },// // sets the gain to 0db on channel A
 	{CS4265_ADC_CTL2, 0x19 },//
 	{CS4265_DAC_CHA_VOL,CS4265_DAC_VOL_ATT_000_0   },// Full volume out 
 	{CS4265_DAC_CHB_VOL, CS4265_DAC_VOL_ATT_000_0 },// // Full volume out 
 	{CS4265_DAC_CTL2, CS4265_DAC_CTL2_SOFT_RAMP_ZERO_CROSS_EN },//
 	{CS4265_SPDIF_CTL1, 0x00 },//
 	{CS4265_INT_MASK, 0x00 },//
 	{CS4265_STATUS_MODE_MSB, 0x00 },//
 	{CS4265_STATUS_MODE_LSB, 0x00 },//
	{0xff,0xff}
};


// matching orders
typedef enum { cs4265_ACTIVE = 0, cs4265_STANDBY, cs4265_DOWN, cs4265_ANALOGUE_OFF, cs4265_ANALOGUE_ON, cs4265_VOLUME } dac_cmd_e;



static int cs4265_addr;

static void dac_cmd(dac_cmd_e cmd, ...);
static int cs4265_detect(void);
static uint32_t calc_rnd_mclk_freq(){
	float m_scale = (cs4265.i2s_config->sample_rate > 96000 && cs4265.i2s_config->bits_per_sample > 16) ? 4 : 8;
	float num_channels = cs4265.i2s_config->channel_format < I2S_CHANNEL_FMT_ONLY_RIGHT ? 2 : 1;
     return (uint32_t) round(cs4265.i2s_config->bits_per_sample*i2s_get_clk(cs4265.i2c_port)* m_scale*num_channels/100)*100;
}
static int cs4265_get_clk_index(int mclk, int rate)
{
	for (int i = 0; i < ARRAY_SIZE(clk_map_table); i++) {
		if (clk_map_table[i].rate == rate &&
				clk_map_table[i].mclk == mclk)
			return i;
	}
	return -1;
}

static esp_err_t set_clock(){
    esp_err_t err = ESP_OK;
	uint32_t mclk = calc_rnd_mclk_freq();
    int index = cs4265_get_clk_index(mclk,cs4265.i2s_config->sample_rate );
	if (index >= 0) {
        ESP_LOGD(TAG, "Setting clock for mclk %u, rate %u (fm mode:%u, clk div:%u))", mclk,cs4265.i2s_config->sample_rate,clk_map_table[index].fm_mode,clk_map_table[index].mclkdiv);
		err=cs4265_update_bit(CS4265_ADC_CTL,CS4265_ADC_FM, clk_map_table[index].fm_mode << 6);
		err|=cs4265_update_bit( CS4265_MCLK_FREQ,CS4265_MCLK_FREQ_MASK,clk_map_table[index].mclkdiv << 4);
	} else {
		ESP_LOGE(TAG,"can't get correct mclk for ");
		return -1;
	}
    return err;
}


static void get_status(){
    uint8_t sts1= adac_read_byte(cs4265_addr, CS4265_INT_STATUS);	
    ESP_LOGD(TAG,"Status: %s",sts1&CS4265_INT_STATUS_CLKERR?"CLK Error":"CLK OK");
}


/****************************************************************************************
 * init
 */
static bool init(char *config, int i2c_port, i2s_config_t *i2s_config) {	 
	// find which TAS we are using (if any)
	cs4265_addr = adac_init(config, i2c_port);
	cs4265.i2s_config = i2s_config;
	cs4265.i2c_port=i2c_port;
	if (!cs4265_addr) cs4265_addr = cs4265_detect();
	if (!cs4265_addr) {
		ESP_LOGE(TAG, "No cs4265 detected");
		adac_deinit();
		return false;
	}
	#if BYTES_PER_FRAME == 8
		ESP_LOGE(TAG,"The CS4265 does not support 32 bits mode. ");
		adac_deinit();
		return false;
	#endif	
	// configure MLK
    ESP_LOGD(TAG, "Configuring MCLK on GPIO0");
	PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO0_U, FUNC_GPIO0_CLK_OUT1);
   	REG_WRITE(PIN_CTRL, 0xFFFFFFF0);
	i2c_cmd_handle_t i2c_cmd = i2c_cmd_link_create();
	for (int i = 0; cs4265_init_sequence[i].reg != 0xff; i++) {
		i2c_master_start(i2c_cmd);
		i2c_master_write_byte(i2c_cmd, (cs4265_addr << 1) | I2C_MASTER_WRITE, I2C_MASTER_NACK);
		i2c_master_write_byte(i2c_cmd, cs4265_init_sequence[i].reg, I2C_MASTER_NACK);
		i2c_master_write_byte(i2c_cmd, cs4265_init_sequence[i].value, I2C_MASTER_NACK);
		ESP_LOGD(TAG, "i2c write %x at %u", cs4265_init_sequence[i].reg, cs4265_init_sequence[i].value);
	}

	i2c_master_stop(i2c_cmd);	
	esp_err_t res = i2c_master_cmd_begin(i2c_port, i2c_cmd, 500 / portTICK_RATE_MS);
    i2c_cmd_link_delete(i2c_cmd);

	if (res != ESP_OK) {
		ESP_LOGE(TAG, "could not intialize cs4265 %d", res);
		return false;
	}	
	
	return true;

}	

static esp_err_t cs4265_update_bit(uint8_t reg_no,uint8_t mask,uint8_t val ){
    esp_err_t ret=ESP_OK;
    uint8_t old= adac_read_byte(cs4265_addr, reg_no);
    uint8_t newval = (old & ~mask) | (val & mask);
	bool change = old != newval;
	if (change){
		ret = adac_write_byte(cs4265_addr, reg_no, newval);
		if(ret != ESP_OK){
        	ESP_LOGE(TAG,"Unable to change dac register 0x%02x [0x%02x->0x%02x] from value 0x%02x, mask 0x%02x  ",reg_no,old,newval,val,mask);
    	}
    	else {
	        ESP_LOGD(TAG,"Changed dac register 0x%02x [0x%02x->0x%02x] from value 0x%02x, mask 0x%02x ",reg_no,old,newval,val,mask);
	    }
	}
	
    return ret;
}

/****************************************************************************************
 * change volume
 */
static bool volume(unsigned left, unsigned right) { 
	return false; 
}

/****************************************************************************************
 * power
 */
static void power(adac_power_e mode) {
	switch(mode) {
	case ADAC_STANDBY:
		dac_cmd(cs4265_STANDBY);
		break;
	case ADAC_ON:
		dac_cmd(cs4265_ACTIVE);
		break;		
	case ADAC_OFF:
		dac_cmd(cs4265_DOWN);
		break;				
	default:
		ESP_LOGW(TAG, "unknown DAC command");
		break;
	}
}

/****************************************************************************************
 * speaker
 */
static void speaker(bool active) {
	if (active) dac_cmd(cs4265_ANALOGUE_ON);
	else dac_cmd(cs4265_ANALOGUE_OFF);
} 

/****************************************************************************************
 * headset
 */
static void headset(bool active) { } 
 
/****************************************************************************************
 * DAC specific commands
 */
void dac_cmd(dac_cmd_e cmd, ...) {
	va_list args;
	esp_err_t ret = ESP_OK;
	
	va_start(args, cmd);

	switch(cmd) {
	case cs4265_VOLUME:
		ESP_LOGE(TAG, "DAC volume not handled yet");
		break;
    case cs4265_ACTIVE:
		ESP_LOGD(TAG, "Activating DAC");
        adac_write_byte(cs4265_addr, CS4265_PWRCTL,0);
        cs4265_update_bit(CS4265_SPDIF_CTL2,CS4265_SPDIF_CTL2_TXOFF,0);
        cs4265_update_bit(CS4265_SPDIF_CTL2,CS4265_SPDIF_CTL2_TXMUTE,0);
		cs4265_update_bit(CS4265_DAC_CTL,CS4265_DAC_CTL_MUTE,0);				
		break;
    case cs4265_STANDBY:
		ESP_LOGD(TAG, "DAC Stand-by");
        cs4265_update_bit(CS4265_SPDIF_CTL2,CS4265_SPDIF_CTL2_TXOFF,CS4265_SPDIF_CTL2_TXOFF);
        cs4265_update_bit(CS4265_SPDIF_CTL2,CS4265_SPDIF_CTL2_TXMUTE,CS4265_SPDIF_CTL2_TXMUTE);
		cs4265_update_bit(CS4265_DAC_CTL,CS4265_DAC_CTL_MUTE,CS4265_DAC_CTL_MUTE);
		break;
    case cs4265_DOWN:
		ESP_LOGD(TAG, "DAC Power Down");
        adac_write_byte(cs4265_addr, CS4265_PWRCTL,CS4265_PWRCTL_PDN_ALL);
		break;
    case cs4265_ANALOGUE_OFF:
		ESP_LOGD(TAG, "DAC Analog off");
        cs4265_update_bit(CS4265_SPDIF_CTL2,CS4265_SPDIF_CTL2_TXOFF,CS4265_SPDIF_CTL2_TXOFF);
        cs4265_update_bit(CS4265_SPDIF_CTL2,CS4265_SPDIF_CTL2_TXMUTE,CS4265_SPDIF_CTL2_TXMUTE);
		cs4265_update_bit(CS4265_DAC_CTL,CS4265_DAC_CTL_MUTE,CS4265_DAC_CTL_MUTE);
		break;
    case cs4265_ANALOGUE_ON:
		ESP_LOGD(TAG, "DAC Analog on");
		adac_write_byte(cs4265_addr, CS4265_PWRCTL,0);
        cs4265_update_bit(CS4265_SPDIF_CTL2,CS4265_SPDIF_CTL2_TXOFF,0);
        cs4265_update_bit(CS4265_SPDIF_CTL2,CS4265_SPDIF_CTL2_TXMUTE,0);
		cs4265_update_bit(CS4265_DAC_CTL,CS4265_DAC_CTL_MUTE,0);		
		break;
	}
	
  	if (ret != ESP_OK) {
		ESP_LOGE(TAG, "could not use cs4265 %d", ret);
	}
    get_status();
	// now set the clock
	ret=set_clock(cs4265.i2s_config,cs4265.i2c_port);
	if (ret != ESP_OK) {
		ESP_LOGE(TAG, "could not set the cs4265's clock %d", ret);
	}	

	va_end(args);
}

/****************************************************************************************
 * TAS57 detection
 */
static int cs4265_detect(void) {
	uint8_t addr[] = {CS4265_PULL_DOWN,CS4265_PULL_UP};
	
	for (int i = 0; i < sizeof(addr); i++) {
		ESP_LOGI(TAG,"Looking for CS4265 @0x%x",addr[i]);
		uint8_t reg=adac_read_byte(addr[i], CS4265_CHIP_ID);
		if(reg==255){
			continue;
		}
			// found a device at that address
		uint8_t devid = reg & CS4265_CHIP_ID_MASK;
		if (devid != CS4265_CHIP_ID_VAL) {
			ESP_LOGE(TAG,"CS4265 Device ID (%X). Expected %X",devid, CS4265_CHIP_ID);
			return 0;
		}
		ESP_LOGI(TAG,"Found DAC @0x%x, Version %x",addr[i], reg & CS4265_REV_ID_MASK);
		return addr[i];	
	}
	return 0;
}