/* ***** BEGIN LICENSE BLOCK ***** * Version: RCSL 1.0/RPSL 1.0 * * Portions Copyright (c) 1995-2002 RealNetworks, Inc. All Rights Reserved. * * The contents of this file, and the files included with this file, are * subject to the current version of the RealNetworks Public Source License * Version 1.0 (the "RPSL") available at * http://www.helixcommunity.org/content/rpsl unless you have licensed * the file under the RealNetworks Community Source License Version 1.0 * (the "RCSL") available at http://www.helixcommunity.org/content/rcsl, * in which case the RCSL will apply. You may also obtain the license terms * directly from RealNetworks. You may not use this file except in * compliance with the RPSL or, if you have a valid RCSL with RealNetworks * applicable to this file, the RCSL. Please see the applicable RPSL or * RCSL for the rights, obligations and limitations governing use of the * contents of the file. * * This file is part of the Helix DNA Technology. RealNetworks is the * developer of the Original Code and owns the copyrights in the portions * it created. * * This file, and the files included with this file, is distributed and made * available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * * Technology Compatibility Kit Test Suite(s) Location: * http://www.helixcommunity.org/content/tck * * Contributor(s): * * ***** END LICENSE BLOCK ***** */ /************************************************************************************** * Fixed-point MP3 decoder * Jon Recker (jrecker@real.com), Ken Cooke (kenc@real.com) * June 2003 * * stproc.c - mid-side and intensity (MPEG1 and MPEG2) stereo processing **************************************************************************************/ #include "coder.h" #include "assembly.h" /************************************************************************************** * Function: MidSideProc * * Description: sum-difference stereo reconstruction * * Inputs: vector x with dequantized samples from left and right channels * number of non-zero samples (MAX of left and right) * assume 1 guard bit in input * guard bit mask (left and right channels) * * Outputs: updated sample vector x * updated guard bit mask * * Return: none * * Notes: assume at least 1 GB in input **************************************************************************************/ void MidSideProc(int x[MAX_NCHAN][MAX_NSAMP], int nSamps, int mOut[2]) { int i, xr, xl, mOutL, mOutR; /* L = (M+S)/sqrt(2), R = (M-S)/sqrt(2) * NOTE: 1/sqrt(2) done in DequantChannel() - see comments there */ mOutL = mOutR = 0; for(i = 0; i < nSamps; i++) { xl = x[0][i]; xr = x[1][i]; x[0][i] = xl + xr; x[1][i] = xl - xr; mOutL |= FASTABS(x[0][i]); mOutR |= FASTABS(x[1][i]); } mOut[0] |= mOutL; mOut[1] |= mOutR; } /************************************************************************************** * Function: IntensityProcMPEG1 * * Description: intensity stereo processing for MPEG1 * * Inputs: vector x with dequantized samples from left and right channels * number of non-zero samples in left channel * valid FrameHeader struct * two each of ScaleFactorInfoSub, CriticalBandInfo structs (both channels) * flags indicating midSide on/off, mixedBlock on/off * guard bit mask (left and right channels) * * Outputs: updated sample vector x * updated guard bit mask * * Return: none * * Notes: assume at least 1 GB in input * * TODO: combine MPEG1/2 into one function (maybe) * make sure all the mixed-block and IIP logic is right **************************************************************************************/ void IntensityProcMPEG1(int x[MAX_NCHAN][MAX_NSAMP], int nSamps, FrameHeader *fh, ScaleFactorInfoSub *sfis, CriticalBandInfo *cbi, int midSideFlag, int mixFlag, int mOut[2]) { int i=0, j=0, n=0, cb=0, w=0; int sampsLeft, isf, mOutL, mOutR, xl, xr; int fl, fr, fls[3], frs[3]; int cbStartL=0, cbStartS=0, cbEndL=0, cbEndS=0; int *isfTab; (void)mixFlag; /* NOTE - this works fine for mixed blocks, as long as the switch point starts in the * short block section (i.e. on or after sample 36 = sfBand->l[8] = 3*sfBand->s[3] * is this a safe assumption? * TODO - intensity + mixed not quite right (diff = 11 on he_mode) * figure out correct implementation (spec ambiguous about when to do short block reorder) */ if (cbi[1].cbType == 0) { /* long block */ cbStartL = cbi[1].cbEndL + 1; cbEndL = cbi[0].cbEndL + 1; cbStartS = cbEndS = 0; i = fh->sfBand->l[cbStartL]; } else if (cbi[1].cbType == 1 || cbi[1].cbType == 2) { /* short or mixed block */ cbStartS = cbi[1].cbEndSMax + 1; cbEndS = cbi[0].cbEndSMax + 1; cbStartL = cbEndL = 0; i = 3 * fh->sfBand->s[cbStartS]; } sampsLeft = nSamps - i; /* process to length of left */ isfTab = (int *)ISFMpeg1[midSideFlag]; mOutL = mOutR = 0; /* long blocks */ for (cb = cbStartL; cb < cbEndL && sampsLeft > 0; cb++) { isf = sfis->l[cb]; if (isf == 7) { fl = ISFIIP[midSideFlag][0]; fr = ISFIIP[midSideFlag][1]; } else { fl = isfTab[isf]; fr = isfTab[6] - isfTab[isf]; } n = fh->sfBand->l[cb + 1] - fh->sfBand->l[cb]; for (j = 0; j < n && sampsLeft > 0; j++, i++) { xr = MULSHIFT32(fr, x[0][i]) << 2; x[1][i] = xr; mOutR |= FASTABS(xr); xl = MULSHIFT32(fl, x[0][i]) << 2; x[0][i] = xl; mOutL |= FASTABS(xl); sampsLeft--; } } /* short blocks */ for (cb = cbStartS; cb < cbEndS && sampsLeft >= 3; cb++) { for (w = 0; w < 3; w++) { isf = sfis->s[cb][w]; if (isf == 7) { fls[w] = ISFIIP[midSideFlag][0]; frs[w] = ISFIIP[midSideFlag][1]; } else { fls[w] = isfTab[isf]; frs[w] = isfTab[6] - isfTab[isf]; } } n = fh->sfBand->s[cb + 1] - fh->sfBand->s[cb]; for (j = 0; j < n && sampsLeft >= 3; j++, i+=3) { xr = MULSHIFT32(frs[0], x[0][i+0]) << 2; x[1][i+0] = xr; mOutR |= FASTABS(xr); xl = MULSHIFT32(fls[0], x[0][i+0]) << 2; x[0][i+0] = xl; mOutL |= FASTABS(xl); xr = MULSHIFT32(frs[1], x[0][i+1]) << 2; x[1][i+1] = xr; mOutR |= FASTABS(xr); xl = MULSHIFT32(fls[1], x[0][i+1]) << 2; x[0][i+1] = xl; mOutL |= FASTABS(xl); xr = MULSHIFT32(frs[2], x[0][i+2]) << 2; x[1][i+2] = xr; mOutR |= FASTABS(xr); xl = MULSHIFT32(fls[2], x[0][i+2]) << 2; x[0][i+2] = xl; mOutL |= FASTABS(xl); sampsLeft -= 3; } } mOut[0] = mOutL; mOut[1] = mOutR; return; } /************************************************************************************** * Function: IntensityProcMPEG2 * * Description: intensity stereo processing for MPEG2 * * Inputs: vector x with dequantized samples from left and right channels * number of non-zero samples in left channel * valid FrameHeader struct * two each of ScaleFactorInfoSub, CriticalBandInfo structs (both channels) * ScaleFactorJS struct with joint stereo info from UnpackSFMPEG2() * flags indicating midSide on/off, mixedBlock on/off * guard bit mask (left and right channels) * * Outputs: updated sample vector x * updated guard bit mask * * Return: none * * Notes: assume at least 1 GB in input * * TODO: combine MPEG1/2 into one function (maybe) * make sure all the mixed-block and IIP logic is right * probably redo IIP logic to be simpler **************************************************************************************/ void IntensityProcMPEG2(int x[MAX_NCHAN][MAX_NSAMP], int nSamps, FrameHeader *fh, ScaleFactorInfoSub *sfis, CriticalBandInfo *cbi, ScaleFactorJS *sfjs, int midSideFlag, int mixFlag, int mOut[2]) { int i, j, k, n, r, cb, w; int fl, fr, mOutL, mOutR, xl, xr; int sampsLeft; int isf, sfIdx, tmp, il[23]; int *isfTab; int cbStartL, cbStartS, cbEndL, cbEndS; (void)mixFlag; isfTab = (int *)ISFMpeg2[sfjs->intensityScale][midSideFlag]; mOutL = mOutR = 0; /* fill buffer with illegal intensity positions (depending on slen) */ for (k = r = 0; r < 4; r++) { tmp = (1 << sfjs->slen[r]) - 1; for (j = 0; j < sfjs->nr[r]; j++, k++) il[k] = tmp; } if (cbi[1].cbType == 0) { /* long blocks */ il[21] = il[22] = 1; cbStartL = cbi[1].cbEndL + 1; /* start at end of right */ cbEndL = cbi[0].cbEndL + 1; /* process to end of left */ i = fh->sfBand->l[cbStartL]; sampsLeft = nSamps - i; for(cb = cbStartL; cb < cbEndL; cb++) { sfIdx = sfis->l[cb]; if (sfIdx == il[cb]) { fl = ISFIIP[midSideFlag][0]; fr = ISFIIP[midSideFlag][1]; } else { isf = (sfis->l[cb] + 1) >> 1; fl = isfTab[(sfIdx & 0x01 ? isf : 0)]; fr = isfTab[(sfIdx & 0x01 ? 0 : isf)]; } n = MIN(fh->sfBand->l[cb + 1] - fh->sfBand->l[cb], sampsLeft); for(j = 0; j < n; j++, i++) { xr = MULSHIFT32(fr, x[0][i]) << 2; x[1][i] = xr; mOutR |= FASTABS(xr); xl = MULSHIFT32(fl, x[0][i]) << 2; x[0][i] = xl; mOutL |= FASTABS(xl); } /* early exit once we've used all the non-zero samples */ sampsLeft -= n; if (sampsLeft == 0) break; } } else { /* short or mixed blocks */ il[12] = 1; for(w = 0; w < 3; w++) { cbStartS = cbi[1].cbEndS[w] + 1; /* start at end of right */ cbEndS = cbi[0].cbEndS[w] + 1; /* process to end of left */ i = 3 * fh->sfBand->s[cbStartS] + w; /* skip through sample array by 3, so early-exit logic would be more tricky */ for(cb = cbStartS; cb < cbEndS; cb++) { sfIdx = sfis->s[cb][w]; if (sfIdx == il[cb]) { fl = ISFIIP[midSideFlag][0]; fr = ISFIIP[midSideFlag][1]; } else { isf = (sfis->s[cb][w] + 1) >> 1; fl = isfTab[(sfIdx & 0x01 ? isf : 0)]; fr = isfTab[(sfIdx & 0x01 ? 0 : isf)]; } n = fh->sfBand->s[cb + 1] - fh->sfBand->s[cb]; for(j = 0; j < n; j++, i+=3) { xr = MULSHIFT32(fr, x[0][i]) << 2; x[1][i] = xr; mOutR |= FASTABS(xr); xl = MULSHIFT32(fl, x[0][i]) << 2; x[0][i] = xl; mOutL |= FASTABS(xl); } } } } mOut[0] = mOutL; mOut[1] = mOutR; return; }