/* * infrared receiver (using espressif's example) * * (c) Philippe G. 2020, philippe_44@outlook.com * * This software is released under the MIT License. * https://opensource.org/licenses/MIT * */ #include #include #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "esp_err.h" #include "esp_log.h" #include "driver/rmt.h" #include "infrared.h" static const char* TAG = "IR"; #define RMT_RX_ACTIVE_LEVEL 0 /*!< If we connect with a IR receiver, the data is active low */ #define RMT_RX_CHANNEL 0 /*!< RMT channel for receiver */ #define RMT_CLK_DIV 100 /*!< RMT counter clock divider */ #define RMT_TICK_10_US (80000000/RMT_CLK_DIV/100000) /*!< RMT counter value for 10 us.(Source clock is APB clock) */ #define NEC_HEADER_HIGH_US 9000 /*!< NEC protocol header: positive 9ms */ #define NEC_HEADER_LOW_US 4500 /*!< NEC protocol header: negative 4.5ms*/ #define NEC_BIT_ONE_HIGH_US 560 /*!< NEC protocol data bit 1: positive 0.56ms */ #define NEC_BIT_ONE_LOW_US (2250-NEC_BIT_ONE_HIGH_US) /*!< NEC protocol data bit 1: negative 1.69ms */ #define NEC_BIT_ZERO_HIGH_US 560 /*!< NEC protocol data bit 0: positive 0.56ms */ #define NEC_BIT_ZERO_LOW_US (1120-NEC_BIT_ZERO_HIGH_US) /*!< NEC protocol data bit 0: negative 0.56ms */ #define NEC_BIT_MARGIN 150 /*!< NEC parse margin time */ #define NEC_ITEM_DURATION(d) ((d & 0x7fff)*10/RMT_TICK_10_US) /*!< Parse duration time from memory register value */ #define NEC_DATA_ITEM_NUM 34 /*!< NEC code item number: header + 32bit data + end */ #define rmt_item32_tIMEOUT_US 9500 /*!< RMT receiver timeout value(us) */ /**************************************************************************************** * */ static bool nec_check_in_range(int duration_ticks, int target_us, int margin_us) { if(( NEC_ITEM_DURATION(duration_ticks) < (target_us + margin_us)) && ( NEC_ITEM_DURATION(duration_ticks) > (target_us - margin_us))) { return true; } else { return false; } } /**************************************************************************************** * */ static bool nec_header_if(rmt_item32_t* item) { if((item->level0 == RMT_RX_ACTIVE_LEVEL && item->level1 != RMT_RX_ACTIVE_LEVEL) && nec_check_in_range(item->duration0, NEC_HEADER_HIGH_US, NEC_BIT_MARGIN) && nec_check_in_range(item->duration1, NEC_HEADER_LOW_US, NEC_BIT_MARGIN)) { return true; } return false; } /**************************************************************************************** * */ static bool nec_bit_one_if(rmt_item32_t* item) { if((item->level0 == RMT_RX_ACTIVE_LEVEL && item->level1 != RMT_RX_ACTIVE_LEVEL) && nec_check_in_range(item->duration0, NEC_BIT_ONE_HIGH_US, NEC_BIT_MARGIN) && nec_check_in_range(item->duration1, NEC_BIT_ONE_LOW_US, NEC_BIT_MARGIN)) { return true; } return false; } /**************************************************************************************** * */ static bool nec_bit_zero_if(rmt_item32_t* item) { if((item->level0 == RMT_RX_ACTIVE_LEVEL && item->level1 != RMT_RX_ACTIVE_LEVEL) && nec_check_in_range(item->duration0, NEC_BIT_ZERO_HIGH_US, NEC_BIT_MARGIN) && nec_check_in_range(item->duration1, NEC_BIT_ZERO_LOW_US, NEC_BIT_MARGIN)) { return true; } return false; } /**************************************************************************************** * */ static int nec_parse_items(rmt_item32_t* item, int item_num, uint16_t* addr, uint16_t* data) { int w_len = item_num; if(w_len < NEC_DATA_ITEM_NUM) { return -1; } int i = 0, j = 0; if(!nec_header_if(item++)) { return -1; } uint16_t addr_t = 0; for(j = 15; j >= 0; j--) { if(nec_bit_one_if(item)) { addr_t |= (1 << j); } else if(nec_bit_zero_if(item)) { addr_t |= (0 << j); } else { return -1; } item++; i++; } uint16_t data_t = 0; for(j = 15; j >= 0; j--) { if(nec_bit_one_if(item)) { data_t |= (1 << j); } else if(nec_bit_zero_if(item)) { data_t |= (0 << j); } else { return -1; } item++; i++; } *addr = addr_t; *data = data_t; return i; } /**************************************************************************************** * */ void infrared_receive(RingbufHandle_t rb, infrared_handler handler) { size_t rx_size = 0; rmt_item32_t* item = (rmt_item32_t*) xRingbufferReceive(rb, &rx_size, 10 / portTICK_RATE_MS); if (item) { uint16_t addr, cmd; int offset = 0; while (1) { // parse data value from ringbuffer. int res = nec_parse_items(item + offset, rx_size / 4 - offset, &addr, &cmd); if (res > 0) { offset += res + 1; handler(addr, cmd); ESP_LOGD(TAG, "RMT RCV --- addr: 0x%04x cmd: 0x%04x", addr, cmd); } else break; } // after parsing the data, return spaces to ringbuffer. vRingbufferReturnItem(rb, (void*) item); } } /**************************************************************************************** * */ void infrared_init(RingbufHandle_t *rb, int gpio) { rmt_config_t rmt_rx; ESP_LOGI(TAG, "Starting Infrared Receiver on gpio %d", gpio); // initialize RMT driver rmt_rx.channel = RMT_RX_CHANNEL; rmt_rx.gpio_num = gpio; rmt_rx.clk_div = RMT_CLK_DIV; rmt_rx.mem_block_num = 1; rmt_rx.rmt_mode = RMT_MODE_RX; rmt_rx.rx_config.filter_en = true; rmt_rx.rx_config.filter_ticks_thresh = 100; rmt_rx.rx_config.idle_threshold = rmt_item32_tIMEOUT_US / 10 * (RMT_TICK_10_US); rmt_config(&rmt_rx); rmt_driver_install(rmt_rx.channel, 1000, 0); // get RMT RX ringbuffer rmt_get_ringbuf_handle(RMT_RX_CHANNEL, rb); rmt_rx_start(RMT_RX_CHANNEL, 1); }