/* * Squeezelite for esp32 * * (c) Sebastien 2019 * Philippe G. 2019, philippe_44@outlook.com * * This software is released under the MIT License. * https://opensource.org/licenses/MIT * */ /* Synchronisation is a bit of a hack with i2s. The esp32 driver is always full when it starts, so there is a delay of the total length of buffers. In other words, i2s_write blocks at first call, until at least one buffer has been written (it uses a queue with produce / consume). The first hack is to consume that length at the beginning of tracks when synchronization is active. It's about ~180ms @ 44.1kHz The second hack is that we never know exactly the number of frames in the DMA buffers when we update the output.frames_played_dmp. We assume that after i2s_write, these buffers are always full so by measuring the gap between time after i2s_write and update of frames_played_dmp, we have a good idea of the error. The third hack is when sample rate changes, buffers are reset and we also do the change too early, but can't do that exaclty at the right time. So there might be a pop and a de-sync when sampling rate change happens. Not sure that using rate_delay would fix that */ #include "squeezelite.h" #include "slimproto.h" #include "esp_pthread.h" #include "driver/i2s.h" #include "driver/i2c.h" #include "driver/gpio.h" #include "perf_trace.h" #include #include "adac.h" #include "time.h" #include "led.h" #include "monitor.h" #include "platform_config.h" #include "gpio_exp.h" #include "accessors.h" #include "equalizer.h" #include "globdefs.h" #define LOCK mutex_lock(outputbuf->mutex) #define UNLOCK mutex_unlock(outputbuf->mutex) #define FRAME_BLOCK MAX_SILENCE_FRAMES #define SPDIF_BLOCK 256 // must have an integer ratio with FRAME_BLOCK (see spdif comment) #define DMA_BUF_LEN 512 #define DMA_BUF_COUNT 12 #define DECLARE_ALL_MIN_MAX \ DECLARE_MIN_MAX(o); \ DECLARE_MIN_MAX(s); \ DECLARE_MIN_MAX(rec); \ DECLARE_MIN_MAX(i2s_time); \ DECLARE_MIN_MAX(buffering); #define RESET_ALL_MIN_MAX \ RESET_MIN_MAX(o); \ RESET_MIN_MAX(s); \ RESET_MIN_MAX(rec); \ RESET_MIN_MAX(i2s_time); \ RESET_MIN_MAX(buffering); #define STATS_PERIOD_MS 5000 #define STAT_STACK_SIZE (3*1024) #ifndef CONFIG_AMP_GPIO_LEVEL #define CONFIG_AMP_GPIO_LEVEL 1 #endif extern struct outputstate output; extern struct buffer *streambuf; extern struct buffer *outputbuf; extern u8_t *silencebuf; const struct adac_s *dac_set[] = { &dac_tas57xx, &dac_tas5713, &dac_ac101, &dac_wm8978, NULL }; const struct adac_s *adac = &dac_external; static log_level loglevel; static bool (*slimp_handler_chain)(u8_t *data, int len); static bool jack_mutes_amp; static bool running, isI2SStarted, ended; static i2s_config_t i2s_config; static u8_t *obuf; static frames_t oframes; static struct { bool enabled; u8_t *buf; size_t count; } spdif; static size_t dma_buf_frames; static TaskHandle_t stats_task, output_i2s_task; static bool stats; static struct { int gpio, active; } amp_control = { CONFIG_AMP_GPIO, CONFIG_AMP_GPIO_LEVEL }, mute_control = { CONFIG_MUTE_GPIO, CONFIG_MUTE_GPIO_LEVEL }; DECLARE_ALL_MIN_MAX; static int _i2s_write_frames(frames_t out_frames, bool silence, s32_t gainL, s32_t gainR, u8_t flags, s32_t cross_gain_in, s32_t cross_gain_out, ISAMPLE_T **cross_ptr); static void output_thread_i2s(void *arg); static void output_thread_i2s_stats(void *arg); static void spdif_convert(ISAMPLE_T *src, size_t frames, u32_t *dst, size_t *count); static void (*jack_handler_chain)(bool inserted); #define I2C_PORT 0 /**************************************************************************************** * AUDO packet handler */ static bool handler(u8_t *data, int len){ bool res = true; if (!strncmp((char*) data, "audo", 4)) { struct audo_packet *pkt = (struct audo_packet*) data; // 0 = headphone (internal speakers off), 1 = sub out, // 2 = always on (internal speakers on), 3 = always off if (jack_mutes_amp != (pkt->config == 0)) { jack_mutes_amp = pkt->config == 0; config_set_value(NVS_TYPE_STR, "jack_mutes_amp", jack_mutes_amp ? "y" : "n"); if (jack_mutes_amp && jack_inserted_svc()) { adac->speaker(false); if (amp_control.gpio != -1) gpio_set_level_x(amp_control.gpio, !amp_control.active); } else { adac->speaker(true); if (amp_control.gpio != -1) gpio_set_level_x(amp_control.gpio, amp_control.active); } } LOG_INFO("got AUDO %02x", pkt->config); } else { res = false; } // chain protocol handlers (bitwise or is fine) if (*slimp_handler_chain) res |= (*slimp_handler_chain)(data, len); return res; } /**************************************************************************************** * jack insertion handler */ static void jack_handler(bool inserted) { // jack detection bounces a bit but that seems fine if (jack_mutes_amp) { LOG_INFO("switching amplifier %s", inserted ? "OFF" : "ON"); adac->speaker(!inserted); if (amp_control.gpio != -1) gpio_set_level_x(amp_control.gpio, inserted ? !amp_control.active : amp_control.active); } // activate headset adac->headset(inserted); // and chain if any if (jack_handler_chain) (jack_handler_chain)(inserted); } /**************************************************************************************** * amp GPIO */ #ifndef AMP_LOCKED static void set_amp_gpio(int gpio, char *value) { char *p; if (strcasestr(value, "amp")) { amp_control.gpio = gpio; if ((p = strchr(value, ':')) != NULL) amp_control.active = atoi(p + 1); } } #endif /**************************************************************************************** * Set pin from config string */ static void set_i2s_pin(char *config, i2s_pin_config_t *pin_config) { pin_config->bck_io_num = pin_config->ws_io_num = pin_config->data_out_num = pin_config->data_in_num = -1; PARSE_PARAM(config, "bck", '=', pin_config->bck_io_num); PARSE_PARAM(config, "ws", '=', pin_config->ws_io_num); PARSE_PARAM(config, "do", '=', pin_config->data_out_num); } /**************************************************************************************** * Initialize the DAC output */ void output_init_i2s(log_level level, char *device, unsigned output_buf_size, char *params, unsigned rates[], unsigned rate_delay, unsigned idle) { loglevel = level; int silent_do = -1; char *p; esp_err_t res; // chain SLIMP handlers slimp_handler_chain = slimp_handler; slimp_handler = handler; p = config_alloc_get_default(NVS_TYPE_STR, "jack_mutes_amp", "n", 0); jack_mutes_amp = (strcmp(p,"1") == 0 ||strcasecmp(p,"y") == 0); free(p); #if BYTES_PER_FRAME == 8 output.format = S32_LE; #else output.format = S16_LE; #endif output.write_cb = &_i2s_write_frames; obuf = malloc(FRAME_BLOCK * BYTES_PER_FRAME); if (!obuf) { LOG_ERROR("Cannot allocate i2s buffer"); return; } running = true; // get SPDIF configuration from NVS or compile char *spdif_config = config_alloc_get_str("spdif_config", CONFIG_SPDIF_CONFIG, "bck=" STR(CONFIG_SPDIF_BCK_IO) ",ws=" STR(CONFIG_SPDIF_WS_IO) ",do=" STR(CONFIG_SPDIF_DO_IO)); char *dac_config = config_alloc_get_str("dac_config", CONFIG_DAC_CONFIG, "model=i2s,bck=" STR(CONFIG_I2S_BCK_IO) ",ws=" STR(CONFIG_I2S_WS_IO) ",do=" STR(CONFIG_I2S_DO_IO) ",sda=" STR(CONFIG_I2C_SDA) ",scl=" STR(CONFIG_I2C_SCL) ",mute=" STR(CONFIG_MUTE_GPIO)); i2s_pin_config_t i2s_dac_pin, i2s_spdif_pin; set_i2s_pin(spdif_config, &i2s_spdif_pin); set_i2s_pin(dac_config, &i2s_dac_pin); /* BEWARE: i2s.c must be patched otherwise L/R are swapped in 32 bits mode */ // common I2S initialization i2s_config.mode = I2S_MODE_MASTER | I2S_MODE_TX; i2s_config.channel_format = I2S_CHANNEL_FMT_RIGHT_LEFT; i2s_config.communication_format = I2S_COMM_FORMAT_I2S| I2S_COMM_FORMAT_I2S_MSB; // in case of overflow, do not replay old buffer i2s_config.tx_desc_auto_clear = true; i2s_config.use_apll = true; i2s_config.intr_alloc_flags = ESP_INTR_FLAG_LEVEL1; //Interrupt level 1 if (strcasestr(device, "spdif")) { spdif.enabled = true; if ((spdif.buf = heap_caps_malloc(SPDIF_BLOCK * 16, MALLOC_CAP_INTERNAL)) == NULL) { LOG_ERROR("Cannot allocate SPDIF buffer"); } if (i2s_spdif_pin.bck_io_num == -1 || i2s_spdif_pin.ws_io_num == -1 || i2s_spdif_pin.data_out_num == -1) { LOG_WARN("Cannot initialize I2S for SPDIF bck:%d ws:%d do:%d", i2s_spdif_pin.bck_io_num, i2s_spdif_pin.ws_io_num, i2s_spdif_pin.data_out_num); } i2s_config.sample_rate = output.current_sample_rate * 2; i2s_config.bits_per_sample = 32; // Normally counted in frames, but 16 sample are transformed into 32 bits in spdif i2s_config.dma_buf_len = DMA_BUF_LEN / 2; i2s_config.dma_buf_count = DMA_BUF_COUNT * 2; /* In DMA, we have room for (LEN * COUNT) frames of 32 bits samples that we push at sample_rate * 2. Each of these peuso-frames is a single true audio frame. So the real depth is true frames is (LEN * COUNT / 2) */ dma_buf_frames = DMA_BUF_COUNT * DMA_BUF_LEN / 2; // silence DAC output if sharing the same ws/bck if (i2s_dac_pin.ws_io_num == i2s_spdif_pin.ws_io_num && i2s_dac_pin.bck_io_num == i2s_spdif_pin.bck_io_num) silent_do = i2s_dac_pin.data_out_num; res = i2s_driver_install(CONFIG_I2S_NUM, &i2s_config, 0, NULL); res |= i2s_set_pin(CONFIG_I2S_NUM, &i2s_spdif_pin); LOG_INFO("SPDIF using I2S bck:%d, ws:%d, do:%d", i2s_spdif_pin.bck_io_num, i2s_spdif_pin.ws_io_num, i2s_spdif_pin.data_out_num); } else { i2s_config.sample_rate = output.current_sample_rate; i2s_config.bits_per_sample = BYTES_PER_FRAME * 8 / 2; // Counted in frames (but i2s allocates a buffer <= 4092 bytes) i2s_config.dma_buf_len = DMA_BUF_LEN; i2s_config.dma_buf_count = DMA_BUF_COUNT; dma_buf_frames = DMA_BUF_COUNT * DMA_BUF_LEN; // silence SPDIF output silent_do = i2s_spdif_pin.data_out_num; char model[32] = "i2s"; if ((p = strcasestr(dac_config, "model")) != NULL) sscanf(p, "%*[^=]=%31[^,]", model); if ((p = strcasestr(dac_config, "mute")) != NULL) { char mute[8] = ""; sscanf(p, "%*[^=]=%7[^,]", mute); mute_control.gpio = atoi(mute); if ((p = strchr(mute, ':')) != NULL) mute_control.active = atoi(p + 1); } for (int i = 0; adac == &dac_external && dac_set[i]; i++) if (strcasestr(dac_set[i]->model, model)) adac = dac_set[i]; res = adac->init(dac_config, I2C_PORT, &i2s_config) ? ESP_OK : ESP_FAIL; res |= i2s_driver_install(CONFIG_I2S_NUM, &i2s_config, 0, NULL); res |= i2s_set_pin(CONFIG_I2S_NUM, &i2s_dac_pin); if (res == ESP_OK && mute_control.gpio >= 0) { gpio_pad_select_gpio(mute_control.gpio); gpio_set_direction(mute_control.gpio, GPIO_MODE_OUTPUT); gpio_set_level(mute_control.gpio, mute_control.active); } LOG_INFO("%s DAC using I2S bck:%d, ws:%d, do:%d, mute:%d:%d (res:%d)", model, i2s_dac_pin.bck_io_num, i2s_dac_pin.ws_io_num, i2s_dac_pin.data_out_num, mute_control.gpio, mute_control.active, res); } free(dac_config); free(spdif_config); if (res != ESP_OK) { LOG_WARN("no DAC configured"); return; } // turn off GPIO than is not used (SPDIF of DAC DO when shared) if (silent_do >= 0) { gpio_pad_select_gpio(silent_do); gpio_set_direction(silent_do, GPIO_MODE_OUTPUT); gpio_set_level(silent_do, 0); } LOG_INFO("Initializing I2S mode %s with rate: %d, bits per sample: %d, buffer frames: %d, number of buffers: %d ", spdif.enabled ? "S/PDIF" : "normal", i2s_config.sample_rate, i2s_config.bits_per_sample, i2s_config.dma_buf_len, i2s_config.dma_buf_count); i2s_stop(CONFIG_I2S_NUM); i2s_zero_dma_buffer(CONFIG_I2S_NUM); isI2SStarted=false; adac->power(ADAC_STANDBY); jack_handler_chain = jack_handler_svc; jack_handler_svc = jack_handler; #ifndef AMP_LOCKED parse_set_GPIO(set_amp_gpio); #endif if (amp_control.gpio != -1) { gpio_pad_select_gpio_x(amp_control.gpio); gpio_set_direction_x(amp_control.gpio, GPIO_MODE_OUTPUT); gpio_set_level_x(amp_control.gpio, !amp_control.active); LOG_INFO("setting amplifier GPIO %d (active:%d)", amp_control.gpio, amp_control.active); } if (jack_mutes_amp && jack_inserted_svc()) adac->speaker(false); else adac->speaker(true); adac->headset(jack_inserted_svc()); // create task as a FreeRTOS task but uses stack in internal RAM { static DRAM_ATTR StaticTask_t xTaskBuffer __attribute__ ((aligned (4))); static DRAM_ATTR StackType_t xStack[OUTPUT_THREAD_STACK_SIZE] __attribute__ ((aligned (4))); output_i2s_task = xTaskCreateStaticPinnedToCore( (TaskFunction_t) output_thread_i2s, "output_i2s", OUTPUT_THREAD_STACK_SIZE, NULL, CONFIG_ESP32_PTHREAD_TASK_PRIO_DEFAULT + 1, xStack, &xTaskBuffer, 0 ); } // do we want stats p = config_alloc_get_default(NVS_TYPE_STR, "stats", "n", 0); stats = p && (*p == '1' || *p == 'Y' || *p == 'y'); free(p); // memory still used but at least task is not created if (stats) { // we allocate TCB but stack is static to avoid SPIRAM fragmentation StaticTask_t* xTaskBuffer = (StaticTask_t*) heap_caps_malloc(sizeof(StaticTask_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); static EXT_RAM_ATTR StackType_t xStack[STAT_STACK_SIZE] __attribute__ ((aligned (4))); stats_task = xTaskCreateStatic( (TaskFunction_t) output_thread_i2s_stats, "output_i2s_sts", STAT_STACK_SIZE, NULL, ESP_TASK_PRIO_MIN, xStack, xTaskBuffer); } } /**************************************************************************************** * Terminate DAC output */ void output_close_i2s(void) { LOCK; running = false; UNLOCK; while (!ended) vTaskDelay(20 / portTICK_PERIOD_MS); if (stats) vTaskDelete(stats_task); i2s_driver_uninstall(CONFIG_I2S_NUM); free(obuf); equalizer_close(); adac->deinit(); } /**************************************************************************************** * change volume */ bool output_volume_i2s(unsigned left, unsigned right) { if (mute_control.gpio >= 0) gpio_set_level(mute_control.gpio, (left | right) ? !mute_control.active : mute_control.active); return adac->volume(left, right); } /**************************************************************************************** * Write frames to the output buffer */ static int _i2s_write_frames(frames_t out_frames, bool silence, s32_t gainL, s32_t gainR, u8_t flags, s32_t cross_gain_in, s32_t cross_gain_out, ISAMPLE_T **cross_ptr) { if (!silence) { if (output.fade == FADE_ACTIVE && output.fade_dir == FADE_CROSS && *cross_ptr) { _apply_cross(outputbuf, out_frames, cross_gain_in, cross_gain_out, cross_ptr); } _apply_gain(outputbuf, out_frames, gainL, gainR, flags); memcpy(obuf + oframes * BYTES_PER_FRAME, outputbuf->readp, out_frames * BYTES_PER_FRAME); } else { memcpy(obuf + oframes * BYTES_PER_FRAME, silencebuf, out_frames * BYTES_PER_FRAME); } // don't update visu if we don't have enough data in buffer if (silence || output.external || _buf_used(outputbuf) > outputbuf->size >> 2 ) { output_visu_export(obuf + oframes * BYTES_PER_FRAME, out_frames, output.current_sample_rate, silence, (gainL + gainR) / 2); } oframes += out_frames; return out_frames; } /**************************************************************************************** * Main output thread */ static void output_thread_i2s(void *arg) { size_t bytes; frames_t iframes = FRAME_BLOCK; uint32_t timer_start = 0; int discard = 0; uint32_t fullness = gettime_ms(); bool synced; output_state state = OUTPUT_OFF - 1; while (running) { TIME_MEASUREMENT_START(timer_start); LOCK; // manage led display & analogue if (state != output.state) { LOG_INFO("Output state is %d", output.state); if (output.state == OUTPUT_OFF) { led_blink(LED_GREEN, 100, 2500); if (amp_control.gpio != -1) gpio_set_level_x(amp_control.gpio, !amp_control.active); LOG_INFO("switching off amp GPIO %d", amp_control.gpio); } else if (output.state == OUTPUT_STOPPED) { adac->speaker(false); led_blink(LED_GREEN, 200, 1000); } else if (output.state == OUTPUT_RUNNING) { if (!jack_mutes_amp || !jack_inserted_svc()) { if (amp_control.gpio != -1) gpio_set_level_x(amp_control.gpio, amp_control.active); adac->speaker(true); } led_on(LED_GREEN); } } state = output.state; if (output.state == OUTPUT_OFF) { UNLOCK; if (isI2SStarted) { isI2SStarted = false; i2s_stop(CONFIG_I2S_NUM); adac->power(ADAC_STANDBY); spdif.count = 0; } usleep(100000); continue; } else if (output.state == OUTPUT_STOPPED) { synced = false; } oframes = 0; output.updated = gettime_ms(); output.frames_played_dmp = output.frames_played; // try to estimate how much we have consumed from the DMA buffer (calculation is incorrect at the very beginning ...) output.device_frames = dma_buf_frames - ((output.updated - fullness) * output.current_sample_rate) / 1000; _output_frames( iframes ); // oframes must be a global updated by the write callback output.frames_in_process = oframes; SET_MIN_MAX_SIZED(oframes,rec,iframes); SET_MIN_MAX_SIZED(_buf_used(outputbuf),o,outputbuf->size); SET_MIN_MAX_SIZED(_buf_used(streambuf),s,streambuf->size); SET_MIN_MAX( TIME_MEASUREMENT_GET(timer_start),buffering); /* must skip first whatever is in the pipe (but not when resuming). This test is incorrect when we pause a track that has just started, but this is higly unlikely and I don't have a better one for now */ if (output.state == OUTPUT_START_AT) { discard = output.frames_played_dmp ? 0 : output.device_frames; synced = true; } else if (discard) { discard -= oframes; iframes = discard ? min(FRAME_BLOCK, discard) : FRAME_BLOCK; UNLOCK; continue; } UNLOCK; // now send all the data TIME_MEASUREMENT_START(timer_start); if (!isI2SStarted ) { isI2SStarted = true; LOG_INFO("Restarting I2S."); i2s_zero_dma_buffer(CONFIG_I2S_NUM); i2s_start(CONFIG_I2S_NUM); adac->power(ADAC_ON); } // this does not work well as set_sample_rates resets the fifos (and it's too early) if (i2s_config.sample_rate != output.current_sample_rate) { LOG_INFO("changing sampling rate %u to %u", i2s_config.sample_rate, output.current_sample_rate); if (synced) { /* // can sleep for a buffer_queue - 1 and then eat a buffer (discard) if we are synced usleep(((DMA_BUF_COUNT - 1) * DMA_BUF_LEN * BYTES_PER_FRAME * 1000) / 44100 * 1000); discard = DMA_BUF_COUNT * DMA_BUF_LEN * BYTES_PER_FRAME; */ } i2s_config.sample_rate = output.current_sample_rate; i2s_set_sample_rates(CONFIG_I2S_NUM, spdif.enabled ? i2s_config.sample_rate * 2 : i2s_config.sample_rate); i2s_zero_dma_buffer(CONFIG_I2S_NUM); #if BYTES_PER_FRAME == 4 equalizer_close(); equalizer_open(output.current_sample_rate); #endif } #if BYTES_PER_FRAME == 4 // run equalizer equalizer_process(obuf, oframes * BYTES_PER_FRAME, output.current_sample_rate); #endif // we assume that here we have been able to entirely fill the DMA buffers if (spdif.enabled) { size_t obytes, count = 0; bytes = 0; // need IRAM for speed but can't allocate a FRAME_BLOCK * 16, so process by smaller chunks while (count < oframes) { size_t chunk = min(SPDIF_BLOCK, oframes - count); spdif_convert((ISAMPLE_T*) obuf + count * 2, chunk, (u32_t*) spdif.buf, &spdif.count); i2s_write(CONFIG_I2S_NUM, spdif.buf, chunk * 16, &obytes, portMAX_DELAY); bytes += obytes / (16 / BYTES_PER_FRAME); count += chunk; } #if BYTES_PER_FRAME == 4 } else if (i2s_config.bits_per_sample == 32) { i2s_write_expand(CONFIG_I2S_NUM, obuf, oframes * BYTES_PER_FRAME, 16, 32, &bytes, portMAX_DELAY); #endif } else { i2s_write(CONFIG_I2S_NUM, obuf, oframes * BYTES_PER_FRAME, &bytes, portMAX_DELAY); } fullness = gettime_ms(); if (bytes != oframes * BYTES_PER_FRAME) { LOG_WARN("I2S DMA Overflow! available bytes: %d, I2S wrote %d bytes", oframes * BYTES_PER_FRAME, bytes); } SET_MIN_MAX( TIME_MEASUREMENT_GET(timer_start),i2s_time); } if (spdif.enabled) free(spdif.buf); ended = true; vTaskDelete(NULL); } /**************************************************************************************** * Stats output thread */ static void output_thread_i2s_stats(void *arg) { while (1) { // no need to lock output_state state = output.state; if(stats && state>OUTPUT_STOPPED){ LOG_INFO( "Output State: %d, current sample rate: %d, bytes per frame: %d",state,output.current_sample_rate, BYTES_PER_FRAME); LOG_INFO( LINE_MIN_MAX_FORMAT_HEAD1); LOG_INFO( LINE_MIN_MAX_FORMAT_HEAD2); LOG_INFO( LINE_MIN_MAX_FORMAT_HEAD3); LOG_INFO( LINE_MIN_MAX_FORMAT_HEAD4); LOG_INFO(LINE_MIN_MAX_FORMAT_STREAM, LINE_MIN_MAX_STREAM("stream",s)); LOG_INFO(LINE_MIN_MAX_FORMAT,LINE_MIN_MAX("output",o)); LOG_INFO(LINE_MIN_MAX_FORMAT_FOOTER); LOG_INFO(LINE_MIN_MAX_FORMAT,LINE_MIN_MAX("received",rec)); LOG_INFO(LINE_MIN_MAX_FORMAT_FOOTER); LOG_INFO(""); LOG_INFO(" ----------+----------+-----------+-----------+ "); LOG_INFO(" max (us) | min (us) | avg(us) | count | "); LOG_INFO(" ----------+----------+-----------+-----------+ "); LOG_INFO(LINE_MIN_MAX_DURATION_FORMAT,LINE_MIN_MAX_DURATION("Buffering(us)",buffering)); LOG_INFO(LINE_MIN_MAX_DURATION_FORMAT,LINE_MIN_MAX_DURATION("i2s tfr(us)",i2s_time)); LOG_INFO(" ----------+----------+-----------+-----------+"); RESET_ALL_MIN_MAX; } vTaskDelay( pdMS_TO_TICKS( STATS_PERIOD_MS ) ); } } /**************************************************************************************** * SPDIF support */ #define PREAMBLE_B (0xE8) //11101000 #define PREAMBLE_M (0xE2) //11100010 #define PREAMBLE_W (0xE4) //11100100 #define VUCP ((0xCC) << 24) #define VUCP_MUTE ((0xD4) << 24) // To mute PCM, set VUCP = invalid. static const u16_t spdif_bmclookup[256] = { //biphase mark encoded values (least significant bit first) 0xcccc, 0x4ccc, 0x2ccc, 0xaccc, 0x34cc, 0xb4cc, 0xd4cc, 0x54cc, 0x32cc, 0xb2cc, 0xd2cc, 0x52cc, 0xcacc, 0x4acc, 0x2acc, 0xaacc, 0x334c, 0xb34c, 0xd34c, 0x534c, 0xcb4c, 0x4b4c, 0x2b4c, 0xab4c, 0xcd4c, 0x4d4c, 0x2d4c, 0xad4c, 0x354c, 0xb54c, 0xd54c, 0x554c, 0x332c, 0xb32c, 0xd32c, 0x532c, 0xcb2c, 0x4b2c, 0x2b2c, 0xab2c, 0xcd2c, 0x4d2c, 0x2d2c, 0xad2c, 0x352c, 0xb52c, 0xd52c, 0x552c, 0xccac, 0x4cac, 0x2cac, 0xacac, 0x34ac, 0xb4ac, 0xd4ac, 0x54ac, 0x32ac, 0xb2ac, 0xd2ac, 0x52ac, 0xcaac, 0x4aac, 0x2aac, 0xaaac, 0x3334, 0xb334, 0xd334, 0x5334, 0xcb34, 0x4b34, 0x2b34, 0xab34, 0xcd34, 0x4d34, 0x2d34, 0xad34, 0x3534, 0xb534, 0xd534, 0x5534, 0xccb4, 0x4cb4, 0x2cb4, 0xacb4, 0x34b4, 0xb4b4, 0xd4b4, 0x54b4, 0x32b4, 0xb2b4, 0xd2b4, 0x52b4, 0xcab4, 0x4ab4, 0x2ab4, 0xaab4, 0xccd4, 0x4cd4, 0x2cd4, 0xacd4, 0x34d4, 0xb4d4, 0xd4d4, 0x54d4, 0x32d4, 0xb2d4, 0xd2d4, 0x52d4, 0xcad4, 0x4ad4, 0x2ad4, 0xaad4, 0x3354, 0xb354, 0xd354, 0x5354, 0xcb54, 0x4b54, 0x2b54, 0xab54, 0xcd54, 0x4d54, 0x2d54, 0xad54, 0x3554, 0xb554, 0xd554, 0x5554, 0x3332, 0xb332, 0xd332, 0x5332, 0xcb32, 0x4b32, 0x2b32, 0xab32, 0xcd32, 0x4d32, 0x2d32, 0xad32, 0x3532, 0xb532, 0xd532, 0x5532, 0xccb2, 0x4cb2, 0x2cb2, 0xacb2, 0x34b2, 0xb4b2, 0xd4b2, 0x54b2, 0x32b2, 0xb2b2, 0xd2b2, 0x52b2, 0xcab2, 0x4ab2, 0x2ab2, 0xaab2, 0xccd2, 0x4cd2, 0x2cd2, 0xacd2, 0x34d2, 0xb4d2, 0xd4d2, 0x54d2, 0x32d2, 0xb2d2, 0xd2d2, 0x52d2, 0xcad2, 0x4ad2, 0x2ad2, 0xaad2, 0x3352, 0xb352, 0xd352, 0x5352, 0xcb52, 0x4b52, 0x2b52, 0xab52, 0xcd52, 0x4d52, 0x2d52, 0xad52, 0x3552, 0xb552, 0xd552, 0x5552, 0xccca, 0x4cca, 0x2cca, 0xacca, 0x34ca, 0xb4ca, 0xd4ca, 0x54ca, 0x32ca, 0xb2ca, 0xd2ca, 0x52ca, 0xcaca, 0x4aca, 0x2aca, 0xaaca, 0x334a, 0xb34a, 0xd34a, 0x534a, 0xcb4a, 0x4b4a, 0x2b4a, 0xab4a, 0xcd4a, 0x4d4a, 0x2d4a, 0xad4a, 0x354a, 0xb54a, 0xd54a, 0x554a, 0x332a, 0xb32a, 0xd32a, 0x532a, 0xcb2a, 0x4b2a, 0x2b2a, 0xab2a, 0xcd2a, 0x4d2a, 0x2d2a, 0xad2a, 0x352a, 0xb52a, 0xd52a, 0x552a, 0xccaa, 0x4caa, 0x2caa, 0xacaa, 0x34aa, 0xb4aa, 0xd4aa, 0x54aa, 0x32aa, 0xb2aa, 0xd2aa, 0x52aa, 0xcaaa, 0x4aaa, 0x2aaa, 0xaaaa }; /* SPDIF is supposed to be (before BMC encoding, from LSB to MSB) PPPP AAAA SSSS SSSS SSSS SSSS SSSS VUCP after BMC encoding, each bits becomes 2 hence this becomes a 64 bits word. The the trick is to start not with a PPPP sequence but with an VUCP sequence to that the 16 bits samples are aligned with a BMC word boundary. Note that the LSB of the audio is transmitted first (not the MSB) and that ESP32 libray sends R then L, contrary to what seems to be usually done, so (dst) order had to be changed */ static void IRAM_ATTR spdif_convert(ISAMPLE_T *src, size_t frames, u32_t *dst, size_t *count) { register u16_t hi, lo, aux; size_t cnt = *count; while (frames--) { // start with left channel #if BYTES_PER_FRAME == 4 hi = spdif_bmclookup[(u8_t)(*src >> 8)]; lo = spdif_bmclookup[(u8_t) *src++]; // invert if last preceeding bit is 1 lo ^= ~((s16_t)hi) >> 16; // first 16 bits *dst++ = ((u32_t)lo << 16) | hi; aux = 0xb333 ^ (((u32_t)((s16_t)lo)) >> 17); #else hi = spdif_bmclookup[(u8_t)(*src >> 24)]; lo = spdif_bmclookup[(u8_t)(*src >> 16)]; // invert if last preceeding bit is 1 lo ^= ~((s16_t)hi) >> 16; // first 16 bits *dst++ = ((u32_t)lo << 16) | hi; // we use 20 bits samples as we need to force parity aux = spdif_bmclookup[(u8_t)(*src++ >> 12)]; aux = (u8_t) (aux ^ (~((s16_t)lo) >> 16)); aux |= (0xb3 ^ (((u16_t)((s8_t)aux)) >> 9)) << 8; #endif // VUCP-Bits: Valid, Subcode, Channelstatus, Parity = 0 // As parity is always 0, we can use fixed preambles if (++cnt > 191) { *dst++ = VUCP | (PREAMBLE_B << 16 ) | aux; //special preamble for one of 192 frames cnt = 0; } else { *dst++ = VUCP | (PREAMBLE_M << 16) | aux; } // then do right channel, no need to check PREAMBLE_B #if BYTES_PER_FRAME == 4 hi = spdif_bmclookup[(u8_t)(*src >> 8)]; lo = spdif_bmclookup[(u8_t) *src++]; lo ^= ~((s16_t)hi) >> 16; *dst++ = ((u32_t)lo << 16) | hi; aux = 0xb333 ^ (((u32_t)((s16_t)lo)) >> 17); #else hi = spdif_bmclookup[(u8_t)(*src >> 24)]; lo = spdif_bmclookup[(u8_t)(*src >> 16)]; lo ^= ~((s16_t)hi) >> 16; *dst++ = ((u32_t)lo << 16) | hi; aux = spdif_bmclookup[(u8_t)(*src++ >> 12)]; aux = (u8_t) (aux ^ (~((s16_t)lo) >> 16)); aux |= (0xb3 ^ (((u16_t)((s8_t)aux)) >> 9)) << 8; #endif *dst++ = VUCP | (PREAMBLE_W << 16) | aux; } *count = cnt; }