/* * Squeezelite for esp32 * * (c) Sebastien 2019 * Philippe G. 2019, philippe_44@outlook.com * * This software is released under the MIT License. * https://opensource.org/licenses/MIT * */ /* Synchronisation is a bit of a hack with i2s. The esp32 driver is always full when it starts, so there is a delay of the total length of buffers. In other words, i2s_write blocks at first call, until at least one buffer has been written (it uses a queue with produce / consume). The first hack is to consume that length at the beginning of tracks when synchronization is active. It's about ~180ms @ 44.1kHz The second hack is that we never know exactly the number of frames in the DMA buffers when we update the output.frames_played_dmp. We assume that after i2s_write, these buffers are always full so by measuring the gap between time after i2s_write and update of frames_played_dmp, we have a good idea of the error. The third hack is when sample rate changes, buffers are reset and we also do the change too early, but can't do that exaclty at the right time. So there might be a pop and a de-sync when sampling rate change happens. Not sure that using rate_delay would fix that */ #include "squeezelite.h" #include "slimproto.h" #include "esp_pthread.h" #include "driver/i2s.h" #include "driver/i2c.h" #include "driver/gpio.h" #include "perf_trace.h" #include #include "adac.h" #include "time.h" #include "led.h" #include "services.h" #include "monitor.h" #include "platform_config.h" #include "gpio_exp.h" #include "accessors.h" #include "equalizer.h" #include "globdefs.h" #define LOCK mutex_lock(outputbuf->mutex) #define UNLOCK mutex_unlock(outputbuf->mutex) #define FRAME_BLOCK MAX_SILENCE_FRAMES #define SPDIF_BLOCK 256 /* we produce FRAME_BLOCK (2048) per loop of the i2s thread so it's better if they fit * inside a set of DMA buffer nicely, i.e. DMA_BUF_FRAMES * DMA_BUF_COUNT is a multiple * of FRAME_BLOCK so that each DMA buffer is filled and we fully empty a FRAME_BLOCK at * each loop. Because one DMA buffer in esp32 is 4092 or below, when using 16 bits * samples and 2 channels, the best multiple is 512 (512*2*2=2048) and we use 6 of these. * In SPDIF, as we virtually use 32 bits per sample, the next proper multiple would * be 256 but such DMA buffers are too small and this causes stuttering. So we will use * non-multiples which means that at every loop one DMA buffer will be not fully filled. * At least, let's make sure it's not a too small amount of samples so 450*4*2=3600 fits * nicely in one DMA buffer and 2048/450 = 4 buffers + ~1/2 buffer which is acceptable. */ #define DMA_BUF_FRAMES 512 #define DMA_BUF_COUNT 12 #define DMA_BUF_FRAMES_SPDIF 450 #define DMA_BUF_COUNT_SPDIF 7 #define DECLARE_ALL_MIN_MAX \ DECLARE_MIN_MAX(o); \ DECLARE_MIN_MAX(s); \ DECLARE_MIN_MAX(rec); \ DECLARE_MIN_MAX(i2s_time); \ DECLARE_MIN_MAX(buffering); #define RESET_ALL_MIN_MAX \ RESET_MIN_MAX(o); \ RESET_MIN_MAX(s); \ RESET_MIN_MAX(rec); \ RESET_MIN_MAX(i2s_time); \ RESET_MIN_MAX(buffering); #define STATS_PERIOD_MS 5000 static void (*pseudo_idle_chain)(uint32_t now); #ifndef CONFIG_AMP_GPIO_LEVEL #define CONFIG_AMP_GPIO_LEVEL 1 #endif extern struct outputstate output; extern struct buffer *streambuf; extern struct buffer *outputbuf; extern u8_t *silencebuf; const struct adac_s *dac_set[] = { &dac_tas57xx, &dac_tas5713, &dac_ac101, &dac_wm8978, NULL }; const struct adac_s *adac = &dac_external; static log_level loglevel; static uint32_t i2s_idle_since; static void (*pseudo_idle_chain)(uint32_t); static bool (*slimp_handler_chain)(u8_t *data, int len); static bool jack_mutes_amp; static bool running, isI2SStarted, ended; static i2s_config_t i2s_config; static u8_t *obuf; static frames_t oframes; static struct { bool enabled; u8_t *buf; } spdif; static size_t dma_buf_frames; static TaskHandle_t output_i2s_task; static struct { int gpio, active; } amp_control = { CONFIG_AMP_GPIO, CONFIG_AMP_GPIO_LEVEL }, mute_control = { CONFIG_MUTE_GPIO, CONFIG_MUTE_GPIO_LEVEL }; DECLARE_ALL_MIN_MAX; static int _i2s_write_frames(frames_t out_frames, bool silence, s32_t gainL, s32_t gainR, u8_t flags, s32_t cross_gain_in, s32_t cross_gain_out, ISAMPLE_T **cross_ptr); static void output_thread_i2s(void *arg); static void i2s_stats(uint32_t now); static void spdif_convert(ISAMPLE_T *src, size_t frames, u32_t *dst); static void (*jack_handler_chain)(bool inserted); #define I2C_PORT 0 /**************************************************************************************** * AUDO packet handler */ static bool handler(u8_t *data, int len){ bool res = true; if (!strncmp((char*) data, "audo", 4)) { struct audo_packet *pkt = (struct audo_packet*) data; // 0 = headphone (internal speakers off), 1 = sub out, // 2 = always on (internal speakers on), 3 = always off if (jack_mutes_amp != (pkt->config == 0)) { jack_mutes_amp = pkt->config == 0; config_set_value(NVS_TYPE_STR, "jack_mutes_amp", jack_mutes_amp ? "y" : "n"); if (jack_mutes_amp && jack_inserted_svc()) { adac->speaker(false); if (amp_control.gpio != -1) gpio_set_level_x(amp_control.gpio, !amp_control.active); } else { adac->speaker(true); if (amp_control.gpio != -1) gpio_set_level_x(amp_control.gpio, amp_control.active); } } LOG_INFO("got AUDO %02x", pkt->config); } else { res = false; } // chain protocol handlers (bitwise or is fine) if (*slimp_handler_chain) res |= (*slimp_handler_chain)(data, len); return res; } /**************************************************************************************** * jack insertion handler */ static void jack_handler(bool inserted) { // jack detection bounces a bit but that seems fine if (jack_mutes_amp) { LOG_INFO("switching amplifier %s", inserted ? "OFF" : "ON"); adac->speaker(!inserted); if (amp_control.gpio != -1) gpio_set_level_x(amp_control.gpio, inserted ? !amp_control.active : amp_control.active); } // activate headset adac->headset(inserted); // and chain if any if (jack_handler_chain) (jack_handler_chain)(inserted); } /**************************************************************************************** * amp GPIO */ #ifndef AMP_LOCKED static void set_amp_gpio(int gpio, char *value) { char *p; if (strcasestr(value, "amp")) { amp_control.gpio = gpio; if ((p = strchr(value, ':')) != NULL) amp_control.active = atoi(p + 1); } } #endif /**************************************************************************************** * Get inactivity callback */ static uint32_t i2s_idle_callback(void) { return output.state <= OUTPUT_STOPPED ? pdTICKS_TO_MS(xTaskGetTickCount()) - i2s_idle_since : 0; } /**************************************************************************************** * Set pin from config string */ static void set_i2s_pin(char *config, i2s_pin_config_t *pin_config) { pin_config->bck_io_num = pin_config->ws_io_num = pin_config->data_out_num = pin_config->data_in_num = -1; PARSE_PARAM(config, "bck", '=', pin_config->bck_io_num); PARSE_PARAM(config, "ws", '=', pin_config->ws_io_num); PARSE_PARAM(config, "do", '=', pin_config->data_out_num); #if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 4, 0) pin_config->mck_io_num = strcasestr(config, "mck") ? 0 : -1; PARSE_PARAM(config, "mck", '=', pin_config->mck_io_num); #endif } /* When a panic occurs during playback, the I2S interface can produce a loud noise burst. * This code runs just before the system panic handler to "emergency stop" the I2S iterface * to prevent the noise burst from happening. Note that when this code is called the system * has already crashed, so no need to disable interrupts, acquire locks, or otherwise be nice. * * This code makes use of the linker --wrap feature to intercept the call to esp_panic_handler. */ void __real_esp_panic_handler(void*); void __wrap_esp_panic_handler (void* info) { esp_rom_printf("I2S abort!\r\n"); i2s_stop(CONFIG_I2S_NUM); /* Call the original panic handler function to finish processing this error */ __real_esp_panic_handler(info); } /**************************************************************************************** * Initialize the DAC output */ void output_init_i2s(log_level level, char *device, unsigned output_buf_size, char *params, unsigned rates[], unsigned rate_delay, unsigned idle) { loglevel = level; int silent_do = -1; char *p; esp_err_t res; // chain SLIMP handlers slimp_handler_chain = slimp_handler; slimp_handler = handler; p = config_alloc_get_default(NVS_TYPE_STR, "jack_mutes_amp", "n", 0); jack_mutes_amp = (strcmp(p,"1") == 0 ||strcasecmp(p,"y") == 0); free(p); #if BYTES_PER_FRAME == 8 output.format = S32_LE; #else output.format = S16_LE; #endif output.write_cb = &_i2s_write_frames; obuf = malloc(FRAME_BLOCK * BYTES_PER_FRAME); if (!obuf) { LOG_ERROR("Cannot allocate i2s buffer"); return; } running = true; // get SPDIF configuration from NVS or compile char *spdif_config = config_alloc_get_str("spdif_config", CONFIG_SPDIF_CONFIG, "bck=" STR(CONFIG_SPDIF_BCK_IO) ",ws=" STR(CONFIG_SPDIF_WS_IO) ",do=" STR(CONFIG_SPDIF_DO_IO)); char *dac_config = config_alloc_get_str("dac_config", CONFIG_DAC_CONFIG, "model=i2s,bck=" STR(CONFIG_I2S_BCK_IO) ",ws=" STR(CONFIG_I2S_WS_IO) ",do=" STR(CONFIG_I2S_DO_IO) ",mck=" STR(CONFIG_I2S_MCK_IO) ",sda=" STR(CONFIG_I2C_SDA) ",scl=" STR(CONFIG_I2C_SCL) ",mute=" STR(CONFIG_MUTE_GPIO)); i2s_pin_config_t i2s_dac_pin, i2s_spdif_pin; set_i2s_pin(spdif_config, &i2s_spdif_pin); set_i2s_pin(dac_config, &i2s_dac_pin); if (i2s_dac_pin.data_out_num == -1 && i2s_spdif_pin.data_out_num == -1) { LOG_WARN("DAC and SPDIF not configured, NOT launching i2s thread"); return; } // common I2S initialization i2s_config.mode = I2S_MODE_MASTER | I2S_MODE_TX; i2s_config.channel_format = I2S_CHANNEL_FMT_RIGHT_LEFT; i2s_config.communication_format = I2S_COMM_FORMAT_STAND_I2S; // in case of overflow, do not replay old buffer i2s_config.tx_desc_auto_clear = true; #ifndef CONFIG_IDF_TARGET_ESP32S3 i2s_config.use_apll = true; #endif i2s_config.intr_alloc_flags = ESP_INTR_FLAG_LEVEL1; //Interrupt level 1 i2s_config.dma_buf_len = DMA_BUF_FRAMES; i2s_config.dma_buf_count = DMA_BUF_COUNT; if (strcasestr(device, "spdif")) { spdif.enabled = true; if ((spdif.buf = heap_caps_malloc(SPDIF_BLOCK * 16, MALLOC_CAP_INTERNAL)) == NULL) { LOG_ERROR("Cannot allocate SPDIF buffer"); } if (i2s_spdif_pin.bck_io_num == -1 || i2s_spdif_pin.ws_io_num == -1 || i2s_spdif_pin.data_out_num == -1) { LOG_WARN("Cannot initialize I2S for SPDIF bck:%d ws:%d do:%d", i2s_spdif_pin.bck_io_num, i2s_spdif_pin.ws_io_num, i2s_spdif_pin.data_out_num); } i2s_config.sample_rate = output.current_sample_rate * 2; i2s_config.bits_per_sample = 32; // Normally counted in frames, but 16 sample are transformed into 32 bits in spdif i2s_config.dma_buf_len = DMA_BUF_FRAMES_SPDIF; i2s_config.dma_buf_count = DMA_BUF_COUNT_SPDIF; /* In DMA, we have room for (LEN * COUNT) frames of 32 bits samples that we push at sample_rate * 2. Each of these pseudo-frames is a single true audio frame. So the real depth in true frames is (LEN * COUNT / 2) */ dma_buf_frames = i2s_config.dma_buf_len * i2s_config.dma_buf_count / 2; // silence DAC output if sharing the same ws/bck if (i2s_dac_pin.ws_io_num == i2s_spdif_pin.ws_io_num && i2s_dac_pin.bck_io_num == i2s_spdif_pin.bck_io_num) silent_do = i2s_dac_pin.data_out_num; res = i2s_driver_install(CONFIG_I2S_NUM, &i2s_config, 0, NULL); res |= i2s_set_pin(CONFIG_I2S_NUM, &i2s_spdif_pin); LOG_INFO("SPDIF using I2S bck:%d, ws:%d, do:%d", i2s_spdif_pin.bck_io_num, i2s_spdif_pin.ws_io_num, i2s_spdif_pin.data_out_num); } else { i2s_config.sample_rate = output.current_sample_rate; i2s_config.bits_per_sample = BYTES_PER_FRAME * 8 / 2; // Counted in frames (but i2s allocates a buffer <= 4092 bytes) i2s_config.dma_buf_len = DMA_BUF_FRAMES; i2s_config.dma_buf_count = DMA_BUF_COUNT; dma_buf_frames = i2s_config.dma_buf_len * i2s_config.dma_buf_count; // silence SPDIF output silent_do = i2s_spdif_pin.data_out_num; char model[32] = "i2s"; if ((p = strcasestr(dac_config, "model")) != NULL) sscanf(p, "%*[^=]=%31[^,]", model); if ((p = strcasestr(dac_config, "mute")) != NULL) { char mute[8] = ""; sscanf(p, "%*[^=]=%7[^,]", mute); mute_control.gpio = atoi(mute); if ((p = strchr(mute, ':')) != NULL) mute_control.active = atoi(p + 1); } bool mck_required = false; for (int i = 0; adac == &dac_external && dac_set[i]; i++) if (strcasestr(dac_set[i]->model, model)) adac = dac_set[i]; res = adac->init(dac_config, I2C_PORT, &i2s_config, &mck_required) ? ESP_OK : ESP_FAIL; #if ESP_IDF_VERSION < ESP_IDF_VERSION_VAL(4, 4, 0) int mck_io_num = strcasestr(dac_config, "mck") || mck_required ? 0 : -1; PARSE_PARAM(dac_config, "mck", '=', mck_io_num); LOG_INFO("configuring MCLK on GPIO %d", mck_io_num); if (mck_io_num == GPIO_NUM_0) { PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO0_U, FUNC_GPIO0_CLK_OUT1); WRITE_PERI_REG(PIN_CTRL, CONFIG_I2S_NUM == I2S_NUM_0 ? 0xFFF0 : 0xFFFF); } else if (mck_io_num == GPIO_NUM_1) { PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD_CLK_OUT3); WRITE_PERI_REG(PIN_CTRL, CONFIG_I2S_NUM == I2S_NUM_0 ? 0xF0F0 : 0xF0FF); } else if (mck_io_num == GPIO_NUM_2) { PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD_CLK_OUT2); WRITE_PERI_REG(PIN_CTRL, CONFIG_I2S_NUM == I2S_NUM_0 ? 0xFF00 : 0xFF0F); } else { LOG_WARN("invalid MCK gpio %d", mck_io_num); } #else if (mck_required && i2s_dac_pin.mck_io_num == -1) i2s_dac_pin.mck_io_num = 0; LOG_INFO("configuring MCLK on GPIO %d", i2s_dac_pin.mck_io_num); #endif res |= i2s_driver_install(CONFIG_I2S_NUM, &i2s_config, 0, NULL); res |= i2s_set_pin(CONFIG_I2S_NUM, &i2s_dac_pin); if (res == ESP_OK && mute_control.gpio >= 0) { gpio_pad_select_gpio(mute_control.gpio); gpio_set_direction(mute_control.gpio, GPIO_MODE_OUTPUT); gpio_set_level(mute_control.gpio, mute_control.active); } LOG_INFO("%s DAC using I2S bck:%d, ws:%d, do:%d, mute:%d:%d (res:%d)", model, i2s_dac_pin.bck_io_num, i2s_dac_pin.ws_io_num, i2s_dac_pin.data_out_num, mute_control.gpio, mute_control.active, res); } free(dac_config); free(spdif_config); if (res != ESP_OK) { LOG_WARN("no DAC configured"); return; } // turn off GPIO than is not used (SPDIF of DAC DO when shared) if (silent_do >= 0) { gpio_pad_select_gpio(silent_do); gpio_set_direction(silent_do, GPIO_MODE_OUTPUT); gpio_set_level(silent_do, 0); } LOG_INFO("Initializing I2S mode %s with rate: %d, bits per sample: %d, buffer frames: %d, number of buffers: %d ", spdif.enabled ? "S/PDIF" : "normal", i2s_config.sample_rate, i2s_config.bits_per_sample, i2s_config.dma_buf_len, i2s_config.dma_buf_count); i2s_stop(CONFIG_I2S_NUM); i2s_zero_dma_buffer(CONFIG_I2S_NUM); isI2SStarted=false; equalizer_set_samplerate(output.current_sample_rate); adac->power(ADAC_STANDBY); jack_handler_chain = jack_handler_svc; jack_handler_svc = jack_handler; #ifndef AMP_LOCKED parse_set_GPIO(set_amp_gpio); #endif if (amp_control.gpio != -1) { gpio_pad_select_gpio_x(amp_control.gpio); gpio_set_direction_x(amp_control.gpio, GPIO_MODE_OUTPUT); gpio_set_level_x(amp_control.gpio, !amp_control.active); LOG_INFO("setting amplifier GPIO %d (active:%d)", amp_control.gpio, amp_control.active); } if (jack_mutes_amp && jack_inserted_svc()) adac->speaker(false); else adac->speaker(true); adac->headset(jack_inserted_svc()); // do we want stats p = config_alloc_get_default(NVS_TYPE_STR, "stats", "n", 0); if (p && (*p == '1' || *p == 'Y' || *p == 'y')) { pseudo_idle_chain = pseudo_idle_svc; pseudo_idle_svc = i2s_stats; } free(p); // register a callback for inactivity i2s_idle_since = pdTICKS_TO_MS(xTaskGetTickCount()); services_sleep_setsleeper(i2s_idle_callback); // create task as a FreeRTOS task but uses stack in internal RAM { static DRAM_ATTR StaticTask_t xTaskBuffer __attribute__ ((aligned (4))); static EXT_RAM_ATTR StackType_t xStack[OUTPUT_THREAD_STACK_SIZE] __attribute__ ((aligned (4))); output_i2s_task = xTaskCreateStaticPinnedToCore( (TaskFunction_t) output_thread_i2s, "output_i2s", OUTPUT_THREAD_STACK_SIZE, NULL, CONFIG_ESP32_PTHREAD_TASK_PRIO_DEFAULT + 10, xStack, &xTaskBuffer, 0 ); } } /**************************************************************************************** * Terminate DAC output */ void output_close_i2s(void) { LOCK; running = false; UNLOCK; while (!ended) vTaskDelay(20 / portTICK_PERIOD_MS); i2s_driver_uninstall(CONFIG_I2S_NUM); free(obuf); equalizer_close(); adac->deinit(); } /**************************************************************************************** * change volume */ bool output_volume_i2s(unsigned left, unsigned right) { if (mute_control.gpio >= 0) gpio_set_level(mute_control.gpio, (left | right) ? !mute_control.active : mute_control.active); return adac->volume(left, right); } /**************************************************************************************** * Write frames to the output buffer */ static int _i2s_write_frames(frames_t out_frames, bool silence, s32_t gainL, s32_t gainR, u8_t flags, s32_t cross_gain_in, s32_t cross_gain_out, ISAMPLE_T **cross_ptr) { if (!silence) { if (output.fade == FADE_ACTIVE && output.fade_dir == FADE_CROSS && *cross_ptr) { _apply_cross(outputbuf, out_frames, cross_gain_in, cross_gain_out, cross_ptr); } _apply_gain(outputbuf, out_frames, gainL, gainR, flags); memcpy(obuf + oframes * BYTES_PER_FRAME, outputbuf->readp, out_frames * BYTES_PER_FRAME); } else { memcpy(obuf + oframes * BYTES_PER_FRAME, silencebuf, out_frames * BYTES_PER_FRAME); } // don't update visu if we don't have enough data in buffer (500 ms) if (silence || _buf_used(outputbuf) > BYTES_PER_FRAME * output.current_sample_rate / 2) { output_visu_export(obuf + oframes * BYTES_PER_FRAME, out_frames, output.current_sample_rate, silence, (gainL + gainR) / 2); } oframes += out_frames; return out_frames; } /**************************************************************************************** * Main output thread */ static void output_thread_i2s(void *arg) { size_t bytes; frames_t iframes = FRAME_BLOCK; uint32_t timer_start = 0; int discard = 0; uint32_t fullness = gettime_ms(); bool synced; output_state state = OUTPUT_OFF - 1; while (running) { TIME_MEASUREMENT_START(timer_start); LOCK; // manage led display & analogue if (state != output.state) { LOG_INFO("Output state is %d", output.state); if (output.state == OUTPUT_OFF) { led_blink(LED_GREEN, 100, 2500); if (amp_control.gpio != -1) gpio_set_level_x(amp_control.gpio, !amp_control.active); LOG_INFO("switching off amp GPIO %d", amp_control.gpio); } else if (output.state == OUTPUT_STOPPED) { i2s_idle_since = pdTICKS_TO_MS(xTaskGetTickCount()); adac->speaker(false); led_blink(LED_GREEN, 200, 1000); } else if (output.state == OUTPUT_RUNNING) { if (!jack_mutes_amp || !jack_inserted_svc()) { if (amp_control.gpio != -1) gpio_set_level_x(amp_control.gpio, amp_control.active); adac->speaker(true); } led_on(LED_GREEN); } } state = output.state; if (output.state == OUTPUT_OFF) { UNLOCK; if (isI2SStarted) { isI2SStarted = false; i2s_stop(CONFIG_I2S_NUM); adac->power(ADAC_STANDBY); } usleep(100000); continue; } else if (output.state == OUTPUT_STOPPED) { synced = false; } oframes = 0; output.updated = gettime_ms(); output.frames_played_dmp = output.frames_played; // try to estimate how much we have consumed from the DMA buffer (calculation is incorrect at the very beginning ...) output.device_frames = dma_buf_frames - ((output.updated - fullness) * output.current_sample_rate) / 1000; // we'll try to produce iframes if we have any, but we might return less if outpuf does not have enough _output_frames( iframes ); // oframes must be a global updated by the write callback output.frames_in_process = oframes; SET_MIN_MAX_SIZED(oframes,rec,iframes); SET_MIN_MAX_SIZED(_buf_used(outputbuf),o,outputbuf->size); SET_MIN_MAX_SIZED(_buf_used(streambuf),s,streambuf->size); SET_MIN_MAX( TIME_MEASUREMENT_GET(timer_start),buffering); /* must skip first whatever is in the pipe (but not when resuming). This test is incorrect when we pause a track that has just started, but this is higly unlikely and I don't have a better one for now */ if (output.state == OUTPUT_START_AT) { discard = output.frames_played_dmp ? 0 : output.device_frames; synced = true; } else if (discard) { discard -= min(oframes, discard); iframes = discard ? min(FRAME_BLOCK, discard) : FRAME_BLOCK; UNLOCK; continue; } UNLOCK; // now send all the data TIME_MEASUREMENT_START(timer_start); if (!isI2SStarted ) { isI2SStarted = true; LOG_INFO("Restarting I2S."); i2s_zero_dma_buffer(CONFIG_I2S_NUM); i2s_start(CONFIG_I2S_NUM); adac->power(ADAC_ON); if (spdif.enabled) spdif_convert(NULL, 0, NULL); } // this does not work well as set_sample_rates resets the fifos (and it's too early) if (i2s_config.sample_rate != output.current_sample_rate) { LOG_INFO("changing sampling rate %u to %u", i2s_config.sample_rate, output.current_sample_rate); if (synced) { /* // can sleep for a buffer_queue - 1 and then eat a buffer (discard) if we are synced usleep(((DMA_BUF_COUNT - 1) * DMA_BUF_LEN * BYTES_PER_FRAME * 1000) / 44100 * 1000); discard = DMA_BUF_COUNT * DMA_BUF_LEN * BYTES_PER_FRAME; */ } i2s_config.sample_rate = output.current_sample_rate; i2s_set_sample_rates(CONFIG_I2S_NUM, spdif.enabled ? i2s_config.sample_rate * 2 : i2s_config.sample_rate); i2s_zero_dma_buffer(CONFIG_I2S_NUM); equalizer_set_samplerate(output.current_sample_rate); } // run equalizer equalizer_process(obuf, oframes * BYTES_PER_FRAME); // we assume that here we have been able to entirely fill the DMA buffers if (spdif.enabled) { size_t obytes, count = 0; bytes = 0; // need IRAM for speed but can't allocate a FRAME_BLOCK * 16, so process by smaller chunks while (count < oframes) { size_t chunk = min(SPDIF_BLOCK, oframes - count); spdif_convert((ISAMPLE_T*) obuf + count * 2, chunk, (u32_t*) spdif.buf); i2s_write(CONFIG_I2S_NUM, spdif.buf, chunk * 16, &obytes, portMAX_DELAY); bytes += obytes / (16 / BYTES_PER_FRAME); count += chunk; } #if BYTES_PER_FRAME == 4 } else if (i2s_config.bits_per_sample == 32) { i2s_write_expand(CONFIG_I2S_NUM, obuf, oframes * BYTES_PER_FRAME, 16, 32, &bytes, portMAX_DELAY); #endif } else { i2s_write(CONFIG_I2S_NUM, obuf, oframes * BYTES_PER_FRAME, &bytes, portMAX_DELAY); } fullness = gettime_ms(); if (bytes != oframes * BYTES_PER_FRAME) { LOG_WARN("I2S DMA Overflow! available bytes: %d, I2S wrote %d bytes", oframes * BYTES_PER_FRAME, bytes); } SET_MIN_MAX( TIME_MEASUREMENT_GET(timer_start),i2s_time); } if (spdif.enabled) free(spdif.buf); ended = true; vTaskDelete(NULL); } /**************************************************************************************** * stats output callback */ static void i2s_stats(uint32_t now) { static uint32_t last; // first chain to next handler if (pseudo_idle_chain) pseudo_idle_chain(now); // then see if we need to act if (output.state <= OUTPUT_STOPPED || now < last + STATS_PERIOD_MS) return; last = now; LOG_INFO( "Output State: %d, current sample rate: %d, bytes per frame: %d", output.state, output.current_sample_rate, BYTES_PER_FRAME); LOG_INFO( LINE_MIN_MAX_FORMAT_HEAD1); LOG_INFO( LINE_MIN_MAX_FORMAT_HEAD2); LOG_INFO( LINE_MIN_MAX_FORMAT_HEAD3); LOG_INFO( LINE_MIN_MAX_FORMAT_HEAD4); LOG_INFO(LINE_MIN_MAX_FORMAT_STREAM, LINE_MIN_MAX_STREAM("stream",s)); LOG_INFO(LINE_MIN_MAX_FORMAT,LINE_MIN_MAX("output",o)); LOG_INFO(LINE_MIN_MAX_FORMAT_FOOTER); LOG_INFO(LINE_MIN_MAX_FORMAT,LINE_MIN_MAX("received",rec)); LOG_INFO(LINE_MIN_MAX_FORMAT_FOOTER); LOG_INFO(""); LOG_INFO(" ----------+----------+-----------+-----------+ "); LOG_INFO(" max (us) | min (us) | avg(us) | count | "); LOG_INFO(" ----------+----------+-----------+-----------+ "); LOG_INFO(LINE_MIN_MAX_DURATION_FORMAT,LINE_MIN_MAX_DURATION("Buffering(us)",buffering)); LOG_INFO(LINE_MIN_MAX_DURATION_FORMAT,LINE_MIN_MAX_DURATION("i2s tfr(us)",i2s_time)); LOG_INFO(" ----------+----------+-----------+-----------+"); RESET_ALL_MIN_MAX; } /**************************************************************************************** * SPDIF support */ #define PREAMBLE_B (0xE8) //11101000 #define PREAMBLE_M (0xE2) //11100010 #define PREAMBLE_W (0xE4) //11100100 static const u8_t VUCP24[2] = { 0xCC, 0x32 }; static const u16_t spdif_bmclookup[256] = { 0xcccc, 0xb333, 0xd333, 0xaccc, 0xcb33, 0xb4cc, 0xd4cc, 0xab33, 0xcd33, 0xb2cc, 0xd2cc, 0xad33, 0xcacc, 0xb533, 0xd533, 0xaacc, 0xccb3, 0xb34c, 0xd34c, 0xacb3, 0xcb4c, 0xb4b3, 0xd4b3, 0xab4c, 0xcd4c, 0xb2b3, 0xd2b3, 0xad4c, 0xcab3, 0xb54c, 0xd54c, 0xaab3, 0xccd3, 0xb32c, 0xd32c, 0xacd3, 0xcb2c, 0xb4d3, 0xd4d3, 0xab2c, 0xcd2c, 0xb2d3, 0xd2d3, 0xad2c, 0xcad3, 0xb52c, 0xd52c, 0xaad3, 0xccac, 0xb353, 0xd353, 0xacac, 0xcb53, 0xb4ac, 0xd4ac, 0xab53, 0xcd53, 0xb2ac, 0xd2ac, 0xad53, 0xcaac, 0xb553, 0xd553, 0xaaac, 0xcccb, 0xb334, 0xd334, 0xaccb, 0xcb34, 0xb4cb, 0xd4cb, 0xab34, 0xcd34, 0xb2cb, 0xd2cb, 0xad34, 0xcacb, 0xb534, 0xd534, 0xaacb, 0xccb4, 0xb34b, 0xd34b, 0xacb4, 0xcb4b, 0xb4b4, 0xd4b4, 0xab4b, 0xcd4b, 0xb2b4, 0xd2b4, 0xad4b, 0xcab4, 0xb54b, 0xd54b, 0xaab4, 0xccd4, 0xb32b, 0xd32b, 0xacd4, 0xcb2b, 0xb4d4, 0xd4d4, 0xab2b, 0xcd2b, 0xb2d4, 0xd2d4, 0xad2b, 0xcad4, 0xb52b, 0xd52b, 0xaad4, 0xccab, 0xb354, 0xd354, 0xacab, 0xcb54, 0xb4ab, 0xd4ab, 0xab54, 0xcd54, 0xb2ab, 0xd2ab, 0xad54, 0xcaab, 0xb554, 0xd554, 0xaaab, 0xcccd, 0xb332, 0xd332, 0xaccd, 0xcb32, 0xb4cd, 0xd4cd, 0xab32, 0xcd32, 0xb2cd, 0xd2cd, 0xad32, 0xcacd, 0xb532, 0xd532, 0xaacd, 0xccb2, 0xb34d, 0xd34d, 0xacb2, 0xcb4d, 0xb4b2, 0xd4b2, 0xab4d, 0xcd4d, 0xb2b2, 0xd2b2, 0xad4d, 0xcab2, 0xb54d, 0xd54d, 0xaab2, 0xccd2, 0xb32d, 0xd32d, 0xacd2, 0xcb2d, 0xb4d2, 0xd4d2, 0xab2d, 0xcd2d, 0xb2d2, 0xd2d2, 0xad2d, 0xcad2, 0xb52d, 0xd52d, 0xaad2, 0xccad, 0xb352, 0xd352, 0xacad, 0xcb52, 0xb4ad, 0xd4ad, 0xab52, 0xcd52, 0xb2ad, 0xd2ad, 0xad52, 0xcaad, 0xb552, 0xd552, 0xaaad, 0xccca, 0xb335, 0xd335, 0xacca, 0xcb35, 0xb4ca, 0xd4ca, 0xab35, 0xcd35, 0xb2ca, 0xd2ca, 0xad35, 0xcaca, 0xb535, 0xd535, 0xaaca, 0xccb5, 0xb34a, 0xd34a, 0xacb5, 0xcb4a, 0xb4b5, 0xd4b5, 0xab4a, 0xcd4a, 0xb2b5, 0xd2b5, 0xad4a, 0xcab5, 0xb54a, 0xd54a, 0xaab5, 0xccd5, 0xb32a, 0xd32a, 0xacd5, 0xcb2a, 0xb4d5, 0xd4d5, 0xab2a, 0xcd2a, 0xb2d5, 0xd2d5, 0xad2a, 0xcad5, 0xb52a, 0xd52a, 0xaad5, 0xccaa, 0xb355, 0xd355, 0xacaa, 0xcb55, 0xb4aa, 0xd4aa, 0xab55, 0xcd55, 0xb2aa, 0xd2aa, 0xad55, 0xcaaa, 0xb555, 0xd555, 0xaaaa }; /* SPDIF is supposed to be (before BMC encoding, from LSB to MSB) 0.... 1... 191.. 0 BLFMRF MLFWRF MLFWRF BLFMRF (B,M,W=preamble-4, L/R=left/Right-24, F=Flags-4) each xLF pattern is 32 bits PPPP AAAA SSSS SSSS SSSS SSSS SSSS VUCP (P=preamble, A=auxiliary, S=sample-20bits, V=valid, U=user data, C=channel status, P=parity) After BMC encoding, each bit becomes 2 hence this becomes a 64 bits word. The parity is fixed by changing AAAA bits so that VUPC does not change. Then then trick is to start not with a PPPP sequence but with an VUCP sequence to that the 16 bits samples are aligned with a BMC word boundary. Input buffer is left first => LRLR... The I2S interface must output first the B/M/W preamble which means that second 32 bits words must be first and so must be marked right channel. */ static void IRAM_ATTR spdif_convert(ISAMPLE_T *src, size_t frames, u32_t *dst) { static u8_t vu, count; register u16_t hi, lo; #if BYTES_PER_FRAME == 8 register u16_t aux; #endif // we assume frame == 0 as well... if (!src) { count = 0; vu = VUCP24[0]; } while (frames--) { // start with left channel #if BYTES_PER_FRAME == 4 hi = spdif_bmclookup[(u8_t)(*src >> 8)]; lo = spdif_bmclookup[(u8_t)*src++]; if (lo & 1) hi = ~hi; if (!count--) { *dst++ = (vu << 24) | (PREAMBLE_B << 16) | 0xCCCC; count = 191; } else { *dst++ = (vu << 24) | (PREAMBLE_M << 16) | 0xCCCC; } #else hi = spdif_bmclookup[(u8_t)(*src >> 24)]; lo = spdif_bmclookup[(u8_t)(*src >> 16)]; aux = spdif_bmclookup[(u8_t)(*src++ >> 8)]; if (aux & 1) lo = ~lo; if (lo & 1) hi = ~hi; if (!count--) { *dst++ = (vu << 24) | (PREAMBLE_B << 16) | aux; count = 191; } else { *dst++ = (vu << 24) | (PREAMBLE_M << 16) | aux; } #endif vu = VUCP24[hi & 1]; *dst++ = ((u32_t)lo << 16) | hi; // then do right channel, no need to check PREAMBLE_B #if BYTES_PER_FRAME == 4 hi = spdif_bmclookup[(u8_t)(*src >> 8)]; lo = spdif_bmclookup[(u8_t)*src++]; if (lo & 1) hi = ~hi; *dst++ = (vu << 24) | (PREAMBLE_W << 16) | 0xCCCC; #else hi = spdif_bmclookup[(u8_t)(*src >> 24)]; lo = spdif_bmclookup[(u8_t)(*src >> 16)]; aux = spdif_bmclookup[(u8_t)(*src++ >> 8)]; if (aux & 1) lo = ~lo; if (lo & 1) hi = ~hi; *dst++ = (vu << 24) | (PREAMBLE_W << 16) | aux; #endif vu = VUCP24[hi & 1]; *dst++ = ((u32_t)lo << 16) | hi; } }