/** * Copyright (c) 2017-2018 Tara Keeling * 2020 Philippe G. * * This software is released under the MIT License. * https://opensource.org/licenses/MIT */ #include #include #include #include #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "driver/gpio.h" #include "driver/ledc.h" #include "esp_log.h" #include "gds.h" #include "gds_private.h" static struct GDS_Device Display; static struct GDS_BacklightPWM PWMConfig; static char TAG[] = "gds"; struct GDS_Device* GDS_AutoDetect( char *Driver, GDS_DetectFunc* DetectFunc[], struct GDS_BacklightPWM* PWM ) { if (!Driver) return NULL; if (PWM) PWMConfig = *PWM; for (int i = 0; DetectFunc[i]; i++) { if (DetectFunc[i](Driver, &Display)) { if (PWM && PWM->Init) { ledc_timer_config_t PWMTimer = { .duty_resolution = LEDC_TIMER_13_BIT, .freq_hz = 5000, .speed_mode = LEDC_HIGH_SPEED_MODE, .timer_num = PWMConfig.Timer, }; ledc_timer_config(&PWMTimer); } ESP_LOGD(TAG, "Detected driver %p with PWM %d", &Display, PWM ? PWM->Init : 0); return &Display; } } return NULL; } void GDS_ClearExt(struct GDS_Device* Device, bool full, ...) { bool commit = true; if (full) { GDS_Clear( Device, GDS_COLOR_BLACK ); } else { va_list args; va_start(args, full); commit = va_arg(args, int); int x1 = va_arg(args, int), y1 = va_arg(args, int), x2 = va_arg(args, int), y2 = va_arg(args, int); if (x2 < 0) x2 = Device->Width - 1; if (y2 < 0) y2 = Device->Height - 1; GDS_ClearWindow( Device, x1, y1, x2, y2, GDS_COLOR_BLACK ); va_end(args); } Device->Dirty = true; if (commit) GDS_Update(Device); } void GDS_Clear( struct GDS_Device* Device, int Color ) { if (Color == GDS_COLOR_BLACK) memset( Device->Framebuffer, 0, Device->FramebufferSize ); else if (Device->Depth == 1) memset( Device->Framebuffer, 0xff, Device->FramebufferSize ); else if (Device->Depth == 4) memset( Device->Framebuffer, Color | (Color << 4), Device->FramebufferSize ); else if (Device->Depth == 8) memset( Device->Framebuffer, Color, Device->FramebufferSize ); else GDS_ClearWindow(Device, 0, 0, -1, -1, Color); Device->Dirty = true; } #define CLEAR_WINDOW(x1,y1,x2,y2,F,W,C,T,N) \ for (int y = y1; y <= y2; y++) { \ T *Ptr = (T*) F + (y * W + x1)*N; \ for (int c = (x2 - x1)*N; c-- >= 0; *Ptr++ = C); \ } void GDS_ClearWindow( struct GDS_Device* Device, int x1, int y1, int x2, int y2, int Color ) { // -1 means up to width/height if (x2 < 0) x2 = Device->Width - 1; if (y2 < 0) y2 = Device->Height - 1; // driver can provide own optimized clear window if (Device->ClearWindow) { Device->ClearWindow( Device, x1, y1, x2, y2, Color ); } else if (Device->Depth == 1) { // single shot if we erase all screen if (x2 - x1 == Device->Width - 1 && y2 - y1 == Device->Height - 1) { memset( Device->Framebuffer, Color == GDS_COLOR_BLACK ? 0 : 0xff, Device->FramebufferSize ); } else { uint8_t _Color = Color == GDS_COLOR_BLACK ? 0: 0xff; uint8_t Width = Device->Width >> 3; uint8_t *optr = Device->Framebuffer; // try to do byte processing as much as possible for (int r = y1; r <= y2;) { int c = x1; // for a row that is not on a boundary, no optimization possible while (r & 0x07 && r <= y2) { for (c = x1; c <= x2; c++) DrawPixelFast( Device, c, r, Color ); r++; } // go fast if we have more than 8 lines to write if (r + 8 <= y2) { memset(optr + Width * r + x1, _Color, x2 - x1 + 1); r += 8; } else while (r <= y2) { for (c = x1; c <= x2; c++) DrawPixelFast( Device, c, r, Color ); r++; } } } } if (Device->Depth == 4) { if (x2 - x1 == Device->Width - 1 && y2 - y1 == Device->Height - 1) { // we assume color is 0..15 memset( Device->Framebuffer, Color | (Color << 4), Device->FramebufferSize ); } else { uint8_t _Color = Color | (Color << 4); int Width = Device->Width; uint8_t *optr = Device->Framebuffer; // try to do byte processing as much as possible for (int r = y1; r <= y2; r++) { int c = x1; if (c & 0x01) DrawPixelFast( Device, c++, r, Color); int chunk = (x2 - c + 1) >> 1; memset(optr + ((r * Width + c) >> 1), _Color, chunk); if (c + chunk <= x2) DrawPixelFast( Device, x2, r, Color); } } } else if (Device->Depth == 8) { CLEAR_WINDOW(x1,y1,x2,y2,Device->Framebuffer,Device->Width,Color,uint8_t,1); } else if (Device->Depth == 16) { CLEAR_WINDOW(x1,y1,x2,y2,Device->Framebuffer,Device->Width,Color,uint16_t,1); } else if (Device->Depth == 24) { CLEAR_WINDOW(x1,y1,x2,y2,Device->Framebuffer,Device->Width,Color,uint8_t,3); } else { for (int y = y1; y <= y2; y++) { for (int x = x1; x <= x2; x++) { DrawPixelFast( Device, x, y, Color); } } } // make sure diplay will do update Device->Dirty = true; } void GDS_Update( struct GDS_Device* Device ) { if (Device->Dirty) Device->Update( Device ); Device->Dirty = false; } bool GDS_Reset( struct GDS_Device* Device ) { if ( Device->RSTPin >= 0 ) { gpio_set_level( Device->RSTPin, 0 ); vTaskDelay( pdMS_TO_TICKS( 100 ) ); gpio_set_level( Device->RSTPin, 1 ); } return true; } bool GDS_Init( struct GDS_Device* Device ) { if (Device->Depth > 8) Device->FramebufferSize = Device->Width * Device->Height * ((8 + Device->Depth - 1) / 8); else Device->FramebufferSize = (Device->Width * Device->Height) / (8 / Device->Depth); // allocate FB unless explicitely asked not to if (!(Device->Alloc & GDS_ALLOC_NONE)) { if ((Device->Alloc & GDS_ALLOC_IRAM) || ((Device->Alloc & GDS_ALLOC_IRAM_SPI) && Device->IF == GDS_IF_SPI)) { Device->Framebuffer = heap_caps_calloc( 1, Device->FramebufferSize, MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA ); } else { Device->Framebuffer = calloc( 1, Device->FramebufferSize ); } NullCheck( Device->Framebuffer, return false ); } if (Device->Backlight.Pin >= 0) { Device->Backlight.Channel = PWMConfig.Channel++; Device->Backlight.PWM = PWMConfig.Max - 1; ledc_channel_config_t PWMChannel = { .channel = Device->Backlight.Channel, .duty = Device->Backlight.PWM, .gpio_num = Device->Backlight.Pin, .speed_mode = LEDC_HIGH_SPEED_MODE, .hpoint = 0, .timer_sel = PWMConfig.Timer, }; ledc_channel_config(&PWMChannel); } bool Res = Device->Init( Device ); if (!Res && Device->Framebuffer) free(Device->Framebuffer); return Res; } int GDS_GrayMap( struct GDS_Device* Device, uint8_t Level) { switch(Device->Mode) { case GDS_MONO: return Level; case GDS_GRAYSCALE: return Level >> (8 - Device->Depth); case GDS_RGB332: Level >>= 5; return (Level << 6) | (Level << 3) | (Level >> 1); case GDS_RGB444: Level >>= 4; return (Level << 8) | (Level << 4) | Level; case GDS_RGB555: Level >>= 3; return (Level << 10) | (Level << 5) | Level; case GDS_RGB565: Level >>= 2; return ((Level & ~0x01) << 10) | (Level << 5) | (Level >> 1); case GDS_RGB666: Level >>= 2; return (Level << 12) | (Level << 6) | Level; case GDS_RGB888: return (Level << 16) | (Level << 8) | Level; } return -1; } void GDS_SetContrast( struct GDS_Device* Device, uint8_t Contrast ) { if (Device->SetContrast) Device->SetContrast( Device, Contrast ); else if (Device->Backlight.Pin >= 0) { Device->Backlight.PWM = PWMConfig.Max * powf(Contrast / 255.0, 3); ledc_set_duty( LEDC_HIGH_SPEED_MODE, Device->Backlight.Channel, Device->Backlight.PWM ); ledc_update_duty( LEDC_HIGH_SPEED_MODE, Device->Backlight.Channel ); } } void GDS_SetLayout( struct GDS_Device* Device, bool HFlip, bool VFlip, bool Rotate ) { if (Device->SetLayout) Device->SetLayout( Device, HFlip, VFlip, Rotate ); } void GDS_SetDirty( struct GDS_Device* Device ) { Device->Dirty = true; } int GDS_GetWidth( struct GDS_Device* Device ) { return Device->Width; } int GDS_GetHeight( struct GDS_Device* Device ) { return Device->Height; } int GDS_GetDepth( struct GDS_Device* Device ) { return Device->Depth; } int GDS_GetMode( struct GDS_Device* Device ) { return Device->Mode; } void GDS_DisplayOn( struct GDS_Device* Device ) { if (Device->DisplayOn) Device->DisplayOn( Device ); } void GDS_DisplayOff( struct GDS_Device* Device ) { if (Device->DisplayOff) Device->DisplayOff( Device ); }