rtp.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837
  1. /*
  2. * HairTunes - RAOP packet handler and slave-clocked replay engine
  3. * Copyright (c) James Laird 2011
  4. * All rights reserved.
  5. *
  6. * Modularisation: philippe_44@outlook.com, 2019
  7. *
  8. * Permission is hereby granted, free of charge, to any person
  9. * obtaining a copy of this software and associated documentation
  10. * files (the "Software"), to deal in the Software without
  11. * restriction, including without limitation the rights to use,
  12. * copy, modify, merge, publish, distribute, sublicense, and/or
  13. * sell copies of the Software, and to permit persons to whom the
  14. * Software is furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be
  17. * included in all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  20. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
  21. * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  22. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
  23. * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
  24. * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  25. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  26. * OTHER DEALINGS IN THE SOFTWARE.
  27. */
  28. #include <stdio.h>
  29. #include <stdlib.h>
  30. #include <string.h>
  31. #include <stdarg.h>
  32. #include <sys/types.h>
  33. #include <pthread.h>
  34. #include <math.h>
  35. #include <errno.h>
  36. #include <sys/stat.h>
  37. #include <stdint.h>
  38. #include <fcntl.h>
  39. #include <assert.h>
  40. #include "platform.h"
  41. #include "rtp.h"
  42. #include "raop_sink.h"
  43. #include "log_util.h"
  44. #include "util.h"
  45. #ifdef WIN32
  46. #include <openssl/aes.h>
  47. #include "alac_wrapper.h"
  48. #define MSG_DONTWAIT 0
  49. #else
  50. #include "esp_pthread.h"
  51. #include "esp_system.h"
  52. #include <mbedtls/version.h>
  53. #include <mbedtls/aes.h>
  54. #include "alac_wrapper.h"
  55. #endif
  56. #define NTP2MS(ntp) ((((ntp) >> 10) * 1000L) >> 22)
  57. #define MS2NTP(ms) (((((u64_t) (ms)) << 22) / 1000) << 10)
  58. #define NTP2TS(ntp, rate) ((((ntp) >> 16) * (rate)) >> 16)
  59. #define TS2NTP(ts, rate) (((((u64_t) (ts)) << 16) / (rate)) << 16)
  60. #define MS2TS(ms, rate) ((((u64_t) (ms)) * (rate)) / 1000)
  61. #define TS2MS(ts, rate) NTP2MS(TS2NTP(ts,rate))
  62. extern log_level raop_loglevel;
  63. static log_level *loglevel = &raop_loglevel;
  64. //#define __RTP_STORE
  65. // default buffer size
  66. #define BUFFER_FRAMES_MAX ((RAOP_SAMPLE_RATE * 10) / 352 )
  67. #define BUFFER_FRAMES_MIN ( (150 * RAOP_SAMPLE_RATE * 2) / (352 * 100) )
  68. #define MAX_PACKET 1408
  69. #define MIN_LATENCY 11025
  70. #define MAX_LATENCY ( (120 * RAOP_SAMPLE_RATE * 2) / 100 )
  71. #define RTP_STACK_SIZE (4*1024)
  72. #define RTP_SYNC (0x01)
  73. #define NTP_SYNC (0x02)
  74. #define RESEND_TO 250
  75. enum { DATA = 0, CONTROL, TIMING };
  76. static const u8_t silence_frame[MAX_PACKET] = { 0 };
  77. uint32_t buffer_frames = ((150 * RAOP_SAMPLE_RATE * 2) / (352 * 100));
  78. typedef u16_t seq_t;
  79. typedef struct __attribute__((__packed__)) audio_buffer_entry { // decoded audio packets
  80. u32_t rtptime, last_resend;
  81. s16_t *data;
  82. u16_t len;
  83. u8_t ready;
  84. u8_t allocated;
  85. } abuf_t;
  86. typedef struct rtp_s {
  87. #ifdef __RTP_STORE
  88. FILE *rtpIN, *rtpOUT;
  89. #endif
  90. bool running;
  91. unsigned char aesiv[16];
  92. #ifdef WIN32
  93. AES_KEY aes;
  94. #else
  95. mbedtls_aes_context aes;
  96. #endif
  97. bool decrypt;
  98. u8_t *decrypt_buf;
  99. u32_t frame_size, frame_duration;
  100. u32_t in_frames, out_frames;
  101. struct in_addr host;
  102. struct sockaddr_in rtp_host;
  103. struct {
  104. unsigned short rport, lport;
  105. int sock;
  106. } rtp_sockets[3]; // data, control, timing
  107. struct timing_s {
  108. u64_t local, remote;
  109. } timing;
  110. struct {
  111. u32_t rtp, time;
  112. u8_t status;
  113. } synchro;
  114. struct {
  115. u32_t time;
  116. seq_t seqno;
  117. u32_t rtptime;
  118. } record;
  119. int latency; // rtp hold depth in samples
  120. u32_t resent_req, resent_rec; // total resent + recovered frames
  121. u32_t silent_frames; // total silence frames
  122. u32_t discarded;
  123. abuf_t audio_buffer[BUFFER_FRAMES_MAX];
  124. seq_t ab_read, ab_write;
  125. pthread_mutex_t ab_mutex;
  126. #ifdef WIN32
  127. pthread_t thread;
  128. #else
  129. TaskHandle_t thread, joiner;
  130. StaticTask_t *xTaskBuffer;
  131. StackType_t xStack[RTP_STACK_SIZE] __attribute__ ((aligned (4)));
  132. #endif
  133. struct alac_codec_s *alac_codec;
  134. int flush_seqno;
  135. bool playing;
  136. int stalled;
  137. raop_data_cb_t data_cb;
  138. raop_cmd_cb_t cmd_cb;
  139. } rtp_t;
  140. #define BUFIDX(seqno) ((seq_t)(seqno) % buffer_frames)
  141. static void buffer_alloc(abuf_t *audio_buffer, int size, uint8_t *buf, size_t buf_size);
  142. static void buffer_release(abuf_t *audio_buffer);
  143. static void buffer_reset(abuf_t *audio_buffer);
  144. static void buffer_push_packet(rtp_t *ctx);
  145. static bool rtp_request_resend(rtp_t *ctx, seq_t first, seq_t last);
  146. static bool rtp_request_timing(rtp_t *ctx);
  147. static int seq_order(seq_t a, seq_t b);
  148. #ifdef WIN32
  149. static void *rtp_thread_func(void *arg);
  150. #else
  151. static void rtp_thread_func(void *arg);
  152. #endif
  153. /*---------------------------------------------------------------------------*/
  154. static struct alac_codec_s* alac_init(int fmtp[32]) {
  155. struct alac_codec_s *alac;
  156. unsigned sample_rate, block_size;
  157. unsigned char sample_size, channels;
  158. struct {
  159. uint32_t frameLength;
  160. uint8_t compatibleVersion;
  161. uint8_t bitDepth;
  162. uint8_t pb;
  163. uint8_t mb;
  164. uint8_t kb;
  165. uint8_t numChannels;
  166. uint16_t maxRun;
  167. uint32_t maxFrameBytes;
  168. uint32_t avgBitRate;
  169. uint32_t sampleRate;
  170. } config;
  171. config.frameLength = htonl(fmtp[1]);
  172. config.compatibleVersion = fmtp[2];
  173. config.bitDepth = fmtp[3];
  174. config.pb = fmtp[4];
  175. config.mb = fmtp[5];
  176. config.kb = fmtp[6];
  177. config.numChannels = fmtp[7];
  178. config.maxRun = htons(fmtp[8]);
  179. config.maxFrameBytes = htonl(fmtp[9]);
  180. config.avgBitRate = htonl(fmtp[10]);
  181. config.sampleRate = htonl(fmtp[11]);
  182. alac = alac_create_decoder(sizeof(config), (unsigned char*) &config, &sample_size, &sample_rate, &channels, &block_size);
  183. if (!alac) {
  184. LOG_ERROR("cannot create alac codec", NULL);
  185. return NULL;
  186. }
  187. return alac;
  188. }
  189. /*---------------------------------------------------------------------------*/
  190. rtp_resp_t rtp_init(struct in_addr host, int latency, char *aeskey, char *aesiv, char *fmtpstr,
  191. short unsigned pCtrlPort, short unsigned pTimingPort,
  192. uint8_t *buffer, size_t size,
  193. raop_cmd_cb_t cmd_cb, raop_data_cb_t data_cb)
  194. {
  195. int i = 0;
  196. char *arg;
  197. int fmtp[12];
  198. bool rc = true;
  199. rtp_t *ctx = calloc(1, sizeof(rtp_t));
  200. rtp_resp_t resp = { 0, 0, 0, NULL };
  201. if (!ctx) return resp;
  202. ctx->host = host;
  203. ctx->decrypt = false;
  204. ctx->cmd_cb = cmd_cb;
  205. ctx->data_cb = data_cb;
  206. ctx->rtp_host.sin_family = AF_INET;
  207. ctx->rtp_host.sin_addr.s_addr = INADDR_ANY;
  208. pthread_mutex_init(&ctx->ab_mutex, 0);
  209. ctx->flush_seqno = -1;
  210. ctx->latency = latency;
  211. ctx->ab_read = ctx->ab_write;
  212. #ifdef __RTP_STORE
  213. ctx->rtpIN = fopen("airplay.rtpin", "wb");
  214. ctx->rtpOUT = fopen("airplay.rtpout", "wb");
  215. #endif
  216. ctx->rtp_sockets[CONTROL].rport = pCtrlPort;
  217. ctx->rtp_sockets[TIMING].rport = pTimingPort;
  218. if (aesiv && aeskey) {
  219. memcpy(ctx->aesiv, aesiv, 16);
  220. #ifdef WIN32
  221. AES_set_decrypt_key((unsigned char*) aeskey, 128, &ctx->aes);
  222. #else
  223. memset(&ctx->aes, 0, sizeof(mbedtls_aes_context));
  224. mbedtls_aes_setkey_dec(&ctx->aes, (unsigned char*) aeskey, 128);
  225. #endif
  226. ctx->decrypt = true;
  227. ctx->decrypt_buf = malloc(MAX_PACKET);
  228. }
  229. memset(fmtp, 0, sizeof(fmtp));
  230. while ((arg = strsep(&fmtpstr, " \t")) != NULL) fmtp[i++] = atoi(arg);
  231. ctx->frame_size = fmtp[1];
  232. ctx->frame_duration = (ctx->frame_size * 1000) / RAOP_SAMPLE_RATE;
  233. // alac decoder
  234. ctx->alac_codec = alac_init(fmtp);
  235. rc &= ctx->alac_codec != NULL;
  236. buffer_alloc(ctx->audio_buffer, ctx->frame_size*4, buffer, size);
  237. // create rtp ports
  238. for (i = 0; i < 3; i++) {
  239. ctx->rtp_sockets[i].sock = bind_socket(&ctx->rtp_sockets[i].lport, SOCK_DGRAM);
  240. rc &= ctx->rtp_sockets[i].sock > 0;
  241. }
  242. // create http port and start listening
  243. resp.cport = ctx->rtp_sockets[CONTROL].lport;
  244. resp.tport = ctx->rtp_sockets[TIMING].lport;
  245. resp.aport = ctx->rtp_sockets[DATA].lport;
  246. ctx->running = true;
  247. #ifdef WIN32
  248. pthread_create(&ctx->thread, NULL, rtp_thread_func, (void *) ctx);
  249. #else
  250. ctx->xTaskBuffer = (StaticTask_t*) heap_caps_malloc(sizeof(StaticTask_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  251. ctx->thread = xTaskCreateStaticPinnedToCore( (TaskFunction_t) rtp_thread_func, "RTP_thread", RTP_STACK_SIZE, ctx,
  252. CONFIG_ESP32_PTHREAD_TASK_PRIO_DEFAULT + 1, ctx->xStack, ctx->xTaskBuffer,
  253. CONFIG_PTHREAD_TASK_CORE_DEFAULT );
  254. #endif
  255. // cleanup everything if we failed
  256. if (!rc) {
  257. LOG_ERROR("[%p]: cannot start RTP", ctx);
  258. rtp_end(ctx);
  259. ctx = NULL;
  260. }
  261. resp.ctx = ctx;
  262. return resp;
  263. }
  264. /*---------------------------------------------------------------------------*/
  265. void rtp_end(rtp_t *ctx)
  266. {
  267. int i;
  268. if (!ctx) return;
  269. if (ctx->running) {
  270. #if !defined WIN32
  271. ctx->joiner = xTaskGetCurrentTaskHandle();
  272. #endif
  273. ctx->running = false;
  274. #ifdef WIN32
  275. pthread_join(ctx->thread, NULL);
  276. #else
  277. ulTaskNotifyTake(pdFALSE, portMAX_DELAY);
  278. vTaskDelete(ctx->thread);
  279. SAFE_PTR_FREE(ctx->xTaskBuffer);
  280. #endif
  281. }
  282. for (i = 0; i < 3; i++) closesocket(ctx->rtp_sockets[i].sock);
  283. if (ctx->alac_codec) alac_delete_decoder(ctx->alac_codec);
  284. if (ctx->decrypt_buf) free(ctx->decrypt_buf);
  285. pthread_mutex_destroy(&ctx->ab_mutex);
  286. buffer_release(ctx->audio_buffer);
  287. free(ctx);
  288. #ifdef __RTP_STORE
  289. fclose(ctx->rtpIN);
  290. fclose(ctx->rtpOUT);
  291. #endif
  292. }
  293. /*---------------------------------------------------------------------------*/
  294. bool rtp_flush(rtp_t *ctx, unsigned short seqno, unsigned int rtptime, bool exit_locked)
  295. {
  296. bool rc = true;
  297. u32_t now = gettime_ms();
  298. if (now < ctx->record.time + 250 || (ctx->record.seqno == seqno && ctx->record.rtptime == rtptime)) {
  299. rc = false;
  300. LOG_ERROR("[%p]: FLUSH ignored as same as RECORD (%hu - %u)", ctx, seqno, rtptime);
  301. } else {
  302. pthread_mutex_lock(&ctx->ab_mutex);
  303. buffer_reset(ctx->audio_buffer);
  304. ctx->playing = false;
  305. ctx->flush_seqno = seqno;
  306. if (!exit_locked) pthread_mutex_unlock(&ctx->ab_mutex);
  307. }
  308. LOG_INFO("[%p]: flush %hu %u", ctx, seqno, rtptime);
  309. return rc;
  310. }
  311. /*---------------------------------------------------------------------------*/
  312. void rtp_flush_release(rtp_t *ctx) {
  313. pthread_mutex_unlock(&ctx->ab_mutex);
  314. }
  315. /*---------------------------------------------------------------------------*/
  316. void rtp_record(rtp_t *ctx, unsigned short seqno, unsigned rtptime) {
  317. ctx->record.seqno = seqno;
  318. ctx->record.rtptime = rtptime;
  319. ctx->record.time = gettime_ms();
  320. LOG_INFO("[%p]: record %hu %u", ctx, seqno, rtptime);
  321. }
  322. /*---------------------------------------------------------------------------*/
  323. static void buffer_alloc(abuf_t *audio_buffer, int size, uint8_t *buf, size_t buf_size) {
  324. for (buffer_frames = 0; buf && buf_size >= size && buffer_frames < BUFFER_FRAMES_MAX; buffer_frames++) {
  325. audio_buffer[buffer_frames].data = (s16_t*) buf;
  326. audio_buffer[buffer_frames].allocated = 0;
  327. audio_buffer[buffer_frames].ready = 0;
  328. buf += size;
  329. buf_size -= size;
  330. }
  331. LOG_INFO("allocated %d buffers (min=%d) from buffer of %zu bytes", buffer_frames, BUFFER_FRAMES_MIN, buf_size + buffer_frames * size);
  332. for(; buffer_frames < BUFFER_FRAMES_MIN; buffer_frames++) {
  333. audio_buffer[buffer_frames].data = malloc(size);
  334. audio_buffer[buffer_frames].allocated = 1;
  335. audio_buffer[buffer_frames].ready = 0;
  336. }
  337. }
  338. /*---------------------------------------------------------------------------*/
  339. static void buffer_release(abuf_t *audio_buffer) {
  340. int i;
  341. for (i = 0; i < buffer_frames; i++) {
  342. if (audio_buffer[i].allocated) free(audio_buffer[i].data);
  343. }
  344. }
  345. /*---------------------------------------------------------------------------*/
  346. static void buffer_reset(abuf_t *audio_buffer) {
  347. int i;
  348. for (i = 0; i < buffer_frames; i++) audio_buffer[i].ready = 0;
  349. }
  350. /*---------------------------------------------------------------------------*/
  351. // the sequence numbers will wrap pretty often.
  352. // this returns true if the second arg is after the first
  353. static int seq_order(seq_t a, seq_t b) {
  354. s16_t d = b - a;
  355. return d > 0;
  356. }
  357. /*---------------------------------------------------------------------------*/
  358. static void alac_decode(rtp_t *ctx, s16_t *dest, char *buf, int len, u16_t *outsize) {
  359. unsigned char iv[16];
  360. int aeslen;
  361. assert(len<=MAX_PACKET);
  362. if (ctx->decrypt) {
  363. aeslen = len & ~0xf;
  364. memcpy(iv, ctx->aesiv, sizeof(iv));
  365. #ifdef WIN32
  366. AES_cbc_encrypt((unsigned char*)buf, ctx->decrypt_buf, aeslen, &ctx->aes, iv, AES_DECRYPT);
  367. #else
  368. mbedtls_aes_crypt_cbc(&ctx->aes, MBEDTLS_AES_DECRYPT, aeslen, iv, (unsigned char*) buf, ctx->decrypt_buf);
  369. #endif
  370. memcpy(ctx->decrypt_buf+aeslen, buf+aeslen, len-aeslen);
  371. alac_to_pcm(ctx->alac_codec, (unsigned char*) ctx->decrypt_buf, (unsigned char*) dest, 2, (unsigned int*) outsize);
  372. } else {
  373. alac_to_pcm(ctx->alac_codec, (unsigned char*) buf, (unsigned char*) dest, 2, (unsigned int*) outsize);
  374. }
  375. *outsize *= 4;
  376. }
  377. /*---------------------------------------------------------------------------*/
  378. static void buffer_put_packet(rtp_t *ctx, seq_t seqno, unsigned rtptime, bool first, char *data, int len) {
  379. abuf_t *abuf = NULL;
  380. u32_t playtime;
  381. pthread_mutex_lock(&ctx->ab_mutex);
  382. if (!ctx->playing) {
  383. if ((ctx->flush_seqno == -1 || seq_order(ctx->flush_seqno, seqno)) &&
  384. (ctx->synchro.status & RTP_SYNC) && (ctx->synchro.status & NTP_SYNC)) {
  385. ctx->ab_write = seqno-1;
  386. ctx->ab_read = seqno;
  387. ctx->flush_seqno = -1;
  388. ctx->playing = true;
  389. ctx->resent_req = ctx->resent_rec = ctx->silent_frames = ctx->discarded = 0;
  390. playtime = ctx->synchro.time + ((rtptime - ctx->synchro.rtp) * 10) / (RAOP_SAMPLE_RATE / 100);
  391. ctx->cmd_cb(RAOP_PLAY, playtime);
  392. } else {
  393. pthread_mutex_unlock(&ctx->ab_mutex);
  394. return;
  395. }
  396. }
  397. if (seqno == (u16_t) (ctx->ab_write+1)) {
  398. // expected packet
  399. abuf = ctx->audio_buffer + BUFIDX(seqno);
  400. ctx->ab_write = seqno;
  401. LOG_SDEBUG("packet expected seqno:%hu rtptime:%u (W:%hu R:%hu)", seqno, rtptime, ctx->ab_write, ctx->ab_read);
  402. } else if (seq_order(ctx->ab_write, seqno)) {
  403. // newer than expected
  404. if (ctx->latency && seq_order(ctx->latency / ctx->frame_size, seqno - ctx->ab_write - 1)) {
  405. // this is a shitstorm, reset buffer
  406. LOG_WARN("[%p] too many missing frames %hu seq: %hu, (W:%hu R:%hu)", ctx, seqno - ctx->ab_write - 1, seqno, ctx->ab_write, ctx->ab_read);
  407. ctx->ab_read = seqno;
  408. } else {
  409. // request re-send missed frames and evaluate resent date as a whole *after*
  410. rtp_request_resend(ctx, ctx->ab_write + 1, seqno-1);
  411. // resend date is after all requests have been sent
  412. u32_t now = gettime_ms();
  413. // set expected timing of missed frames for buffer_push_packet and set last_resend date
  414. for (seq_t i = ctx->ab_write + 1; seq_order(i, seqno); i++) {
  415. ctx->audio_buffer[BUFIDX(i)].rtptime = rtptime - (seqno-i)*ctx->frame_size;
  416. ctx->audio_buffer[BUFIDX(i)].last_resend = now;
  417. }
  418. LOG_DEBUG("[%p]: packet newer seqno:%hu rtptime:%u (W:%hu R:%hu)", ctx, seqno, rtptime, ctx->ab_write, ctx->ab_read);
  419. }
  420. abuf = ctx->audio_buffer + BUFIDX(seqno);
  421. ctx->ab_write = seqno;
  422. } else if (seq_order(ctx->ab_read, seqno + 1)) {
  423. // recovered packet, not yet sent
  424. abuf = ctx->audio_buffer + BUFIDX(seqno);
  425. ctx->resent_rec++;
  426. LOG_DEBUG("[%p]: packet recovered seqno:%hu rtptime:%u (W:%hu R:%hu)", ctx, seqno, rtptime, ctx->ab_write, ctx->ab_read);
  427. } else {
  428. // too late
  429. LOG_DEBUG("[%p]: packet too late seqno:%hu rtptime:%u (W:%hu R:%hu)", ctx, seqno, rtptime, ctx->ab_write, ctx->ab_read);
  430. }
  431. if (ctx->in_frames++ > 1000) {
  432. LOG_INFO("[%p]: fill [level:%hu rec:%u] [W:%hu R:%hu]", ctx, ctx->ab_write - ctx->ab_read, ctx->resent_rec, ctx->ab_write, ctx->ab_read);
  433. ctx->in_frames = 0;
  434. }
  435. if (abuf) {
  436. alac_decode(ctx, abuf->data, data, len, &abuf->len);
  437. abuf->ready = 1;
  438. // this is the local rtptime when this frame is expected to play
  439. abuf->rtptime = rtptime;
  440. buffer_push_packet(ctx);
  441. #ifdef __RTP_STORE
  442. fwrite(data, len, 1, ctx->rtpIN);
  443. fwrite(abuf->data, abuf->len, 1, ctx->rtpOUT);
  444. #endif
  445. }
  446. pthread_mutex_unlock(&ctx->ab_mutex);
  447. }
  448. /*---------------------------------------------------------------------------*/
  449. // push as many frames as possible through callback
  450. static void buffer_push_packet(rtp_t *ctx) {
  451. abuf_t *curframe = NULL;
  452. u32_t now, playtime, hold = max((ctx->latency * 1000) / (8 * RAOP_SAMPLE_RATE), 100);
  453. // not ready to play yet
  454. if (!ctx->playing || ctx->synchro.status != (RTP_SYNC | NTP_SYNC)) return;
  455. // there is always at least one frame in the buffer
  456. do {
  457. // re-evaluate time in loop in case data callback blocks ...
  458. now = gettime_ms();
  459. // try to manage playtime so that we overflow as late as possible if we miss NTP (2^31 / 10 / 44100)
  460. curframe = ctx->audio_buffer + BUFIDX(ctx->ab_read);
  461. playtime = ctx->synchro.time + ((curframe->rtptime - ctx->synchro.rtp) * 10) / (RAOP_SAMPLE_RATE / 100);
  462. if (now > playtime) {
  463. LOG_DEBUG("[%p]: discarded frame now:%u missed by:%d (W:%hu R:%hu)", ctx, now, now - playtime, ctx->ab_write, ctx->ab_read);
  464. ctx->discarded++;
  465. curframe->ready = 0;
  466. } else if (playtime - now <= hold) {
  467. if (curframe->ready) {
  468. ctx->data_cb((const u8_t*) curframe->data, curframe->len, playtime);
  469. curframe->ready = 0;
  470. } else {
  471. LOG_DEBUG("[%p]: created zero frame (W:%hu R:%hu)", ctx, ctx->ab_write, ctx->ab_read);
  472. ctx->data_cb(silence_frame, ctx->frame_size * 4, playtime);
  473. ctx->silent_frames++;
  474. }
  475. } else if (curframe->ready) {
  476. ctx->data_cb((const u8_t*) curframe->data, curframe->len, playtime);
  477. curframe->ready = 0;
  478. } else {
  479. break;
  480. }
  481. ctx->ab_read++;
  482. ctx->out_frames++;
  483. } while (seq_order(ctx->ab_read, ctx->ab_write));
  484. if (ctx->out_frames > 1000) {
  485. LOG_INFO("[%p]: drain [level:%hd head:%d ms] [W:%hu R:%hu] [req:%u sil:%u dis:%u]",
  486. ctx, ctx->ab_write - ctx->ab_read, playtime - now, ctx->ab_write, ctx->ab_read,
  487. ctx->resent_req, ctx->silent_frames, ctx->discarded);
  488. ctx->out_frames = 0;
  489. }
  490. LOG_SDEBUG("playtime %u %d [W:%hu R:%hu] %d", playtime, playtime - now, ctx->ab_write, ctx->ab_read, curframe->ready);
  491. // each missing packet will be requested up to (latency_frames / 16) times
  492. for (int i = 0; seq_order(ctx->ab_read + i, ctx->ab_write); i += 16) {
  493. abuf_t *frame = ctx->audio_buffer + BUFIDX(ctx->ab_read + i);
  494. if (!frame->ready && now - frame->last_resend > RESEND_TO) {
  495. // stop if one fails
  496. if (!rtp_request_resend(ctx, ctx->ab_read + i, ctx->ab_read + i)) break;
  497. frame->last_resend = now;
  498. }
  499. }
  500. }
  501. /*---------------------------------------------------------------------------*/
  502. #ifdef WIN32
  503. static void *rtp_thread_func(void *arg) {
  504. #else
  505. static void rtp_thread_func(void *arg) {
  506. #endif
  507. fd_set fds;
  508. int i, sock = -1;
  509. int count = 0;
  510. bool ntp_sent;
  511. char *packet = malloc(MAX_PACKET);
  512. rtp_t *ctx = (rtp_t*) arg;
  513. for (i = 0; i < 3; i++) {
  514. if (ctx->rtp_sockets[i].sock > sock) sock = ctx->rtp_sockets[i].sock;
  515. // send synchro request 3 times
  516. ntp_sent = rtp_request_timing(ctx);
  517. }
  518. while (ctx->running) {
  519. ssize_t plen;
  520. char type;
  521. socklen_t rtp_client_len = sizeof(struct sockaddr_in);
  522. int idx = 0;
  523. char *pktp = packet;
  524. struct timeval timeout = {0, 100*1000};
  525. FD_ZERO(&fds);
  526. for (i = 0; i < 3; i++) { FD_SET(ctx->rtp_sockets[i].sock, &fds); }
  527. if (select(sock + 1, &fds, NULL, NULL, &timeout) <= 0) {
  528. if (ctx->stalled++ == 30*10) ctx->cmd_cb(RAOP_STALLED);
  529. continue;
  530. }
  531. for (i = 0; i < 3; i++)
  532. if (FD_ISSET(ctx->rtp_sockets[i].sock, &fds)) idx = i;
  533. plen = recvfrom(ctx->rtp_sockets[idx].sock, packet, MAX_PACKET, MSG_DONTWAIT, (struct sockaddr*) &ctx->rtp_host, &rtp_client_len);
  534. if (!ntp_sent) {
  535. LOG_WARN("[%p]: NTP request not send yet", ctx);
  536. ntp_sent = rtp_request_timing(ctx);
  537. }
  538. if (plen <= 0) {
  539. LOG_WARN("Nothing received on a readable socket %d", plen);
  540. continue;
  541. }
  542. assert(plen <= MAX_PACKET);
  543. ctx->stalled = 0;
  544. type = packet[1] & ~0x80;
  545. pktp = packet;
  546. switch (type) {
  547. seq_t seqno;
  548. unsigned rtptime;
  549. // re-sent packet
  550. case 0x56: {
  551. pktp += 4;
  552. plen -= 4;
  553. }
  554. // fall through
  555. // data packet
  556. case 0x60: {
  557. seqno = ntohs(*(u16_t*)(pktp+2));
  558. rtptime = ntohl(*(u32_t*)(pktp+4));
  559. // adjust pointer and length
  560. pktp += 12;
  561. plen -= 12;
  562. LOG_SDEBUG("[%p]: seqno:%hu rtp:%u (type: %x, first: %u)", ctx, seqno, rtptime, type, packet[1] & 0x80);
  563. // check if packet contains enough content to be reasonable
  564. if (plen < 16) break;
  565. if ((packet[1] & 0x80) && (type != 0x56)) {
  566. LOG_INFO("[%p]: 1st audio packet received", ctx);
  567. }
  568. buffer_put_packet(ctx, seqno, rtptime, packet[1] & 0x80, pktp, plen);
  569. break;
  570. }
  571. // sync packet
  572. case 0x54: {
  573. u32_t rtp_now_latency = ntohl(*(u32_t*)(pktp+4));
  574. u64_t remote = (((u64_t) ntohl(*(u32_t*)(pktp+8))) << 32) + ntohl(*(u32_t*)(pktp+12));
  575. u32_t rtp_now = ntohl(*(u32_t*)(pktp+16));
  576. u16_t flags = ntohs(*(u16_t*)(pktp+2));
  577. u32_t remote_gap = NTP2MS(remote - ctx->timing.remote);
  578. // try to get NTP every 3 sec or every time if we are not synced
  579. if (!count-- || !(ctx->synchro.status & NTP_SYNC)) {
  580. rtp_request_timing(ctx);
  581. count = 3;
  582. }
  583. // something is wrong, we should not have such gap
  584. if (remote_gap > 10000) {
  585. LOG_WARN("discarding remote timing information %u", remote_gap);
  586. break;
  587. }
  588. pthread_mutex_lock(&ctx->ab_mutex);
  589. // re-align timestamp and expected local playback time (and magic 11025 latency)
  590. ctx->latency = rtp_now - rtp_now_latency;
  591. if (flags == 7 || flags == 4) ctx->latency += 11025;
  592. if (ctx->latency < MIN_LATENCY) ctx->latency = MIN_LATENCY;
  593. else if (ctx->latency > MAX_LATENCY) ctx->latency = MAX_LATENCY;
  594. ctx->synchro.rtp = rtp_now - ctx->latency;
  595. ctx->synchro.time = ctx->timing.local + remote_gap;
  596. // now we are synced on RTP frames
  597. ctx->synchro.status |= RTP_SYNC;
  598. // 1st sync packet received (signals a restart of playback)
  599. if (packet[0] & 0x10) {
  600. LOG_INFO("[%p]: 1st sync packet received", ctx);
  601. }
  602. pthread_mutex_unlock(&ctx->ab_mutex);
  603. LOG_DEBUG("[%p]: sync packet latency:%d rtp_latency:%u rtp:%u remote ntp:%llx, local time:%u local rtp:%u (now:%u)",
  604. ctx, ctx->latency, rtp_now_latency, rtp_now, remote, ctx->synchro.time, ctx->synchro.rtp, gettime_ms());
  605. if ((ctx->synchro.status & RTP_SYNC) && (ctx->synchro.status & NTP_SYNC)) ctx->cmd_cb(RAOP_TIMING);
  606. break;
  607. }
  608. // NTP timing packet
  609. case 0x53: {
  610. u32_t reference = ntohl(*(u32_t*)(pktp+12)); // only low 32 bits in our case
  611. u64_t remote =(((u64_t) ntohl(*(u32_t*)(pktp+16))) << 32) + ntohl(*(u32_t*)(pktp+20));
  612. u32_t roundtrip = gettime_ms() - reference;
  613. // better discard sync packets when roundtrip is suspicious
  614. if (roundtrip > 100) {
  615. // ask for another one only if we are not synced already
  616. if (!(ctx->synchro.status & NTP_SYNC)) rtp_request_timing(ctx);
  617. LOG_WARN("[%p]: discarding NTP roundtrip of %u ms", ctx, roundtrip);
  618. break;
  619. }
  620. /*
  621. The expected elapsed remote time should be exactly the same as
  622. elapsed local time between the two request, corrected by the
  623. drifting
  624. u64_t expected = ctx->timing.remote + MS2NTP(reference - ctx->timing.local);
  625. */
  626. ctx->timing.remote = remote;
  627. ctx->timing.local = reference;
  628. // now we are synced on NTP (mutex not needed)
  629. ctx->synchro.status |= NTP_SYNC;
  630. LOG_DEBUG("[%p]: Timing references local:%llu, remote:%llx (delta:%lld, sum:%lld, adjust:%lld, gaps:%d)",
  631. ctx, ctx->timing.local, ctx->timing.remote);
  632. break;
  633. }
  634. default: {
  635. LOG_WARN("Unknown packet received %x", (int) type);
  636. break;
  637. }
  638. }
  639. }
  640. free(packet);
  641. LOG_INFO("[%p]: terminating", ctx);
  642. #ifndef WIN32
  643. xTaskNotifyGive(ctx->joiner);
  644. vTaskSuspend(NULL);
  645. #else
  646. return NULL;
  647. #endif
  648. }
  649. /*---------------------------------------------------------------------------*/
  650. static bool rtp_request_timing(rtp_t *ctx) {
  651. unsigned char req[32];
  652. u32_t now = gettime_ms();
  653. int i;
  654. struct sockaddr_in host;
  655. LOG_DEBUG("[%p]: timing request now:%u (port: %hu)", ctx, now, ctx->rtp_sockets[TIMING].rport);
  656. req[0] = 0x80;
  657. req[1] = 0x52|0x80;
  658. *(u16_t*)(req+2) = htons(7);
  659. *(u32_t*)(req+4) = htonl(0); // dummy
  660. for (i = 0; i < 16; i++) req[i+8] = 0;
  661. *(u32_t*)(req+24) = 0;
  662. *(u32_t*)(req+28) = htonl(now); // this is not a real NTP, but a 32 ms counter in the low part of the NTP
  663. if (ctx->host.s_addr != INADDR_ANY) {
  664. host.sin_family = AF_INET;
  665. host.sin_addr = ctx->host;
  666. } else host = ctx->rtp_host;
  667. // no address from sender, need to wait for 1st packet to be received
  668. if (host.sin_addr.s_addr == INADDR_ANY) return false;
  669. host.sin_port = htons(ctx->rtp_sockets[TIMING].rport);
  670. if (sizeof(req) != sendto(ctx->rtp_sockets[TIMING].sock, req, sizeof(req), MSG_DONTWAIT, (struct sockaddr*) &host, sizeof(host))) {
  671. LOG_WARN("[%p]: SENDTO failed (%s)", ctx, strerror(errno));
  672. }
  673. return true;
  674. }
  675. /*---------------------------------------------------------------------------*/
  676. static bool rtp_request_resend(rtp_t *ctx, seq_t first, seq_t last) {
  677. unsigned char req[8]; // *not* a standard RTCP NACK
  678. // do not request silly ranges (happens in case of network large blackouts)
  679. if (seq_order(last, first) || last - first > buffer_frames / 2) return false;
  680. ctx->resent_req += (seq_t) (last - first) + 1;
  681. LOG_DEBUG("resend request [W:%hu R:%hu first=%hu last=%hu]", ctx->ab_write, ctx->ab_read, first, last);
  682. req[0] = 0x80;
  683. req[1] = 0x55|0x80; // Apple 'resend'
  684. *(u16_t*)(req+2) = htons(1); // our seqnum
  685. *(u16_t*)(req+4) = htons(first); // missed seqnum
  686. *(u16_t*)(req+6) = htons(last-first+1); // count
  687. ctx->rtp_host.sin_port = htons(ctx->rtp_sockets[CONTROL].rport);
  688. if (sizeof(req) != sendto(ctx->rtp_sockets[CONTROL].sock, req, sizeof(req), MSG_DONTWAIT, (struct sockaddr*) &ctx->rtp_host, sizeof(ctx->rtp_host))) {
  689. LOG_WARN("[%p]: SENDTO failed (%s)", ctx, strerror(errno));
  690. return false;
  691. }
  692. return true;
  693. }