| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295 | /* ***** BEGIN LICENSE BLOCK *****  * Version: RCSL 1.0/RPSL 1.0  *   * Portions Copyright (c) 1995-2002 RealNetworks, Inc. All Rights Reserved.  *       * The contents of this file, and the files included with this file, are  * subject to the current version of the RealNetworks Public Source License  * Version 1.0 (the "RPSL") available at  * http://www.helixcommunity.org/content/rpsl unless you have licensed  * the file under the RealNetworks Community Source License Version 1.0  * (the "RCSL") available at http://www.helixcommunity.org/content/rcsl,  * in which case the RCSL will apply. You may also obtain the license terms  * directly from RealNetworks.  You may not use this file except in  * compliance with the RPSL or, if you have a valid RCSL with RealNetworks  * applicable to this file, the RCSL.  Please see the applicable RPSL or  * RCSL for the rights, obligations and limitations governing use of the  * contents of the file.   *   * This file is part of the Helix DNA Technology. RealNetworks is the  * developer of the Original Code and owns the copyrights in the portions  * it created.  *   * This file, and the files included with this file, is distributed and made  * available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER  * EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS ALL SUCH WARRANTIES,  * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS  * FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.  *  * Technology Compatibility Kit Test Suite(s) Location:  *    http://www.helixcommunity.org/content/tck  *  * Contributor(s):  *   * ***** END LICENSE BLOCK ***** */ /************************************************************************************** * Fixed-point MP3 decoder * Jon Recker (jrecker@real.com), Ken Cooke (kenc@real.com) * June 2003 * * polyphase.c - final stage of subband transform (polyphase synthesis filter) * * This is the C reference version using __int64 * Look in the appropriate subdirectories for optimized asm implementations  *   (e.g. arm/asmpoly.s) **************************************************************************************/#include "coder.h"#include "assembly.h"/* input to Polyphase = Q(DQ_FRACBITS_OUT-2), gain 2 bits in convolution *  we also have the implicit bias of 2^15 to add back, so net fraction bits =  *    DQ_FRACBITS_OUT - 2 - 2 - 15 *  (see comment on Dequantize() for more info) */#define DEF_NFRACBITS	(DQ_FRACBITS_OUT - 2 - 2 - 15)	#define CSHIFT	12	/* coefficients have 12 leading sign bits for early-terminating mulitplies */static __inline short ClipToShort(int x, int fracBits){	int sign;		/* assumes you've already rounded (x += (1 << (fracBits-1))) */	x >>= fracBits;		/* Ken's trick: clips to [-32768, 32767] */	sign = x >> 31;	if (sign != (x >> 15))		x = sign ^ ((1 << 15) - 1);	return (short)x;}#define MC0M(x)	{ \	c1 = *coef;		coef++;		c2 = *coef;		coef++; \	vLo = *(vb1+(x));			vHi = *(vb1+(23-(x))); \	sum1L = MADD64(sum1L, vLo,  c1);	sum1L = MADD64(sum1L, vHi, -c2); \}#define MC1M(x)	{ \	c1 = *coef;		coef++; \	vLo = *(vb1+(x)); \	sum1L = MADD64(sum1L, vLo,  c1); \}#define MC2M(x)	{ \		c1 = *coef;		coef++;		c2 = *coef;		coef++; \		vLo = *(vb1+(x));	vHi = *(vb1+(23-(x))); \		sum1L = MADD64(sum1L, vLo,  c1);	sum2L = MADD64(sum2L, vLo,  c2); \		sum1L = MADD64(sum1L, vHi, -c2);	sum2L = MADD64(sum2L, vHi,  c1); \}/************************************************************************************** * Function:    PolyphaseMono * * Description: filter one subband and produce 32 output PCM samples for one channel * * Inputs:      pointer to PCM output buffer *              number of "extra shifts" (vbuf format = Q(DQ_FRACBITS_OUT-2)) *              pointer to start of vbuf (preserved from last call) *              start of filter coefficient table (in proper, shuffled order) *              no minimum number of guard bits is required for input vbuf  *                (see additional scaling comments below) * * Outputs:     32 samples of one channel of decoded PCM data, (i.e. Q16.0) * * Return:      none * * TODO:        add 32-bit version for platforms where 64-bit mul-acc is not supported *                (note max filter gain - see polyCoef[] comments) **************************************************************************************/void PolyphaseMono(short *pcm, int *vbuf, const int *coefBase){		int i;	const int *coef;	int *vb1;	int vLo, vHi, c1, c2;	Word64 sum1L, sum2L, rndVal;	rndVal = (Word64)( 1 << (DEF_NFRACBITS - 1 + (32 - CSHIFT)) );	/* special case, output sample 0 */	coef = coefBase;	vb1 = vbuf;	sum1L = rndVal;	MC0M(0)	MC0M(1)	MC0M(2)	MC0M(3)	MC0M(4)	MC0M(5)	MC0M(6)	MC0M(7)	*(pcm + 0) = ClipToShort((int)SAR64(sum1L, (32-CSHIFT)), DEF_NFRACBITS);	/* special case, output sample 16 */	coef = coefBase + 256;	vb1 = vbuf + 64*16;	sum1L = rndVal;	MC1M(0)	MC1M(1)	MC1M(2)	MC1M(3)	MC1M(4)	MC1M(5)	MC1M(6)	MC1M(7)	*(pcm + 16) = ClipToShort((int)SAR64(sum1L, (32-CSHIFT)), DEF_NFRACBITS);	/* main convolution loop: sum1L = samples 1, 2, 3, ... 15   sum2L = samples 31, 30, ... 17 */	coef = coefBase + 16;	vb1 = vbuf + 64;	pcm++;	/* right now, the compiler creates bad asm from this... */	for (i = 15; i > 0; i--) {		sum1L = sum2L = rndVal;		MC2M(0)		MC2M(1)		MC2M(2)		MC2M(3)		MC2M(4)		MC2M(5)		MC2M(6)		MC2M(7)		vb1 += 64;		*(pcm)       = ClipToShort((int)SAR64(sum1L, (32-CSHIFT)), DEF_NFRACBITS);		*(pcm + 2*i) = ClipToShort((int)SAR64(sum2L, (32-CSHIFT)), DEF_NFRACBITS);		pcm++;	}}#define MC0S(x)	{ \	c1 = *coef;		coef++;		c2 = *coef;		coef++; \	vLo = *(vb1+(x));		vHi = *(vb1+(23-(x))); \	sum1L = MADD64(sum1L, vLo,  c1);	sum1L = MADD64(sum1L, vHi, -c2); \	vLo = *(vb1+32+(x));	vHi = *(vb1+32+(23-(x))); \	sum1R = MADD64(sum1R, vLo,  c1);	sum1R = MADD64(sum1R, vHi, -c2); \}#define MC1S(x)	{ \	c1 = *coef;		coef++; \	vLo = *(vb1+(x)); \	sum1L = MADD64(sum1L, vLo,  c1); \	vLo = *(vb1+32+(x)); \	sum1R = MADD64(sum1R, vLo,  c1); \}#define MC2S(x)	{ \		c1 = *coef;		coef++;		c2 = *coef;		coef++; \		vLo = *(vb1+(x));	vHi = *(vb1+(23-(x))); \		sum1L = MADD64(sum1L, vLo,  c1);	sum2L = MADD64(sum2L, vLo,  c2); \		sum1L = MADD64(sum1L, vHi, -c2);	sum2L = MADD64(sum2L, vHi,  c1); \		vLo = *(vb1+32+(x));	vHi = *(vb1+32+(23-(x))); \		sum1R = MADD64(sum1R, vLo,  c1);	sum2R = MADD64(sum2R, vLo,  c2); \		sum1R = MADD64(sum1R, vHi, -c2);	sum2R = MADD64(sum2R, vHi,  c1); \}/************************************************************************************** * Function:    PolyphaseStereo * * Description: filter one subband and produce 32 output PCM samples for each channel * * Inputs:      pointer to PCM output buffer *              number of "extra shifts" (vbuf format = Q(DQ_FRACBITS_OUT-2)) *              pointer to start of vbuf (preserved from last call) *              start of filter coefficient table (in proper, shuffled order) *              no minimum number of guard bits is required for input vbuf  *                (see additional scaling comments below) * * Outputs:     32 samples of two channels of decoded PCM data, (i.e. Q16.0) * * Return:      none * * Notes:       interleaves PCM samples LRLRLR... * * TODO:        add 32-bit version for platforms where 64-bit mul-acc is not supported **************************************************************************************/void PolyphaseStereo(short *pcm, int *vbuf, const int *coefBase){	int i;	const int *coef;	int *vb1;	int vLo, vHi, c1, c2;	Word64 sum1L, sum2L, sum1R, sum2R, rndVal;	rndVal = (Word64)( 1 << (DEF_NFRACBITS - 1 + (32 - CSHIFT)) );	/* special case, output sample 0 */	coef = coefBase;	vb1 = vbuf;	sum1L = sum1R = rndVal;	MC0S(0)	MC0S(1)	MC0S(2)	MC0S(3)	MC0S(4)	MC0S(5)	MC0S(6)	MC0S(7)	*(pcm + 0) = ClipToShort((int)SAR64(sum1L, (32-CSHIFT)), DEF_NFRACBITS);	*(pcm + 1) = ClipToShort((int)SAR64(sum1R, (32-CSHIFT)), DEF_NFRACBITS);	/* special case, output sample 16 */	coef = coefBase + 256;	vb1 = vbuf + 64*16;	sum1L = sum1R = rndVal;	MC1S(0)	MC1S(1)	MC1S(2)	MC1S(3)	MC1S(4)	MC1S(5)	MC1S(6)	MC1S(7)	*(pcm + 2*16 + 0) = ClipToShort((int)SAR64(sum1L, (32-CSHIFT)), DEF_NFRACBITS);	*(pcm + 2*16 + 1) = ClipToShort((int)SAR64(sum1R, (32-CSHIFT)), DEF_NFRACBITS);	/* main convolution loop: sum1L = samples 1, 2, 3, ... 15   sum2L = samples 31, 30, ... 17 */	coef = coefBase + 16;	vb1 = vbuf + 64;	pcm += 2;	/* right now, the compiler creates bad asm from this... */	for (i = 15; i > 0; i--) {		sum1L = sum2L = rndVal;		sum1R = sum2R = rndVal;		MC2S(0)		MC2S(1)		MC2S(2)		MC2S(3)		MC2S(4)		MC2S(5)		MC2S(6)		MC2S(7)		vb1 += 64;		*(pcm + 0)         = ClipToShort((int)SAR64(sum1L, (32-CSHIFT)), DEF_NFRACBITS);		*(pcm + 1)         = ClipToShort((int)SAR64(sum1R, (32-CSHIFT)), DEF_NFRACBITS);		*(pcm + 2*2*i + 0) = ClipToShort((int)SAR64(sum2L, (32-CSHIFT)), DEF_NFRACBITS);		*(pcm + 2*2*i + 1) = ClipToShort((int)SAR64(sum2R, (32-CSHIFT)), DEF_NFRACBITS);		pcm += 2;	}}
 |