| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300 | /* ***** BEGIN LICENSE BLOCK *****   * Source last modified: $Id: tns.c,v 1.2 2005/05/24 16:01:55 albertofloyd Exp $  *    * Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved.   *        * The contents of this file, and the files included with this file,  * are subject to the current version of the RealNetworks Public  * Source License (the "RPSL") available at  * http://www.helixcommunity.org/content/rpsl unless you have licensed  * the file under the current version of the RealNetworks Community  * Source License (the "RCSL") available at  * http://www.helixcommunity.org/content/rcsl, in which case the RCSL  * will apply. You may also obtain the license terms directly from  * RealNetworks.  You may not use this file except in compliance with  * the RPSL or, if you have a valid RCSL with RealNetworks applicable  * to this file, the RCSL.  Please see the applicable RPSL or RCSL for  * the rights, obligations and limitations governing use of the  * contents of the file.  *    * This file is part of the Helix DNA Technology. RealNetworks is the  * developer of the Original Code and owns the copyrights in the  * portions it created.  *    * This file, and the files included with this file, is distributed  * and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY  * KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS  * ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES  * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET  * ENJOYMENT OR NON-INFRINGEMENT.  *   * Technology Compatibility Kit Test Suite(s) Location:   *    http://www.helixcommunity.org/content/tck   *   * Contributor(s):   *    * ***** END LICENSE BLOCK ***** */  /************************************************************************************** * Fixed-point HE-AAC decoder * Jon Recker (jrecker@real.com) * February 2005 * * tns.c - apply TNS to spectrum **************************************************************************************/#include "coder.h"#include "assembly.h"#define FBITS_LPC_COEFS	20//fb#pragma GCC diagnostic push#pragma GCC diagnostic ignored "-Wnarrowing"/* inverse quantization tables for TNS filter coefficients, format = Q31 * see bottom of file for table generation * negative (vs. spec) since we use MADD for filter kernel */static const int invQuant3[16] PROGMEM = {	0x00000000, 0xc8767f65, 0x9becf22c, 0x83358feb, 0x83358feb, 0x9becf22c, 0xc8767f65, 0x00000000,	0x2bc750e9, 0x5246dd49, 0x6ed9eba1, 0x7e0e2e32, 0x7e0e2e32, 0x6ed9eba1, 0x5246dd49, 0x2bc750e9,};static const int invQuant4[16] PROGMEM = {	0x00000000, 0xe5632654, 0xcbf00dbe, 0xb4c373ee, 0xa0e0a15f, 0x9126145f, 0x8643c7b3, 0x80b381ac,	0x7f7437ad, 0x7b1d1a49, 0x7294b5f2, 0x66256db2, 0x563ba8aa, 0x4362210e, 0x2e3d2abb, 0x17851aad,};#pragma GCC diagnostic pop/************************************************************************************** * Function:    DecodeLPCCoefs * * Description: decode LPC coefficients for TNS * * Inputs:      order of TNS filter *              resolution of coefficients (3 or 4 bits) *              coefficients unpacked from bitstream *              scratch buffer (b) of size >= order * * Outputs:     LPC coefficients in Q(FBITS_LPC_COEFS), in 'a' * * Return:      none *  * Notes:       assumes no guard bits in input transform coefficients *              a[i] = Q(FBITS_LPC_COEFS), don't store a0 = 1.0  *                (so a[0] = first delay tap, etc.)  *              max abs(a[i]) < log2(order), so for max order = 20 a[i] < 4.4  *                (up to 3 bits of gain) so a[i] has at least 31 - FBITS_LPC_COEFS - 3  *                guard bits *              to ensure no intermediate overflow in all-pole filter, set  *                FBITS_LPC_COEFS such that number of guard bits >= log2(max order) **************************************************************************************/static void DecodeLPCCoefs(int order, int res, signed char *filtCoef, int *a, int *b){	int i, m, t;	const int *invQuantTab;	if (res == 3)			invQuantTab = invQuant3;	else if (res == 4)		invQuantTab = invQuant4;	else					return;	for (m = 0; m < order; m++) {		t = invQuantTab[filtCoef[m] & 0x0f];	/* t = Q31 */		for (i = 0; i < m; i++)			b[i] = a[i] - (MULSHIFT32(t, a[m-i-1]) << 1);		for (i = 0; i < m; i++) 			a[i] = b[i];		a[m] = t >> (31 - FBITS_LPC_COEFS);	}}/************************************************************************************** * Function:    FilterRegion * * Description: apply LPC filter to one region of coefficients * * Inputs:      number of transform coefficients in this region *              direction flag (forward = 1, backward = -1) *              order of filter *              'size' transform coefficients *              'order' LPC coefficients in Q(FBITS_LPC_COEFS) *              scratch buffer for history (must be >= order samples long) * * Outputs:     filtered transform coefficients * * Return:      guard bit mask (OR of abs value of all filtered transform coefs) *  * Notes:       assumes no guard bits in input transform coefficients *              gains 0 int bits *              history buffer does not need to be preserved between regions **************************************************************************************/static int FilterRegion(int size, int dir, int order, int *audioCoef, int *a, int *hist){	int i, j, y, hi32, inc, gbMask;	U64 sum64;	/* init history to 0 every time */	for (i = 0; i < order; i++)		hist[i] = 0;	sum64.w64 = 0;     /* avoid warning */	gbMask = 0;	inc = (dir ? -1 : 1);	do {		/* sum64 = a0*y[n] = 1.0*y[n] */		y = *audioCoef;		sum64.r.hi32 = y >> (32 - FBITS_LPC_COEFS);		sum64.r.lo32 = y << FBITS_LPC_COEFS;		 		/* sum64 += (a1*y[n-1] + a2*y[n-2] + ... + a[order-1]*y[n-(order-1)]) */        for (j = order - 1; j > 0; j--) {			sum64.w64 = MADD64(sum64.w64, hist[j], a[j]);            hist[j] = hist[j-1];		}		sum64.w64 = MADD64(sum64.w64, hist[0], a[0]);		y = (sum64.r.hi32 << (32 - FBITS_LPC_COEFS)) | (sum64.r.lo32 >> FBITS_LPC_COEFS);		/* clip output (rare) */		hi32 = sum64.r.hi32;		if ((hi32 >> 31) != (hi32 >> (FBITS_LPC_COEFS-1)))			y = (hi32 >> 31) ^ 0x7fffffff;		hist[0] = y;		*audioCoef = y;		audioCoef += inc;		gbMask |= FASTABS(y);	} while (--size);	return gbMask;}/************************************************************************************** * Function:    TNSFilter * * Description: apply temporal noise shaping, if enabled * * Inputs:      valid AACDecInfo struct *              index of current channel * * Outputs:     updated transform coefficients *              updated minimum guard bit count for this channel * * Return:      0 if successful, -1 if error **************************************************************************************/int TNSFilter(AACDecInfo *aacDecInfo, int ch){	int win, winLen, nWindows, nSFB, filt, bottom, top, order, maxOrder, dir;	int start, end, size, tnsMaxBand, numFilt, gbMask;	int *audioCoef;	unsigned char *filtLength, *filtOrder, *filtRes, *filtDir; 	signed char *filtCoef;	const unsigned /*char*/ int *tnsMaxBandTab;	const /*short*/ int *sfbTab;	ICSInfo *icsInfo;	TNSInfo *ti;	PSInfoBase *psi;	/* validate pointers */	if (!aacDecInfo || !aacDecInfo->psInfoBase)		return -1;	psi = (PSInfoBase *)(aacDecInfo->psInfoBase);	icsInfo = (ch == 1 && psi->commonWin == 1) ? &(psi->icsInfo[0]) : &(psi->icsInfo[ch]);	ti = &psi->tnsInfo[ch];	if (!ti->tnsDataPresent)		return 0;	if (icsInfo->winSequence == 2) {		nWindows = NWINDOWS_SHORT;		winLen = NSAMPS_SHORT;		nSFB = sfBandTotalShort[psi->sampRateIdx];		maxOrder = tnsMaxOrderShort[aacDecInfo->profile];		sfbTab = sfBandTabShort + sfBandTabShortOffset[psi->sampRateIdx];		tnsMaxBandTab = tnsMaxBandsShort + tnsMaxBandsShortOffset[aacDecInfo->profile];		tnsMaxBand = tnsMaxBandTab[psi->sampRateIdx];	} else {		nWindows = NWINDOWS_LONG;		winLen = NSAMPS_LONG;		nSFB = sfBandTotalLong[psi->sampRateIdx];		maxOrder = tnsMaxOrderLong[aacDecInfo->profile];		sfbTab = sfBandTabLong + sfBandTabLongOffset[psi->sampRateIdx];		tnsMaxBandTab = tnsMaxBandsLong + tnsMaxBandsLongOffset[aacDecInfo->profile];		tnsMaxBand = tnsMaxBandTab[psi->sampRateIdx];	}	if (tnsMaxBand > icsInfo->maxSFB)		tnsMaxBand = icsInfo->maxSFB;	filtRes =    ti->coefRes;	filtLength = ti->length;	filtOrder =  ti->order;	filtDir =    ti->dir;	filtCoef =   ti->coef;	gbMask = 0;	audioCoef =  psi->coef[ch];	for (win = 0; win < nWindows; win++) {		bottom = nSFB;		numFilt = ti->numFilt[win];		for (filt = 0; filt < numFilt; filt++) {			top = bottom;			bottom = top - *filtLength++;			bottom = MAX(bottom, 0);			order = *filtOrder++;			order = MIN(order, maxOrder);			if (order) {				start = sfbTab[MIN(bottom, tnsMaxBand)];				end   = sfbTab[MIN(top, tnsMaxBand)];				size = end - start;				if (size > 0) {					dir = *filtDir++;					if (dir)						start = end - 1;					DecodeLPCCoefs(order, filtRes[win], filtCoef, psi->tnsLPCBuf, psi->tnsWorkBuf);					gbMask |= FilterRegion(size, dir, order, audioCoef + start, psi->tnsLPCBuf, psi->tnsWorkBuf);				}				filtCoef += order;			}		}		audioCoef += winLen;	}	/* update guard bit count if necessary */	size = CLZ(gbMask) - 1;	if (psi->gbCurrent[ch] > size)		psi->gbCurrent[ch] = size;	return 0;}/*	Code to generate invQuantXXX[] tables *  { *    int res, i, t; *    double powScale, iqfac, iqfac_m, d; * *    powScale = pow(2.0, 31) * -1.0;	/ ** make coefficients negative for using MADD in kernel ** / *    for (res = 3; res <= 4; res++) { *      iqfac =   ( ((1 << (res-1)) - 0.5) * (2.0 / M_PI) ); *      iqfac_m = ( ((1 << (res-1)) + 0.5) * (2.0 / M_PI) ); *      printf("static const int invQuant%d[16] = {\n", res); *      for (i = 0; i < 16; i++) { *        / ** extend bottom 4 bits into signed, 2's complement number ** / *        t = (i << 28) >> 28; * *        if (t >= 0)   d = sin(t / iqfac); *        else          d = sin(t / iqfac_m); * *        d *= powScale; *        printf("0x%08x, ", (int)(d > 0 ? d + 0.5 : d - 0.5)); *        if ((i & 0x07) == 0x07) *           printf("\n"); *      } *      printf("};\n\n"); *	  } *  } */
 |