| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299 | 
							- /* ***** BEGIN LICENSE BLOCK ***** 
 
-  * Version: RCSL 1.0/RPSL 1.0 
 
-  *  
 
-  * Portions Copyright (c) 1995-2002 RealNetworks, Inc. All Rights Reserved. 
 
-  *      
 
-  * The contents of this file, and the files included with this file, are 
 
-  * subject to the current version of the RealNetworks Public Source License 
 
-  * Version 1.0 (the "RPSL") available at 
 
-  * http://www.helixcommunity.org/content/rpsl unless you have licensed 
 
-  * the file under the RealNetworks Community Source License Version 1.0 
 
-  * (the "RCSL") available at http://www.helixcommunity.org/content/rcsl, 
 
-  * in which case the RCSL will apply. You may also obtain the license terms 
 
-  * directly from RealNetworks.  You may not use this file except in 
 
-  * compliance with the RPSL or, if you have a valid RCSL with RealNetworks 
 
-  * applicable to this file, the RCSL.  Please see the applicable RPSL or 
 
-  * RCSL for the rights, obligations and limitations governing use of the 
 
-  * contents of the file.  
 
-  *  
 
-  * This file is part of the Helix DNA Technology. RealNetworks is the 
 
-  * developer of the Original Code and owns the copyrights in the portions 
 
-  * it created. 
 
-  *  
 
-  * This file, and the files included with this file, is distributed and made 
 
-  * available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER 
 
-  * EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS ALL SUCH WARRANTIES, 
 
-  * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS 
 
-  * FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. 
 
-  * 
 
-  * Technology Compatibility Kit Test Suite(s) Location: 
 
-  *    http://www.helixcommunity.org/content/tck 
 
-  * 
 
-  * Contributor(s): 
 
-  *  
 
-  * ***** END LICENSE BLOCK ***** */ 
 
- /**************************************************************************************
 
-  * Fixed-point MP3 decoder
 
-  * Jon Recker (jrecker@real.com), Ken Cooke (kenc@real.com)
 
-  * June 2003
 
-  *
 
-  * stproc.c - mid-side and intensity (MPEG1 and MPEG2) stereo processing
 
-  **************************************************************************************/
 
- #include "coder.h"
 
- #include "assembly.h"
 
- /**************************************************************************************
 
-  * Function:    MidSideProc
 
-  *
 
-  * Description: sum-difference stereo reconstruction
 
-  *
 
-  * Inputs:      vector x with dequantized samples from left and right channels
 
-  *              number of non-zero samples (MAX of left and right)
 
-  *              assume 1 guard bit in input
 
-  *              guard bit mask (left and right channels)
 
-  *
 
-  * Outputs:     updated sample vector x
 
-  *              updated guard bit mask
 
-  *
 
-  * Return:      none
 
-  *
 
-  * Notes:       assume at least 1 GB in input
 
-  **************************************************************************************/
 
- void MidSideProc(int x[MAX_NCHAN][MAX_NSAMP], int nSamps, int mOut[2])  
 
- {
 
- 	int i, xr, xl, mOutL, mOutR;
 
- 	
 
- 	/* L = (M+S)/sqrt(2), R = (M-S)/sqrt(2) 
 
- 	 * NOTE: 1/sqrt(2) done in DequantChannel() - see comments there
 
- 	 */
 
- 	mOutL = mOutR = 0;
 
- 	for(i = 0; i < nSamps; i++) {
 
- 		xl = x[0][i];
 
- 		xr = x[1][i];
 
- 		x[0][i] = xl + xr;
 
- 		x[1][i] = xl - xr;
 
- 		mOutL |= FASTABS(x[0][i]);
 
- 		mOutR |= FASTABS(x[1][i]);
 
- 	}
 
- 	mOut[0] |= mOutL;
 
- 	mOut[1] |= mOutR;
 
- }
 
- /**************************************************************************************
 
-  * Function:    IntensityProcMPEG1
 
-  *
 
-  * Description: intensity stereo processing for MPEG1
 
-  *
 
-  * Inputs:      vector x with dequantized samples from left and right channels
 
-  *              number of non-zero samples in left channel
 
-  *              valid FrameHeader struct
 
-  *              two each of ScaleFactorInfoSub, CriticalBandInfo structs (both channels)
 
-  *              flags indicating midSide on/off, mixedBlock on/off
 
-  *              guard bit mask (left and right channels)
 
-  *
 
-  * Outputs:     updated sample vector x
 
-  *              updated guard bit mask
 
-  *
 
-  * Return:      none
 
-  *
 
-  * Notes:       assume at least 1 GB in input
 
-  *
 
-  * TODO:        combine MPEG1/2 into one function (maybe)
 
-  *              make sure all the mixed-block and IIP logic is right
 
-  **************************************************************************************/
 
- void IntensityProcMPEG1(int x[MAX_NCHAN][MAX_NSAMP], int nSamps, FrameHeader *fh, ScaleFactorInfoSub *sfis, 
 
- 						CriticalBandInfo *cbi, int midSideFlag, int mixFlag, int mOut[2])
 
- {
 
- 	int i=0, j=0, n=0, cb=0, w=0;
 
- 	int sampsLeft, isf, mOutL, mOutR, xl, xr;
 
- 	int fl, fr, fls[3], frs[3];
 
- 	int cbStartL=0, cbStartS=0, cbEndL=0, cbEndS=0;
 
- 	int *isfTab;
 
- 	(void)mixFlag;
 
- 	/* NOTE - this works fine for mixed blocks, as long as the switch point starts in the
 
- 	 *  short block section (i.e. on or after sample 36 = sfBand->l[8] = 3*sfBand->s[3]
 
- 	 * is this a safe assumption?
 
- 	 * TODO - intensity + mixed not quite right (diff = 11 on he_mode)
 
- 	 *  figure out correct implementation (spec ambiguous about when to do short block reorder)
 
- 	 */
 
- 	if (cbi[1].cbType == 0) {
 
- 		/* long block */
 
- 		cbStartL = cbi[1].cbEndL + 1;
 
- 		cbEndL =   cbi[0].cbEndL + 1;
 
- 		cbStartS = cbEndS = 0;
 
- 		i = fh->sfBand->l[cbStartL];
 
- 	} else if (cbi[1].cbType == 1 || cbi[1].cbType == 2) {
 
- 		/* short or mixed block */
 
- 		cbStartS = cbi[1].cbEndSMax + 1;
 
- 		cbEndS =   cbi[0].cbEndSMax + 1;
 
- 		cbStartL = cbEndL = 0;
 
- 		i = 3 * fh->sfBand->s[cbStartS];
 
- 	}
 
- 	sampsLeft = nSamps - i;		/* process to length of left */
 
- 	isfTab = (int *)ISFMpeg1[midSideFlag];
 
- 	mOutL = mOutR = 0;
 
- 	/* long blocks */
 
- 	for (cb = cbStartL; cb < cbEndL && sampsLeft > 0; cb++) {
 
- 		isf = sfis->l[cb];
 
- 		if (isf == 7) {
 
- 			fl = ISFIIP[midSideFlag][0];
 
- 			fr = ISFIIP[midSideFlag][1];
 
- 		} else {
 
- 			fl = isfTab[isf];	
 
- 			fr = isfTab[6] - isfTab[isf];
 
- 		}
 
- 		n = fh->sfBand->l[cb + 1] - fh->sfBand->l[cb];
 
- 		for (j = 0; j < n && sampsLeft > 0; j++, i++) {
 
- 			xr = MULSHIFT32(fr, x[0][i]) << 2;	x[1][i] = xr; mOutR |= FASTABS(xr);
 
- 			xl = MULSHIFT32(fl, x[0][i]) << 2;	x[0][i] = xl; mOutL |= FASTABS(xl);
 
- 			sampsLeft--;
 
- 		}
 
- 	}
 
- 	/* short blocks */
 
- 	for (cb = cbStartS; cb < cbEndS && sampsLeft >= 3; cb++) {
 
- 		for (w = 0; w < 3; w++) {
 
- 			isf = sfis->s[cb][w];
 
- 			if (isf == 7) {
 
- 				fls[w] = ISFIIP[midSideFlag][0];
 
- 				frs[w] = ISFIIP[midSideFlag][1];
 
- 			} else {
 
- 				fls[w] = isfTab[isf];
 
- 				frs[w] = isfTab[6] - isfTab[isf];
 
- 			}
 
- 		}
 
- 		n = fh->sfBand->s[cb + 1] - fh->sfBand->s[cb];
 
- 		for (j = 0; j < n && sampsLeft >= 3; j++, i+=3) {
 
- 			xr = MULSHIFT32(frs[0], x[0][i+0]) << 2;	x[1][i+0] = xr;	mOutR |= FASTABS(xr);
 
- 			xl = MULSHIFT32(fls[0], x[0][i+0]) << 2;	x[0][i+0] = xl;	mOutL |= FASTABS(xl);
 
- 			xr = MULSHIFT32(frs[1], x[0][i+1]) << 2;	x[1][i+1] = xr;	mOutR |= FASTABS(xr);
 
- 			xl = MULSHIFT32(fls[1], x[0][i+1]) << 2;	x[0][i+1] = xl;	mOutL |= FASTABS(xl);
 
- 			xr = MULSHIFT32(frs[2], x[0][i+2]) << 2;	x[1][i+2] = xr;	mOutR |= FASTABS(xr);
 
- 			xl = MULSHIFT32(fls[2], x[0][i+2]) << 2;	x[0][i+2] = xl;	mOutL |= FASTABS(xl);
 
- 			sampsLeft -= 3;
 
- 		}
 
- 	}
 
- 	mOut[0] = mOutL;
 
- 	mOut[1] = mOutR;
 
- 	
 
- 	return;
 
- }
 
- /**************************************************************************************
 
-  * Function:    IntensityProcMPEG2
 
-  *
 
-  * Description: intensity stereo processing for MPEG2
 
-  *
 
-  * Inputs:      vector x with dequantized samples from left and right channels
 
-  *              number of non-zero samples in left channel
 
-  *              valid FrameHeader struct
 
-  *              two each of ScaleFactorInfoSub, CriticalBandInfo structs (both channels)
 
-  *              ScaleFactorJS struct with joint stereo info from UnpackSFMPEG2()
 
-  *              flags indicating midSide on/off, mixedBlock on/off
 
-  *              guard bit mask (left and right channels)
 
-  *
 
-  * Outputs:     updated sample vector x
 
-  *              updated guard bit mask
 
-  *
 
-  * Return:      none
 
-  *
 
-  * Notes:       assume at least 1 GB in input
 
-  *
 
-  * TODO:        combine MPEG1/2 into one function (maybe)
 
-  *              make sure all the mixed-block and IIP logic is right
 
-  *                probably redo IIP logic to be simpler
 
-  **************************************************************************************/
 
- void IntensityProcMPEG2(int x[MAX_NCHAN][MAX_NSAMP], int nSamps, FrameHeader *fh, ScaleFactorInfoSub *sfis, 
 
- 						CriticalBandInfo *cbi, ScaleFactorJS *sfjs, int midSideFlag, int mixFlag, int mOut[2])
 
- {
 
- 	int i, j, k, n, r, cb, w;
 
- 	int fl, fr, mOutL, mOutR, xl, xr;
 
- 	int sampsLeft;
 
- 	int isf, sfIdx, tmp, il[23];
 
- 	int *isfTab;
 
- 	int cbStartL, cbStartS, cbEndL, cbEndS;
 
- 	(void)mixFlag;
 
- 	
 
- 	isfTab = (int *)ISFMpeg2[sfjs->intensityScale][midSideFlag];
 
- 	mOutL = mOutR = 0;
 
- 	/* fill buffer with illegal intensity positions (depending on slen) */
 
- 	for (k = r = 0; r < 4; r++) {
 
- 		tmp = (1 << sfjs->slen[r]) - 1;
 
- 		for (j = 0; j < sfjs->nr[r]; j++, k++) 
 
- 			il[k] = tmp;
 
- 	}
 
- 	if (cbi[1].cbType == 0) {
 
- 		/* long blocks */
 
- 		il[21] = il[22] = 1;
 
- 		cbStartL = cbi[1].cbEndL + 1;	/* start at end of right */
 
- 		cbEndL =   cbi[0].cbEndL + 1;	/* process to end of left */
 
- 		i = fh->sfBand->l[cbStartL];
 
- 		sampsLeft = nSamps - i;
 
- 		for(cb = cbStartL; cb < cbEndL; cb++) {
 
- 			sfIdx = sfis->l[cb];
 
- 			if (sfIdx == il[cb]) {
 
- 				fl = ISFIIP[midSideFlag][0];
 
- 				fr = ISFIIP[midSideFlag][1];
 
- 			} else {
 
- 				isf = (sfis->l[cb] + 1) >> 1;
 
- 				fl = isfTab[(sfIdx & 0x01 ? isf : 0)];
 
- 				fr = isfTab[(sfIdx & 0x01 ? 0 : isf)];
 
- 			}
 
- 			n = MIN(fh->sfBand->l[cb + 1] - fh->sfBand->l[cb], sampsLeft);
 
- 			for(j = 0; j < n; j++, i++) {
 
- 				xr = MULSHIFT32(fr, x[0][i]) << 2;	x[1][i] = xr;	mOutR |= FASTABS(xr);
 
- 				xl = MULSHIFT32(fl, x[0][i]) << 2;	x[0][i] = xl;	mOutL |= FASTABS(xl);
 
- 			}
 
- 			/* early exit once we've used all the non-zero samples */
 
- 			sampsLeft -= n;
 
- 			if (sampsLeft == 0)		
 
- 				break;
 
- 		}
 
- 	} else {
 
- 		/* short or mixed blocks */
 
- 		il[12] = 1;
 
- 		for(w = 0; w < 3; w++) {
 
- 			cbStartS = cbi[1].cbEndS[w] + 1;		/* start at end of right */
 
- 			cbEndS =   cbi[0].cbEndS[w] + 1;		/* process to end of left */
 
- 			i = 3 * fh->sfBand->s[cbStartS] + w;
 
- 			/* skip through sample array by 3, so early-exit logic would be more tricky */
 
- 			for(cb = cbStartS; cb < cbEndS; cb++) {
 
- 				sfIdx = sfis->s[cb][w];
 
- 				if (sfIdx == il[cb]) {
 
- 					fl = ISFIIP[midSideFlag][0];
 
- 					fr = ISFIIP[midSideFlag][1];
 
- 				} else {
 
- 					isf = (sfis->s[cb][w] + 1) >> 1;
 
- 					fl = isfTab[(sfIdx & 0x01 ? isf : 0)];
 
- 					fr = isfTab[(sfIdx & 0x01 ? 0 : isf)];
 
- 				}
 
- 				n = fh->sfBand->s[cb + 1] - fh->sfBand->s[cb];
 
- 				for(j = 0; j < n; j++, i+=3) {
 
- 					xr = MULSHIFT32(fr, x[0][i]) << 2;	x[1][i] = xr;	mOutR |= FASTABS(xr);
 
- 					xl = MULSHIFT32(fl, x[0][i]) << 2;	x[0][i] = xl;	mOutL |= FASTABS(xl);
 
- 				}
 
- 			}
 
- 		}
 
- 	}
 
- 	mOut[0] = mOutL;
 
- 	mOut[1] = mOutR;
 
- 	return;
 
- }
 
 
  |