| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195 | /* ***** BEGIN LICENSE BLOCK *****   * Source last modified: $Id: sbrmath.c,v 1.1 2005/02/26 01:47:35 jrecker Exp $  *    * Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved.   *        * The contents of this file, and the files included with this file,  * are subject to the current version of the RealNetworks Public  * Source License (the "RPSL") available at  * http://www.helixcommunity.org/content/rpsl unless you have licensed  * the file under the current version of the RealNetworks Community  * Source License (the "RCSL") available at  * http://www.helixcommunity.org/content/rcsl, in which case the RCSL  * will apply. You may also obtain the license terms directly from  * RealNetworks.  You may not use this file except in compliance with  * the RPSL or, if you have a valid RCSL with RealNetworks applicable  * to this file, the RCSL.  Please see the applicable RPSL or RCSL for  * the rights, obligations and limitations governing use of the  * contents of the file.  *    * This file is part of the Helix DNA Technology. RealNetworks is the  * developer of the Original Code and owns the copyrights in the  * portions it created.  *    * This file, and the files included with this file, is distributed  * and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY  * KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS  * ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES  * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET  * ENJOYMENT OR NON-INFRINGEMENT.  *   * Technology Compatibility Kit Test Suite(s) Location:   *    http://www.helixcommunity.org/content/tck   *   * Contributor(s):   *    * ***** END LICENSE BLOCK ***** */  /************************************************************************************** * Fixed-point HE-AAC decoder * Jon Recker (jrecker@real.com) * February 2005 * * sbrmath.c - fixed-point math functions for SBR **************************************************************************************/#include "sbr.h"#include "assembly.h"#define Q28_2	0x20000000	/* Q28: 2.0 */#define Q28_15	0x30000000	/* Q28: 1.5 */#define NUM_ITER_IRN		5/************************************************************************************** * Function:    InvRNormalized * * Description: use Newton's method to solve for x = 1/r * * Inputs:      r = Q31, range = [0.5, 1) (normalize your inputs to this range) * * Outputs:     none * * Return:      x = Q29, range ~= [1.0, 2.0] * * Notes:       guaranteed to converge and not overflow for any r in [0.5, 1) *  *              xn+1  = xn - f(xn)/f'(xn) *              f(x)  = 1/r - x = 0 (find root) *                    = 1/x - r *              f'(x) = -1/x^2 * *              so xn+1 = xn - (1/xn - r) / (-1/xn^2) *                      = xn * (2 - r*xn) * *              NUM_ITER_IRN = 2, maxDiff = 6.2500e-02 (precision of about 4 bits) *              NUM_ITER_IRN = 3, maxDiff = 3.9063e-03 (precision of about 8 bits) *              NUM_ITER_IRN = 4, maxDiff = 1.5288e-05 (precision of about 16 bits) *              NUM_ITER_IRN = 5, maxDiff = 3.0034e-08 (precision of about 24 bits) **************************************************************************************/int InvRNormalized(int r){	int i, xn, t;	/* r =   [0.5, 1.0) 	 * 1/r = (1.0, 2.0] 	 *   so use 1.5 as initial guess 	 */	xn = Q28_15;	/* xn = xn*(2.0 - r*xn) */	for (i = NUM_ITER_IRN; i != 0; i--) {		t = MULSHIFT32(r, xn);			/* Q31*Q29 = Q28 */		t = Q28_2 - t;					/* Q28 */		xn = MULSHIFT32(xn, t) << 4;	/* Q29*Q28 << 4 = Q29 */	}	return xn;}#define NUM_TERMS_RPI	5#define LOG2_EXP_INV	0x58b90bfc	/* 1/log2(e), Q31 *//* invTab[x] = 1/(x+1), format = Q30 */static const int invTab[NUM_TERMS_RPI] PROGMEM = {0x40000000, 0x20000000, 0x15555555, 0x10000000, 0x0ccccccd};/************************************************************************************** * Function:    RatioPowInv * * Description: use Taylor (MacLaurin) series expansion to calculate (a/b) ^ (1/c) * * Inputs:      a = [1, 64], b = [1, 64], c = [1, 64], a >= b * * Outputs:     none * * Return:      y = Q24, range ~= [0.015625, 64] **************************************************************************************/int RatioPowInv(int a, int b, int c){	int lna, lnb, i, p, t, y;	if (a < 1 || b < 1 || c < 1 || a > 64 || b > 64 || c > 64 || a < b)		return 0;	lna = MULSHIFT32(log2Tab[a], LOG2_EXP_INV) << 1;	/* ln(a), Q28 */	lnb = MULSHIFT32(log2Tab[b], LOG2_EXP_INV) << 1;	/* ln(b), Q28 */	p = (lna - lnb) / c;	/* Q28 */	/* sum in Q24 */	y = (1 << 24);	t = p >> 4;		/* t = p^1 * 1/1! (Q24)*/	y += t;	for (i = 2; i <= NUM_TERMS_RPI; i++) {		t = MULSHIFT32(invTab[i-1], t) << 2;		t = MULSHIFT32(p, t) << 4;	/* t = p^i * 1/i! (Q24) */		y += t;	}	return y;}/************************************************************************************** * Function:    SqrtFix * * Description: use binary search to calculate sqrt(q) * * Inputs:      q = Q30 *              number of fraction bits in input * * Outputs:     number of fraction bits in output * * Return:      lo = Q(fBitsOut) * * Notes:       absolute precision varies depending on fBitsIn *              normalizes input to range [0x200000000, 0x7fffffff] and takes  *                floor(sqrt(input)), and sets fBitsOut appropriately **************************************************************************************/int SqrtFix(int q, int fBitsIn, int *fBitsOut){	int z, lo, hi, mid;	if (q <= 0) {		*fBitsOut = fBitsIn;		return 0;	}	/* force even fBitsIn */	z = fBitsIn & 0x01;	q >>= z;	fBitsIn -= z;	/* for max precision, normalize to [0x20000000, 0x7fffffff] */	z = (CLZ(q) - 1);	z >>= 1;	q <<= (2*z);	/* choose initial bounds */	lo = 1;	if (q >= 0x10000000)		lo = 16384;	/* (int)sqrt(0x10000000) */	hi = 46340;		/* (int)sqrt(0x7fffffff) */	/* do binary search with 32x32->32 multiply test */	do {		mid = (lo + hi) >> 1;		if (mid*mid > q)			hi = mid - 1;		else			lo = mid + 1;	} while (hi >= lo);	lo--;	*fBitsOut = ((fBitsIn + 2*z) >> 1);	return lo;}
 |