123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616 |
- /* ***** BEGIN LICENSE BLOCK *****
- * Source last modified: $Id: sbrhfgen.c,v 1.2 2005/05/19 20:45:20 jrecker Exp $
- *
- * Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved.
- *
- * The contents of this file, and the files included with this file,
- * are subject to the current version of the RealNetworks Public
- * Source License (the "RPSL") available at
- * http://www.helixcommunity.org/content/rpsl unless you have licensed
- * the file under the current version of the RealNetworks Community
- * Source License (the "RCSL") available at
- * http://www.helixcommunity.org/content/rcsl, in which case the RCSL
- * will apply. You may also obtain the license terms directly from
- * RealNetworks. You may not use this file except in compliance with
- * the RPSL or, if you have a valid RCSL with RealNetworks applicable
- * to this file, the RCSL. Please see the applicable RPSL or RCSL for
- * the rights, obligations and limitations governing use of the
- * contents of the file.
- *
- * This file is part of the Helix DNA Technology. RealNetworks is the
- * developer of the Original Code and owns the copyrights in the
- * portions it created.
- *
- * This file, and the files included with this file, is distributed
- * and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY
- * KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS
- * ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES
- * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET
- * ENJOYMENT OR NON-INFRINGEMENT.
- *
- * Technology Compatibility Kit Test Suite(s) Location:
- * http://www.helixcommunity.org/content/tck
- *
- * Contributor(s):
- *
- * ***** END LICENSE BLOCK ***** */
- /**************************************************************************************
- * Fixed-point HE-AAC decoder
- * Jon Recker (jrecker@real.com)
- * February 2005
- *
- * sbrhfgen.c - high frequency generation for SBR
- **************************************************************************************/
- #include "sbr.h"
- #include "assembly.h"
- #define FBITS_LPCOEFS 29 /* Q29 for range of (-4, 4) */
- #define MAG_16 (16 * (1 << (32 - (2*(32-FBITS_LPCOEFS))))) /* i.e. 16 in Q26 format */
- #define RELAX_COEF 0x7ffff79c /* 1.0 / (1.0 + 1e-6), Q31 */
- /* newBWTab[prev invfMode][curr invfMode], format = Q31 (table 4.158)
- * sample file which uses all of these: al_sbr_sr_64_2_fsaac32.aac
- */
- static const int newBWTab[4][4] PROGMEM = {
- {0x00000000, 0x4ccccccd, 0x73333333, 0x7d70a3d7},
- {0x4ccccccd, 0x60000000, 0x73333333, 0x7d70a3d7},
- {0x00000000, 0x60000000, 0x73333333, 0x7d70a3d7},
- {0x00000000, 0x60000000, 0x73333333, 0x7d70a3d7},
- };
- /**************************************************************************************
- * Function: CVKernel1
- *
- * Description: kernel of covariance matrix calculation for p01, p11, p12, p22
- *
- * Inputs: buffer of low-freq samples, starting at time index = 0,
- * freq index = patch subband
- *
- * Outputs: 64-bit accumulators for p01re, p01im, p12re, p12im, p11re, p22re
- * stored in accBuf
- *
- * Return: none
- *
- * Notes: this is carefully written to be efficient on ARM
- * use the assembly code version in sbrcov.s when building for ARM!
- **************************************************************************************/
- #if (defined (XXXX__arm) && defined (__ARMCC_VERSION)) || (defined (_WIN32) && defined (_WIN32_WCE) && defined (ARM)) || (defined(__GNUC__) && defined(XXXX__arm__))
- #ifdef __cplusplus
- extern "C"
- #endif
- void CVKernel1(int *XBuf, int *accBuf);
- #else
- void CVKernel1(int *XBuf, int *accBuf)
- {
- U64 p01re, p01im, p12re, p12im, p11re, p22re;
- int n, x0re, x0im, x1re, x1im;
- x0re = XBuf[0];
- x0im = XBuf[1];
- XBuf += (2*64);
- x1re = XBuf[0];
- x1im = XBuf[1];
- XBuf += (2*64);
- p01re.w64 = p01im.w64 = 0;
- p12re.w64 = p12im.w64 = 0;
- p11re.w64 = 0;
- p22re.w64 = 0;
- p12re.w64 = MADD64(p12re.w64, x1re, x0re);
- p12re.w64 = MADD64(p12re.w64, x1im, x0im);
- p12im.w64 = MADD64(p12im.w64, x0re, x1im);
- p12im.w64 = MADD64(p12im.w64, -x0im, x1re);
- p22re.w64 = MADD64(p22re.w64, x0re, x0re);
- p22re.w64 = MADD64(p22re.w64, x0im, x0im);
- for (n = (NUM_TIME_SLOTS*SAMPLES_PER_SLOT + 6); n != 0; n--) {
- /* 4 input, 3*2 acc, 1 ptr, 1 loop counter = 12 registers (use same for x0im, -x0im) */
- x0re = x1re;
- x0im = x1im;
- x1re = XBuf[0];
- x1im = XBuf[1];
- p01re.w64 = MADD64(p01re.w64, x1re, x0re);
- p01re.w64 = MADD64(p01re.w64, x1im, x0im);
- p01im.w64 = MADD64(p01im.w64, x0re, x1im);
- p01im.w64 = MADD64(p01im.w64, -x0im, x1re);
- p11re.w64 = MADD64(p11re.w64, x0re, x0re);
- p11re.w64 = MADD64(p11re.w64, x0im, x0im);
- XBuf += (2*64);
- }
- /* these can be derived by slight changes to account for boundary conditions */
- p12re.w64 += p01re.w64;
- p12re.w64 = MADD64(p12re.w64, x1re, -x0re);
- p12re.w64 = MADD64(p12re.w64, x1im, -x0im);
- p12im.w64 += p01im.w64;
- p12im.w64 = MADD64(p12im.w64, x0re, -x1im);
- p12im.w64 = MADD64(p12im.w64, x0im, x1re);
- p22re.w64 += p11re.w64;
- p22re.w64 = MADD64(p22re.w64, x0re, -x0re);
- p22re.w64 = MADD64(p22re.w64, x0im, -x0im);
- accBuf[0] = p01re.r.lo32; accBuf[1] = p01re.r.hi32;
- accBuf[2] = p01im.r.lo32; accBuf[3] = p01im.r.hi32;
- accBuf[4] = p11re.r.lo32; accBuf[5] = p11re.r.hi32;
- accBuf[6] = p12re.r.lo32; accBuf[7] = p12re.r.hi32;
- accBuf[8] = p12im.r.lo32; accBuf[9] = p12im.r.hi32;
- accBuf[10] = p22re.r.lo32; accBuf[11] = p22re.r.hi32;
- }
- #endif
- /**************************************************************************************
- * Function: CalcCovariance1
- *
- * Description: calculate covariance matrix for p01, p12, p11, p22 (4.6.18.6.2)
- *
- * Inputs: buffer of low-freq samples, starting at time index 0,
- * freq index = patch subband
- *
- * Outputs: complex covariance elements p01re, p01im, p12re, p12im, p11re, p22re
- * (p11im = p22im = 0)
- * format = integer (Q0) * 2^N, with scalefactor N >= 0
- *
- * Return: scalefactor N
- *
- * Notes: outputs are normalized to have 1 GB (sign in at least top 2 bits)
- **************************************************************************************/
- static int CalcCovariance1(int *XBuf, int *p01reN, int *p01imN, int *p12reN, int *p12imN, int *p11reN, int *p22reN)
- {
- int accBuf[2*6];
- int n, z, s, loShift, hiShift, gbMask;
- U64 p01re, p01im, p12re, p12im, p11re, p22re;
- CVKernel1(XBuf, accBuf);
- p01re.r.lo32 = accBuf[0]; p01re.r.hi32 = accBuf[1];
- p01im.r.lo32 = accBuf[2]; p01im.r.hi32 = accBuf[3];
- p11re.r.lo32 = accBuf[4]; p11re.r.hi32 = accBuf[5];
- p12re.r.lo32 = accBuf[6]; p12re.r.hi32 = accBuf[7];
- p12im.r.lo32 = accBuf[8]; p12im.r.hi32 = accBuf[9];
- p22re.r.lo32 = accBuf[10]; p22re.r.hi32 = accBuf[11];
- /* 64-bit accumulators now have 2*FBITS_OUT_QMFA fraction bits
- * want to scale them down to integers (32-bit signed, Q0)
- * with scale factor of 2^n, n >= 0
- * leave 2 GB's for calculating determinant, so take top 30 non-zero bits
- */
- gbMask = ((p01re.r.hi32) ^ (p01re.r.hi32 >> 31)) | ((p01im.r.hi32) ^ (p01im.r.hi32 >> 31));
- gbMask |= ((p12re.r.hi32) ^ (p12re.r.hi32 >> 31)) | ((p12im.r.hi32) ^ (p12im.r.hi32 >> 31));
- gbMask |= ((p11re.r.hi32) ^ (p11re.r.hi32 >> 31)) | ((p22re.r.hi32) ^ (p22re.r.hi32 >> 31));
- if (gbMask == 0) {
- s = p01re.r.hi32 >> 31; gbMask = (p01re.r.lo32 ^ s) - s;
- s = p01im.r.hi32 >> 31; gbMask |= (p01im.r.lo32 ^ s) - s;
- s = p12re.r.hi32 >> 31; gbMask |= (p12re.r.lo32 ^ s) - s;
- s = p12im.r.hi32 >> 31; gbMask |= (p12im.r.lo32 ^ s) - s;
- s = p11re.r.hi32 >> 31; gbMask |= (p11re.r.lo32 ^ s) - s;
- s = p22re.r.hi32 >> 31; gbMask |= (p22re.r.lo32 ^ s) - s;
- z = 32 + CLZ(gbMask);
- } else {
- gbMask = FASTABS(p01re.r.hi32) | FASTABS(p01im.r.hi32);
- gbMask |= FASTABS(p12re.r.hi32) | FASTABS(p12im.r.hi32);
- gbMask |= FASTABS(p11re.r.hi32) | FASTABS(p22re.r.hi32);
- z = CLZ(gbMask);
- }
- n = 64 - z; /* number of non-zero bits in bottom of 64-bit word */
- if (n <= 30) {
- loShift = (30 - n);
- *p01reN = p01re.r.lo32 << loShift; *p01imN = p01im.r.lo32 << loShift;
- *p12reN = p12re.r.lo32 << loShift; *p12imN = p12im.r.lo32 << loShift;
- *p11reN = p11re.r.lo32 << loShift; *p22reN = p22re.r.lo32 << loShift;
- return -(loShift + 2*FBITS_OUT_QMFA);
- } else if (n < 32 + 30) {
- loShift = (n - 30);
- hiShift = 32 - loShift;
- *p01reN = (p01re.r.hi32 << hiShift) | (p01re.r.lo32 >> loShift);
- *p01imN = (p01im.r.hi32 << hiShift) | (p01im.r.lo32 >> loShift);
- *p12reN = (p12re.r.hi32 << hiShift) | (p12re.r.lo32 >> loShift);
- *p12imN = (p12im.r.hi32 << hiShift) | (p12im.r.lo32 >> loShift);
- *p11reN = (p11re.r.hi32 << hiShift) | (p11re.r.lo32 >> loShift);
- *p22reN = (p22re.r.hi32 << hiShift) | (p22re.r.lo32 >> loShift);
- return (loShift - 2*FBITS_OUT_QMFA);
- } else {
- hiShift = n - (32 + 30);
- *p01reN = p01re.r.hi32 >> hiShift; *p01imN = p01im.r.hi32 >> hiShift;
- *p12reN = p12re.r.hi32 >> hiShift; *p12imN = p12im.r.hi32 >> hiShift;
- *p11reN = p11re.r.hi32 >> hiShift; *p22reN = p22re.r.hi32 >> hiShift;
- return (32 - 2*FBITS_OUT_QMFA - hiShift);
- }
- return 0;
- }
- /**************************************************************************************
- * Function: CVKernel2
- *
- * Description: kernel of covariance matrix calculation for p02
- *
- * Inputs: buffer of low-freq samples, starting at time index = 0,
- * freq index = patch subband
- *
- * Outputs: 64-bit accumulators for p02re, p02im stored in accBuf
- *
- * Return: none
- *
- * Notes: this is carefully written to be efficient on ARM
- * use the assembly code version in sbrcov.s when building for ARM!
- **************************************************************************************/
- #if (defined (XXXX__arm) && defined (__ARMCC_VERSION)) || (defined (_WIN32) && defined (_WIN32_WCE) && defined (ARM)) || (defined(__GNUC__) && defined(XXXX__arm__))
- #ifdef __cplusplus
- extern "C"
- #endif
- void CVKernel2(int *XBuf, int *accBuf);
- #else
- void CVKernel2(int *XBuf, int *accBuf)
- {
- U64 p02re, p02im;
- int n, x0re, x0im, x1re, x1im, x2re, x2im;
- p02re.w64 = p02im.w64 = 0;
- x0re = XBuf[0];
- x0im = XBuf[1];
- XBuf += (2*64);
- x1re = XBuf[0];
- x1im = XBuf[1];
- XBuf += (2*64);
- for (n = (NUM_TIME_SLOTS*SAMPLES_PER_SLOT + 6); n != 0; n--) {
- /* 6 input, 2*2 acc, 1 ptr, 1 loop counter = 12 registers (use same for x0im, -x0im) */
- x2re = XBuf[0];
- x2im = XBuf[1];
- p02re.w64 = MADD64(p02re.w64, x2re, x0re);
- p02re.w64 = MADD64(p02re.w64, x2im, x0im);
- p02im.w64 = MADD64(p02im.w64, x0re, x2im);
- p02im.w64 = MADD64(p02im.w64, -x0im, x2re);
- x0re = x1re;
- x0im = x1im;
- x1re = x2re;
- x1im = x2im;
- XBuf += (2*64);
- }
- accBuf[0] = p02re.r.lo32;
- accBuf[1] = p02re.r.hi32;
- accBuf[2] = p02im.r.lo32;
- accBuf[3] = p02im.r.hi32;
- }
- #endif
- /**************************************************************************************
- * Function: CalcCovariance2
- *
- * Description: calculate covariance matrix for p02 (4.6.18.6.2)
- *
- * Inputs: buffer of low-freq samples, starting at time index = 0,
- * freq index = patch subband
- *
- * Outputs: complex covariance element p02re, p02im
- * format = integer (Q0) * 2^N, with scalefactor N >= 0
- *
- * Return: scalefactor N
- *
- * Notes: outputs are normalized to have 1 GB (sign in at least top 2 bits)
- **************************************************************************************/
- static int CalcCovariance2(int *XBuf, int *p02reN, int *p02imN)
- {
- U64 p02re, p02im;
- int n, z, s, loShift, hiShift, gbMask;
- int accBuf[2*2];
- CVKernel2(XBuf, accBuf);
- p02re.r.lo32 = accBuf[0];
- p02re.r.hi32 = accBuf[1];
- p02im.r.lo32 = accBuf[2];
- p02im.r.hi32 = accBuf[3];
- /* 64-bit accumulators now have 2*FBITS_OUT_QMFA fraction bits
- * want to scale them down to integers (32-bit signed, Q0)
- * with scale factor of 2^n, n >= 0
- * leave 1 GB for calculating determinant, so take top 30 non-zero bits
- */
- gbMask = ((p02re.r.hi32) ^ (p02re.r.hi32 >> 31)) | ((p02im.r.hi32) ^ (p02im.r.hi32 >> 31));
- if (gbMask == 0) {
- s = p02re.r.hi32 >> 31; gbMask = (p02re.r.lo32 ^ s) - s;
- s = p02im.r.hi32 >> 31; gbMask |= (p02im.r.lo32 ^ s) - s;
- z = 32 + CLZ(gbMask);
- } else {
- gbMask = FASTABS(p02re.r.hi32) | FASTABS(p02im.r.hi32);
- z = CLZ(gbMask);
- }
- n = 64 - z; /* number of non-zero bits in bottom of 64-bit word */
- if (n <= 30) {
- loShift = (30 - n);
- *p02reN = p02re.r.lo32 << loShift;
- *p02imN = p02im.r.lo32 << loShift;
- return -(loShift + 2*FBITS_OUT_QMFA);
- } else if (n < 32 + 30) {
- loShift = (n - 30);
- hiShift = 32 - loShift;
- *p02reN = (p02re.r.hi32 << hiShift) | (p02re.r.lo32 >> loShift);
- *p02imN = (p02im.r.hi32 << hiShift) | (p02im.r.lo32 >> loShift);
- return (loShift - 2*FBITS_OUT_QMFA);
- } else {
- hiShift = n - (32 + 30);
- *p02reN = p02re.r.hi32 >> hiShift;
- *p02imN = p02im.r.hi32 >> hiShift;
- return (32 - 2*FBITS_OUT_QMFA - hiShift);
- }
- return 0;
- }
- /**************************************************************************************
- * Function: CalcLPCoefs
- *
- * Description: calculate linear prediction coefficients for one subband (4.6.18.6.2)
- *
- * Inputs: buffer of low-freq samples, starting at time index = 0,
- * freq index = patch subband
- * number of guard bits in input sample buffer
- *
- * Outputs: complex LP coefficients a0re, a0im, a1re, a1im, format = Q29
- *
- * Return: none
- *
- * Notes: output coefficients (a0re, a0im, a1re, a1im) clipped to range (-4, 4)
- * if the comples coefficients have magnitude >= 4.0, they are all
- * set to 0 (see spec)
- **************************************************************************************/
- static void CalcLPCoefs(int *XBuf, int *a0re, int *a0im, int *a1re, int *a1im, int gb)
- {
- int zFlag, n1, n2, nd, d, dInv, tre, tim;
- int p01re, p01im, p02re, p02im, p12re, p12im, p11re, p22re;
- /* pre-scale to avoid overflow - probably never happens in practice (see QMFA)
- * max bit growth per accumulator = 38*2 = 76 mul-adds (X * X)
- * using 64-bit MADD, so if X has n guard bits, X*X has 2n+1 guard bits
- * gain 1 extra sign bit per multiply, so ensure ceil(log2(76/2) / 2) = 3 guard bits on inputs
- */
- if (gb < 3) {
- nd = 3 - gb;
- for (n1 = (NUM_TIME_SLOTS*SAMPLES_PER_SLOT + 6 + 2); n1 != 0; n1--) {
- XBuf[0] >>= nd; XBuf[1] >>= nd;
- XBuf += (2*64);
- }
- XBuf -= (2*64*(NUM_TIME_SLOTS*SAMPLES_PER_SLOT + 6 + 2));
- }
-
- /* calculate covariance elements */
- n1 = CalcCovariance1(XBuf, &p01re, &p01im, &p12re, &p12im, &p11re, &p22re);
- n2 = CalcCovariance2(XBuf, &p02re, &p02im);
- /* normalize everything to larger power of 2 scalefactor, call it n1 */
- if (n1 < n2) {
- nd = MIN(n2 - n1, 31);
- p01re >>= nd; p01im >>= nd;
- p12re >>= nd; p12im >>= nd;
- p11re >>= nd; p22re >>= nd;
- n1 = n2;
- } else if (n1 > n2) {
- nd = MIN(n1 - n2, 31);
- p02re >>= nd; p02im >>= nd;
- }
- /* calculate determinant of covariance matrix (at least 1 GB in pXX) */
- d = MULSHIFT32(p12re, p12re) + MULSHIFT32(p12im, p12im);
- d = MULSHIFT32(d, RELAX_COEF) << 1;
- d = MULSHIFT32(p11re, p22re) - d;
- ASSERT(d >= 0); /* should never be < 0 */
- zFlag = 0;
- *a0re = *a0im = 0;
- *a1re = *a1im = 0;
- if (d > 0) {
- /* input = Q31 d = Q(-2*n1 - 32 + nd) = Q31 * 2^(31 + 2*n1 + 32 - nd)
- * inverse = Q29 dInv = Q29 * 2^(-31 - 2*n1 - 32 + nd) = Q(29 + 31 + 2*n1 + 32 - nd)
- *
- * numerator has same Q format as d, since it's sum of normalized squares
- * so num * inverse = Q(-2*n1 - 32) * Q(29 + 31 + 2*n1 + 32 - nd)
- * = Q(29 + 31 - nd), drop low 32 in MULSHIFT32
- * = Q(29 + 31 - 32 - nd) = Q(28 - nd)
- */
- nd = CLZ(d) - 1;
- d <<= nd;
- dInv = InvRNormalized(d);
- /* 1 GB in pXX */
- tre = MULSHIFT32(p01re, p12re) - MULSHIFT32(p01im, p12im) - MULSHIFT32(p02re, p11re);
- tre = MULSHIFT32(tre, dInv);
- tim = MULSHIFT32(p01re, p12im) + MULSHIFT32(p01im, p12re) - MULSHIFT32(p02im, p11re);
- tim = MULSHIFT32(tim, dInv);
- /* if d is extremely small, just set coefs to 0 (would have poor precision anyway) */
- if (nd > 28 || (FASTABS(tre) >> (28 - nd)) >= 4 || (FASTABS(tim) >> (28 - nd)) >= 4) {
- zFlag = 1;
- } else {
- *a1re = tre << (FBITS_LPCOEFS - 28 + nd); /* i.e. convert Q(28 - nd) to Q(29) */
- *a1im = tim << (FBITS_LPCOEFS - 28 + nd);
- }
- }
- if (p11re) {
- /* input = Q31 p11re = Q(-n1 + nd) = Q31 * 2^(31 + n1 - nd)
- * inverse = Q29 dInv = Q29 * 2^(-31 - n1 + nd) = Q(29 + 31 + n1 - nd)
- *
- * numerator is Q(-n1 - 3)
- * so num * inverse = Q(-n1 - 3) * Q(29 + 31 + n1 - nd)
- * = Q(29 + 31 - 3 - nd), drop low 32 in MULSHIFT32
- * = Q(29 + 31 - 3 - 32 - nd) = Q(25 - nd)
- */
- nd = CLZ(p11re) - 1; /* assume positive */
- p11re <<= nd;
- dInv = InvRNormalized(p11re);
- /* a1re, a1im = Q29, so scaled by (n1 + 3) */
- tre = (p01re >> 3) + MULSHIFT32(p12re, *a1re) + MULSHIFT32(p12im, *a1im);
- tre = -MULSHIFT32(tre, dInv);
- tim = (p01im >> 3) - MULSHIFT32(p12im, *a1re) + MULSHIFT32(p12re, *a1im);
- tim = -MULSHIFT32(tim, dInv);
- if (nd > 25 || (FASTABS(tre) >> (25 - nd)) >= 4 || (FASTABS(tim) >> (25 - nd)) >= 4) {
- zFlag = 1;
- } else {
- *a0re = tre << (FBITS_LPCOEFS - 25 + nd); /* i.e. convert Q(25 - nd) to Q(29) */
- *a0im = tim << (FBITS_LPCOEFS - 25 + nd);
- }
- }
- /* see 4.6.18.6.2 - if magnitude of a0 or a1 >= 4 then a0 = a1 = 0
- * i.e. a0re < 4, a0im < 4, a1re < 4, a1im < 4
- * Q29*Q29 = Q26
- */
- if (zFlag || MULSHIFT32(*a0re, *a0re) + MULSHIFT32(*a0im, *a0im) >= MAG_16 || MULSHIFT32(*a1re, *a1re) + MULSHIFT32(*a1im, *a1im) >= MAG_16) {
- *a0re = *a0im = 0;
- *a1re = *a1im = 0;
- }
- /* no need to clip - we never changed the XBuf data, just used it to calculate a0 and a1 */
- if (gb < 3) {
- nd = 3 - gb;
- for (n1 = (NUM_TIME_SLOTS*SAMPLES_PER_SLOT + 6 + 2); n1 != 0; n1--) {
- XBuf[0] <<= nd; XBuf[1] <<= nd;
- XBuf += (2*64);
- }
- }
- }
- /**************************************************************************************
- * Function: GenerateHighFreq
- *
- * Description: generate high frequencies with SBR (4.6.18.6)
- *
- * Inputs: initialized PSInfoSBR struct
- * initialized SBRGrid struct for this channel
- * initialized SBRFreq struct for this SCE/CPE block
- * initialized SBRChan struct for this channel
- * index of current channel (0 for SCE, 0 or 1 for CPE)
- *
- * Outputs: new high frequency samples starting at frequency kStart
- *
- * Return: none
- **************************************************************************************/
- void GenerateHighFreq(PSInfoSBR *psi, SBRGrid *sbrGrid, SBRFreq *sbrFreq, SBRChan *sbrChan, int ch)
- {
- int band, newBW, c, t, gb, gbMask, gbIdx;
- int currPatch, p, x, k, g, i, iStart, iEnd, bw, bwsq;
- int a0re, a0im, a1re, a1im;
- int x1re, x1im, x2re, x2im;
- int ACCre, ACCim;
- int *XBufLo, *XBufHi;
- (void) ch;
- /* calculate array of chirp factors */
- for (band = 0; band < sbrFreq->numNoiseFloorBands; band++) {
- c = sbrChan->chirpFact[band]; /* previous (bwArray') */
- newBW = newBWTab[sbrChan->invfMode[0][band]][sbrChan->invfMode[1][band]];
- /* weighted average of new and old (can't overflow - total gain = 1.0) */
- if (newBW < c)
- t = MULSHIFT32(newBW, 0x60000000) + MULSHIFT32(0x20000000, c); /* new is smaller: 0.75*new + 0.25*old */
- else
- t = MULSHIFT32(newBW, 0x74000000) + MULSHIFT32(0x0c000000, c); /* new is larger: 0.90625*new + 0.09375*old */
- t <<= 1;
- if (t < 0x02000000) /* below 0.015625, clip to 0 */
- t = 0;
- if (t > 0x7f800000) /* clip to 0.99609375 */
- t = 0x7f800000;
- /* save curr as prev for next time */
- sbrChan->chirpFact[band] = t;
- sbrChan->invfMode[0][band] = sbrChan->invfMode[1][band];
- }
- iStart = sbrGrid->envTimeBorder[0] + HF_ADJ;
- iEnd = sbrGrid->envTimeBorder[sbrGrid->numEnv] + HF_ADJ;
- /* generate new high freqs from low freqs, patches, and chirp factors */
- k = sbrFreq->kStart;
- g = 0;
- bw = sbrChan->chirpFact[g];
- bwsq = MULSHIFT32(bw, bw) << 1;
-
- gbMask = (sbrChan->gbMask[0] | sbrChan->gbMask[1]); /* older 32 | newer 8 */
- gb = CLZ(gbMask) - 1;
- for (currPatch = 0; currPatch < sbrFreq->numPatches; currPatch++) {
- for (x = 0; x < sbrFreq->patchNumSubbands[currPatch]; x++) {
- /* map k to corresponding noise floor band */
- if (k >= sbrFreq->freqNoise[g+1]) {
- g++;
- bw = sbrChan->chirpFact[g]; /* Q31 */
- bwsq = MULSHIFT32(bw, bw) << 1; /* Q31 */
- }
-
- p = sbrFreq->patchStartSubband[currPatch] + x; /* low QMF band */
- XBufHi = psi->XBuf[iStart][k];
- if (bw) {
- CalcLPCoefs(psi->XBuf[0][p], &a0re, &a0im, &a1re, &a1im, gb);
- a0re = MULSHIFT32(bw, a0re); /* Q31 * Q29 = Q28 */
- a0im = MULSHIFT32(bw, a0im);
- a1re = MULSHIFT32(bwsq, a1re);
- a1im = MULSHIFT32(bwsq, a1im);
- XBufLo = psi->XBuf[iStart-2][p];
- x2re = XBufLo[0]; /* RE{XBuf[n-2]} */
- x2im = XBufLo[1]; /* IM{XBuf[n-2]} */
- XBufLo += (64*2);
- x1re = XBufLo[0]; /* RE{XBuf[n-1]} */
- x1im = XBufLo[1]; /* IM{XBuf[n-1]} */
- XBufLo += (64*2);
- for (i = iStart; i < iEnd; i++) {
- /* a0re/im, a1re/im are Q28 with at least 1 GB,
- * so the summing for AACre/im is fine (1 GB in, plus 1 from MULSHIFT32)
- */
- ACCre = MULSHIFT32(x2re, a1re) - MULSHIFT32(x2im, a1im);
- ACCim = MULSHIFT32(x2re, a1im) + MULSHIFT32(x2im, a1re);
- x2re = x1re;
- x2im = x1im;
-
- ACCre += MULSHIFT32(x1re, a0re) - MULSHIFT32(x1im, a0im);
- ACCim += MULSHIFT32(x1re, a0im) + MULSHIFT32(x1im, a0re);
- x1re = XBufLo[0]; /* RE{XBuf[n]} */
- x1im = XBufLo[1]; /* IM{XBuf[n]} */
- XBufLo += (64*2);
- /* lost 4 fbits when scaling by a0re/im, a1re/im (Q28) */
- CLIP_2N_SHIFT30(ACCre, 4);
- ACCre += x1re;
- CLIP_2N_SHIFT30(ACCim, 4);
- ACCim += x1im;
- XBufHi[0] = ACCre;
- XBufHi[1] = ACCim;
- XBufHi += (64*2);
- /* update guard bit masks */
- gbMask = FASTABS(ACCre);
- gbMask |= FASTABS(ACCim);
- gbIdx = (i >> 5) & 0x01; /* 0 if i < 32, 1 if i >= 32 */
- sbrChan->gbMask[gbIdx] |= gbMask;
- }
- } else {
- XBufLo = (int *)psi->XBuf[iStart][p];
- for (i = iStart; i < iEnd; i++) {
- XBufHi[0] = XBufLo[0];
- XBufHi[1] = XBufLo[1];
- XBufLo += (64*2);
- XBufHi += (64*2);
- }
- }
- k++; /* high QMF band */
- }
- }
- }
|