123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527 |
- /* ***** BEGIN LICENSE BLOCK *****
- * Source last modified: $Id: sbrqmf.c,v 1.2 2005/05/19 20:45:20 jrecker Exp $
- *
- * Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved.
- *
- * The contents of this file, and the files included with this file,
- * are subject to the current version of the RealNetworks Public
- * Source License (the "RPSL") available at
- * http://www.helixcommunity.org/content/rpsl unless you have licensed
- * the file under the current version of the RealNetworks Community
- * Source License (the "RCSL") available at
- * http://www.helixcommunity.org/content/rcsl, in which case the RCSL
- * will apply. You may also obtain the license terms directly from
- * RealNetworks. You may not use this file except in compliance with
- * the RPSL or, if you have a valid RCSL with RealNetworks applicable
- * to this file, the RCSL. Please see the applicable RPSL or RCSL for
- * the rights, obligations and limitations governing use of the
- * contents of the file.
- *
- * This file is part of the Helix DNA Technology. RealNetworks is the
- * developer of the Original Code and owns the copyrights in the
- * portions it created.
- *
- * This file, and the files included with this file, is distributed
- * and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY
- * KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS
- * ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES
- * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET
- * ENJOYMENT OR NON-INFRINGEMENT.
- *
- * Technology Compatibility Kit Test Suite(s) Location:
- * http://www.helixcommunity.org/content/tck
- *
- * Contributor(s):
- *
- * ***** END LICENSE BLOCK ***** */
- /**************************************************************************************
- * Fixed-point HE-AAC decoder
- * Jon Recker (jrecker@real.com)
- * February 2005
- *
- * sbrqmf.c - analysis and synthesis QMF filters for SBR
- **************************************************************************************/
- #include "sbr.h"
- #include "assembly.h"
- /* PreMultiply64() table
- * format = Q30
- * reordered for sequential access
- *
- * for (i = 0; i < 64/4; i++) {
- * angle = (i + 0.25) * M_PI / nmdct;
- * x = (cos(angle) + sin(angle));
- * x = sin(angle);
- *
- * angle = (nmdct/2 - 1 - i + 0.25) * M_PI / nmdct;
- * x = (cos(angle) + sin(angle));
- * x = sin(angle);
- * }
- */
- static const int cos4sin4tab64[64] PROGMEM = {
- 0x40c7d2bd, 0x00c90e90, 0x424ff28f, 0x3ff4e5e0, 0x43cdd89a, 0x03ecadcf, 0x454149fc, 0x3fc395f9,
- 0x46aa0d6d, 0x070de172, 0x4807eb4b, 0x3f6af2e3, 0x495aada2, 0x0a2abb59, 0x4aa22036, 0x3eeb3347,
- 0x4bde1089, 0x0d415013, 0x4d0e4de2, 0x3e44a5ef, 0x4e32a956, 0x104fb80e, 0x4f4af5d1, 0x3d77b192,
- 0x50570819, 0x135410c3, 0x5156b6d9, 0x3c84d496, 0x5249daa2, 0x164c7ddd, 0x53304df6, 0x3b6ca4c4,
- 0x5409ed4b, 0x19372a64, 0x54d69714, 0x3a2fcee8, 0x55962bc0, 0x1c1249d8, 0x56488dc5, 0x38cf1669,
- 0x56eda1a0, 0x1edc1953, 0x57854ddd, 0x374b54ce, 0x580f7b19, 0x2192e09b, 0x588c1404, 0x35a5793c,
- 0x58fb0568, 0x2434f332, 0x595c3e2a, 0x33de87de, 0x59afaf4c, 0x26c0b162, 0x59f54bee, 0x31f79948,
- 0x5a2d0957, 0x29348937, 0x5a56deec, 0x2ff1d9c7, 0x5a72c63b, 0x2b8ef77d, 0x5a80baf6, 0x2dce88aa,
- };
- /* PostMultiply64() table
- * format = Q30
- * reordered for sequential access
- *
- * for (i = 0; i <= (32/2); i++) {
- * angle = i * M_PI / 64;
- * x = (cos(angle) + sin(angle));
- * x = sin(angle);
- * }
- */
- static const int cos1sin1tab64[34] PROGMEM = {
- 0x40000000, 0x00000000, 0x43103085, 0x0323ecbe, 0x45f704f7, 0x0645e9af, 0x48b2b335, 0x09640837,
- 0x4b418bbe, 0x0c7c5c1e, 0x4da1fab5, 0x0f8cfcbe, 0x4fd288dc, 0x1294062f, 0x51d1dc80, 0x158f9a76,
- 0x539eba45, 0x187de2a7, 0x553805f2, 0x1b5d100a, 0x569cc31b, 0x1e2b5d38, 0x57cc15bc, 0x20e70f32,
- 0x58c542c5, 0x238e7673, 0x5987b08a, 0x261feffa, 0x5a12e720, 0x2899e64a, 0x5a6690ae, 0x2afad269,
- 0x5a82799a, 0x2d413ccd,
- };
- /**************************************************************************************
- * Function: PreMultiply64
- *
- * Description: pre-twiddle stage of 64-point DCT-IV
- *
- * Inputs: buffer of 64 samples
- *
- * Outputs: processed samples in same buffer
- *
- * Return: none
- *
- * Notes: minimum 1 GB in, 2 GB out, gains 2 int bits
- * gbOut = gbIn + 1
- * output is limited to sqrt(2)/2 plus GB in full GB
- * uses 3-mul, 3-add butterflies instead of 4-mul, 2-add
- **************************************************************************************/
- static void PreMultiply64(int *zbuf1)
- {
- int i, ar1, ai1, ar2, ai2, z1, z2;
- int t, cms2, cps2a, sin2a, cps2b, sin2b;
- int *zbuf2;
- const int *csptr;
- zbuf2 = zbuf1 + 64 - 1;
- csptr = cos4sin4tab64;
- /* whole thing should fit in registers - verify that compiler does this */
- for (i = 64 >> 2; i != 0; i--) {
- /* cps2 = (cos+sin), sin2 = sin, cms2 = (cos-sin) */
- cps2a = *csptr++;
- sin2a = *csptr++;
- cps2b = *csptr++;
- sin2b = *csptr++;
- ar1 = *(zbuf1 + 0);
- ai2 = *(zbuf1 + 1);
- ai1 = *(zbuf2 + 0);
- ar2 = *(zbuf2 - 1);
- /* gain 2 ints bit from MULSHIFT32 by Q30
- * max per-sample gain (ignoring implicit scaling) = MAX(sin(angle)+cos(angle)) = 1.414
- * i.e. gain 1 GB since worst case is sin(angle) = cos(angle) = 0.707 (Q30), gain 2 from
- * extra sign bits, and eat one in adding
- */
- t = MULSHIFT32(sin2a, ar1 + ai1);
- z2 = MULSHIFT32(cps2a, ai1) - t;
- cms2 = cps2a - 2*sin2a;
- z1 = MULSHIFT32(cms2, ar1) + t;
- *zbuf1++ = z1; /* cos*ar1 + sin*ai1 */
- *zbuf1++ = z2; /* cos*ai1 - sin*ar1 */
- t = MULSHIFT32(sin2b, ar2 + ai2);
- z2 = MULSHIFT32(cps2b, ai2) - t;
- cms2 = cps2b - 2*sin2b;
- z1 = MULSHIFT32(cms2, ar2) + t;
- *zbuf2-- = z2; /* cos*ai2 - sin*ar2 */
- *zbuf2-- = z1; /* cos*ar2 + sin*ai2 */
- }
- }
- /**************************************************************************************
- * Function: PostMultiply64
- *
- * Description: post-twiddle stage of 64-point type-IV DCT
- *
- * Inputs: buffer of 64 samples
- * number of output samples to calculate
- *
- * Outputs: processed samples in same buffer
- *
- * Return: none
- *
- * Notes: minimum 1 GB in, 2 GB out, gains 2 int bits
- * gbOut = gbIn + 1
- * output is limited to sqrt(2)/2 plus GB in full GB
- * nSampsOut is rounded up to next multiple of 4, since we calculate
- * 4 samples per loop
- **************************************************************************************/
- static void PostMultiply64(int *fft1, int nSampsOut)
- {
- int i, ar1, ai1, ar2, ai2;
- int t, cms2, cps2, sin2;
- int *fft2;
- const int *csptr;
- csptr = cos1sin1tab64;
- fft2 = fft1 + 64 - 1;
- /* load coeffs for first pass
- * cps2 = (cos+sin)/2, sin2 = sin/2, cms2 = (cos-sin)/2
- */
- cps2 = *csptr++;
- sin2 = *csptr++;
- cms2 = cps2 - 2*sin2;
- for (i = (nSampsOut + 3) >> 2; i != 0; i--) {
- ar1 = *(fft1 + 0);
- ai1 = *(fft1 + 1);
- ar2 = *(fft2 - 1);
- ai2 = *(fft2 + 0);
- /* gain 2 int bits (multiplying by Q30), max gain = sqrt(2) */
- t = MULSHIFT32(sin2, ar1 + ai1);
- *fft2-- = t - MULSHIFT32(cps2, ai1);
- *fft1++ = t + MULSHIFT32(cms2, ar1);
- cps2 = *csptr++;
- sin2 = *csptr++;
- ai2 = -ai2;
- t = MULSHIFT32(sin2, ar2 + ai2);
- *fft2-- = t - MULSHIFT32(cps2, ai2);
- cms2 = cps2 - 2*sin2;
- *fft1++ = t + MULSHIFT32(cms2, ar2);
- }
- }
- /**************************************************************************************
- * Function: QMFAnalysisConv
- *
- * Description: convolution kernel for analysis QMF
- *
- * Inputs: pointer to coefficient table, reordered for sequential access
- * delay buffer of size 32*10 = 320 real-valued PCM samples
- * index for delay ring buffer (range = [0, 9])
- *
- * Outputs: 64 consecutive 32-bit samples
- *
- * Return: none
- *
- * Notes: this is carefully written to be efficient on ARM
- * use the assembly code version in sbrqmfak.s when building for ARM!
- **************************************************************************************/
- #if (defined (_WIN32) && defined (_WIN32_WCE) && defined (ARM))
- #ifdef __cplusplus
- extern "C"
- #endif
- void QMFAnalysisConv(int *cTab, int *delay, int dIdx, int *uBuf);
- #else
- void QMFAnalysisConv(int *cTab, int *delay, int dIdx, int *uBuf)
- {
- int k, dOff;
- int *cPtr0, *cPtr1;
- U64 u64lo, u64hi;
- dOff = dIdx*32 + 31;
- cPtr0 = cTab;
- cPtr1 = cTab + 33*5 - 1;
- /* special first pass since we need to flip sign to create cTab[384], cTab[512] */
- u64lo.w64 = 0;
- u64hi.w64 = 0;
- u64lo.w64 = MADD64(u64lo.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
- u64hi.w64 = MADD64(u64hi.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
- u64lo.w64 = MADD64(u64lo.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
- u64hi.w64 = MADD64(u64hi.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
- u64lo.w64 = MADD64(u64lo.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
- u64hi.w64 = MADD64(u64hi.w64, *cPtr1--, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
- u64lo.w64 = MADD64(u64lo.w64, -(*cPtr1--), delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
- u64hi.w64 = MADD64(u64hi.w64, *cPtr1--, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
- u64lo.w64 = MADD64(u64lo.w64, -(*cPtr1--), delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
- u64hi.w64 = MADD64(u64hi.w64, *cPtr1--, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
- uBuf[0] = u64lo.r.hi32;
- uBuf[32] = u64hi.r.hi32;
- uBuf++;
- dOff--;
- /* max gain for any sample in uBuf, after scaling by cTab, ~= 0.99
- * so we can just sum the uBuf values with no overflow problems
- */
- for (k = 1; k <= 31; k++) {
- u64lo.w64 = 0;
- u64hi.w64 = 0;
- u64lo.w64 = MADD64(u64lo.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
- u64hi.w64 = MADD64(u64hi.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
- u64lo.w64 = MADD64(u64lo.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
- u64hi.w64 = MADD64(u64hi.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
- u64lo.w64 = MADD64(u64lo.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
- u64hi.w64 = MADD64(u64hi.w64, *cPtr1--, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
- u64lo.w64 = MADD64(u64lo.w64, *cPtr1--, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
- u64hi.w64 = MADD64(u64hi.w64, *cPtr1--, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
- u64lo.w64 = MADD64(u64lo.w64, *cPtr1--, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
- u64hi.w64 = MADD64(u64hi.w64, *cPtr1--, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
- uBuf[0] = u64lo.r.hi32;
- uBuf[32] = u64hi.r.hi32;
- uBuf++;
- dOff--;
- }
- }
- #endif
- /**************************************************************************************
- * Function: QMFAnalysis
- *
- * Description: 32-subband analysis QMF (4.6.18.4.1)
- *
- * Inputs: 32 consecutive samples of decoded 32-bit PCM, format = Q(fBitsIn)
- * delay buffer of size 32*10 = 320 PCM samples
- * number of fraction bits in input PCM
- * index for delay ring buffer (range = [0, 9])
- * number of subbands to calculate (range = [0, 32])
- *
- * Outputs: qmfaBands complex subband samples, format = Q(FBITS_OUT_QMFA)
- * updated delay buffer
- * updated delay index
- *
- * Return: guard bit mask
- *
- * Notes: output stored as RE{X0}, IM{X0}, RE{X1}, IM{X1}, ... RE{X31}, IM{X31}
- * output stored in int buffer of size 64*2 = 128
- * (zero-filled from XBuf[2*qmfaBands] to XBuf[127])
- **************************************************************************************/
- int QMFAnalysis(int *inbuf, int *delay, int *XBuf, int fBitsIn, int *delayIdx, int qmfaBands)
- {
- int n, y, shift, gbMask;
- int *delayPtr, *uBuf, *tBuf;
- /* use XBuf[128] as temp buffer for reordering */
- uBuf = XBuf; /* first 64 samples */
- tBuf = XBuf + 64; /* second 64 samples */
- /* overwrite oldest PCM with new PCM
- * delay[n] has 1 GB after shifting (either << or >>)
- */
- delayPtr = delay + (*delayIdx * 32);
- if (fBitsIn > FBITS_IN_QMFA) {
- shift = MIN(fBitsIn - FBITS_IN_QMFA, 31);
- for (n = 32; n != 0; n--) {
- y = (*inbuf) >> shift;
- inbuf++;
- *delayPtr++ = y;
- }
- } else {
- shift = MIN(FBITS_IN_QMFA - fBitsIn, 30);
- for (n = 32; n != 0; n--) {
- y = *inbuf++;
- CLIP_2N_SHIFT30(y, shift);
- *delayPtr++ = y;
- }
- }
-
- QMFAnalysisConv((int *)cTabA, delay, *delayIdx, uBuf);
-
- /* uBuf has at least 2 GB right now (1 from clipping to Q(FBITS_IN_QMFA), one from
- * the scaling by cTab (MULSHIFT32(*delayPtr--, *cPtr++), with net gain of < 1.0)
- * TODO - fuse with QMFAnalysisConv to avoid separate reordering
- */
- tBuf[2*0 + 0] = uBuf[0];
- tBuf[2*0 + 1] = uBuf[1];
- for (n = 1; n < 31; n++) {
- tBuf[2*n + 0] = -uBuf[64-n];
- tBuf[2*n + 1] = uBuf[n+1];
- }
- tBuf[2*31 + 1] = uBuf[32];
- tBuf[2*31 + 0] = -uBuf[33];
-
- /* fast in-place DCT-IV - only need 2*qmfaBands output samples */
- PreMultiply64(tBuf); /* 2 GB in, 3 GB out */
- FFT32C(tBuf); /* 3 GB in, 1 GB out */
- PostMultiply64(tBuf, qmfaBands*2); /* 1 GB in, 2 GB out */
- /* TODO - roll into PostMultiply (if enough registers) */
- gbMask = 0;
- for (n = 0; n < qmfaBands; n++) {
- XBuf[2*n+0] = tBuf[ n + 0]; /* implicit scaling of 2 in our output Q format */
- gbMask |= FASTABS(XBuf[2*n+0]);
- XBuf[2*n+1] = -tBuf[63 - n];
- gbMask |= FASTABS(XBuf[2*n+1]);
- }
- /* fill top section with zeros for HF generation */
- for ( ; n < 64; n++) {
- XBuf[2*n+0] = 0;
- XBuf[2*n+1] = 0;
- }
- *delayIdx = (*delayIdx == NUM_QMF_DELAY_BUFS - 1 ? 0 : *delayIdx + 1);
- /* minimum of 2 GB in output */
- return gbMask;
- }
- /* lose FBITS_LOST_DCT4_64 in DCT4, gain 6 for implicit scaling by 1/64, lose 1 for cTab multiply (Q31) */
- #define FBITS_OUT_QMFS (FBITS_IN_QMFS - FBITS_LOST_DCT4_64 + 6 - 1)
- #define RND_VAL (1 << (FBITS_OUT_QMFS-1))
- /**************************************************************************************
- * Function: QMFSynthesisConv
- *
- * Description: final convolution kernel for synthesis QMF
- *
- * Inputs: pointer to coefficient table, reordered for sequential access
- * delay buffer of size 64*10 = 640 complex samples (1280 ints)
- * index for delay ring buffer (range = [0, 9])
- * number of QMF subbands to process (range = [0, 64])
- * number of channels
- *
- * Outputs: 64 consecutive 16-bit PCM samples, interleaved by factor of nChans
- *
- * Return: none
- *
- * Notes: this is carefully written to be efficient on ARM
- * use the assembly code version in sbrqmfsk.s when building for ARM!
- **************************************************************************************/
- #if (defined (_WIN32) && defined (_WIN32_WCE) && defined (ARM))
- #ifdef __cplusplus
- extern "C"
- #endif
- void QMFSynthesisConv(int *cPtr, int *delay, int dIdx, short *outbuf, int nChans);
- #else
- void QMFSynthesisConv(int *cPtr, int *delay, int dIdx, short *outbuf, int nChans)
- {
- int k, dOff0, dOff1;
- U64 sum64;
- dOff0 = (dIdx)*128;
- dOff1 = dOff0 - 1;
- if (dOff1 < 0)
- dOff1 += 1280;
- /* scaling note: total gain of coefs (cPtr[0]-cPtr[9] for any k) is < 2.0, so 1 GB in delay values is adequate */
- for (k = 0; k <= 63; k++) {
- sum64.w64 = 0;
- sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff0]); dOff0 -= 256; if (dOff0 < 0) {dOff0 += 1280;}
- sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff1]); dOff1 -= 256; if (dOff1 < 0) {dOff1 += 1280;}
- sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff0]); dOff0 -= 256; if (dOff0 < 0) {dOff0 += 1280;}
- sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff1]); dOff1 -= 256; if (dOff1 < 0) {dOff1 += 1280;}
- sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff0]); dOff0 -= 256; if (dOff0 < 0) {dOff0 += 1280;}
- sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff1]); dOff1 -= 256; if (dOff1 < 0) {dOff1 += 1280;}
- sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff0]); dOff0 -= 256; if (dOff0 < 0) {dOff0 += 1280;}
- sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff1]); dOff1 -= 256; if (dOff1 < 0) {dOff1 += 1280;}
- sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff0]); dOff0 -= 256; if (dOff0 < 0) {dOff0 += 1280;}
- sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff1]); dOff1 -= 256; if (dOff1 < 0) {dOff1 += 1280;}
- dOff0++;
- dOff1--;
- *outbuf = CLIPTOSHORT((sum64.r.hi32 + RND_VAL) >> FBITS_OUT_QMFS);
- outbuf += nChans;
- }
- }
- #endif
- /**************************************************************************************
- * Function: QMFSynthesis
- *
- * Description: 64-subband synthesis QMF (4.6.18.4.2)
- *
- * Inputs: 64 consecutive complex subband QMF samples, format = Q(FBITS_IN_QMFS)
- * delay buffer of size 64*10 = 640 complex samples (1280 ints)
- * index for delay ring buffer (range = [0, 9])
- * number of QMF subbands to process (range = [0, 64])
- * number of channels
- *
- * Outputs: 64 consecutive 16-bit PCM samples, interleaved by factor of nChans
- * updated delay buffer
- * updated delay index
- *
- * Return: none
- *
- * Notes: assumes MIN_GBITS_IN_QMFS guard bits in input, either from
- * QMFAnalysis (if upsampling only) or from MapHF (if SBR on)
- **************************************************************************************/
- void QMFSynthesis(int *inbuf, int *delay, int *delayIdx, int qmfsBands, short *outbuf, int nChans)
- {
- int n, a0, a1, b0, b1, dOff0, dOff1, dIdx;
- int *tBufLo, *tBufHi;
- dIdx = *delayIdx;
- tBufLo = delay + dIdx*128 + 0;
- tBufHi = delay + dIdx*128 + 127;
- /* reorder inputs to DCT-IV, only use first qmfsBands (complex) samples
- * TODO - fuse with PreMultiply64 to avoid separate reordering steps
- */
- for (n = 0; n < qmfsBands >> 1; n++) {
- a0 = *inbuf++;
- b0 = *inbuf++;
- a1 = *inbuf++;
- b1 = *inbuf++;
- *tBufLo++ = a0;
- *tBufLo++ = a1;
- *tBufHi-- = b0;
- *tBufHi-- = b1;
- }
- if (qmfsBands & 0x01) {
- a0 = *inbuf++;
- b0 = *inbuf++;
- *tBufLo++ = a0;
- *tBufHi-- = b0;
- *tBufLo++ = 0;
- *tBufHi-- = 0;
- n++;
- }
- for ( ; n < 32; n++) {
- *tBufLo++ = 0;
- *tBufHi-- = 0;
- *tBufLo++ = 0;
- *tBufHi-- = 0;
- }
- tBufLo = delay + dIdx*128 + 0;
- tBufHi = delay + dIdx*128 + 64;
- /* 2 GB in, 3 GB out */
- PreMultiply64(tBufLo);
- PreMultiply64(tBufHi);
- /* 3 GB in, 1 GB out */
- FFT32C(tBufLo);
- FFT32C(tBufHi);
- /* 1 GB in, 2 GB out */
- PostMultiply64(tBufLo, 64);
- PostMultiply64(tBufHi, 64);
- /* could fuse with PostMultiply64 to avoid separate pass */
- dOff0 = dIdx*128;
- dOff1 = dIdx*128 + 64;
- for (n = 32; n != 0; n--) {
- a0 = (*tBufLo++);
- a1 = (*tBufLo++);
- b0 = (*tBufHi++);
- b1 = -(*tBufHi++);
- delay[dOff0++] = (b0 - a0);
- delay[dOff0++] = (b1 - a1);
- delay[dOff1++] = (b0 + a0);
- delay[dOff1++] = (b1 + a1);
- }
- QMFSynthesisConv((int *)cTabS, delay, dIdx, outbuf, nChans);
- *delayIdx = (*delayIdx == NUM_QMF_DELAY_BUFS - 1 ? 0 : *delayIdx + 1);
- }
|