NSQ.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437
  1. /***********************************************************************
  2. Copyright (c) 2006-2011, Skype Limited. All rights reserved.
  3. Redistribution and use in source and binary forms, with or without
  4. modification, are permitted provided that the following conditions
  5. are met:
  6. - Redistributions of source code must retain the above copyright notice,
  7. this list of conditions and the following disclaimer.
  8. - Redistributions in binary form must reproduce the above copyright
  9. notice, this list of conditions and the following disclaimer in the
  10. documentation and/or other materials provided with the distribution.
  11. - Neither the name of Internet Society, IETF or IETF Trust, nor the
  12. names of specific contributors, may be used to endorse or promote
  13. products derived from this software without specific prior written
  14. permission.
  15. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  18. ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  19. LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  20. CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  21. SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  22. INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  23. CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  24. ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  25. POSSIBILITY OF SUCH DAMAGE.
  26. ***********************************************************************/
  27. #ifdef HAVE_CONFIG_H
  28. #include "config.h"
  29. #endif
  30. #include "main.h"
  31. #include "stack_alloc.h"
  32. #include "NSQ.h"
  33. static OPUS_INLINE void silk_nsq_scale_states(
  34. const silk_encoder_state *psEncC, /* I Encoder State */
  35. silk_nsq_state *NSQ, /* I/O NSQ state */
  36. const opus_int16 x16[], /* I input */
  37. opus_int32 x_sc_Q10[], /* O input scaled with 1/Gain */
  38. const opus_int16 sLTP[], /* I re-whitened LTP state in Q0 */
  39. opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */
  40. opus_int subfr, /* I subframe number */
  41. const opus_int LTP_scale_Q14, /* I */
  42. const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */
  43. const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */
  44. const opus_int signal_type /* I Signal type */
  45. );
  46. #if !defined(OPUS_X86_MAY_HAVE_SSE4_1)
  47. static OPUS_INLINE void silk_noise_shape_quantizer(
  48. silk_nsq_state *NSQ, /* I/O NSQ state */
  49. opus_int signalType, /* I Signal type */
  50. const opus_int32 x_sc_Q10[], /* I */
  51. opus_int8 pulses[], /* O */
  52. opus_int16 xq[], /* O */
  53. opus_int32 sLTP_Q15[], /* I/O LTP state */
  54. const opus_int16 a_Q12[], /* I Short term prediction coefs */
  55. const opus_int16 b_Q14[], /* I Long term prediction coefs */
  56. const opus_int16 AR_shp_Q13[], /* I Noise shaping AR coefs */
  57. opus_int lag, /* I Pitch lag */
  58. opus_int32 HarmShapeFIRPacked_Q14, /* I */
  59. opus_int Tilt_Q14, /* I Spectral tilt */
  60. opus_int32 LF_shp_Q14, /* I */
  61. opus_int32 Gain_Q16, /* I */
  62. opus_int Lambda_Q10, /* I */
  63. opus_int offset_Q10, /* I */
  64. opus_int length, /* I Input length */
  65. opus_int shapingLPCOrder, /* I Noise shaping AR filter order */
  66. opus_int predictLPCOrder, /* I Prediction filter order */
  67. int arch /* I Architecture */
  68. );
  69. #endif
  70. void silk_NSQ_c
  71. (
  72. const silk_encoder_state *psEncC, /* I Encoder State */
  73. silk_nsq_state *NSQ, /* I/O NSQ state */
  74. SideInfoIndices *psIndices, /* I/O Quantization Indices */
  75. const opus_int16 x16[], /* I Input */
  76. opus_int8 pulses[], /* O Quantized pulse signal */
  77. const opus_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefs */
  78. const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefs */
  79. const opus_int16 AR_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */
  80. const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I Long term shaping coefs */
  81. const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */
  82. const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I Low frequency shaping coefs */
  83. const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I Quantization step sizes */
  84. const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lags */
  85. const opus_int Lambda_Q10, /* I Rate/distortion tradeoff */
  86. const opus_int LTP_scale_Q14 /* I LTP state scaling */
  87. )
  88. {
  89. opus_int k, lag, start_idx, LSF_interpolation_flag;
  90. const opus_int16 *A_Q12, *B_Q14, *AR_shp_Q13;
  91. opus_int16 *pxq;
  92. VARDECL( opus_int32, sLTP_Q15 );
  93. VARDECL( opus_int16, sLTP );
  94. opus_int32 HarmShapeFIRPacked_Q14;
  95. opus_int offset_Q10;
  96. VARDECL( opus_int32, x_sc_Q10 );
  97. SAVE_STACK;
  98. NSQ->rand_seed = psIndices->Seed;
  99. /* Set unvoiced lag to the previous one, overwrite later for voiced */
  100. lag = NSQ->lagPrev;
  101. silk_assert( NSQ->prev_gain_Q16 != 0 );
  102. offset_Q10 = silk_Quantization_Offsets_Q10[ psIndices->signalType >> 1 ][ psIndices->quantOffsetType ];
  103. if( psIndices->NLSFInterpCoef_Q2 == 4 ) {
  104. LSF_interpolation_flag = 0;
  105. } else {
  106. LSF_interpolation_flag = 1;
  107. }
  108. ALLOC( sLTP_Q15, psEncC->ltp_mem_length + psEncC->frame_length, opus_int32 );
  109. ALLOC( sLTP, psEncC->ltp_mem_length + psEncC->frame_length, opus_int16 );
  110. ALLOC( x_sc_Q10, psEncC->subfr_length, opus_int32 );
  111. /* Set up pointers to start of sub frame */
  112. NSQ->sLTP_shp_buf_idx = psEncC->ltp_mem_length;
  113. NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
  114. pxq = &NSQ->xq[ psEncC->ltp_mem_length ];
  115. for( k = 0; k < psEncC->nb_subfr; k++ ) {
  116. A_Q12 = &PredCoef_Q12[ (( k >> 1 ) | ( 1 - LSF_interpolation_flag )) * MAX_LPC_ORDER ];
  117. B_Q14 = &LTPCoef_Q14[ k * LTP_ORDER ];
  118. AR_shp_Q13 = &AR_Q13[ k * MAX_SHAPE_LPC_ORDER ];
  119. /* Noise shape parameters */
  120. silk_assert( HarmShapeGain_Q14[ k ] >= 0 );
  121. HarmShapeFIRPacked_Q14 = silk_RSHIFT( HarmShapeGain_Q14[ k ], 2 );
  122. HarmShapeFIRPacked_Q14 |= silk_LSHIFT( (opus_int32)silk_RSHIFT( HarmShapeGain_Q14[ k ], 1 ), 16 );
  123. NSQ->rewhite_flag = 0;
  124. if( psIndices->signalType == TYPE_VOICED ) {
  125. /* Voiced */
  126. lag = pitchL[ k ];
  127. /* Re-whitening */
  128. if( ( k & ( 3 - silk_LSHIFT( LSF_interpolation_flag, 1 ) ) ) == 0 ) {
  129. /* Rewhiten with new A coefs */
  130. start_idx = psEncC->ltp_mem_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2;
  131. celt_assert( start_idx > 0 );
  132. silk_LPC_analysis_filter( &sLTP[ start_idx ], &NSQ->xq[ start_idx + k * psEncC->subfr_length ],
  133. A_Q12, psEncC->ltp_mem_length - start_idx, psEncC->predictLPCOrder, psEncC->arch );
  134. NSQ->rewhite_flag = 1;
  135. NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
  136. }
  137. }
  138. silk_nsq_scale_states( psEncC, NSQ, x16, x_sc_Q10, sLTP, sLTP_Q15, k, LTP_scale_Q14, Gains_Q16, pitchL, psIndices->signalType );
  139. silk_noise_shape_quantizer( NSQ, psIndices->signalType, x_sc_Q10, pulses, pxq, sLTP_Q15, A_Q12, B_Q14,
  140. AR_shp_Q13, lag, HarmShapeFIRPacked_Q14, Tilt_Q14[ k ], LF_shp_Q14[ k ], Gains_Q16[ k ], Lambda_Q10,
  141. offset_Q10, psEncC->subfr_length, psEncC->shapingLPCOrder, psEncC->predictLPCOrder, psEncC->arch );
  142. x16 += psEncC->subfr_length;
  143. pulses += psEncC->subfr_length;
  144. pxq += psEncC->subfr_length;
  145. }
  146. /* Update lagPrev for next frame */
  147. NSQ->lagPrev = pitchL[ psEncC->nb_subfr - 1 ];
  148. /* Save quantized speech and noise shaping signals */
  149. silk_memmove( NSQ->xq, &NSQ->xq[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int16 ) );
  150. silk_memmove( NSQ->sLTP_shp_Q14, &NSQ->sLTP_shp_Q14[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int32 ) );
  151. RESTORE_STACK;
  152. }
  153. /***********************************/
  154. /* silk_noise_shape_quantizer */
  155. /***********************************/
  156. #if !defined(OPUS_X86_MAY_HAVE_SSE4_1)
  157. static OPUS_INLINE
  158. #endif
  159. void silk_noise_shape_quantizer(
  160. silk_nsq_state *NSQ, /* I/O NSQ state */
  161. opus_int signalType, /* I Signal type */
  162. const opus_int32 x_sc_Q10[], /* I */
  163. opus_int8 pulses[], /* O */
  164. opus_int16 xq[], /* O */
  165. opus_int32 sLTP_Q15[], /* I/O LTP state */
  166. const opus_int16 a_Q12[], /* I Short term prediction coefs */
  167. const opus_int16 b_Q14[], /* I Long term prediction coefs */
  168. const opus_int16 AR_shp_Q13[], /* I Noise shaping AR coefs */
  169. opus_int lag, /* I Pitch lag */
  170. opus_int32 HarmShapeFIRPacked_Q14, /* I */
  171. opus_int Tilt_Q14, /* I Spectral tilt */
  172. opus_int32 LF_shp_Q14, /* I */
  173. opus_int32 Gain_Q16, /* I */
  174. opus_int Lambda_Q10, /* I */
  175. opus_int offset_Q10, /* I */
  176. opus_int length, /* I Input length */
  177. opus_int shapingLPCOrder, /* I Noise shaping AR filter order */
  178. opus_int predictLPCOrder, /* I Prediction filter order */
  179. int arch /* I Architecture */
  180. )
  181. {
  182. opus_int i;
  183. opus_int32 LTP_pred_Q13, LPC_pred_Q10, n_AR_Q12, n_LTP_Q13;
  184. opus_int32 n_LF_Q12, r_Q10, rr_Q10, q1_Q0, q1_Q10, q2_Q10, rd1_Q20, rd2_Q20;
  185. opus_int32 exc_Q14, LPC_exc_Q14, xq_Q14, Gain_Q10;
  186. opus_int32 tmp1, tmp2, sLF_AR_shp_Q14;
  187. opus_int32 *psLPC_Q14, *shp_lag_ptr, *pred_lag_ptr;
  188. #ifdef silk_short_prediction_create_arch_coef
  189. opus_int32 a_Q12_arch[MAX_LPC_ORDER];
  190. #endif
  191. shp_lag_ptr = &NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2 ];
  192. pred_lag_ptr = &sLTP_Q15[ NSQ->sLTP_buf_idx - lag + LTP_ORDER / 2 ];
  193. Gain_Q10 = silk_RSHIFT( Gain_Q16, 6 );
  194. /* Set up short term AR state */
  195. psLPC_Q14 = &NSQ->sLPC_Q14[ NSQ_LPC_BUF_LENGTH - 1 ];
  196. #ifdef silk_short_prediction_create_arch_coef
  197. silk_short_prediction_create_arch_coef(a_Q12_arch, a_Q12, predictLPCOrder);
  198. #endif
  199. for( i = 0; i < length; i++ ) {
  200. /* Generate dither */
  201. NSQ->rand_seed = silk_RAND( NSQ->rand_seed );
  202. /* Short-term prediction */
  203. LPC_pred_Q10 = silk_noise_shape_quantizer_short_prediction(psLPC_Q14, a_Q12, a_Q12_arch, predictLPCOrder, arch);
  204. /* Long-term prediction */
  205. if( signalType == TYPE_VOICED ) {
  206. /* Unrolled loop */
  207. /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
  208. LTP_pred_Q13 = 2;
  209. LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[ 0 ], b_Q14[ 0 ] );
  210. LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[ -1 ], b_Q14[ 1 ] );
  211. LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[ -2 ], b_Q14[ 2 ] );
  212. LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[ -3 ], b_Q14[ 3 ] );
  213. LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[ -4 ], b_Q14[ 4 ] );
  214. pred_lag_ptr++;
  215. } else {
  216. LTP_pred_Q13 = 0;
  217. }
  218. /* Noise shape feedback */
  219. celt_assert( ( shapingLPCOrder & 1 ) == 0 ); /* check that order is even */
  220. n_AR_Q12 = silk_NSQ_noise_shape_feedback_loop(&NSQ->sDiff_shp_Q14, NSQ->sAR2_Q14, AR_shp_Q13, shapingLPCOrder, arch);
  221. n_AR_Q12 = silk_SMLAWB( n_AR_Q12, NSQ->sLF_AR_shp_Q14, Tilt_Q14 );
  222. n_LF_Q12 = silk_SMULWB( NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - 1 ], LF_shp_Q14 );
  223. n_LF_Q12 = silk_SMLAWT( n_LF_Q12, NSQ->sLF_AR_shp_Q14, LF_shp_Q14 );
  224. celt_assert( lag > 0 || signalType != TYPE_VOICED );
  225. /* Combine prediction and noise shaping signals */
  226. tmp1 = silk_SUB32( silk_LSHIFT32( LPC_pred_Q10, 2 ), n_AR_Q12 ); /* Q12 */
  227. tmp1 = silk_SUB32( tmp1, n_LF_Q12 ); /* Q12 */
  228. if( lag > 0 ) {
  229. /* Symmetric, packed FIR coefficients */
  230. n_LTP_Q13 = silk_SMULWB( silk_ADD32( shp_lag_ptr[ 0 ], shp_lag_ptr[ -2 ] ), HarmShapeFIRPacked_Q14 );
  231. n_LTP_Q13 = silk_SMLAWT( n_LTP_Q13, shp_lag_ptr[ -1 ], HarmShapeFIRPacked_Q14 );
  232. n_LTP_Q13 = silk_LSHIFT( n_LTP_Q13, 1 );
  233. shp_lag_ptr++;
  234. tmp2 = silk_SUB32( LTP_pred_Q13, n_LTP_Q13 ); /* Q13 */
  235. tmp1 = silk_ADD_LSHIFT32( tmp2, tmp1, 1 ); /* Q13 */
  236. tmp1 = silk_RSHIFT_ROUND( tmp1, 3 ); /* Q10 */
  237. } else {
  238. tmp1 = silk_RSHIFT_ROUND( tmp1, 2 ); /* Q10 */
  239. }
  240. r_Q10 = silk_SUB32( x_sc_Q10[ i ], tmp1 ); /* residual error Q10 */
  241. /* Flip sign depending on dither */
  242. if( NSQ->rand_seed < 0 ) {
  243. r_Q10 = -r_Q10;
  244. }
  245. r_Q10 = silk_LIMIT_32( r_Q10, -(31 << 10), 30 << 10 );
  246. /* Find two quantization level candidates and measure their rate-distortion */
  247. q1_Q10 = silk_SUB32( r_Q10, offset_Q10 );
  248. q1_Q0 = silk_RSHIFT( q1_Q10, 10 );
  249. if (Lambda_Q10 > 2048) {
  250. /* For aggressive RDO, the bias becomes more than one pulse. */
  251. int rdo_offset = Lambda_Q10/2 - 512;
  252. if (q1_Q10 > rdo_offset) {
  253. q1_Q0 = silk_RSHIFT( q1_Q10 - rdo_offset, 10 );
  254. } else if (q1_Q10 < -rdo_offset) {
  255. q1_Q0 = silk_RSHIFT( q1_Q10 + rdo_offset, 10 );
  256. } else if (q1_Q10 < 0) {
  257. q1_Q0 = -1;
  258. } else {
  259. q1_Q0 = 0;
  260. }
  261. }
  262. if( q1_Q0 > 0 ) {
  263. q1_Q10 = silk_SUB32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 );
  264. q1_Q10 = silk_ADD32( q1_Q10, offset_Q10 );
  265. q2_Q10 = silk_ADD32( q1_Q10, 1024 );
  266. rd1_Q20 = silk_SMULBB( q1_Q10, Lambda_Q10 );
  267. rd2_Q20 = silk_SMULBB( q2_Q10, Lambda_Q10 );
  268. } else if( q1_Q0 == 0 ) {
  269. q1_Q10 = offset_Q10;
  270. q2_Q10 = silk_ADD32( q1_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 );
  271. rd1_Q20 = silk_SMULBB( q1_Q10, Lambda_Q10 );
  272. rd2_Q20 = silk_SMULBB( q2_Q10, Lambda_Q10 );
  273. } else if( q1_Q0 == -1 ) {
  274. q2_Q10 = offset_Q10;
  275. q1_Q10 = silk_SUB32( q2_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 );
  276. rd1_Q20 = silk_SMULBB( -q1_Q10, Lambda_Q10 );
  277. rd2_Q20 = silk_SMULBB( q2_Q10, Lambda_Q10 );
  278. } else { /* Q1_Q0 < -1 */
  279. q1_Q10 = silk_ADD32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 );
  280. q1_Q10 = silk_ADD32( q1_Q10, offset_Q10 );
  281. q2_Q10 = silk_ADD32( q1_Q10, 1024 );
  282. rd1_Q20 = silk_SMULBB( -q1_Q10, Lambda_Q10 );
  283. rd2_Q20 = silk_SMULBB( -q2_Q10, Lambda_Q10 );
  284. }
  285. rr_Q10 = silk_SUB32( r_Q10, q1_Q10 );
  286. rd1_Q20 = silk_SMLABB( rd1_Q20, rr_Q10, rr_Q10 );
  287. rr_Q10 = silk_SUB32( r_Q10, q2_Q10 );
  288. rd2_Q20 = silk_SMLABB( rd2_Q20, rr_Q10, rr_Q10 );
  289. if( rd2_Q20 < rd1_Q20 ) {
  290. q1_Q10 = q2_Q10;
  291. }
  292. pulses[ i ] = (opus_int8)silk_RSHIFT_ROUND( q1_Q10, 10 );
  293. /* Excitation */
  294. exc_Q14 = silk_LSHIFT( q1_Q10, 4 );
  295. if ( NSQ->rand_seed < 0 ) {
  296. exc_Q14 = -exc_Q14;
  297. }
  298. /* Add predictions */
  299. LPC_exc_Q14 = silk_ADD_LSHIFT32( exc_Q14, LTP_pred_Q13, 1 );
  300. xq_Q14 = silk_ADD_LSHIFT32( LPC_exc_Q14, LPC_pred_Q10, 4 );
  301. /* Scale XQ back to normal level before saving */
  302. xq[ i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( silk_SMULWW( xq_Q14, Gain_Q10 ), 8 ) );
  303. /* Update states */
  304. psLPC_Q14++;
  305. *psLPC_Q14 = xq_Q14;
  306. NSQ->sDiff_shp_Q14 = silk_SUB_LSHIFT32( xq_Q14, x_sc_Q10[ i ], 4 );
  307. sLF_AR_shp_Q14 = silk_SUB_LSHIFT32( NSQ->sDiff_shp_Q14, n_AR_Q12, 2 );
  308. NSQ->sLF_AR_shp_Q14 = sLF_AR_shp_Q14;
  309. NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx ] = silk_SUB_LSHIFT32( sLF_AR_shp_Q14, n_LF_Q12, 2 );
  310. sLTP_Q15[ NSQ->sLTP_buf_idx ] = silk_LSHIFT( LPC_exc_Q14, 1 );
  311. NSQ->sLTP_shp_buf_idx++;
  312. NSQ->sLTP_buf_idx++;
  313. /* Make dither dependent on quantized signal */
  314. NSQ->rand_seed = silk_ADD32_ovflw( NSQ->rand_seed, pulses[ i ] );
  315. }
  316. /* Update LPC synth buffer */
  317. silk_memcpy( NSQ->sLPC_Q14, &NSQ->sLPC_Q14[ length ], NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) );
  318. }
  319. static OPUS_INLINE void silk_nsq_scale_states(
  320. const silk_encoder_state *psEncC, /* I Encoder State */
  321. silk_nsq_state *NSQ, /* I/O NSQ state */
  322. const opus_int16 x16[], /* I input */
  323. opus_int32 x_sc_Q10[], /* O input scaled with 1/Gain */
  324. const opus_int16 sLTP[], /* I re-whitened LTP state in Q0 */
  325. opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */
  326. opus_int subfr, /* I subframe number */
  327. const opus_int LTP_scale_Q14, /* I */
  328. const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */
  329. const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */
  330. const opus_int signal_type /* I Signal type */
  331. )
  332. {
  333. opus_int i, lag;
  334. opus_int32 gain_adj_Q16, inv_gain_Q31, inv_gain_Q26;
  335. lag = pitchL[ subfr ];
  336. inv_gain_Q31 = silk_INVERSE32_varQ( silk_max( Gains_Q16[ subfr ], 1 ), 47 );
  337. silk_assert( inv_gain_Q31 != 0 );
  338. /* Scale input */
  339. inv_gain_Q26 = silk_RSHIFT_ROUND( inv_gain_Q31, 5 );
  340. for( i = 0; i < psEncC->subfr_length; i++ ) {
  341. x_sc_Q10[ i ] = silk_SMULWW( x16[ i ], inv_gain_Q26 );
  342. }
  343. /* After rewhitening the LTP state is un-scaled, so scale with inv_gain_Q16 */
  344. if( NSQ->rewhite_flag ) {
  345. if( subfr == 0 ) {
  346. /* Do LTP downscaling */
  347. inv_gain_Q31 = silk_LSHIFT( silk_SMULWB( inv_gain_Q31, LTP_scale_Q14 ), 2 );
  348. }
  349. for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) {
  350. silk_assert( i < MAX_FRAME_LENGTH );
  351. sLTP_Q15[ i ] = silk_SMULWB( inv_gain_Q31, sLTP[ i ] );
  352. }
  353. }
  354. /* Adjust for changing gain */
  355. if( Gains_Q16[ subfr ] != NSQ->prev_gain_Q16 ) {
  356. gain_adj_Q16 = silk_DIV32_varQ( NSQ->prev_gain_Q16, Gains_Q16[ subfr ], 16 );
  357. /* Scale long-term shaping state */
  358. for( i = NSQ->sLTP_shp_buf_idx - psEncC->ltp_mem_length; i < NSQ->sLTP_shp_buf_idx; i++ ) {
  359. NSQ->sLTP_shp_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sLTP_shp_Q14[ i ] );
  360. }
  361. /* Scale long-term prediction state */
  362. if( signal_type == TYPE_VOICED && NSQ->rewhite_flag == 0 ) {
  363. for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) {
  364. sLTP_Q15[ i ] = silk_SMULWW( gain_adj_Q16, sLTP_Q15[ i ] );
  365. }
  366. }
  367. NSQ->sLF_AR_shp_Q14 = silk_SMULWW( gain_adj_Q16, NSQ->sLF_AR_shp_Q14 );
  368. NSQ->sDiff_shp_Q14 = silk_SMULWW( gain_adj_Q16, NSQ->sDiff_shp_Q14 );
  369. /* Scale short-term prediction and shaping states */
  370. for( i = 0; i < NSQ_LPC_BUF_LENGTH; i++ ) {
  371. NSQ->sLPC_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sLPC_Q14[ i ] );
  372. }
  373. for( i = 0; i < MAX_SHAPE_LPC_ORDER; i++ ) {
  374. NSQ->sAR2_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sAR2_Q14[ i ] );
  375. }
  376. /* Save inverse gain */
  377. NSQ->prev_gain_Q16 = Gains_Q16[ subfr ];
  378. }
  379. }