NSQ_del_dec.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733
  1. /***********************************************************************
  2. Copyright (c) 2006-2011, Skype Limited. All rights reserved.
  3. Redistribution and use in source and binary forms, with or without
  4. modification, are permitted provided that the following conditions
  5. are met:
  6. - Redistributions of source code must retain the above copyright notice,
  7. this list of conditions and the following disclaimer.
  8. - Redistributions in binary form must reproduce the above copyright
  9. notice, this list of conditions and the following disclaimer in the
  10. documentation and/or other materials provided with the distribution.
  11. - Neither the name of Internet Society, IETF or IETF Trust, nor the
  12. names of specific contributors, may be used to endorse or promote
  13. products derived from this software without specific prior written
  14. permission.
  15. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  18. ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  19. LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  20. CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  21. SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  22. INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  23. CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  24. ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  25. POSSIBILITY OF SUCH DAMAGE.
  26. ***********************************************************************/
  27. #ifdef HAVE_CONFIG_H
  28. #include "config.h"
  29. #endif
  30. #include "main.h"
  31. #include "stack_alloc.h"
  32. #include "NSQ.h"
  33. typedef struct {
  34. opus_int32 sLPC_Q14[ MAX_SUB_FRAME_LENGTH + NSQ_LPC_BUF_LENGTH ];
  35. opus_int32 RandState[ DECISION_DELAY ];
  36. opus_int32 Q_Q10[ DECISION_DELAY ];
  37. opus_int32 Xq_Q14[ DECISION_DELAY ];
  38. opus_int32 Pred_Q15[ DECISION_DELAY ];
  39. opus_int32 Shape_Q14[ DECISION_DELAY ];
  40. opus_int32 sAR2_Q14[ MAX_SHAPE_LPC_ORDER ];
  41. opus_int32 LF_AR_Q14;
  42. opus_int32 Diff_Q14;
  43. opus_int32 Seed;
  44. opus_int32 SeedInit;
  45. opus_int32 RD_Q10;
  46. } NSQ_del_dec_struct;
  47. typedef struct {
  48. opus_int32 Q_Q10;
  49. opus_int32 RD_Q10;
  50. opus_int32 xq_Q14;
  51. opus_int32 LF_AR_Q14;
  52. opus_int32 Diff_Q14;
  53. opus_int32 sLTP_shp_Q14;
  54. opus_int32 LPC_exc_Q14;
  55. } NSQ_sample_struct;
  56. typedef NSQ_sample_struct NSQ_sample_pair[ 2 ];
  57. #if defined(MIPSr1_ASM)
  58. #include "mips/NSQ_del_dec_mipsr1.h"
  59. #endif
  60. static OPUS_INLINE void silk_nsq_del_dec_scale_states(
  61. const silk_encoder_state *psEncC, /* I Encoder State */
  62. silk_nsq_state *NSQ, /* I/O NSQ state */
  63. NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */
  64. const opus_int16 x16[], /* I Input */
  65. opus_int32 x_sc_Q10[], /* O Input scaled with 1/Gain in Q10 */
  66. const opus_int16 sLTP[], /* I Re-whitened LTP state in Q0 */
  67. opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */
  68. opus_int subfr, /* I Subframe number */
  69. opus_int nStatesDelayedDecision, /* I Number of del dec states */
  70. const opus_int LTP_scale_Q14, /* I LTP state scaling */
  71. const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */
  72. const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */
  73. const opus_int signal_type, /* I Signal type */
  74. const opus_int decisionDelay /* I Decision delay */
  75. );
  76. /******************************************/
  77. /* Noise shape quantizer for one subframe */
  78. /******************************************/
  79. static OPUS_INLINE void silk_noise_shape_quantizer_del_dec(
  80. silk_nsq_state *NSQ, /* I/O NSQ state */
  81. NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */
  82. opus_int signalType, /* I Signal type */
  83. const opus_int32 x_Q10[], /* I */
  84. opus_int8 pulses[], /* O */
  85. opus_int16 xq[], /* O */
  86. opus_int32 sLTP_Q15[], /* I/O LTP filter state */
  87. opus_int32 delayedGain_Q10[], /* I/O Gain delay buffer */
  88. const opus_int16 a_Q12[], /* I Short term prediction coefs */
  89. const opus_int16 b_Q14[], /* I Long term prediction coefs */
  90. const opus_int16 AR_shp_Q13[], /* I Noise shaping coefs */
  91. opus_int lag, /* I Pitch lag */
  92. opus_int32 HarmShapeFIRPacked_Q14, /* I */
  93. opus_int Tilt_Q14, /* I Spectral tilt */
  94. opus_int32 LF_shp_Q14, /* I */
  95. opus_int32 Gain_Q16, /* I */
  96. opus_int Lambda_Q10, /* I */
  97. opus_int offset_Q10, /* I */
  98. opus_int length, /* I Input length */
  99. opus_int subfr, /* I Subframe number */
  100. opus_int shapingLPCOrder, /* I Shaping LPC filter order */
  101. opus_int predictLPCOrder, /* I Prediction filter order */
  102. opus_int warping_Q16, /* I */
  103. opus_int nStatesDelayedDecision, /* I Number of states in decision tree */
  104. opus_int *smpl_buf_idx, /* I/O Index to newest samples in buffers */
  105. opus_int decisionDelay, /* I */
  106. int arch /* I */
  107. );
  108. void silk_NSQ_del_dec_c(
  109. const silk_encoder_state *psEncC, /* I Encoder State */
  110. silk_nsq_state *NSQ, /* I/O NSQ state */
  111. SideInfoIndices *psIndices, /* I/O Quantization Indices */
  112. const opus_int16 x16[], /* I Input */
  113. opus_int8 pulses[], /* O Quantized pulse signal */
  114. const opus_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefs */
  115. const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefs */
  116. const opus_int16 AR_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */
  117. const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I Long term shaping coefs */
  118. const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */
  119. const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I Low frequency shaping coefs */
  120. const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I Quantization step sizes */
  121. const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lags */
  122. const opus_int Lambda_Q10, /* I Rate/distortion tradeoff */
  123. const opus_int LTP_scale_Q14 /* I LTP state scaling */
  124. )
  125. {
  126. opus_int i, k, lag, start_idx, LSF_interpolation_flag, Winner_ind, subfr;
  127. opus_int last_smple_idx, smpl_buf_idx, decisionDelay;
  128. const opus_int16 *A_Q12, *B_Q14, *AR_shp_Q13;
  129. opus_int16 *pxq;
  130. VARDECL( opus_int32, sLTP_Q15 );
  131. VARDECL( opus_int16, sLTP );
  132. opus_int32 HarmShapeFIRPacked_Q14;
  133. opus_int offset_Q10;
  134. opus_int32 RDmin_Q10, Gain_Q10;
  135. VARDECL( opus_int32, x_sc_Q10 );
  136. VARDECL( opus_int32, delayedGain_Q10 );
  137. VARDECL( NSQ_del_dec_struct, psDelDec );
  138. NSQ_del_dec_struct *psDD;
  139. SAVE_STACK;
  140. /* Set unvoiced lag to the previous one, overwrite later for voiced */
  141. lag = NSQ->lagPrev;
  142. silk_assert( NSQ->prev_gain_Q16 != 0 );
  143. /* Initialize delayed decision states */
  144. ALLOC( psDelDec, psEncC->nStatesDelayedDecision, NSQ_del_dec_struct );
  145. silk_memset( psDelDec, 0, psEncC->nStatesDelayedDecision * sizeof( NSQ_del_dec_struct ) );
  146. for( k = 0; k < psEncC->nStatesDelayedDecision; k++ ) {
  147. psDD = &psDelDec[ k ];
  148. psDD->Seed = ( k + psIndices->Seed ) & 3;
  149. psDD->SeedInit = psDD->Seed;
  150. psDD->RD_Q10 = 0;
  151. psDD->LF_AR_Q14 = NSQ->sLF_AR_shp_Q14;
  152. psDD->Diff_Q14 = NSQ->sDiff_shp_Q14;
  153. psDD->Shape_Q14[ 0 ] = NSQ->sLTP_shp_Q14[ psEncC->ltp_mem_length - 1 ];
  154. silk_memcpy( psDD->sLPC_Q14, NSQ->sLPC_Q14, NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) );
  155. silk_memcpy( psDD->sAR2_Q14, NSQ->sAR2_Q14, sizeof( NSQ->sAR2_Q14 ) );
  156. }
  157. offset_Q10 = silk_Quantization_Offsets_Q10[ psIndices->signalType >> 1 ][ psIndices->quantOffsetType ];
  158. smpl_buf_idx = 0; /* index of oldest samples */
  159. decisionDelay = silk_min_int( DECISION_DELAY, psEncC->subfr_length );
  160. /* For voiced frames limit the decision delay to lower than the pitch lag */
  161. if( psIndices->signalType == TYPE_VOICED ) {
  162. for( k = 0; k < psEncC->nb_subfr; k++ ) {
  163. decisionDelay = silk_min_int( decisionDelay, pitchL[ k ] - LTP_ORDER / 2 - 1 );
  164. }
  165. } else {
  166. if( lag > 0 ) {
  167. decisionDelay = silk_min_int( decisionDelay, lag - LTP_ORDER / 2 - 1 );
  168. }
  169. }
  170. if( psIndices->NLSFInterpCoef_Q2 == 4 ) {
  171. LSF_interpolation_flag = 0;
  172. } else {
  173. LSF_interpolation_flag = 1;
  174. }
  175. ALLOC( sLTP_Q15, psEncC->ltp_mem_length + psEncC->frame_length, opus_int32 );
  176. ALLOC( sLTP, psEncC->ltp_mem_length + psEncC->frame_length, opus_int16 );
  177. ALLOC( x_sc_Q10, psEncC->subfr_length, opus_int32 );
  178. ALLOC( delayedGain_Q10, DECISION_DELAY, opus_int32 );
  179. /* Set up pointers to start of sub frame */
  180. pxq = &NSQ->xq[ psEncC->ltp_mem_length ];
  181. NSQ->sLTP_shp_buf_idx = psEncC->ltp_mem_length;
  182. NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
  183. subfr = 0;
  184. for( k = 0; k < psEncC->nb_subfr; k++ ) {
  185. A_Q12 = &PredCoef_Q12[ ( ( k >> 1 ) | ( 1 - LSF_interpolation_flag ) ) * MAX_LPC_ORDER ];
  186. B_Q14 = &LTPCoef_Q14[ k * LTP_ORDER ];
  187. AR_shp_Q13 = &AR_Q13[ k * MAX_SHAPE_LPC_ORDER ];
  188. /* Noise shape parameters */
  189. silk_assert( HarmShapeGain_Q14[ k ] >= 0 );
  190. HarmShapeFIRPacked_Q14 = silk_RSHIFT( HarmShapeGain_Q14[ k ], 2 );
  191. HarmShapeFIRPacked_Q14 |= silk_LSHIFT( (opus_int32)silk_RSHIFT( HarmShapeGain_Q14[ k ], 1 ), 16 );
  192. NSQ->rewhite_flag = 0;
  193. if( psIndices->signalType == TYPE_VOICED ) {
  194. /* Voiced */
  195. lag = pitchL[ k ];
  196. /* Re-whitening */
  197. if( ( k & ( 3 - silk_LSHIFT( LSF_interpolation_flag, 1 ) ) ) == 0 ) {
  198. if( k == 2 ) {
  199. /* RESET DELAYED DECISIONS */
  200. /* Find winner */
  201. RDmin_Q10 = psDelDec[ 0 ].RD_Q10;
  202. Winner_ind = 0;
  203. for( i = 1; i < psEncC->nStatesDelayedDecision; i++ ) {
  204. if( psDelDec[ i ].RD_Q10 < RDmin_Q10 ) {
  205. RDmin_Q10 = psDelDec[ i ].RD_Q10;
  206. Winner_ind = i;
  207. }
  208. }
  209. for( i = 0; i < psEncC->nStatesDelayedDecision; i++ ) {
  210. if( i != Winner_ind ) {
  211. psDelDec[ i ].RD_Q10 += ( silk_int32_MAX >> 4 );
  212. silk_assert( psDelDec[ i ].RD_Q10 >= 0 );
  213. }
  214. }
  215. /* Copy final part of signals from winner state to output and long-term filter states */
  216. psDD = &psDelDec[ Winner_ind ];
  217. last_smple_idx = smpl_buf_idx + decisionDelay;
  218. for( i = 0; i < decisionDelay; i++ ) {
  219. last_smple_idx = ( last_smple_idx - 1 ) % DECISION_DELAY;
  220. if( last_smple_idx < 0 ) last_smple_idx += DECISION_DELAY;
  221. pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 );
  222. pxq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND(
  223. silk_SMULWW( psDD->Xq_Q14[ last_smple_idx ], Gains_Q16[ 1 ] ), 14 ) );
  224. NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay + i ] = psDD->Shape_Q14[ last_smple_idx ];
  225. }
  226. subfr = 0;
  227. }
  228. /* Rewhiten with new A coefs */
  229. start_idx = psEncC->ltp_mem_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2;
  230. celt_assert( start_idx > 0 );
  231. silk_LPC_analysis_filter( &sLTP[ start_idx ], &NSQ->xq[ start_idx + k * psEncC->subfr_length ],
  232. A_Q12, psEncC->ltp_mem_length - start_idx, psEncC->predictLPCOrder, psEncC->arch );
  233. NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
  234. NSQ->rewhite_flag = 1;
  235. }
  236. }
  237. silk_nsq_del_dec_scale_states( psEncC, NSQ, psDelDec, x16, x_sc_Q10, sLTP, sLTP_Q15, k,
  238. psEncC->nStatesDelayedDecision, LTP_scale_Q14, Gains_Q16, pitchL, psIndices->signalType, decisionDelay );
  239. silk_noise_shape_quantizer_del_dec( NSQ, psDelDec, psIndices->signalType, x_sc_Q10, pulses, pxq, sLTP_Q15,
  240. delayedGain_Q10, A_Q12, B_Q14, AR_shp_Q13, lag, HarmShapeFIRPacked_Q14, Tilt_Q14[ k ], LF_shp_Q14[ k ],
  241. Gains_Q16[ k ], Lambda_Q10, offset_Q10, psEncC->subfr_length, subfr++, psEncC->shapingLPCOrder,
  242. psEncC->predictLPCOrder, psEncC->warping_Q16, psEncC->nStatesDelayedDecision, &smpl_buf_idx, decisionDelay, psEncC->arch );
  243. x16 += psEncC->subfr_length;
  244. pulses += psEncC->subfr_length;
  245. pxq += psEncC->subfr_length;
  246. }
  247. /* Find winner */
  248. RDmin_Q10 = psDelDec[ 0 ].RD_Q10;
  249. Winner_ind = 0;
  250. for( k = 1; k < psEncC->nStatesDelayedDecision; k++ ) {
  251. if( psDelDec[ k ].RD_Q10 < RDmin_Q10 ) {
  252. RDmin_Q10 = psDelDec[ k ].RD_Q10;
  253. Winner_ind = k;
  254. }
  255. }
  256. /* Copy final part of signals from winner state to output and long-term filter states */
  257. psDD = &psDelDec[ Winner_ind ];
  258. psIndices->Seed = psDD->SeedInit;
  259. last_smple_idx = smpl_buf_idx + decisionDelay;
  260. Gain_Q10 = silk_RSHIFT32( Gains_Q16[ psEncC->nb_subfr - 1 ], 6 );
  261. for( i = 0; i < decisionDelay; i++ ) {
  262. last_smple_idx = ( last_smple_idx - 1 ) % DECISION_DELAY;
  263. if( last_smple_idx < 0 ) last_smple_idx += DECISION_DELAY;
  264. pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 );
  265. pxq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND(
  266. silk_SMULWW( psDD->Xq_Q14[ last_smple_idx ], Gain_Q10 ), 8 ) );
  267. NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay + i ] = psDD->Shape_Q14[ last_smple_idx ];
  268. }
  269. silk_memcpy( NSQ->sLPC_Q14, &psDD->sLPC_Q14[ psEncC->subfr_length ], NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) );
  270. silk_memcpy( NSQ->sAR2_Q14, psDD->sAR2_Q14, sizeof( psDD->sAR2_Q14 ) );
  271. /* Update states */
  272. NSQ->sLF_AR_shp_Q14 = psDD->LF_AR_Q14;
  273. NSQ->sDiff_shp_Q14 = psDD->Diff_Q14;
  274. NSQ->lagPrev = pitchL[ psEncC->nb_subfr - 1 ];
  275. /* Save quantized speech signal */
  276. silk_memmove( NSQ->xq, &NSQ->xq[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int16 ) );
  277. silk_memmove( NSQ->sLTP_shp_Q14, &NSQ->sLTP_shp_Q14[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int32 ) );
  278. RESTORE_STACK;
  279. }
  280. /******************************************/
  281. /* Noise shape quantizer for one subframe */
  282. /******************************************/
  283. #ifndef OVERRIDE_silk_noise_shape_quantizer_del_dec
  284. static OPUS_INLINE void silk_noise_shape_quantizer_del_dec(
  285. silk_nsq_state *NSQ, /* I/O NSQ state */
  286. NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */
  287. opus_int signalType, /* I Signal type */
  288. const opus_int32 x_Q10[], /* I */
  289. opus_int8 pulses[], /* O */
  290. opus_int16 xq[], /* O */
  291. opus_int32 sLTP_Q15[], /* I/O LTP filter state */
  292. opus_int32 delayedGain_Q10[], /* I/O Gain delay buffer */
  293. const opus_int16 a_Q12[], /* I Short term prediction coefs */
  294. const opus_int16 b_Q14[], /* I Long term prediction coefs */
  295. const opus_int16 AR_shp_Q13[], /* I Noise shaping coefs */
  296. opus_int lag, /* I Pitch lag */
  297. opus_int32 HarmShapeFIRPacked_Q14, /* I */
  298. opus_int Tilt_Q14, /* I Spectral tilt */
  299. opus_int32 LF_shp_Q14, /* I */
  300. opus_int32 Gain_Q16, /* I */
  301. opus_int Lambda_Q10, /* I */
  302. opus_int offset_Q10, /* I */
  303. opus_int length, /* I Input length */
  304. opus_int subfr, /* I Subframe number */
  305. opus_int shapingLPCOrder, /* I Shaping LPC filter order */
  306. opus_int predictLPCOrder, /* I Prediction filter order */
  307. opus_int warping_Q16, /* I */
  308. opus_int nStatesDelayedDecision, /* I Number of states in decision tree */
  309. opus_int *smpl_buf_idx, /* I/O Index to newest samples in buffers */
  310. opus_int decisionDelay, /* I */
  311. int arch /* I */
  312. )
  313. {
  314. opus_int i, j, k, Winner_ind, RDmin_ind, RDmax_ind, last_smple_idx;
  315. opus_int32 Winner_rand_state;
  316. opus_int32 LTP_pred_Q14, LPC_pred_Q14, n_AR_Q14, n_LTP_Q14;
  317. opus_int32 n_LF_Q14, r_Q10, rr_Q10, rd1_Q10, rd2_Q10, RDmin_Q10, RDmax_Q10;
  318. opus_int32 q1_Q0, q1_Q10, q2_Q10, exc_Q14, LPC_exc_Q14, xq_Q14, Gain_Q10;
  319. opus_int32 tmp1, tmp2, sLF_AR_shp_Q14;
  320. opus_int32 *pred_lag_ptr, *shp_lag_ptr, *psLPC_Q14;
  321. #ifdef silk_short_prediction_create_arch_coef
  322. opus_int32 a_Q12_arch[MAX_LPC_ORDER];
  323. #endif
  324. VARDECL( NSQ_sample_pair, psSampleState );
  325. NSQ_del_dec_struct *psDD;
  326. NSQ_sample_struct *psSS;
  327. SAVE_STACK;
  328. celt_assert( nStatesDelayedDecision > 0 );
  329. ALLOC( psSampleState, nStatesDelayedDecision, NSQ_sample_pair );
  330. shp_lag_ptr = &NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2 ];
  331. pred_lag_ptr = &sLTP_Q15[ NSQ->sLTP_buf_idx - lag + LTP_ORDER / 2 ];
  332. Gain_Q10 = silk_RSHIFT( Gain_Q16, 6 );
  333. #ifdef silk_short_prediction_create_arch_coef
  334. silk_short_prediction_create_arch_coef(a_Q12_arch, a_Q12, predictLPCOrder);
  335. #endif
  336. for( i = 0; i < length; i++ ) {
  337. /* Perform common calculations used in all states */
  338. /* Long-term prediction */
  339. if( signalType == TYPE_VOICED ) {
  340. /* Unrolled loop */
  341. /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
  342. LTP_pred_Q14 = 2;
  343. LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ 0 ], b_Q14[ 0 ] );
  344. LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -1 ], b_Q14[ 1 ] );
  345. LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -2 ], b_Q14[ 2 ] );
  346. LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -3 ], b_Q14[ 3 ] );
  347. LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -4 ], b_Q14[ 4 ] );
  348. LTP_pred_Q14 = silk_LSHIFT( LTP_pred_Q14, 1 ); /* Q13 -> Q14 */
  349. pred_lag_ptr++;
  350. } else {
  351. LTP_pred_Q14 = 0;
  352. }
  353. /* Long-term shaping */
  354. if( lag > 0 ) {
  355. /* Symmetric, packed FIR coefficients */
  356. n_LTP_Q14 = silk_SMULWB( silk_ADD_SAT32( shp_lag_ptr[ 0 ], shp_lag_ptr[ -2 ] ), HarmShapeFIRPacked_Q14 );
  357. n_LTP_Q14 = silk_SMLAWT( n_LTP_Q14, shp_lag_ptr[ -1 ], HarmShapeFIRPacked_Q14 );
  358. n_LTP_Q14 = silk_SUB_LSHIFT32( LTP_pred_Q14, n_LTP_Q14, 2 ); /* Q12 -> Q14 */
  359. shp_lag_ptr++;
  360. } else {
  361. n_LTP_Q14 = 0;
  362. }
  363. for( k = 0; k < nStatesDelayedDecision; k++ ) {
  364. /* Delayed decision state */
  365. psDD = &psDelDec[ k ];
  366. /* Sample state */
  367. psSS = psSampleState[ k ];
  368. /* Generate dither */
  369. psDD->Seed = silk_RAND( psDD->Seed );
  370. /* Pointer used in short term prediction and shaping */
  371. psLPC_Q14 = &psDD->sLPC_Q14[ NSQ_LPC_BUF_LENGTH - 1 + i ];
  372. /* Short-term prediction */
  373. LPC_pred_Q14 = silk_noise_shape_quantizer_short_prediction(psLPC_Q14, a_Q12, a_Q12_arch, predictLPCOrder, arch);
  374. LPC_pred_Q14 = silk_LSHIFT( LPC_pred_Q14, 4 ); /* Q10 -> Q14 */
  375. /* Noise shape feedback */
  376. celt_assert( ( shapingLPCOrder & 1 ) == 0 ); /* check that order is even */
  377. /* Output of lowpass section */
  378. tmp2 = silk_SMLAWB( psDD->Diff_Q14, psDD->sAR2_Q14[ 0 ], warping_Q16 );
  379. /* Output of allpass section */
  380. tmp1 = silk_SMLAWB( psDD->sAR2_Q14[ 0 ], psDD->sAR2_Q14[ 1 ] - tmp2, warping_Q16 );
  381. psDD->sAR2_Q14[ 0 ] = tmp2;
  382. n_AR_Q14 = silk_RSHIFT( shapingLPCOrder, 1 );
  383. n_AR_Q14 = silk_SMLAWB( n_AR_Q14, tmp2, AR_shp_Q13[ 0 ] );
  384. /* Loop over allpass sections */
  385. for( j = 2; j < shapingLPCOrder; j += 2 ) {
  386. /* Output of allpass section */
  387. tmp2 = silk_SMLAWB( psDD->sAR2_Q14[ j - 1 ], psDD->sAR2_Q14[ j + 0 ] - tmp1, warping_Q16 );
  388. psDD->sAR2_Q14[ j - 1 ] = tmp1;
  389. n_AR_Q14 = silk_SMLAWB( n_AR_Q14, tmp1, AR_shp_Q13[ j - 1 ] );
  390. /* Output of allpass section */
  391. tmp1 = silk_SMLAWB( psDD->sAR2_Q14[ j + 0 ], psDD->sAR2_Q14[ j + 1 ] - tmp2, warping_Q16 );
  392. psDD->sAR2_Q14[ j + 0 ] = tmp2;
  393. n_AR_Q14 = silk_SMLAWB( n_AR_Q14, tmp2, AR_shp_Q13[ j ] );
  394. }
  395. psDD->sAR2_Q14[ shapingLPCOrder - 1 ] = tmp1;
  396. n_AR_Q14 = silk_SMLAWB( n_AR_Q14, tmp1, AR_shp_Q13[ shapingLPCOrder - 1 ] );
  397. n_AR_Q14 = silk_LSHIFT( n_AR_Q14, 1 ); /* Q11 -> Q12 */
  398. n_AR_Q14 = silk_SMLAWB( n_AR_Q14, psDD->LF_AR_Q14, Tilt_Q14 ); /* Q12 */
  399. n_AR_Q14 = silk_LSHIFT( n_AR_Q14, 2 ); /* Q12 -> Q14 */
  400. n_LF_Q14 = silk_SMULWB( psDD->Shape_Q14[ *smpl_buf_idx ], LF_shp_Q14 ); /* Q12 */
  401. n_LF_Q14 = silk_SMLAWT( n_LF_Q14, psDD->LF_AR_Q14, LF_shp_Q14 ); /* Q12 */
  402. n_LF_Q14 = silk_LSHIFT( n_LF_Q14, 2 ); /* Q12 -> Q14 */
  403. /* Input minus prediction plus noise feedback */
  404. /* r = x[ i ] - LTP_pred - LPC_pred + n_AR + n_Tilt + n_LF + n_LTP */
  405. tmp1 = silk_ADD_SAT32( n_AR_Q14, n_LF_Q14 ); /* Q14 */
  406. tmp2 = silk_ADD32( n_LTP_Q14, LPC_pred_Q14 ); /* Q13 */
  407. tmp1 = silk_SUB_SAT32( tmp2, tmp1 ); /* Q13 */
  408. tmp1 = silk_RSHIFT_ROUND( tmp1, 4 ); /* Q10 */
  409. r_Q10 = silk_SUB32( x_Q10[ i ], tmp1 ); /* residual error Q10 */
  410. /* Flip sign depending on dither */
  411. if ( psDD->Seed < 0 ) {
  412. r_Q10 = -r_Q10;
  413. }
  414. r_Q10 = silk_LIMIT_32( r_Q10, -(31 << 10), 30 << 10 );
  415. /* Find two quantization level candidates and measure their rate-distortion */
  416. q1_Q10 = silk_SUB32( r_Q10, offset_Q10 );
  417. q1_Q0 = silk_RSHIFT( q1_Q10, 10 );
  418. if (Lambda_Q10 > 2048) {
  419. /* For aggressive RDO, the bias becomes more than one pulse. */
  420. int rdo_offset = Lambda_Q10/2 - 512;
  421. if (q1_Q10 > rdo_offset) {
  422. q1_Q0 = silk_RSHIFT( q1_Q10 - rdo_offset, 10 );
  423. } else if (q1_Q10 < -rdo_offset) {
  424. q1_Q0 = silk_RSHIFT( q1_Q10 + rdo_offset, 10 );
  425. } else if (q1_Q10 < 0) {
  426. q1_Q0 = -1;
  427. } else {
  428. q1_Q0 = 0;
  429. }
  430. }
  431. if( q1_Q0 > 0 ) {
  432. q1_Q10 = silk_SUB32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 );
  433. q1_Q10 = silk_ADD32( q1_Q10, offset_Q10 );
  434. q2_Q10 = silk_ADD32( q1_Q10, 1024 );
  435. rd1_Q10 = silk_SMULBB( q1_Q10, Lambda_Q10 );
  436. rd2_Q10 = silk_SMULBB( q2_Q10, Lambda_Q10 );
  437. } else if( q1_Q0 == 0 ) {
  438. q1_Q10 = offset_Q10;
  439. q2_Q10 = silk_ADD32( q1_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 );
  440. rd1_Q10 = silk_SMULBB( q1_Q10, Lambda_Q10 );
  441. rd2_Q10 = silk_SMULBB( q2_Q10, Lambda_Q10 );
  442. } else if( q1_Q0 == -1 ) {
  443. q2_Q10 = offset_Q10;
  444. q1_Q10 = silk_SUB32( q2_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 );
  445. rd1_Q10 = silk_SMULBB( -q1_Q10, Lambda_Q10 );
  446. rd2_Q10 = silk_SMULBB( q2_Q10, Lambda_Q10 );
  447. } else { /* q1_Q0 < -1 */
  448. q1_Q10 = silk_ADD32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 );
  449. q1_Q10 = silk_ADD32( q1_Q10, offset_Q10 );
  450. q2_Q10 = silk_ADD32( q1_Q10, 1024 );
  451. rd1_Q10 = silk_SMULBB( -q1_Q10, Lambda_Q10 );
  452. rd2_Q10 = silk_SMULBB( -q2_Q10, Lambda_Q10 );
  453. }
  454. rr_Q10 = silk_SUB32( r_Q10, q1_Q10 );
  455. rd1_Q10 = silk_RSHIFT( silk_SMLABB( rd1_Q10, rr_Q10, rr_Q10 ), 10 );
  456. rr_Q10 = silk_SUB32( r_Q10, q2_Q10 );
  457. rd2_Q10 = silk_RSHIFT( silk_SMLABB( rd2_Q10, rr_Q10, rr_Q10 ), 10 );
  458. if( rd1_Q10 < rd2_Q10 ) {
  459. psSS[ 0 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd1_Q10 );
  460. psSS[ 1 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd2_Q10 );
  461. psSS[ 0 ].Q_Q10 = q1_Q10;
  462. psSS[ 1 ].Q_Q10 = q2_Q10;
  463. } else {
  464. psSS[ 0 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd2_Q10 );
  465. psSS[ 1 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd1_Q10 );
  466. psSS[ 0 ].Q_Q10 = q2_Q10;
  467. psSS[ 1 ].Q_Q10 = q1_Q10;
  468. }
  469. /* Update states for best quantization */
  470. /* Quantized excitation */
  471. exc_Q14 = silk_LSHIFT32( psSS[ 0 ].Q_Q10, 4 );
  472. if ( psDD->Seed < 0 ) {
  473. exc_Q14 = -exc_Q14;
  474. }
  475. /* Add predictions */
  476. LPC_exc_Q14 = silk_ADD32( exc_Q14, LTP_pred_Q14 );
  477. xq_Q14 = silk_ADD32( LPC_exc_Q14, LPC_pred_Q14 );
  478. /* Update states */
  479. psSS[ 0 ].Diff_Q14 = silk_SUB_LSHIFT32( xq_Q14, x_Q10[ i ], 4 );
  480. sLF_AR_shp_Q14 = silk_SUB32( psSS[ 0 ].Diff_Q14, n_AR_Q14 );
  481. psSS[ 0 ].sLTP_shp_Q14 = silk_SUB_SAT32( sLF_AR_shp_Q14, n_LF_Q14 );
  482. psSS[ 0 ].LF_AR_Q14 = sLF_AR_shp_Q14;
  483. psSS[ 0 ].LPC_exc_Q14 = LPC_exc_Q14;
  484. psSS[ 0 ].xq_Q14 = xq_Q14;
  485. /* Update states for second best quantization */
  486. /* Quantized excitation */
  487. exc_Q14 = silk_LSHIFT32( psSS[ 1 ].Q_Q10, 4 );
  488. if ( psDD->Seed < 0 ) {
  489. exc_Q14 = -exc_Q14;
  490. }
  491. /* Add predictions */
  492. LPC_exc_Q14 = silk_ADD32( exc_Q14, LTP_pred_Q14 );
  493. xq_Q14 = silk_ADD32( LPC_exc_Q14, LPC_pred_Q14 );
  494. /* Update states */
  495. psSS[ 1 ].Diff_Q14 = silk_SUB_LSHIFT32( xq_Q14, x_Q10[ i ], 4 );
  496. sLF_AR_shp_Q14 = silk_SUB32( psSS[ 1 ].Diff_Q14, n_AR_Q14 );
  497. psSS[ 1 ].sLTP_shp_Q14 = silk_SUB_SAT32( sLF_AR_shp_Q14, n_LF_Q14 );
  498. psSS[ 1 ].LF_AR_Q14 = sLF_AR_shp_Q14;
  499. psSS[ 1 ].LPC_exc_Q14 = LPC_exc_Q14;
  500. psSS[ 1 ].xq_Q14 = xq_Q14;
  501. }
  502. *smpl_buf_idx = ( *smpl_buf_idx - 1 ) % DECISION_DELAY;
  503. if( *smpl_buf_idx < 0 ) *smpl_buf_idx += DECISION_DELAY;
  504. last_smple_idx = ( *smpl_buf_idx + decisionDelay ) % DECISION_DELAY;
  505. /* Find winner */
  506. RDmin_Q10 = psSampleState[ 0 ][ 0 ].RD_Q10;
  507. Winner_ind = 0;
  508. for( k = 1; k < nStatesDelayedDecision; k++ ) {
  509. if( psSampleState[ k ][ 0 ].RD_Q10 < RDmin_Q10 ) {
  510. RDmin_Q10 = psSampleState[ k ][ 0 ].RD_Q10;
  511. Winner_ind = k;
  512. }
  513. }
  514. /* Increase RD values of expired states */
  515. Winner_rand_state = psDelDec[ Winner_ind ].RandState[ last_smple_idx ];
  516. for( k = 0; k < nStatesDelayedDecision; k++ ) {
  517. if( psDelDec[ k ].RandState[ last_smple_idx ] != Winner_rand_state ) {
  518. psSampleState[ k ][ 0 ].RD_Q10 = silk_ADD32( psSampleState[ k ][ 0 ].RD_Q10, silk_int32_MAX >> 4 );
  519. psSampleState[ k ][ 1 ].RD_Q10 = silk_ADD32( psSampleState[ k ][ 1 ].RD_Q10, silk_int32_MAX >> 4 );
  520. silk_assert( psSampleState[ k ][ 0 ].RD_Q10 >= 0 );
  521. }
  522. }
  523. /* Find worst in first set and best in second set */
  524. RDmax_Q10 = psSampleState[ 0 ][ 0 ].RD_Q10;
  525. RDmin_Q10 = psSampleState[ 0 ][ 1 ].RD_Q10;
  526. RDmax_ind = 0;
  527. RDmin_ind = 0;
  528. for( k = 1; k < nStatesDelayedDecision; k++ ) {
  529. /* find worst in first set */
  530. if( psSampleState[ k ][ 0 ].RD_Q10 > RDmax_Q10 ) {
  531. RDmax_Q10 = psSampleState[ k ][ 0 ].RD_Q10;
  532. RDmax_ind = k;
  533. }
  534. /* find best in second set */
  535. if( psSampleState[ k ][ 1 ].RD_Q10 < RDmin_Q10 ) {
  536. RDmin_Q10 = psSampleState[ k ][ 1 ].RD_Q10;
  537. RDmin_ind = k;
  538. }
  539. }
  540. /* Replace a state if best from second set outperforms worst in first set */
  541. if( RDmin_Q10 < RDmax_Q10 ) {
  542. silk_memcpy( ( (opus_int32 *)&psDelDec[ RDmax_ind ] ) + i,
  543. ( (opus_int32 *)&psDelDec[ RDmin_ind ] ) + i, sizeof( NSQ_del_dec_struct ) - i * sizeof( opus_int32) );
  544. silk_memcpy( &psSampleState[ RDmax_ind ][ 0 ], &psSampleState[ RDmin_ind ][ 1 ], sizeof( NSQ_sample_struct ) );
  545. }
  546. /* Write samples from winner to output and long-term filter states */
  547. psDD = &psDelDec[ Winner_ind ];
  548. if( subfr > 0 || i >= decisionDelay ) {
  549. pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 );
  550. xq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND(
  551. silk_SMULWW( psDD->Xq_Q14[ last_smple_idx ], delayedGain_Q10[ last_smple_idx ] ), 8 ) );
  552. NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay ] = psDD->Shape_Q14[ last_smple_idx ];
  553. sLTP_Q15[ NSQ->sLTP_buf_idx - decisionDelay ] = psDD->Pred_Q15[ last_smple_idx ];
  554. }
  555. NSQ->sLTP_shp_buf_idx++;
  556. NSQ->sLTP_buf_idx++;
  557. /* Update states */
  558. for( k = 0; k < nStatesDelayedDecision; k++ ) {
  559. psDD = &psDelDec[ k ];
  560. psSS = &psSampleState[ k ][ 0 ];
  561. psDD->LF_AR_Q14 = psSS->LF_AR_Q14;
  562. psDD->Diff_Q14 = psSS->Diff_Q14;
  563. psDD->sLPC_Q14[ NSQ_LPC_BUF_LENGTH + i ] = psSS->xq_Q14;
  564. psDD->Xq_Q14[ *smpl_buf_idx ] = psSS->xq_Q14;
  565. psDD->Q_Q10[ *smpl_buf_idx ] = psSS->Q_Q10;
  566. psDD->Pred_Q15[ *smpl_buf_idx ] = silk_LSHIFT32( psSS->LPC_exc_Q14, 1 );
  567. psDD->Shape_Q14[ *smpl_buf_idx ] = psSS->sLTP_shp_Q14;
  568. psDD->Seed = silk_ADD32_ovflw( psDD->Seed, silk_RSHIFT_ROUND( psSS->Q_Q10, 10 ) );
  569. psDD->RandState[ *smpl_buf_idx ] = psDD->Seed;
  570. psDD->RD_Q10 = psSS->RD_Q10;
  571. }
  572. delayedGain_Q10[ *smpl_buf_idx ] = Gain_Q10;
  573. }
  574. /* Update LPC states */
  575. for( k = 0; k < nStatesDelayedDecision; k++ ) {
  576. psDD = &psDelDec[ k ];
  577. silk_memcpy( psDD->sLPC_Q14, &psDD->sLPC_Q14[ length ], NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) );
  578. }
  579. RESTORE_STACK;
  580. }
  581. #endif /* OVERRIDE_silk_noise_shape_quantizer_del_dec */
  582. static OPUS_INLINE void silk_nsq_del_dec_scale_states(
  583. const silk_encoder_state *psEncC, /* I Encoder State */
  584. silk_nsq_state *NSQ, /* I/O NSQ state */
  585. NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */
  586. const opus_int16 x16[], /* I Input */
  587. opus_int32 x_sc_Q10[], /* O Input scaled with 1/Gain in Q10 */
  588. const opus_int16 sLTP[], /* I Re-whitened LTP state in Q0 */
  589. opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */
  590. opus_int subfr, /* I Subframe number */
  591. opus_int nStatesDelayedDecision, /* I Number of del dec states */
  592. const opus_int LTP_scale_Q14, /* I LTP state scaling */
  593. const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */
  594. const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */
  595. const opus_int signal_type, /* I Signal type */
  596. const opus_int decisionDelay /* I Decision delay */
  597. )
  598. {
  599. opus_int i, k, lag;
  600. opus_int32 gain_adj_Q16, inv_gain_Q31, inv_gain_Q26;
  601. NSQ_del_dec_struct *psDD;
  602. lag = pitchL[ subfr ];
  603. inv_gain_Q31 = silk_INVERSE32_varQ( silk_max( Gains_Q16[ subfr ], 1 ), 47 );
  604. silk_assert( inv_gain_Q31 != 0 );
  605. /* Scale input */
  606. inv_gain_Q26 = silk_RSHIFT_ROUND( inv_gain_Q31, 5 );
  607. for( i = 0; i < psEncC->subfr_length; i++ ) {
  608. x_sc_Q10[ i ] = silk_SMULWW( x16[ i ], inv_gain_Q26 );
  609. }
  610. /* After rewhitening the LTP state is un-scaled, so scale with inv_gain_Q16 */
  611. if( NSQ->rewhite_flag ) {
  612. if( subfr == 0 ) {
  613. /* Do LTP downscaling */
  614. inv_gain_Q31 = silk_LSHIFT( silk_SMULWB( inv_gain_Q31, LTP_scale_Q14 ), 2 );
  615. }
  616. for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) {
  617. silk_assert( i < MAX_FRAME_LENGTH );
  618. sLTP_Q15[ i ] = silk_SMULWB( inv_gain_Q31, sLTP[ i ] );
  619. }
  620. }
  621. /* Adjust for changing gain */
  622. if( Gains_Q16[ subfr ] != NSQ->prev_gain_Q16 ) {
  623. gain_adj_Q16 = silk_DIV32_varQ( NSQ->prev_gain_Q16, Gains_Q16[ subfr ], 16 );
  624. /* Scale long-term shaping state */
  625. for( i = NSQ->sLTP_shp_buf_idx - psEncC->ltp_mem_length; i < NSQ->sLTP_shp_buf_idx; i++ ) {
  626. NSQ->sLTP_shp_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sLTP_shp_Q14[ i ] );
  627. }
  628. /* Scale long-term prediction state */
  629. if( signal_type == TYPE_VOICED && NSQ->rewhite_flag == 0 ) {
  630. for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx - decisionDelay; i++ ) {
  631. sLTP_Q15[ i ] = silk_SMULWW( gain_adj_Q16, sLTP_Q15[ i ] );
  632. }
  633. }
  634. for( k = 0; k < nStatesDelayedDecision; k++ ) {
  635. psDD = &psDelDec[ k ];
  636. /* Scale scalar states */
  637. psDD->LF_AR_Q14 = silk_SMULWW( gain_adj_Q16, psDD->LF_AR_Q14 );
  638. psDD->Diff_Q14 = silk_SMULWW( gain_adj_Q16, psDD->Diff_Q14 );
  639. /* Scale short-term prediction and shaping states */
  640. for( i = 0; i < NSQ_LPC_BUF_LENGTH; i++ ) {
  641. psDD->sLPC_Q14[ i ] = silk_SMULWW( gain_adj_Q16, psDD->sLPC_Q14[ i ] );
  642. }
  643. for( i = 0; i < MAX_SHAPE_LPC_ORDER; i++ ) {
  644. psDD->sAR2_Q14[ i ] = silk_SMULWW( gain_adj_Q16, psDD->sAR2_Q14[ i ] );
  645. }
  646. for( i = 0; i < DECISION_DELAY; i++ ) {
  647. psDD->Pred_Q15[ i ] = silk_SMULWW( gain_adj_Q16, psDD->Pred_Q15[ i ] );
  648. psDD->Shape_Q14[ i ] = silk_SMULWW( gain_adj_Q16, psDD->Shape_Q14[ i ] );
  649. }
  650. }
  651. /* Save inverse gain */
  652. NSQ->prev_gain_Q16 = Gains_Q16[ subfr ];
  653. }
  654. }