2
0

rtp.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785
  1. /*
  2. * HairTunes - RAOP packet handler and slave-clocked replay engine
  3. * Copyright (c) James Laird 2011
  4. * All rights reserved.
  5. *
  6. * Modularisation: philippe_44@outlook.com, 2019
  7. *
  8. * Permission is hereby granted, free of charge, to any person
  9. * obtaining a copy of this software and associated documentation
  10. * files (the "Software"), to deal in the Software without
  11. * restriction, including without limitation the rights to use,
  12. * copy, modify, merge, publish, distribute, sublicense, and/or
  13. * sell copies of the Software, and to permit persons to whom the
  14. * Software is furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be
  17. * included in all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  20. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
  21. * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  22. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
  23. * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
  24. * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  25. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  26. * OTHER DEALINGS IN THE SOFTWARE.
  27. */
  28. #include <stdio.h>
  29. #include <stdlib.h>
  30. #include <string.h>
  31. #include <stdarg.h>
  32. #include <sys/types.h>
  33. #include <pthread.h>
  34. #include <math.h>
  35. #include <errno.h>
  36. #include <sys/stat.h>
  37. #include <stdint.h>
  38. #include <fcntl.h>
  39. #include <assert.h>
  40. #include "platform.h"
  41. #include "rtp.h"
  42. #include "raop_sink.h"
  43. #include "log_util.h"
  44. #include "util.h"
  45. #ifdef WIN32
  46. #include <openssl/aes.h>
  47. #include "alac.h"
  48. #else
  49. #include "esp_pthread.h"
  50. #include "esp_system.h"
  51. #include <mbedtls/version.h>
  52. #include <mbedtls/aes.h>
  53. //#include "alac_wrapper.h"
  54. #include "alac.h"
  55. #endif
  56. #define NTP2MS(ntp) ((((ntp) >> 10) * 1000L) >> 22)
  57. #define MS2NTP(ms) (((((u64_t) (ms)) << 22) / 1000) << 10)
  58. #define NTP2TS(ntp, rate) ((((ntp) >> 16) * (rate)) >> 16)
  59. #define TS2NTP(ts, rate) (((((u64_t) (ts)) << 16) / (rate)) << 16)
  60. #define MS2TS(ms, rate) ((((u64_t) (ms)) * (rate)) / 1000)
  61. #define TS2MS(ts, rate) NTP2MS(TS2NTP(ts,rate))
  62. extern log_level raop_loglevel;
  63. static log_level *loglevel = &raop_loglevel;
  64. //#define __RTP_STORE
  65. // default buffer size
  66. #define BUFFER_FRAMES ( (150 * RAOP_SAMPLE_RATE * 2) / (352 * 100) )
  67. #define MAX_PACKET 1408
  68. #define MIN_LATENCY 11025
  69. #define MAX_LATENCY ( (120 * RAOP_SAMPLE_RATE * 2) / 100 )
  70. #define RTP_STACK_SIZE (4*1024)
  71. #define RTP_SYNC (0x01)
  72. #define NTP_SYNC (0x02)
  73. #define RESEND_TO 200
  74. enum { DATA = 0, CONTROL, TIMING };
  75. static const u8_t silence_frame[MAX_PACKET] = { 0 };
  76. typedef u16_t seq_t;
  77. typedef struct audio_buffer_entry { // decoded audio packets
  78. int ready;
  79. u32_t rtptime, last_resend;
  80. s16_t *data;
  81. int len;
  82. } abuf_t;
  83. typedef struct rtp_s {
  84. #ifdef __RTP_STORE
  85. FILE *rtpIN, *rtpOUT;
  86. #endif
  87. bool running;
  88. unsigned char aesiv[16];
  89. #ifdef WIN32
  90. AES_KEY aes;
  91. #else
  92. mbedtls_aes_context aes;
  93. #endif
  94. bool decrypt;
  95. u8_t *decrypt_buf;
  96. u32_t frame_size, frame_duration;
  97. u32_t in_frames, out_frames;
  98. struct in_addr host;
  99. struct sockaddr_in rtp_host;
  100. struct {
  101. unsigned short rport, lport;
  102. int sock;
  103. } rtp_sockets[3]; // data, control, timing
  104. struct timing_s {
  105. u64_t local, remote;
  106. } timing;
  107. struct {
  108. u32_t rtp, time;
  109. u8_t status;
  110. } synchro;
  111. struct {
  112. u32_t time;
  113. seq_t seqno;
  114. u32_t rtptime;
  115. } record;
  116. int latency; // rtp hold depth in samples
  117. u32_t resent_req, resent_rec; // total resent + recovered frames
  118. u32_t silent_frames; // total silence frames
  119. u32_t discarded;
  120. abuf_t audio_buffer[BUFFER_FRAMES];
  121. seq_t ab_read, ab_write;
  122. pthread_mutex_t ab_mutex;
  123. #ifdef WIN32
  124. pthread_t thread;
  125. #else
  126. TaskHandle_t thread, joiner;
  127. StaticTask_t *xTaskBuffer;
  128. StackType_t *xStack;
  129. #endif
  130. alac_file *alac_codec;
  131. int flush_seqno;
  132. bool playing;
  133. raop_data_cb_t data_cb;
  134. raop_cmd_cb_t cmd_cb;
  135. } rtp_t;
  136. #define BUFIDX(seqno) ((seq_t)(seqno) % BUFFER_FRAMES)
  137. static void buffer_alloc(abuf_t *audio_buffer, int size);
  138. static void buffer_release(abuf_t *audio_buffer);
  139. static void buffer_reset(abuf_t *audio_buffer);
  140. static void buffer_push_packet(rtp_t *ctx);
  141. static bool rtp_request_resend(rtp_t *ctx, seq_t first, seq_t last);
  142. static bool rtp_request_timing(rtp_t *ctx);
  143. static void* rtp_thread_func(void *arg);
  144. static int seq_order(seq_t a, seq_t b);
  145. /*---------------------------------------------------------------------------*/
  146. static alac_file* alac_init(int fmtp[32]) {
  147. alac_file *alac;
  148. int sample_size = fmtp[3];
  149. if (sample_size != 16) {
  150. LOG_ERROR("sample size must be 16 %d", sample_size);
  151. return false;
  152. }
  153. alac = create_alac(sample_size, 2);
  154. if (!alac) {
  155. LOG_ERROR("cannot create alac codec", NULL);
  156. return NULL;
  157. }
  158. alac->setinfo_max_samples_per_frame = fmtp[1];
  159. alac->setinfo_7a = fmtp[2];
  160. alac->setinfo_sample_size = sample_size;
  161. alac->setinfo_rice_historymult = fmtp[4];
  162. alac->setinfo_rice_initialhistory = fmtp[5];
  163. alac->setinfo_rice_kmodifier = fmtp[6];
  164. alac->setinfo_7f = fmtp[7];
  165. alac->setinfo_80 = fmtp[8];
  166. alac->setinfo_82 = fmtp[9];
  167. alac->setinfo_86 = fmtp[10];
  168. alac->setinfo_8a_rate = fmtp[11];
  169. allocate_buffers(alac);
  170. return alac;
  171. }
  172. /*---------------------------------------------------------------------------*/
  173. rtp_resp_t rtp_init(struct in_addr host, int latency, char *aeskey, char *aesiv, char *fmtpstr,
  174. short unsigned pCtrlPort, short unsigned pTimingPort,
  175. raop_cmd_cb_t cmd_cb, raop_data_cb_t data_cb)
  176. {
  177. int i = 0;
  178. char *arg;
  179. int fmtp[12];
  180. bool rc = true;
  181. rtp_t *ctx = calloc(1, sizeof(rtp_t));
  182. rtp_resp_t resp = { 0, 0, 0, NULL };
  183. if (!ctx) return resp;
  184. ctx->host = host;
  185. ctx->decrypt = false;
  186. ctx->cmd_cb = cmd_cb;
  187. ctx->data_cb = data_cb;
  188. ctx->rtp_host.sin_family = AF_INET;
  189. ctx->rtp_host.sin_addr.s_addr = INADDR_ANY;
  190. pthread_mutex_init(&ctx->ab_mutex, 0);
  191. ctx->flush_seqno = -1;
  192. ctx->latency = latency;
  193. ctx->ab_read = ctx->ab_write;
  194. #ifdef __RTP_STORE
  195. ctx->rtpIN = fopen("airplay.rtpin", "wb");
  196. ctx->rtpOUT = fopen("airplay.rtpout", "wb");
  197. #endif
  198. ctx->rtp_sockets[CONTROL].rport = pCtrlPort;
  199. ctx->rtp_sockets[TIMING].rport = pTimingPort;
  200. if (aesiv && aeskey) {
  201. memcpy(ctx->aesiv, aesiv, 16);
  202. #ifdef WIN32
  203. AES_set_decrypt_key((unsigned char*) aeskey, 128, &ctx->aes);
  204. #else
  205. memset(&ctx->aes, 0, sizeof(mbedtls_aes_context));
  206. mbedtls_aes_setkey_dec(&ctx->aes, (unsigned char*) aeskey, 128);
  207. #endif
  208. ctx->decrypt = true;
  209. ctx->decrypt_buf = malloc(MAX_PACKET);
  210. }
  211. memset(fmtp, 0, sizeof(fmtp));
  212. while ((arg = strsep(&fmtpstr, " \t")) != NULL) fmtp[i++] = atoi(arg);
  213. ctx->frame_size = fmtp[1];
  214. ctx->frame_duration = (ctx->frame_size * 1000) / RAOP_SAMPLE_RATE;
  215. // alac decoder
  216. ctx->alac_codec = alac_init(fmtp);
  217. rc &= ctx->alac_codec != NULL;
  218. buffer_alloc(ctx->audio_buffer, ctx->frame_size*4);
  219. // create rtp ports
  220. for (i = 0; i < 3; i++) {
  221. ctx->rtp_sockets[i].sock = bind_socket(&ctx->rtp_sockets[i].lport, SOCK_DGRAM);
  222. rc &= ctx->rtp_sockets[i].sock > 0;
  223. }
  224. // create http port and start listening
  225. resp.cport = ctx->rtp_sockets[CONTROL].lport;
  226. resp.tport = ctx->rtp_sockets[TIMING].lport;
  227. resp.aport = ctx->rtp_sockets[DATA].lport;
  228. if (rc) {
  229. ctx->running = true;
  230. #ifdef WIN32
  231. pthread_create(&ctx->thread, NULL, rtp_thread_func, (void *) ctx);
  232. #else
  233. // xTaskCreate((TaskFunction_t) rtp_thread_func, "RTP_thread", RTP_TASK_SIZE, ctx, CONFIG_ESP32_PTHREAD_TASK_PRIO_DEFAULT + 1 , &ctx->thread);
  234. ctx->xTaskBuffer = (StaticTask_t*) heap_caps_malloc(sizeof(StaticTask_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  235. ctx->xStack = (StackType_t*) malloc(RTP_STACK_SIZE);
  236. ctx->thread = xTaskCreateStatic( (TaskFunction_t) rtp_thread_func, "RTP_thread", RTP_STACK_SIZE, ctx,
  237. CONFIG_ESP32_PTHREAD_TASK_PRIO_DEFAULT + 1, ctx->xStack, ctx->xTaskBuffer );
  238. #endif
  239. } else {
  240. rtp_end(ctx);
  241. ctx = NULL;
  242. }
  243. resp.ctx = ctx;
  244. return resp;
  245. }
  246. /*---------------------------------------------------------------------------*/
  247. void rtp_end(rtp_t *ctx)
  248. {
  249. int i;
  250. if (!ctx) return;
  251. if (ctx->running) {
  252. #if !defined WIN32
  253. ctx->joiner = xTaskGetCurrentTaskHandle();
  254. #endif
  255. ctx->running = false;
  256. #ifdef WIN32
  257. pthread_join(ctx->rtp_thread, NULL);
  258. #else
  259. xTaskNotifyWait(0, 0, NULL, portMAX_DELAY);
  260. free(ctx->xStack);
  261. heap_caps_free(ctx->xTaskBuffer);
  262. #endif
  263. }
  264. for (i = 0; i < 3; i++) closesocket(ctx->rtp_sockets[i].sock);
  265. delete_alac(ctx->alac_codec);
  266. if (ctx->decrypt_buf) free(ctx->decrypt_buf);
  267. pthread_mutex_destroy(&ctx->ab_mutex);
  268. buffer_release(ctx->audio_buffer);
  269. free(ctx);
  270. #ifdef __RTP_STORE
  271. fclose(ctx->rtpIN);
  272. fclose(ctx->rtpOUT);
  273. #endif
  274. }
  275. /*---------------------------------------------------------------------------*/
  276. bool rtp_flush(rtp_t *ctx, unsigned short seqno, unsigned int rtptime)
  277. {
  278. bool rc = true;
  279. u32_t now = gettime_ms();
  280. if (now < ctx->record.time + 250 || (ctx->record.seqno == seqno && ctx->record.rtptime == rtptime)) {
  281. rc = false;
  282. LOG_ERROR("[%p]: FLUSH ignored as same as RECORD (%hu - %u)", ctx, seqno, rtptime);
  283. } else {
  284. pthread_mutex_lock(&ctx->ab_mutex);
  285. buffer_reset(ctx->audio_buffer);
  286. ctx->playing = false;
  287. ctx->flush_seqno = seqno;
  288. pthread_mutex_unlock(&ctx->ab_mutex);
  289. }
  290. LOG_INFO("[%p]: flush %hu %u", ctx, seqno, rtptime);
  291. return rc;
  292. }
  293. /*---------------------------------------------------------------------------*/
  294. void rtp_record(rtp_t *ctx, unsigned short seqno, unsigned rtptime)
  295. {
  296. ctx->record.seqno = seqno;
  297. ctx->record.rtptime = rtptime;
  298. ctx->record.time = gettime_ms();
  299. LOG_INFO("[%p]: record %hu %u", ctx, seqno, rtptime);
  300. }
  301. /*---------------------------------------------------------------------------*/
  302. static void buffer_alloc(abuf_t *audio_buffer, int size) {
  303. int i;
  304. for (i = 0; i < BUFFER_FRAMES; i++) {
  305. audio_buffer[i].data = malloc(size);
  306. audio_buffer[i].ready = 0;
  307. }
  308. }
  309. /*---------------------------------------------------------------------------*/
  310. static void buffer_release(abuf_t *audio_buffer) {
  311. int i;
  312. for (i = 0; i < BUFFER_FRAMES; i++) {
  313. free(audio_buffer[i].data);
  314. }
  315. }
  316. /*---------------------------------------------------------------------------*/
  317. static void buffer_reset(abuf_t *audio_buffer) {
  318. int i;
  319. for (i = 0; i < BUFFER_FRAMES; i++) audio_buffer[i].ready = 0;
  320. }
  321. /*---------------------------------------------------------------------------*/
  322. // the sequence numbers will wrap pretty often.
  323. // this returns true if the second arg is after the first
  324. static int seq_order(seq_t a, seq_t b) {
  325. s16_t d = b - a;
  326. return d > 0;
  327. }
  328. /*---------------------------------------------------------------------------*/
  329. static void alac_decode(rtp_t *ctx, s16_t *dest, char *buf, int len, int *outsize) {
  330. unsigned char iv[16];
  331. int aeslen;
  332. assert(len<=MAX_PACKET);
  333. if (ctx->decrypt) {
  334. aeslen = len & ~0xf;
  335. memcpy(iv, ctx->aesiv, sizeof(iv));
  336. #ifdef WIN32
  337. AES_cbc_encrypt((unsigned char*)buf, ctx->decrypt_buf, aeslen, &ctx->aes, iv, AES_DECRYPT);
  338. #else
  339. mbedtls_aes_crypt_cbc(&ctx->aes, MBEDTLS_AES_DECRYPT, aeslen, iv, (unsigned char*) buf, ctx->decrypt_buf);
  340. #endif
  341. memcpy(ctx->decrypt_buf+aeslen, buf+aeslen, len-aeslen);
  342. decode_frame(ctx->alac_codec, ctx->decrypt_buf, dest, outsize);
  343. } else decode_frame(ctx->alac_codec, (unsigned char*) buf, dest, outsize);
  344. }
  345. /*---------------------------------------------------------------------------*/
  346. static void buffer_put_packet(rtp_t *ctx, seq_t seqno, unsigned rtptime, bool first, char *data, int len) {
  347. abuf_t *abuf = NULL;
  348. u32_t playtime;
  349. pthread_mutex_lock(&ctx->ab_mutex);
  350. if (!ctx->playing) {
  351. if ((ctx->flush_seqno == -1 || seq_order(ctx->flush_seqno, seqno)) &&
  352. (ctx->synchro.status & RTP_SYNC) && (ctx->synchro.status & NTP_SYNC)) {
  353. ctx->ab_write = seqno-1;
  354. ctx->ab_read = seqno;
  355. ctx->flush_seqno = -1;
  356. ctx->playing = true;
  357. ctx->resent_req = ctx->resent_rec = ctx->silent_frames = ctx->discarded = 0;
  358. playtime = ctx->synchro.time + (((s32_t)(rtptime - ctx->synchro.rtp)) * 1000) / RAOP_SAMPLE_RATE;
  359. ctx->cmd_cb(RAOP_PLAY, &playtime);
  360. } else {
  361. pthread_mutex_unlock(&ctx->ab_mutex);
  362. return;
  363. }
  364. }
  365. if (seqno == (u16_t) (ctx->ab_write+1)) {
  366. // expected packet
  367. abuf = ctx->audio_buffer + BUFIDX(seqno);
  368. ctx->ab_write = seqno;
  369. LOG_SDEBUG("packet expected seqno:%hu rtptime:%u (W:%hu R:%hu)", seqno, rtptime, ctx->ab_write, ctx->ab_read);
  370. } else if (seq_order(ctx->ab_write, seqno)) {
  371. // newer than expected
  372. if (ctx->latency && seq_order(ctx->latency / ctx->frame_size, seqno - ctx->ab_write - 1)) {
  373. // only get rtp latency-1 frames back (last one is seqno)
  374. LOG_WARN("[%p] too many missing frames %hu seq: %hu, (W:%hu R:%hu)", ctx, seqno - ctx->ab_write - 1, seqno, ctx->ab_write, ctx->ab_read);
  375. ctx->ab_write = seqno - ctx->latency / ctx->frame_size;
  376. }
  377. if (ctx->latency && seq_order(ctx->latency / ctx->frame_size, seqno - ctx->ab_read)) {
  378. // if ab_read is lagging more than http latency, advance it
  379. LOG_WARN("[%p] on hold for too long %hu (W:%hu R:%hu)", ctx, seqno - ctx->ab_read + 1, ctx->ab_write, ctx->ab_read);
  380. ctx->ab_read = seqno - ctx->latency / ctx->frame_size + 1;
  381. }
  382. if (rtp_request_resend(ctx, ctx->ab_write + 1, seqno-1)) {
  383. seq_t i;
  384. u32_t now = gettime_ms();
  385. for (i = ctx->ab_write + 1; seq_order(i, seqno); i++) {
  386. ctx->audio_buffer[BUFIDX(i)].rtptime = rtptime - (seqno-i)*ctx->frame_size;
  387. ctx->audio_buffer[BUFIDX(i)].last_resend = now;
  388. }
  389. }
  390. LOG_DEBUG("[%p]: packet newer seqno:%hu rtptime:%u (W:%hu R:%hu)", ctx, seqno, rtptime, ctx->ab_write, ctx->ab_read);
  391. abuf = ctx->audio_buffer + BUFIDX(seqno);
  392. ctx->ab_write = seqno;
  393. } else if (seq_order(ctx->ab_read, seqno + 1)) {
  394. // recovered packet, not yet sent
  395. abuf = ctx->audio_buffer + BUFIDX(seqno);
  396. ctx->resent_rec++;
  397. LOG_DEBUG("[%p]: packet recovered seqno:%hu rtptime:%u (W:%hu R:%hu)", ctx, seqno, rtptime, ctx->ab_write, ctx->ab_read);
  398. } else {
  399. // too late
  400. LOG_DEBUG("[%p]: packet too late seqno:%hu rtptime:%u (W:%hu R:%hu)", ctx, seqno, rtptime, ctx->ab_write, ctx->ab_read);
  401. }
  402. if (ctx->in_frames++ > 1000) {
  403. LOG_INFO("[%p]: fill [level:%hu rec:%u] [W:%hu R:%hu]", ctx, ctx->ab_write - ctx->ab_read, ctx->resent_rec, ctx->ab_write, ctx->ab_read);
  404. ctx->in_frames = 0;
  405. }
  406. if (abuf) {
  407. alac_decode(ctx, abuf->data, data, len, &abuf->len);
  408. abuf->ready = 1;
  409. // this is the local rtptime when this frame is expected to play
  410. abuf->rtptime = rtptime;
  411. buffer_push_packet(ctx);
  412. #ifdef __RTP_STORE
  413. fwrite(data, len, 1, ctx->rtpIN);
  414. fwrite(abuf->data, abuf->len, 1, ctx->rtpOUT);
  415. #endif
  416. }
  417. pthread_mutex_unlock(&ctx->ab_mutex);
  418. }
  419. /*---------------------------------------------------------------------------*/
  420. // push as many frames as possible through callback
  421. static void buffer_push_packet(rtp_t *ctx) {
  422. abuf_t *curframe = NULL;
  423. u32_t now, playtime, hold = max((ctx->latency * 1000) / (8 * RAOP_SAMPLE_RATE), 100);
  424. int i;
  425. // not ready to play yet
  426. if (!ctx->playing || ctx->synchro.status != (RTP_SYNC | NTP_SYNC)) return;
  427. // maybe re-evaluate time in loop in case data callback blocks ...
  428. now = gettime_ms();
  429. // there is always at least one frame in the buffer
  430. do {
  431. curframe = ctx->audio_buffer + BUFIDX(ctx->ab_read);
  432. playtime = ctx->synchro.time + (((s32_t)(curframe->rtptime - ctx->synchro.rtp)) * 1000) / RAOP_SAMPLE_RATE;
  433. if (now > playtime) {
  434. LOG_DEBUG("[%p]: discarded frame now:%u missed by:%d (W:%hu R:%hu)", ctx, now, now - playtime, ctx->ab_write, ctx->ab_read);
  435. ctx->discarded++;
  436. } else if (curframe->ready) {
  437. /*
  438. // some dirty code to see if the click problem comes from i2s stage or decoder stage
  439. static s16_t sin_data[200];
  440. static bool gen = false;
  441. if (!gen) {
  442. for (i = 0; i < 200; i++) sin_data[i] = 1024 * sin((2*3.14159*220.5*i)/44100.);
  443. gen = true;
  444. }
  445. static int c = 0;
  446. int cnt = 0;
  447. s16_t *p = (s16_t*) curframe->data;
  448. while (cnt++ < 352) {
  449. *p = sin_data[c++ % 200];
  450. *(p+1) = *p;
  451. p += 2;
  452. }
  453. curframe->len = 1408;
  454. */
  455. ctx->data_cb((const u8_t*) curframe->data, curframe->len, playtime);
  456. curframe->ready = 0;
  457. } else if (playtime - now <= hold) {
  458. LOG_DEBUG("[%p]: created zero frame (W:%hu R:%hu)", ctx, ctx->ab_write, ctx->ab_read);
  459. ctx->data_cb(silence_frame, ctx->frame_size * 4, playtime);
  460. ctx->silent_frames++;
  461. } else break;
  462. ctx->ab_read++;
  463. ctx->out_frames++;
  464. } while (seq_order(ctx->ab_read, ctx->ab_write));
  465. if (ctx->out_frames > 1000) {
  466. LOG_INFO("[%p]: drain [level:%hd head:%d ms] [W:%hu R:%hu] [req:%u sil:%u dis:%u]",
  467. ctx, ctx->ab_write - ctx->ab_read, playtime - now, ctx->ab_write, ctx->ab_read,
  468. ctx->resent_req, ctx->silent_frames, ctx->discarded);
  469. ctx->out_frames = 0;
  470. }
  471. LOG_SDEBUG("playtime %u %d [W:%hu R:%hu] %d", playtime, playtime - now, ctx->ab_write, ctx->ab_read, curframe->ready);
  472. // each missing packet will be requested up to (latency_frames / 16) times
  473. for (i = 0; seq_order(ctx->ab_read + i, ctx->ab_write); i += 16) {
  474. abuf_t *frame = ctx->audio_buffer + BUFIDX(ctx->ab_read + i);
  475. if (!frame->ready && now - frame->last_resend > RESEND_TO) {
  476. rtp_request_resend(ctx, ctx->ab_read + i, ctx->ab_read + i);
  477. frame->last_resend = now;
  478. }
  479. }
  480. }
  481. /*---------------------------------------------------------------------------*/
  482. static void *rtp_thread_func(void *arg) {
  483. fd_set fds;
  484. int i, sock = -1;
  485. int count = 0;
  486. bool ntp_sent;
  487. char *packet = malloc(MAX_PACKET);
  488. rtp_t *ctx = (rtp_t*) arg;
  489. for (i = 0; i < 3; i++) {
  490. if (ctx->rtp_sockets[i].sock > sock) sock = ctx->rtp_sockets[i].sock;
  491. // send synchro requets 3 times
  492. ntp_sent = rtp_request_timing(ctx);
  493. }
  494. while (ctx->running) {
  495. ssize_t plen;
  496. char type;
  497. socklen_t rtp_client_len = sizeof(struct sockaddr_storage);
  498. int idx = 0;
  499. char *pktp = packet;
  500. struct timeval timeout = {0, 100*1000};
  501. FD_ZERO(&fds);
  502. for (i = 0; i < 3; i++) { FD_SET(ctx->rtp_sockets[i].sock, &fds); }
  503. if (select(sock + 1, &fds, NULL, NULL, &timeout) <= 0) continue;
  504. for (i = 0; i < 3; i++)
  505. if (FD_ISSET(ctx->rtp_sockets[i].sock, &fds)) idx = i;
  506. plen = recvfrom(ctx->rtp_sockets[idx].sock, packet, MAX_PACKET, 0, (struct sockaddr*) &ctx->rtp_host, &rtp_client_len);
  507. if (!ntp_sent) {
  508. LOG_WARN("[%p]: NTP request not send yet", ctx);
  509. ntp_sent = rtp_request_timing(ctx);
  510. }
  511. if (plen < 0) continue;
  512. assert(plen <= MAX_PACKET);
  513. type = packet[1] & ~0x80;
  514. pktp = packet;
  515. switch (type) {
  516. seq_t seqno;
  517. unsigned rtptime;
  518. // re-sent packet
  519. case 0x56: {
  520. pktp += 4;
  521. plen -= 4;
  522. }
  523. // data packet
  524. case 0x60: {
  525. seqno = ntohs(*(u16_t*)(pktp+2));
  526. rtptime = ntohl(*(u32_t*)(pktp+4));
  527. // adjust pointer and length
  528. pktp += 12;
  529. plen -= 12;
  530. LOG_SDEBUG("[%p]: seqno:%hu rtp:%u (type: %x, first: %u)", ctx, seqno, rtptime, type, packet[1] & 0x80);
  531. // check if packet contains enough content to be reasonable
  532. if (plen < 16) break;
  533. if ((packet[1] & 0x80) && (type != 0x56)) {
  534. LOG_INFO("[%p]: 1st audio packet received", ctx);
  535. }
  536. buffer_put_packet(ctx, seqno, rtptime, packet[1] & 0x80, pktp, plen);
  537. break;
  538. }
  539. // sync packet
  540. case 0x54: {
  541. u32_t rtp_now_latency = ntohl(*(u32_t*)(pktp+4));
  542. u64_t remote = (((u64_t) ntohl(*(u32_t*)(pktp+8))) << 32) + ntohl(*(u32_t*)(pktp+12));
  543. u32_t rtp_now = ntohl(*(u32_t*)(pktp+16));
  544. u16_t flags = ntohs(*(u16_t*)(pktp+2));
  545. pthread_mutex_lock(&ctx->ab_mutex);
  546. // re-align timestamp and expected local playback time (and magic 11025 latency)
  547. ctx->latency = rtp_now - rtp_now_latency;
  548. if (flags == 7 || flags == 4) ctx->latency += 11025;
  549. if (ctx->latency < MIN_LATENCY) ctx->latency = MIN_LATENCY;
  550. else if (ctx->latency > MAX_LATENCY) ctx->latency = MAX_LATENCY;
  551. ctx->synchro.rtp = rtp_now - ctx->latency;
  552. ctx->synchro.time = ctx->timing.local + (u32_t) NTP2MS(remote - ctx->timing.remote);
  553. // now we are synced on RTP frames
  554. ctx->synchro.status |= RTP_SYNC;
  555. // 1st sync packet received (signals a restart of playback)
  556. if (packet[0] & 0x10) {
  557. LOG_INFO("[%p]: 1st sync packet received", ctx);
  558. }
  559. pthread_mutex_unlock(&ctx->ab_mutex);
  560. LOG_DEBUG("[%p]: sync packet latency:%d rtp_latency:%u rtp:%u remote ntp:%llx, local time:%u local rtp:%u (now:%u)",
  561. ctx, ctx->latency, rtp_now_latency, rtp_now, remote, ctx->synchro.time, ctx->synchro.rtp, gettime_ms());
  562. if (!count--) {
  563. rtp_request_timing(ctx);
  564. count = 3;
  565. }
  566. if ((ctx->synchro.status & RTP_SYNC) && (ctx->synchro.status & NTP_SYNC)) ctx->cmd_cb(RAOP_TIMING, NULL);
  567. break;
  568. }
  569. // NTP timing packet
  570. case 0x53: {
  571. u64_t expected;
  572. u32_t reference = ntohl(*(u32_t*)(pktp+12)); // only low 32 bits in our case
  573. u64_t remote =(((u64_t) ntohl(*(u32_t*)(pktp+16))) << 32) + ntohl(*(u32_t*)(pktp+20));
  574. u32_t roundtrip = gettime_ms() - reference;
  575. // better discard sync packets when roundtrip is suspicious
  576. if (roundtrip > 100) {
  577. LOG_WARN("[%p]: discarding NTP roundtrip of %u ms", ctx, roundtrip);
  578. break;
  579. }
  580. /*
  581. The expected elapsed remote time should be exactly the same as
  582. elapsed local time between the two request, corrected by the
  583. drifting
  584. */
  585. expected = ctx->timing.remote + MS2NTP(reference - ctx->timing.local);
  586. ctx->timing.remote = remote;
  587. ctx->timing.local = reference;
  588. // now we are synced on NTP (mutex not needed)
  589. ctx->synchro.status |= NTP_SYNC;
  590. LOG_DEBUG("[%p]: Timing references local:%llu, remote:%llx (delta:%lld, sum:%lld, adjust:%lld, gaps:%d)",
  591. ctx, ctx->timing.local, ctx->timing.remote);
  592. break;
  593. }
  594. }
  595. }
  596. free(packet);
  597. LOG_INFO("[%p]: terminating", ctx);
  598. #ifndef WIN32
  599. xTaskNotify(ctx->joiner, 0, eNoAction);
  600. vTaskDelete(NULL);
  601. #endif
  602. return NULL;
  603. }
  604. /*---------------------------------------------------------------------------*/
  605. static bool rtp_request_timing(rtp_t *ctx) {
  606. unsigned char req[32];
  607. u32_t now = gettime_ms();
  608. int i;
  609. struct sockaddr_in host;
  610. LOG_DEBUG("[%p]: timing request now:%u (port: %hu)", ctx, now, ctx->rtp_sockets[TIMING].rport);
  611. req[0] = 0x80;
  612. req[1] = 0x52|0x80;
  613. *(u16_t*)(req+2) = htons(7);
  614. *(u32_t*)(req+4) = htonl(0); // dummy
  615. for (i = 0; i < 16; i++) req[i+8] = 0;
  616. *(u32_t*)(req+24) = 0;
  617. *(u32_t*)(req+28) = htonl(now); // this is not a real NTP, but a 32 ms counter in the low part of the NTP
  618. if (ctx->host.s_addr != INADDR_ANY) {
  619. host.sin_family = AF_INET;
  620. host.sin_addr = ctx->host;
  621. } else host = ctx->rtp_host;
  622. // no address from sender, need to wait for 1st packet to be received
  623. if (host.sin_addr.s_addr == INADDR_ANY) return false;
  624. host.sin_port = htons(ctx->rtp_sockets[TIMING].rport);
  625. if (sizeof(req) != sendto(ctx->rtp_sockets[TIMING].sock, req, sizeof(req), 0, (struct sockaddr*) &host, sizeof(host))) {
  626. LOG_WARN("[%p]: SENDTO failed (%s)", ctx, strerror(errno));
  627. }
  628. return true;
  629. }
  630. /*---------------------------------------------------------------------------*/
  631. static bool rtp_request_resend(rtp_t *ctx, seq_t first, seq_t last) {
  632. unsigned char req[8]; // *not* a standard RTCP NACK
  633. // do not request silly ranges (happens in case of network large blackouts)
  634. if (seq_order(last, first) || last - first > BUFFER_FRAMES / 2) return false;
  635. ctx->resent_req += last - first + 1;
  636. LOG_DEBUG("resend request [W:%hu R:%hu first=%hu last=%hu]", ctx->ab_write, ctx->ab_read, first, last);
  637. req[0] = 0x80;
  638. req[1] = 0x55|0x80; // Apple 'resend'
  639. *(u16_t*)(req+2) = htons(1); // our seqnum
  640. *(u16_t*)(req+4) = htons(first); // missed seqnum
  641. *(u16_t*)(req+6) = htons(last-first+1); // count
  642. ctx->rtp_host.sin_port = htons(ctx->rtp_sockets[CONTROL].rport);
  643. if (sizeof(req) != sendto(ctx->rtp_sockets[CONTROL].sock, req, sizeof(req), 0, (struct sockaddr*) &ctx->rtp_host, sizeof(ctx->rtp_host))) {
  644. LOG_WARN("[%p]: SENDTO failed (%s)", ctx, strerror(errno));
  645. }
  646. return true;
  647. }