| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 | #!/usr/bin/pythonfrom __future__ import print_functionfrom keras.models import Sequentialfrom keras.models import Modelfrom keras.layers import Inputfrom keras.layers import Densefrom keras.layers import LSTMfrom keras.layers import GRUfrom keras.models import load_modelfrom keras import backend as Kimport sysimport numpy as npdef printVector(f, vector, name):    v = np.reshape(vector, (-1));    #print('static const float ', name, '[', len(v), '] = \n', file=f)    f.write('static const opus_int8 {}[{}] = {{\n   '.format(name, len(v)))    for i in range(0, len(v)):        f.write('{}'.format(max(-128,min(127,int(round(128*v[i]))))))        if (i!=len(v)-1):            f.write(',')        else:            break;        if (i%8==7):            f.write("\n   ")        else:            f.write(" ")    #print(v, file=f)    f.write('\n};\n\n')    return;def binary_crossentrop2(y_true, y_pred):        return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_pred, y_true), axis=-1)#model = load_model(sys.argv[1], custom_objects={'binary_crossentrop2': binary_crossentrop2})main_input = Input(shape=(None, 25), name='main_input')x = Dense(32, activation='tanh')(main_input)x = GRU(24, activation='tanh', recurrent_activation='sigmoid', return_sequences=True)(x)x = Dense(2, activation='sigmoid')(x)model = Model(inputs=main_input, outputs=x)model.load_weights(sys.argv[1])weights = model.get_weights()f = open(sys.argv[2], 'w')f.write('/*This file is automatically generated from a Keras model*/\n\n')f.write('#ifdef HAVE_CONFIG_H\n#include "config.h"\n#endif\n\n#include "mlp.h"\n\n')printVector(f, weights[0], 'layer0_weights')printVector(f, weights[1], 'layer0_bias')printVector(f, weights[2], 'layer1_weights')printVector(f, weights[3], 'layer1_recur_weights')printVector(f, weights[4], 'layer1_bias')printVector(f, weights[5], 'layer2_weights')printVector(f, weights[6], 'layer2_bias')f.write('const DenseLayer layer0 = {\n   layer0_bias,\n   layer0_weights,\n   25, 32, 0\n};\n\n')f.write('const GRULayer layer1 = {\n   layer1_bias,\n   layer1_weights,\n   layer1_recur_weights,\n   32, 24\n};\n\n')f.write('const DenseLayer layer2 = {\n   layer2_bias,\n   layer2_weights,\n   24, 2, 1\n};\n\n')f.close()
 |