| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393 | 
							- /* ***** BEGIN LICENSE BLOCK *****  
 
-  * Source last modified: $Id: fft.c,v 1.1 2005/02/26 01:47:34 jrecker Exp $ 
 
-  *   
 
-  * Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved.  
 
-  *       
 
-  * The contents of this file, and the files included with this file, 
 
-  * are subject to the current version of the RealNetworks Public 
 
-  * Source License (the "RPSL") available at 
 
-  * http://www.helixcommunity.org/content/rpsl unless you have licensed 
 
-  * the file under the current version of the RealNetworks Community 
 
-  * Source License (the "RCSL") available at 
 
-  * http://www.helixcommunity.org/content/rcsl, in which case the RCSL 
 
-  * will apply. You may also obtain the license terms directly from 
 
-  * RealNetworks.  You may not use this file except in compliance with 
 
-  * the RPSL or, if you have a valid RCSL with RealNetworks applicable 
 
-  * to this file, the RCSL.  Please see the applicable RPSL or RCSL for 
 
-  * the rights, obligations and limitations governing use of the 
 
-  * contents of the file. 
 
-  *   
 
-  * This file is part of the Helix DNA Technology. RealNetworks is the 
 
-  * developer of the Original Code and owns the copyrights in the 
 
-  * portions it created. 
 
-  *   
 
-  * This file, and the files included with this file, is distributed 
 
-  * and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY 
 
-  * KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS 
 
-  * ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES 
 
-  * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET 
 
-  * ENJOYMENT OR NON-INFRINGEMENT. 
 
-  *  
 
-  * Technology Compatibility Kit Test Suite(s) Location:  
 
-  *    http://www.helixcommunity.org/content/tck  
 
-  *  
 
-  * Contributor(s):  
 
-  *   
 
-  * ***** END LICENSE BLOCK ***** */  
 
- /**************************************************************************************
 
-  * Fixed-point HE-AAC decoder
 
-  * Jon Recker (jrecker@real.com), Ken Cooke (kenc@real.com)
 
-  * February 2005
 
-  *
 
-  * fft.c - Ken's optimized radix-4 DIT FFT, optional radix-8 first pass for odd log2(N)
 
-  **************************************************************************************/
 
- #include "coder.h"
 
- #include "assembly.h"
 
- #define NUM_FFT_SIZES	2
 
- static const int nfftTab[NUM_FFT_SIZES] PROGMEM ={64, 512};
 
- static const int nfftlog2Tab[NUM_FFT_SIZES] PROGMEM = {6, 9};
 
- #define SQRT1_2 0x5a82799a	/* sqrt(1/2) in Q31 */
 
- #define swapcplx(p0,p1) \
 
- 	t = p0; t1 = *(&(p0)+1); p0 = p1; *(&(p0)+1) = *(&(p1)+1); p1 = t; *(&(p1)+1) = t1
 
- /**************************************************************************************
 
-  * Function:    BitReverse
 
-  *
 
-  * Description: Ken's fast in-place bit reverse, using super-small table
 
-  *
 
-  * Inputs:      buffer of samples
 
-  *              table index (for transform size)
 
-  *
 
-  * Outputs:     bit-reversed samples in same buffer
 
-  *
 
-  * Return:      none
 
-  **************************************************************************************/
 
-  /*__attribute__ ((section (".data"))) */ static void BitReverse(int *inout, int tabidx)
 
- {
 
-     int *part0, *part1;
 
- 	int a,b, t,t1;
 
- 	const unsigned char* tab = bitrevtab + bitrevtabOffset[tabidx];
 
- 	int nbits = nfftlog2Tab[tabidx];
 
- 	part0 = inout;
 
-     part1 = inout + (1 << nbits);
 
- 	
 
- 	while ((a = pgm_read_byte(tab++)) != 0) {
 
-         b = pgm_read_byte(tab++);
 
-         swapcplx(part0[4*a+0], part0[4*b+0]);	/* 0xxx0 <-> 0yyy0 */
 
-         swapcplx(part0[4*a+2], part1[4*b+0]);	/* 0xxx1 <-> 1yyy0 */
 
-         swapcplx(part1[4*a+0], part0[4*b+2]);	/* 1xxx0 <-> 0yyy1 */
 
-         swapcplx(part1[4*a+2], part1[4*b+2]);	/* 1xxx1 <-> 1yyy1 */
 
-     }
 
-     do {
 
-         swapcplx(part0[4*a+2], part1[4*a+0]);	/* 0xxx1 <-> 1xxx0 */
 
-     } while ((a = pgm_read_byte(tab++)) != 0);
 
- 	
 
- 	
 
- }
 
- /**************************************************************************************
 
-  * Function:    R4FirstPass
 
-  *
 
-  * Description: radix-4 trivial pass for decimation-in-time FFT
 
-  *
 
-  * Inputs:      buffer of (bit-reversed) samples
 
-  *              number of R4 butterflies per group (i.e. nfft / 4)
 
-  *
 
-  * Outputs:     processed samples in same buffer
 
-  *
 
-  * Return:      none
 
-  *
 
-  * Notes:       assumes 2 guard bits, gains no integer bits, 
 
-  *                guard bits out = guard bits in - 2
 
-  **************************************************************************************/
 
-  /* __attribute__ ((section (".data"))) */ static void R4FirstPass(int *x, int bg)
 
- {
 
-     int ar, ai, br, bi, cr, ci, dr, di;
 
- 	
 
- 	for (; bg != 0; bg--) {
 
- 		ar = x[0] + x[2];
 
- 		br = x[0] - x[2];
 
- 		ai = x[1] + x[3];
 
- 		bi = x[1] - x[3];
 
- 		cr = x[4] + x[6];
 
- 		dr = x[4] - x[6];
 
- 		ci = x[5] + x[7];
 
- 		di = x[5] - x[7];
 
- 		/* max per-sample gain = 4.0 (adding 4 inputs together) */
 
- 		x[0] = ar + cr;
 
- 		x[4] = ar - cr;
 
- 		x[1] = ai + ci;
 
- 		x[5] = ai - ci;
 
- 		x[2] = br + di;
 
- 		x[6] = br - di;
 
- 		x[3] = bi - dr;
 
- 		x[7] = bi + dr;
 
- 		x += 8;
 
- 	}
 
- }
 
- /**************************************************************************************
 
-  * Function:    R8FirstPass
 
-  *
 
-  * Description: radix-8 trivial pass for decimation-in-time FFT
 
-  *
 
-  * Inputs:      buffer of (bit-reversed) samples
 
-  *              number of R8 butterflies per group (i.e. nfft / 8)
 
-  *
 
-  * Outputs:     processed samples in same buffer
 
-  *
 
-  * Return:      none
 
-  *
 
-  * Notes:       assumes 3 guard bits, gains 1 integer bit
 
-  *              guard bits out = guard bits in - 3 (if inputs are full scale)
 
-  *                or guard bits in - 2 (if inputs bounded to +/- sqrt(2)/2)
 
-  *              see scaling comments in code
 
-  **************************************************************************************/
 
-  /* __attribute__ ((section (".data"))) */ static void R8FirstPass(int *x, int bg)
 
- {
 
-     int ar, ai, br, bi, cr, ci, dr, di;
 
- 	int sr, si, tr, ti, ur, ui, vr, vi;
 
- 	int wr, wi, xr, xi, yr, yi, zr, zi;
 
- 	for (; bg != 0; bg--) {
 
- 		ar = x[0] + x[2];
 
- 		br = x[0] - x[2];
 
- 		ai = x[1] + x[3];
 
- 		bi = x[1] - x[3];
 
- 		cr = x[4] + x[6];
 
- 		dr = x[4] - x[6];
 
- 		ci = x[5] + x[7];
 
- 		di = x[5] - x[7];
 
- 		sr = ar + cr;
 
- 		ur = ar - cr;
 
- 		si = ai + ci;
 
- 		ui = ai - ci;
 
- 		tr = br - di;
 
- 		vr = br + di;
 
- 		ti = bi + dr;
 
- 		vi = bi - dr;
 
- 		ar = x[ 8] + x[10];
 
- 		br = x[ 8] - x[10];
 
- 		ai = x[ 9] + x[11];
 
- 		bi = x[ 9] - x[11];
 
- 		cr = x[12] + x[14];
 
- 		dr = x[12] - x[14];
 
- 		ci = x[13] + x[15];
 
- 		di = x[13] - x[15];
 
- 		/* max gain of wr/wi/yr/yi vs input = 2
 
- 		 *  (sum of 4 samples >> 1) 
 
- 		 */
 
- 		wr = (ar + cr) >> 1;
 
- 		yr = (ar - cr) >> 1;
 
- 		wi = (ai + ci) >> 1;
 
- 		yi = (ai - ci) >> 1;
 
- 		/* max gain of output vs input = 4
 
- 		 *  (sum of 4 samples >> 1 + sum of 4 samples >> 1) 
 
- 		 */
 
- 		x[ 0] = (sr >> 1) + wr;
 
- 		x[ 8] = (sr >> 1) - wr;
 
- 		x[ 1] = (si >> 1) + wi;
 
- 		x[ 9] = (si >> 1) - wi;
 
- 		x[ 4] = (ur >> 1) + yi;
 
- 		x[12] = (ur >> 1) - yi;
 
- 		x[ 5] = (ui >> 1) - yr;
 
- 		x[13] = (ui >> 1) + yr;
 
- 		ar = br - di;
 
- 		cr = br + di;
 
- 		ai = bi + dr;
 
- 		ci = bi - dr;
 
- 		/* max gain of xr/xi/zr/zi vs input = 4*sqrt(2)/2 = 2*sqrt(2)
 
- 		 *  (sum of 8 samples, multiply by sqrt(2)/2, implicit >> 1 from Q31) 
 
- 		 */
 
- 		xr = MULSHIFT32(SQRT1_2, ar - ai);
 
- 		xi = MULSHIFT32(SQRT1_2, ar + ai);
 
- 		zr = MULSHIFT32(SQRT1_2, cr - ci);
 
- 		zi = MULSHIFT32(SQRT1_2, cr + ci);
 
- 		/* max gain of output vs input = (2 + 2*sqrt(2) ~= 4.83)
 
- 		 *  (sum of 4 samples >> 1, plus xr/xi/zr/zi with gain of 2*sqrt(2))
 
- 		 * in absolute terms, we have max gain of appx 9.656 (4 + 0.707*8)
 
- 		 *  but we also gain 1 int bit (from MULSHIFT32 or from explicit >> 1)
 
- 		 */
 
- 		x[ 6] = (tr >> 1) - xr;
 
- 		x[14] = (tr >> 1) + xr;
 
- 		x[ 7] = (ti >> 1) - xi;
 
- 		x[15] = (ti >> 1) + xi;
 
- 		x[ 2] = (vr >> 1) + zi;
 
- 		x[10] = (vr >> 1) - zi;
 
- 		x[ 3] = (vi >> 1) - zr;
 
- 		x[11] = (vi >> 1) + zr;
 
- 		x += 16;
 
- 	}
 
- }
 
- /**************************************************************************************
 
-  * Function:    R4Core
 
-  *
 
-  * Description: radix-4 pass for decimation-in-time FFT
 
-  *
 
-  * Inputs:      buffer of samples
 
-  *              number of R4 butterflies per group
 
-  *              number of R4 groups per pass
 
-  *              pointer to twiddle factors tables
 
-  *
 
-  * Outputs:     processed samples in same buffer
 
-  *
 
-  * Return:      none
 
-  *
 
-  * Notes:       gain 2 integer bits per pass (see scaling comments in code)
 
-  *              min 1 GB in
 
-  *              gbOut = gbIn - 1 (short block) or gbIn - 2 (long block)
 
-  *              uses 3-mul, 3-add butterflies instead of 4-mul, 2-add
 
-  **************************************************************************************/
 
-  /* __attribute__ ((section (".data"))) */ static void R4Core(int *x, int bg, int gp, int *wtab)
 
- {
 
- 	int ar, ai, br, bi, cr, ci, dr, di, tr, ti;
 
- 	int wd, ws, wi;
 
- 	int i, j, step;
 
- 	int *xptr, *wptr;
 
- 	for (; bg != 0; gp <<= 2, bg >>= 2) {
 
- 		step = 2*gp;
 
- 		xptr = x;
 
- 		/* max per-sample gain, per group < 1 + 3*sqrt(2) ~= 5.25 if inputs x are full-scale
 
- 		 * do 3 groups for long block, 2 groups for short block (gain 2 int bits per group)
 
- 		 *
 
- 		 * very conservative scaling:
 
- 		 *   group 1: max gain = 5.25,           int bits gained = 2, gb used = 1 (2^3 = 8)
 
- 		 *   group 2: max gain = 5.25^2 = 27.6,  int bits gained = 4, gb used = 1 (2^5 = 32)
 
- 		 *   group 3: max gain = 5.25^3 = 144.7, int bits gained = 6, gb used = 2 (2^8 = 256)
 
- 		 */
 
- 		for (i = bg; i != 0; i--) {
 
- 			wptr = wtab;
 
- 			for (j = gp; j != 0; j--) {
 
- 				ar = xptr[0];
 
- 				ai = xptr[1];
 
- 				xptr += step;
 
- 				
 
- 				/* gain 2 int bits for br/bi, cr/ci, dr/di (MULSHIFT32 by Q30)
 
- 				 * gain 1 net GB
 
- 				 */
 
- 				ws = wptr[0];
 
- 				wi = wptr[1];
 
- 				br = xptr[0];
 
- 				bi = xptr[1];
 
- 				wd = ws + 2*wi;
 
- 				tr = MULSHIFT32(wi, br + bi);
 
- 				br = MULSHIFT32(wd, br) - tr;	/* cos*br + sin*bi */
 
- 				bi = MULSHIFT32(ws, bi) + tr;	/* cos*bi - sin*br */
 
- 				xptr += step;
 
- 				
 
- 				ws = wptr[2];
 
- 				wi = wptr[3];
 
- 				cr = xptr[0];
 
- 				ci = xptr[1];
 
- 				wd = ws + 2*wi;
 
- 				tr = MULSHIFT32(wi, cr + ci);
 
- 				cr = MULSHIFT32(wd, cr) - tr;
 
- 				ci = MULSHIFT32(ws, ci) + tr;
 
- 				xptr += step;
 
- 				
 
- 				ws = wptr[4];
 
- 				wi = wptr[5];
 
- 				dr = xptr[0];
 
- 				di = xptr[1];
 
- 				wd = ws + 2*wi;
 
- 				tr = MULSHIFT32(wi, dr + di);
 
- 				dr = MULSHIFT32(wd, dr) - tr;
 
- 				di = MULSHIFT32(ws, di) + tr;
 
- 				wptr += 6;
 
- 				tr = ar;
 
- 				ti = ai;
 
- 				ar = (tr >> 2) - br;
 
- 				ai = (ti >> 2) - bi;
 
- 				br = (tr >> 2) + br;
 
- 				bi = (ti >> 2) + bi;
 
- 				tr = cr;
 
- 				ti = ci;
 
- 				cr = tr + dr;
 
- 				ci = di - ti;
 
- 				dr = tr - dr;
 
- 				di = di + ti;
 
- 				xptr[0] = ar + ci;
 
- 				xptr[1] = ai + dr;
 
- 				xptr -= step;
 
- 				xptr[0] = br - cr;
 
- 				xptr[1] = bi - di;
 
- 				xptr -= step;
 
- 				xptr[0] = ar - ci;
 
- 				xptr[1] = ai - dr;
 
- 				xptr -= step;
 
- 				xptr[0] = br + cr;
 
- 				xptr[1] = bi + di;
 
- 				xptr += 2;
 
- 			}
 
- 			xptr += 3*step;
 
- 		}
 
- 		wtab += 3*step;
 
- 	}
 
- }
 
- /**************************************************************************************
 
-  * Function:    R4FFT
 
-  *
 
-  * Description: Ken's very fast in-place radix-4 decimation-in-time FFT
 
-  *
 
-  * Inputs:      table index (for transform size)
 
-  *              buffer of samples (non bit-reversed)
 
-  *
 
-  * Outputs:     processed samples in same buffer
 
-  *
 
-  * Return:      none
 
-  *
 
-  * Notes:       assumes 5 guard bits in for nfft <= 512
 
-  *              gbOut = gbIn - 4 (assuming input is from PreMultiply)
 
-  *              gains log2(nfft) - 2 int bits total
 
-  *                so gain 7 int bits (LONG), 4 int bits (SHORT)
 
-  **************************************************************************************/
 
- void R4FFT(int tabidx, int *x)
 
- {
 
- 	int order = nfftlog2Tab[tabidx];
 
- 	int nfft = nfftTab[tabidx];
 
- 	/* decimation in time */
 
- 	BitReverse(x, tabidx);
 
- 	if (order & 0x1) {
 
- 		/* long block: order = 9, nfft = 512 */
 
- 		R8FirstPass(x, nfft >> 3);						/* gain 1 int bit,  lose 2 GB */
 
- 		R4Core(x, nfft >> 5, 8, (int *)twidTabOdd);		/* gain 6 int bits, lose 2 GB */
 
- 	} else {
 
- 		/* short block: order = 6, nfft = 64 */
 
- 		R4FirstPass(x, nfft >> 2);						/* gain 0 int bits, lose 2 GB */
 
- 		R4Core(x, nfft >> 4, 4, (int *)twidTabEven);	/* gain 4 int bits, lose 1 GB */
 
- 	}
 
- }
 
 
  |