| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299 | /* ***** BEGIN LICENSE BLOCK *****  * Version: RCSL 1.0/RPSL 1.0  *   * Portions Copyright (c) 1995-2002 RealNetworks, Inc. All Rights Reserved.  *       * The contents of this file, and the files included with this file, are  * subject to the current version of the RealNetworks Public Source License  * Version 1.0 (the "RPSL") available at  * http://www.helixcommunity.org/content/rpsl unless you have licensed  * the file under the RealNetworks Community Source License Version 1.0  * (the "RCSL") available at http://www.helixcommunity.org/content/rcsl,  * in which case the RCSL will apply. You may also obtain the license terms  * directly from RealNetworks.  You may not use this file except in  * compliance with the RPSL or, if you have a valid RCSL with RealNetworks  * applicable to this file, the RCSL.  Please see the applicable RPSL or  * RCSL for the rights, obligations and limitations governing use of the  * contents of the file.   *   * This file is part of the Helix DNA Technology. RealNetworks is the  * developer of the Original Code and owns the copyrights in the portions  * it created.  *   * This file, and the files included with this file, is distributed and made  * available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER  * EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS ALL SUCH WARRANTIES,  * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS  * FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.  *  * Technology Compatibility Kit Test Suite(s) Location:  *    http://www.helixcommunity.org/content/tck  *  * Contributor(s):  *   * ***** END LICENSE BLOCK ***** */ /************************************************************************************** * Fixed-point MP3 decoder * Jon Recker (jrecker@real.com), Ken Cooke (kenc@real.com) * June 2003 * * stproc.c - mid-side and intensity (MPEG1 and MPEG2) stereo processing **************************************************************************************/#include "coder.h"#include "assembly.h"/************************************************************************************** * Function:    MidSideProc * * Description: sum-difference stereo reconstruction * * Inputs:      vector x with dequantized samples from left and right channels *              number of non-zero samples (MAX of left and right) *              assume 1 guard bit in input *              guard bit mask (left and right channels) * * Outputs:     updated sample vector x *              updated guard bit mask * * Return:      none * * Notes:       assume at least 1 GB in input **************************************************************************************/void MidSideProc(int x[MAX_NCHAN][MAX_NSAMP], int nSamps, int mOut[2])  {	int i, xr, xl, mOutL, mOutR;		/* L = (M+S)/sqrt(2), R = (M-S)/sqrt(2) 	 * NOTE: 1/sqrt(2) done in DequantChannel() - see comments there	 */	mOutL = mOutR = 0;	for(i = 0; i < nSamps; i++) {		xl = x[0][i];		xr = x[1][i];		x[0][i] = xl + xr;		x[1][i] = xl - xr;		mOutL |= FASTABS(x[0][i]);		mOutR |= FASTABS(x[1][i]);	}	mOut[0] |= mOutL;	mOut[1] |= mOutR;}/************************************************************************************** * Function:    IntensityProcMPEG1 * * Description: intensity stereo processing for MPEG1 * * Inputs:      vector x with dequantized samples from left and right channels *              number of non-zero samples in left channel *              valid FrameHeader struct *              two each of ScaleFactorInfoSub, CriticalBandInfo structs (both channels) *              flags indicating midSide on/off, mixedBlock on/off *              guard bit mask (left and right channels) * * Outputs:     updated sample vector x *              updated guard bit mask * * Return:      none * * Notes:       assume at least 1 GB in input * * TODO:        combine MPEG1/2 into one function (maybe) *              make sure all the mixed-block and IIP logic is right **************************************************************************************/void IntensityProcMPEG1(int x[MAX_NCHAN][MAX_NSAMP], int nSamps, FrameHeader *fh, ScaleFactorInfoSub *sfis, 						CriticalBandInfo *cbi, int midSideFlag, int mixFlag, int mOut[2]){	int i=0, j=0, n=0, cb=0, w=0;	int sampsLeft, isf, mOutL, mOutR, xl, xr;	int fl, fr, fls[3], frs[3];	int cbStartL=0, cbStartS=0, cbEndL=0, cbEndS=0;	int *isfTab;	(void)mixFlag;	/* NOTE - this works fine for mixed blocks, as long as the switch point starts in the	 *  short block section (i.e. on or after sample 36 = sfBand->l[8] = 3*sfBand->s[3]	 * is this a safe assumption?	 * TODO - intensity + mixed not quite right (diff = 11 on he_mode)	 *  figure out correct implementation (spec ambiguous about when to do short block reorder)	 */	if (cbi[1].cbType == 0) {		/* long block */		cbStartL = cbi[1].cbEndL + 1;		cbEndL =   cbi[0].cbEndL + 1;		cbStartS = cbEndS = 0;		i = fh->sfBand->l[cbStartL];	} else if (cbi[1].cbType == 1 || cbi[1].cbType == 2) {		/* short or mixed block */		cbStartS = cbi[1].cbEndSMax + 1;		cbEndS =   cbi[0].cbEndSMax + 1;		cbStartL = cbEndL = 0;		i = 3 * fh->sfBand->s[cbStartS];	}	sampsLeft = nSamps - i;		/* process to length of left */	isfTab = (int *)ISFMpeg1[midSideFlag];	mOutL = mOutR = 0;	/* long blocks */	for (cb = cbStartL; cb < cbEndL && sampsLeft > 0; cb++) {		isf = sfis->l[cb];		if (isf == 7) {			fl = ISFIIP[midSideFlag][0];			fr = ISFIIP[midSideFlag][1];		} else {			fl = isfTab[isf];				fr = isfTab[6] - isfTab[isf];		}		n = fh->sfBand->l[cb + 1] - fh->sfBand->l[cb];		for (j = 0; j < n && sampsLeft > 0; j++, i++) {			xr = MULSHIFT32(fr, x[0][i]) << 2;	x[1][i] = xr; mOutR |= FASTABS(xr);			xl = MULSHIFT32(fl, x[0][i]) << 2;	x[0][i] = xl; mOutL |= FASTABS(xl);			sampsLeft--;		}	}	/* short blocks */	for (cb = cbStartS; cb < cbEndS && sampsLeft >= 3; cb++) {		for (w = 0; w < 3; w++) {			isf = sfis->s[cb][w];			if (isf == 7) {				fls[w] = ISFIIP[midSideFlag][0];				frs[w] = ISFIIP[midSideFlag][1];			} else {				fls[w] = isfTab[isf];				frs[w] = isfTab[6] - isfTab[isf];			}		}		n = fh->sfBand->s[cb + 1] - fh->sfBand->s[cb];		for (j = 0; j < n && sampsLeft >= 3; j++, i+=3) {			xr = MULSHIFT32(frs[0], x[0][i+0]) << 2;	x[1][i+0] = xr;	mOutR |= FASTABS(xr);			xl = MULSHIFT32(fls[0], x[0][i+0]) << 2;	x[0][i+0] = xl;	mOutL |= FASTABS(xl);			xr = MULSHIFT32(frs[1], x[0][i+1]) << 2;	x[1][i+1] = xr;	mOutR |= FASTABS(xr);			xl = MULSHIFT32(fls[1], x[0][i+1]) << 2;	x[0][i+1] = xl;	mOutL |= FASTABS(xl);			xr = MULSHIFT32(frs[2], x[0][i+2]) << 2;	x[1][i+2] = xr;	mOutR |= FASTABS(xr);			xl = MULSHIFT32(fls[2], x[0][i+2]) << 2;	x[0][i+2] = xl;	mOutL |= FASTABS(xl);			sampsLeft -= 3;		}	}	mOut[0] = mOutL;	mOut[1] = mOutR;		return;}/************************************************************************************** * Function:    IntensityProcMPEG2 * * Description: intensity stereo processing for MPEG2 * * Inputs:      vector x with dequantized samples from left and right channels *              number of non-zero samples in left channel *              valid FrameHeader struct *              two each of ScaleFactorInfoSub, CriticalBandInfo structs (both channels) *              ScaleFactorJS struct with joint stereo info from UnpackSFMPEG2() *              flags indicating midSide on/off, mixedBlock on/off *              guard bit mask (left and right channels) * * Outputs:     updated sample vector x *              updated guard bit mask * * Return:      none * * Notes:       assume at least 1 GB in input * * TODO:        combine MPEG1/2 into one function (maybe) *              make sure all the mixed-block and IIP logic is right *                probably redo IIP logic to be simpler **************************************************************************************/void IntensityProcMPEG2(int x[MAX_NCHAN][MAX_NSAMP], int nSamps, FrameHeader *fh, ScaleFactorInfoSub *sfis, 						CriticalBandInfo *cbi, ScaleFactorJS *sfjs, int midSideFlag, int mixFlag, int mOut[2]){	int i, j, k, n, r, cb, w;	int fl, fr, mOutL, mOutR, xl, xr;	int sampsLeft;	int isf, sfIdx, tmp, il[23];	int *isfTab;	int cbStartL, cbStartS, cbEndL, cbEndS;	(void)mixFlag;		isfTab = (int *)ISFMpeg2[sfjs->intensityScale][midSideFlag];	mOutL = mOutR = 0;	/* fill buffer with illegal intensity positions (depending on slen) */	for (k = r = 0; r < 4; r++) {		tmp = (1 << sfjs->slen[r]) - 1;		for (j = 0; j < sfjs->nr[r]; j++, k++) 			il[k] = tmp;	}	if (cbi[1].cbType == 0) {		/* long blocks */		il[21] = il[22] = 1;		cbStartL = cbi[1].cbEndL + 1;	/* start at end of right */		cbEndL =   cbi[0].cbEndL + 1;	/* process to end of left */		i = fh->sfBand->l[cbStartL];		sampsLeft = nSamps - i;		for(cb = cbStartL; cb < cbEndL; cb++) {			sfIdx = sfis->l[cb];			if (sfIdx == il[cb]) {				fl = ISFIIP[midSideFlag][0];				fr = ISFIIP[midSideFlag][1];			} else {				isf = (sfis->l[cb] + 1) >> 1;				fl = isfTab[(sfIdx & 0x01 ? isf : 0)];				fr = isfTab[(sfIdx & 0x01 ? 0 : isf)];			}			n = MIN(fh->sfBand->l[cb + 1] - fh->sfBand->l[cb], sampsLeft);			for(j = 0; j < n; j++, i++) {				xr = MULSHIFT32(fr, x[0][i]) << 2;	x[1][i] = xr;	mOutR |= FASTABS(xr);				xl = MULSHIFT32(fl, x[0][i]) << 2;	x[0][i] = xl;	mOutL |= FASTABS(xl);			}			/* early exit once we've used all the non-zero samples */			sampsLeft -= n;			if (sampsLeft == 0)						break;		}	} else {		/* short or mixed blocks */		il[12] = 1;		for(w = 0; w < 3; w++) {			cbStartS = cbi[1].cbEndS[w] + 1;		/* start at end of right */			cbEndS =   cbi[0].cbEndS[w] + 1;		/* process to end of left */			i = 3 * fh->sfBand->s[cbStartS] + w;			/* skip through sample array by 3, so early-exit logic would be more tricky */			for(cb = cbStartS; cb < cbEndS; cb++) {				sfIdx = sfis->s[cb][w];				if (sfIdx == il[cb]) {					fl = ISFIIP[midSideFlag][0];					fr = ISFIIP[midSideFlag][1];				} else {					isf = (sfis->s[cb][w] + 1) >> 1;					fl = isfTab[(sfIdx & 0x01 ? isf : 0)];					fr = isfTab[(sfIdx & 0x01 ? 0 : isf)];				}				n = fh->sfBand->s[cb + 1] - fh->sfBand->s[cb];				for(j = 0; j < n; j++, i+=3) {					xr = MULSHIFT32(fr, x[0][i]) << 2;	x[1][i] = xr;	mOutR |= FASTABS(xr);					xl = MULSHIFT32(fl, x[0][i]) << 2;	x[0][i] = xl;	mOutL |= FASTABS(xl);				}			}		}	}	mOut[0] = mOutL;	mOut[1] = mOutR;	return;}
 |