| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209 | 
							- /* Copyright (c) 2002-2008 Jean-Marc Valin
 
-    Copyright (c) 2007-2008 CSIRO
 
-    Copyright (c) 2007-2009 Xiph.Org Foundation
 
-    Written by Jean-Marc Valin */
 
- /**
 
-    @file mathops.h
 
-    @brief Various math functions
 
- */
 
- /*
 
-    Redistribution and use in source and binary forms, with or without
 
-    modification, are permitted provided that the following conditions
 
-    are met:
 
-    - Redistributions of source code must retain the above copyright
 
-    notice, this list of conditions and the following disclaimer.
 
-    - Redistributions in binary form must reproduce the above copyright
 
-    notice, this list of conditions and the following disclaimer in the
 
-    documentation and/or other materials provided with the distribution.
 
-    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 
-    ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 
-    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 
-    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
 
-    OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 
-    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 
-    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 
-    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 
-    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 
-    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 
-    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
- */
 
- #ifdef HAVE_CONFIG_H
 
- #include "config.h"
 
- #endif
 
- #include "mathops.h"
 
- /*Compute floor(sqrt(_val)) with exact arithmetic.
 
-   _val must be greater than 0.
 
-   This has been tested on all possible 32-bit inputs greater than 0.*/
 
- unsigned isqrt32(opus_uint32 _val){
 
-   unsigned b;
 
-   unsigned g;
 
-   int      bshift;
 
-   /*Uses the second method from
 
-      http://www.azillionmonkeys.com/qed/sqroot.html
 
-     The main idea is to search for the largest binary digit b such that
 
-      (g+b)*(g+b) <= _val, and add it to the solution g.*/
 
-   g=0;
 
-   bshift=(EC_ILOG(_val)-1)>>1;
 
-   b=1U<<bshift;
 
-   do{
 
-     opus_uint32 t;
 
-     t=(((opus_uint32)g<<1)+b)<<bshift;
 
-     if(t<=_val){
 
-       g+=b;
 
-       _val-=t;
 
-     }
 
-     b>>=1;
 
-     bshift--;
 
-   }
 
-   while(bshift>=0);
 
-   return g;
 
- }
 
- #ifdef FIXED_POINT
 
- opus_val32 frac_div32(opus_val32 a, opus_val32 b)
 
- {
 
-    opus_val16 rcp;
 
-    opus_val32 result, rem;
 
-    int shift = celt_ilog2(b)-29;
 
-    a = VSHR32(a,shift);
 
-    b = VSHR32(b,shift);
 
-    /* 16-bit reciprocal */
 
-    rcp = ROUND16(celt_rcp(ROUND16(b,16)),3);
 
-    result = MULT16_32_Q15(rcp, a);
 
-    rem = PSHR32(a,2)-MULT32_32_Q31(result, b);
 
-    result = ADD32(result, SHL32(MULT16_32_Q15(rcp, rem),2));
 
-    if (result >= 536870912)       /*  2^29 */
 
-       return 2147483647;          /*  2^31 - 1 */
 
-    else if (result <= -536870912) /* -2^29 */
 
-       return -2147483647;         /* -2^31 */
 
-    else
 
-       return SHL32(result, 2);
 
- }
 
- /** Reciprocal sqrt approximation in the range [0.25,1) (Q16 in, Q14 out) */
 
- opus_val16 celt_rsqrt_norm(opus_val32 x)
 
- {
 
-    opus_val16 n;
 
-    opus_val16 r;
 
-    opus_val16 r2;
 
-    opus_val16 y;
 
-    /* Range of n is [-16384,32767] ([-0.5,1) in Q15). */
 
-    n = x-32768;
 
-    /* Get a rough initial guess for the root.
 
-       The optimal minimax quadratic approximation (using relative error) is
 
-        r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485).
 
-       Coefficients here, and the final result r, are Q14.*/
 
-    r = ADD16(23557, MULT16_16_Q15(n, ADD16(-13490, MULT16_16_Q15(n, 6713))));
 
-    /* We want y = x*r*r-1 in Q15, but x is 32-bit Q16 and r is Q14.
 
-       We can compute the result from n and r using Q15 multiplies with some
 
-        adjustment, carefully done to avoid overflow.
 
-       Range of y is [-1564,1594]. */
 
-    r2 = MULT16_16_Q15(r, r);
 
-    y = SHL16(SUB16(ADD16(MULT16_16_Q15(r2, n), r2), 16384), 1);
 
-    /* Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5).
 
-       This yields the Q14 reciprocal square root of the Q16 x, with a maximum
 
-        relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a
 
-        peak absolute error of 2.26591/16384. */
 
-    return ADD16(r, MULT16_16_Q15(r, MULT16_16_Q15(y,
 
-               SUB16(MULT16_16_Q15(y, 12288), 16384))));
 
- }
 
- /** Sqrt approximation (QX input, QX/2 output) */
 
- opus_val32 celt_sqrt(opus_val32 x)
 
- {
 
-    int k;
 
-    opus_val16 n;
 
-    opus_val32 rt;
 
-    static const opus_val16 C[5] = {23175, 11561, -3011, 1699, -664};
 
-    if (x==0)
 
-       return 0;
 
-    else if (x>=1073741824)
 
-       return 32767;
 
-    k = (celt_ilog2(x)>>1)-7;
 
-    x = VSHR32(x, 2*k);
 
-    n = x-32768;
 
-    rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
 
-               MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
 
-    rt = VSHR32(rt,7-k);
 
-    return rt;
 
- }
 
- #define L1 32767
 
- #define L2 -7651
 
- #define L3 8277
 
- #define L4 -626
 
- static OPUS_INLINE opus_val16 _celt_cos_pi_2(opus_val16 x)
 
- {
 
-    opus_val16 x2;
 
-    x2 = MULT16_16_P15(x,x);
 
-    return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2
 
-                                                                                 ))))))));
 
- }
 
- #undef L1
 
- #undef L2
 
- #undef L3
 
- #undef L4
 
- opus_val16 celt_cos_norm(opus_val32 x)
 
- {
 
-    x = x&0x0001ffff;
 
-    if (x>SHL32(EXTEND32(1), 16))
 
-       x = SUB32(SHL32(EXTEND32(1), 17),x);
 
-    if (x&0x00007fff)
 
-    {
 
-       if (x<SHL32(EXTEND32(1), 15))
 
-       {
 
-          return _celt_cos_pi_2(EXTRACT16(x));
 
-       } else {
 
-          return NEG16(_celt_cos_pi_2(EXTRACT16(65536-x)));
 
-       }
 
-    } else {
 
-       if (x&0x0000ffff)
 
-          return 0;
 
-       else if (x&0x0001ffff)
 
-          return -32767;
 
-       else
 
-          return 32767;
 
-    }
 
- }
 
- /** Reciprocal approximation (Q15 input, Q16 output) */
 
- opus_val32 celt_rcp(opus_val32 x)
 
- {
 
-    int i;
 
-    opus_val16 n;
 
-    opus_val16 r;
 
-    celt_sig_assert(x>0);
 
-    i = celt_ilog2(x);
 
-    /* n is Q15 with range [0,1). */
 
-    n = VSHR32(x,i-15)-32768;
 
-    /* Start with a linear approximation:
 
-       r = 1.8823529411764706-0.9411764705882353*n.
 
-       The coefficients and the result are Q14 in the range [15420,30840].*/
 
-    r = ADD16(30840, MULT16_16_Q15(-15420, n));
 
-    /* Perform two Newton iterations:
 
-       r -= r*((r*n)-1.Q15)
 
-          = r*((r*n)+(r-1.Q15)). */
 
-    r = SUB16(r, MULT16_16_Q15(r,
 
-              ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768))));
 
-    /* We subtract an extra 1 in the second iteration to avoid overflow; it also
 
-        neatly compensates for truncation error in the rest of the process. */
 
-    r = SUB16(r, ADD16(1, MULT16_16_Q15(r,
 
-              ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768)))));
 
-    /* r is now the Q15 solution to 2/(n+1), with a maximum relative error
 
-        of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute
 
-        error of 1.24665/32768. */
 
-    return VSHR32(EXTEND32(r),i-16);
 
- }
 
- #endif
 
 
  |