| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 | 
							- #!/usr/bin/python
 
- from __future__ import print_function
 
- from keras.models import Sequential
 
- from keras.models import Model
 
- from keras.layers import Input
 
- from keras.layers import Dense
 
- from keras.layers import LSTM
 
- from keras.layers import GRU
 
- from keras.models import load_model
 
- from keras import backend as K
 
- import sys
 
- import numpy as np
 
- def printVector(f, vector, name):
 
-     v = np.reshape(vector, (-1));
 
-     #print('static const float ', name, '[', len(v), '] = \n', file=f)
 
-     f.write('static const opus_int8 {}[{}] = {{\n   '.format(name, len(v)))
 
-     for i in range(0, len(v)):
 
-         f.write('{}'.format(max(-128,min(127,int(round(128*v[i]))))))
 
-         if (i!=len(v)-1):
 
-             f.write(',')
 
-         else:
 
-             break;
 
-         if (i%8==7):
 
-             f.write("\n   ")
 
-         else:
 
-             f.write(" ")
 
-     #print(v, file=f)
 
-     f.write('\n};\n\n')
 
-     return;
 
- def binary_crossentrop2(y_true, y_pred):
 
-         return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_pred, y_true), axis=-1)
 
- #model = load_model(sys.argv[1], custom_objects={'binary_crossentrop2': binary_crossentrop2})
 
- main_input = Input(shape=(None, 25), name='main_input')
 
- x = Dense(32, activation='tanh')(main_input)
 
- x = GRU(24, activation='tanh', recurrent_activation='sigmoid', return_sequences=True)(x)
 
- x = Dense(2, activation='sigmoid')(x)
 
- model = Model(inputs=main_input, outputs=x)
 
- model.load_weights(sys.argv[1])
 
- weights = model.get_weights()
 
- f = open(sys.argv[2], 'w')
 
- f.write('/*This file is automatically generated from a Keras model*/\n\n')
 
- f.write('#ifdef HAVE_CONFIG_H\n#include "config.h"\n#endif\n\n#include "mlp.h"\n\n')
 
- printVector(f, weights[0], 'layer0_weights')
 
- printVector(f, weights[1], 'layer0_bias')
 
- printVector(f, weights[2], 'layer1_weights')
 
- printVector(f, weights[3], 'layer1_recur_weights')
 
- printVector(f, weights[4], 'layer1_bias')
 
- printVector(f, weights[5], 'layer2_weights')
 
- printVector(f, weights[6], 'layer2_bias')
 
- f.write('const DenseLayer layer0 = {\n   layer0_bias,\n   layer0_weights,\n   25, 32, 0\n};\n\n')
 
- f.write('const GRULayer layer1 = {\n   layer1_bias,\n   layer1_weights,\n   layer1_recur_weights,\n   32, 24\n};\n\n')
 
- f.write('const DenseLayer layer2 = {\n   layer2_bias,\n   layer2_weights,\n   24, 2, 1\n};\n\n')
 
- f.close()
 
 
  |