| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541 | /*This is an implementation of the AES algorithm, specifically ECB, CTR and CBC mode.Block size can be chosen in aes.h - available choices are AES128, AES192, AES256.The implementation is verified against the test vectors in:  National Institute of Standards and Technology Special Publication 800-38A 2001 EDECB-AES128----------  plain-text:    6bc1bee22e409f96e93d7e117393172a    ae2d8a571e03ac9c9eb76fac45af8e51    30c81c46a35ce411e5fbc1191a0a52ef    f69f2445df4f9b17ad2b417be66c3710  key:    2b7e151628aed2a6abf7158809cf4f3c  resulting cipher    3ad77bb40d7a3660a89ecaf32466ef97     f5d3d58503b9699de785895a96fdbaaf     43b1cd7f598ece23881b00e3ed030688     7b0c785e27e8ad3f8223207104725dd4 NOTE:   String length must be evenly divisible by 16byte (str_len % 16 == 0)        You should pad the end of the string with zeros if this is not the case.        For AES192/256 the key size is proportionally larger.*/#include <stdint.h>  // for uint8_t/*****************************************************************************//* Includes:                                                                 *//*****************************************************************************/#include <string.h>  // for memcpy, size_t#include "aes.h"  // for AES_ctx, AES_BLOCKLEN, CBC, ECB, CTR, AES192/*****************************************************************************//* Defines:                                                                  *//*****************************************************************************/// The number of columns comprising a state in AES. This is a constant in AES. Value=4#define Nb 4#if defined(AES256) && (AES256 == 1)#define Nk 8#define Nr 14#elif defined(AES192) && (AES192 == 1)#define Nk 6#define Nr 12#else#define Nk 4   // The number of 32 bit words in a key.#define Nr 10  // The number of rounds in AES Cipher.#endif// jcallan@github points out that declaring Multiply as a function// reduces code size considerably with the Keil ARM compiler.// See this link for more information: https://github.com/kokke/tiny-AES-C/pull/3#ifndef MULTIPLY_AS_A_FUNCTION#define MULTIPLY_AS_A_FUNCTION 0#endif/*****************************************************************************//* Private variables:                                                        *//*****************************************************************************/// state - array holding the intermediate results during decryption.typedef uint8_t state_t[4][4];// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM// The numbers below can be computed dynamically trading ROM for RAM -// This can be useful in (embedded) bootloader applications, where ROM is often limited.static const uint8_t sbox[256] = {    //0     1    2      3     4    5     6     7      8    9     A      B    C     D     E     F    0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b,    0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,    0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26,    0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,    0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2,    0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,    0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed,    0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,    0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f,    0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,    0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,    0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,    0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14,    0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,    0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d,    0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,    0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f,    0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,    0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11,    0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,    0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f,    0xb0, 0x54, 0xbb, 0x16};#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)static const uint8_t rsbox[256] = {    0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e,    0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87,    0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32,    0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,    0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49,    0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16,    0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50,    0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,    0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05,    0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02,    0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41,    0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,    0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8,    0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89,    0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b,    0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,    0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59,    0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d,    0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d,    0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,    0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63,    0x55, 0x21, 0x0c, 0x7d};#endif// The round constant word array, Rcon[i], contains the values given by// x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)static const uint8_t Rcon[11] = {0x8d, 0x01, 0x02, 0x04, 0x08, 0x10,                                 0x20, 0x40, 0x80, 0x1b, 0x36};/* * Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES-C/pull/12), * that you can remove most of the elements in the Rcon array, because they are unused. * * From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon *  * "Only the first some of these constants are actually used – up to rcon[10] for AES-128 (as 11 round keys are needed),  *  up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm." *//*****************************************************************************//* Private functions:                                                        *//*****************************************************************************//*static uint8_t getSBoxValue(uint8_t num){  return sbox[num];}*/#define getSBoxValue(num) (sbox[(num)])// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.static void KeyExpansion(uint8_t* RoundKey, const uint8_t* Key) {  unsigned i, j, k;  uint8_t tempa[4];  // Used for the column/row operations  // The first round key is the key itself.  for (i = 0; i < Nk; ++i) {    RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];    RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];    RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];    RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];  }  // All other round keys are found from the previous round keys.  for (i = Nk; i < Nb * (Nr + 1); ++i) {    {      k = (i - 1) * 4;      tempa[0] = RoundKey[k + 0];      tempa[1] = RoundKey[k + 1];      tempa[2] = RoundKey[k + 2];      tempa[3] = RoundKey[k + 3];    }    if (i % Nk == 0) {      // This function shifts the 4 bytes in a word to the left once.      // [a0,a1,a2,a3] becomes [a1,a2,a3,a0]      // Function RotWord()      {        const uint8_t u8tmp = tempa[0];        tempa[0] = tempa[1];        tempa[1] = tempa[2];        tempa[2] = tempa[3];        tempa[3] = u8tmp;      }      // SubWord() is a function that takes a four-byte input word and      // applies the S-box to each of the four bytes to produce an output word.      // Function Subword()      {        tempa[0] = getSBoxValue(tempa[0]);        tempa[1] = getSBoxValue(tempa[1]);        tempa[2] = getSBoxValue(tempa[2]);        tempa[3] = getSBoxValue(tempa[3]);      }      tempa[0] = tempa[0] ^ Rcon[i / Nk];    }#if defined(AES256) && (AES256 == 1)    if (i % Nk == 4) {      // Function Subword()      {        tempa[0] = getSBoxValue(tempa[0]);        tempa[1] = getSBoxValue(tempa[1]);        tempa[2] = getSBoxValue(tempa[2]);        tempa[3] = getSBoxValue(tempa[3]);      }    }#endif    j = i * 4;    k = (i - Nk) * 4;    RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0];    RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1];    RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2];    RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3];  }}void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key) {  KeyExpansion(ctx->RoundKey, key);}#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key,                     const uint8_t* iv) {  KeyExpansion(ctx->RoundKey, key);  memcpy(ctx->Iv, iv, AES_BLOCKLEN);}void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv) {  memcpy(ctx->Iv, iv, AES_BLOCKLEN);}#endif// This function adds the round key to state.// The round key is added to the state by an XOR function.static void AddRoundKey(uint8_t round, state_t* state,                        const uint8_t* RoundKey) {  uint8_t i, j;  for (i = 0; i < 4; ++i) {    for (j = 0; j < 4; ++j) {      (*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j];    }  }}// The SubBytes Function Substitutes the values in the// state matrix with values in an S-box.static void SubBytes(state_t* state) {  uint8_t i, j;  for (i = 0; i < 4; ++i) {    for (j = 0; j < 4; ++j) {      (*state)[j][i] = getSBoxValue((*state)[j][i]);    }  }}// The ShiftRows() function shifts the rows in the state to the left.// Each row is shifted with different offset.// Offset = Row number. So the first row is not shifted.static void ShiftRows(state_t* state) {  uint8_t temp;  // Rotate first row 1 columns to left  temp = (*state)[0][1];  (*state)[0][1] = (*state)[1][1];  (*state)[1][1] = (*state)[2][1];  (*state)[2][1] = (*state)[3][1];  (*state)[3][1] = temp;  // Rotate second row 2 columns to left  temp = (*state)[0][2];  (*state)[0][2] = (*state)[2][2];  (*state)[2][2] = temp;  temp = (*state)[1][2];  (*state)[1][2] = (*state)[3][2];  (*state)[3][2] = temp;  // Rotate third row 3 columns to left  temp = (*state)[0][3];  (*state)[0][3] = (*state)[3][3];  (*state)[3][3] = (*state)[2][3];  (*state)[2][3] = (*state)[1][3];  (*state)[1][3] = temp;}static uint8_t xtime(uint8_t x) {  return ((x << 1) ^ (((x >> 7) & 1) * 0x1b));}// MixColumns function mixes the columns of the state matrixstatic void MixColumns(state_t* state) {  uint8_t i;  uint8_t Tmp, Tm, t;  for (i = 0; i < 4; ++i) {    t = (*state)[i][0];    Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3];    Tm = (*state)[i][0] ^ (*state)[i][1];    Tm = xtime(Tm);    (*state)[i][0] ^= Tm ^ Tmp;    Tm = (*state)[i][1] ^ (*state)[i][2];    Tm = xtime(Tm);    (*state)[i][1] ^= Tm ^ Tmp;    Tm = (*state)[i][2] ^ (*state)[i][3];    Tm = xtime(Tm);    (*state)[i][2] ^= Tm ^ Tmp;    Tm = (*state)[i][3] ^ t;    Tm = xtime(Tm);    (*state)[i][3] ^= Tm ^ Tmp;  }}// Multiply is used to multiply numbers in the field GF(2^8)// Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary//       The compiler seems to be able to vectorize the operation better this way.//       See https://github.com/kokke/tiny-AES-c/pull/34#if MULTIPLY_AS_A_FUNCTIONstatic uint8_t Multiply(uint8_t x, uint8_t y) {  return (((y & 1) * x) ^ ((y >> 1 & 1) * xtime(x)) ^          ((y >> 2 & 1) * xtime(xtime(x))) ^          ((y >> 3 & 1) * xtime(xtime(xtime(x)))) ^          ((y >> 4 & 1) *           xtime(xtime(xtime(               xtime(x)))))); /* this last call to xtime() can be omitted */}#else#define Multiply(x, y)                         \  (((y & 1) * x) ^ ((y >> 1 & 1) * xtime(x)) ^ \   ((y >> 2 & 1) * xtime(xtime(x))) ^          \   ((y >> 3 & 1) * xtime(xtime(xtime(x)))) ^   \   ((y >> 4 & 1) * xtime(xtime(xtime(xtime(x))))))#endif#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)/*static uint8_t getSBoxInvert(uint8_t num){  return rsbox[num];}*/#define getSBoxInvert(num) (rsbox[(num)])// MixColumns function mixes the columns of the state matrix.// The method used to multiply may be difficult to understand for the inexperienced.// Please use the references to gain more information.static void InvMixColumns(state_t* state) {  int i;  uint8_t a, b, c, d;  for (i = 0; i < 4; ++i) {    a = (*state)[i][0];    b = (*state)[i][1];    c = (*state)[i][2];    d = (*state)[i][3];    (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^                     Multiply(d, 0x09);    (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^                     Multiply(d, 0x0d);    (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^                     Multiply(d, 0x0b);    (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^                     Multiply(d, 0x0e);  }}// The SubBytes Function Substitutes the values in the// state matrix with values in an S-box.static void InvSubBytes(state_t* state) {  uint8_t i, j;  for (i = 0; i < 4; ++i) {    for (j = 0; j < 4; ++j) {      (*state)[j][i] = getSBoxInvert((*state)[j][i]);    }  }}static void InvShiftRows(state_t* state) {  uint8_t temp;  // Rotate first row 1 columns to right  temp = (*state)[3][1];  (*state)[3][1] = (*state)[2][1];  (*state)[2][1] = (*state)[1][1];  (*state)[1][1] = (*state)[0][1];  (*state)[0][1] = temp;  // Rotate second row 2 columns to right  temp = (*state)[0][2];  (*state)[0][2] = (*state)[2][2];  (*state)[2][2] = temp;  temp = (*state)[1][2];  (*state)[1][2] = (*state)[3][2];  (*state)[3][2] = temp;  // Rotate third row 3 columns to right  temp = (*state)[0][3];  (*state)[0][3] = (*state)[1][3];  (*state)[1][3] = (*state)[2][3];  (*state)[2][3] = (*state)[3][3];  (*state)[3][3] = temp;}#endif  // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)// Cipher is the main function that encrypts the PlainText.static void Cipher(state_t* state, const uint8_t* RoundKey) {  uint8_t round = 0;  // Add the First round key to the state before starting the rounds.  AddRoundKey(0, state, RoundKey);  // There will be Nr rounds.  // The first Nr-1 rounds are identical.  // These Nr rounds are executed in the loop below.  // Last one without MixColumns()  for (round = 1;; ++round) {    SubBytes(state);    ShiftRows(state);    if (round == Nr) {      break;    }    MixColumns(state);    AddRoundKey(round, state, RoundKey);  }  // Add round key to last round  AddRoundKey(Nr, state, RoundKey);}#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)static void InvCipher(state_t* state, const uint8_t* RoundKey) {  uint8_t round = 0;  // Add the First round key to the state before starting the rounds.  AddRoundKey(Nr, state, RoundKey);  // There will be Nr rounds.  // The first Nr-1 rounds are identical.  // These Nr rounds are executed in the loop below.  // Last one without InvMixColumn()  for (round = (Nr - 1);; --round) {    InvShiftRows(state);    InvSubBytes(state);    AddRoundKey(round, state, RoundKey);    if (round == 0) {      break;    }    InvMixColumns(state);  }}#endif  // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)/*****************************************************************************//* Public functions:                                                         *//*****************************************************************************/#if defined(ECB) && (ECB == 1)void AES_ECB_encrypt(const struct AES_ctx* ctx, uint8_t* buf) {  // The next function call encrypts the PlainText with the Key using AES algorithm.  Cipher((state_t*)buf, ctx->RoundKey);}void AES_ECB_decrypt(const struct AES_ctx* ctx, uint8_t* buf) {  // The next function call decrypts the PlainText with the Key using AES algorithm.  InvCipher((state_t*)buf, ctx->RoundKey);}#endif  // #if defined(ECB) && (ECB == 1)#if defined(CBC) && (CBC == 1)static void XorWithIv(uint8_t* buf, const uint8_t* Iv) {  uint8_t i;  for (i = 0; i < AES_BLOCKLEN;       ++i)  // The block in AES is always 128bit no matter the key size  {    buf[i] ^= Iv[i];  }}void AES_CBC_encrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length) {  size_t i;  uint8_t* Iv = ctx->Iv;  for (i = 0; i < length; i += AES_BLOCKLEN) {    XorWithIv(buf, Iv);    Cipher((state_t*)buf, ctx->RoundKey);    Iv = buf;    buf += AES_BLOCKLEN;  }  /* store Iv in ctx for next call */  memcpy(ctx->Iv, Iv, AES_BLOCKLEN);}void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length) {  size_t i;  uint8_t storeNextIv[AES_BLOCKLEN];  for (i = 0; i < length; i += AES_BLOCKLEN) {    memcpy(storeNextIv, buf, AES_BLOCKLEN);    InvCipher((state_t*)buf, ctx->RoundKey);    XorWithIv(buf, ctx->Iv);    memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN);    buf += AES_BLOCKLEN;  }}#endif  // #if defined(CBC) && (CBC == 1)#if defined(CTR) && (CTR == 1)/* Symmetrical operation: same function for encrypting as for decrypting. Note any IV/nonce should never be reused with the same key */void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length) {  uint8_t buffer[AES_BLOCKLEN];  size_t i;  int bi;  for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi) {    if (bi == AES_BLOCKLEN) /* we need to regen xor compliment in buffer */    {      memcpy(buffer, ctx->Iv, AES_BLOCKLEN);      Cipher((state_t*)buffer, ctx->RoundKey);      /* Increment Iv and handle overflow */      for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi) {        /* inc will overflow */        if (ctx->Iv[bi] == 255) {          ctx->Iv[bi] = 0;          continue;        }        ctx->Iv[bi] += 1;        break;      }      bi = 0;    }    buf[i] = (buf[i] ^ buffer[bi]);  }}#endif  // #if defined(CTR) && (CTR == 1)
 |